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Abstract

Record linkage is a bedrock of quantitative so-
cial science, as analyses often require linking
data from multiple, noisy sources. Off-the-
shelf string matching methods are widely used,
as they are straightforward and cheap to imple-
ment and scale. Not all character substitutions
are equally probable, and for some settings
there are widely used handcrafted lists denot-
ing which string substitutions are more likely,
that improve the accuracy of string matching.
However, such lists do not exist for many set-
tings, skewing research with linked datasets
towards a few high-resource contexts that are
not representative of the diversity of human
societies. This study develops an extensible
way to measure character substitution costs for
OCR’ed documents, by employing large-scale
self-supervised training of vision transformers
(ViT) with augmented digital fonts. For each
language written with the CJK script, we con-
trastively learn a metric space where different
augmentations of the same character are rep-
resented nearby. In this space, homoglyphic
characters - those with similar appearance such
as “O” and “0” - have similar vector representa-
tions. Using the cosine distance between char-
acters’ representations as the substitution cost
in an edit distance matching algorithm signif-
icantly improves record linkage compared to
other widely used string matching methods, as
OCR errors tend to be homoglyphic in nature.
Homoglyphs can plausibly capture character
visual similarity across any script, including
low-resource settings. We illustrate this by cre-
ating homoglyph sets for 3,000 year old ancient
Chinese characters, which are highly pictorial.
Fascinatingly, a ViT is able to capture relation-
ships in how different abstract concepts were
conceptualized by ancient societies, that have
been noted in the archaeological literature.

1 Introduction

Many quantitative analyses in the social sciences -
as well as government and business applications -

require linking information from multiple datasets.
For example, researchers and governments link his-
torical censuses, match hand-written records from
vaccination campaigns to administrative data, and
de-duplicate voter rolls. The sources to be linked
often contain noise, particularly when they were
created with optical character recognition (OCR).
String matching methods are widely used to link
entities across datasets, as they are straightfor-
ward to implement off-the-shelf and can be scaled
to massive datasets (Binette and Steorts, 2022;
Abramitzky et al., 2021).

Most simply, approximate string matching meth-
ods count the number of edits (insertions, deletions,
and substitutions) to transform one string into an-
other (Levenshtein et al., 1966). Another common
approach computes the similarity between n-gram
representations of strings, where n-grams are all
substrings of length n (Okazaki and Tsujii, 2010).

In practice, not all string substitutions are equally
probable, and efforts to construct lists that vary
their costs date back over a century. For example, in
1918 Russell and Odell patented Soundex (Russell,
1918; Archives and Administration, 2023), a sound
standardization toolkit that accounts for the fact
that census enumerators often misspelled names ac-
cording to their sound. Together with the updated
New York State Identification and Intelligence Sys-
tem (Silbert, 1970), it remains a bedrock for linking
U.S. historical censuses (Abramitzky et al., 2021).
Similarly, Novosad (2018) adjusts Levenshtein dis-
tance to impose smaller penalties for common al-
ternative spellings in Hindi, and the FuzzyChinese
package (znwang25, 2020) uses strokes as the unit
for n-grams substring representations, where the
strokes for a given character are drawn from an
external database (kfcd, 2015) covering a subset
of the CJK script. Characters sharing strokes are
more likely to be matched.

Such methods can perform well in the contexts
for which they are tailored but are labor-intensive



to extend to new settings, due to the use of hand-
crafted features. Low extensibility skews research
with linked data - necessary to examine intergener-
ational mobility, the evolution of firm productivity,
the persistence of poverty, and many other topics -
towards a few higher resource settings that are not
representative of the diversity of human societies.

This study aims to preserve the advantages of
string matching methods - simple off-the-shelf im-
plementation and high scalability - while devel-
oping an extensible, self-supervised method for
determining the relative costs of character substi-
tutions in databases created with OCR. OCR often
confuses characters with their homoglyphs, which
have a similar visual appearance (e.g. “0” and “O”).
Incorporating character visual similarity into string
matching can thus plausibly improve record link-
age. Homoglyphs can be constructed by hand for
small script sets such as Latin, as in a psychology
literature on literacy acquisition (Simpson et al.,
2013). For a script such as CJK, containing over
38,000 characters, this is infeasible.

Following a literature on self-supervision
through simple data augmentation for image en-
coders (Grill et al., 2020; Chen et al., 2021; Chen
and He, 2021), this study uses augmented digital
fonts to contrastively learn a metric space where
different augmentations of a character (e.g., the
character rendered with different fonts) have simi-
lar vector representations. The resulting space can
be used, with a reference font, to measure the vi-
sual similarity of different characters. This purely
self-supervised approach can be extended to any
character set. Due to space constraints, this study
focuses on languages written with CJK: Simplified
and Traditional Chinese, Japanese, and Korean.

We train the HOMOGLYPH model on augmenta-
tions of the same character - rather than paired
data across characters - because a self-supervised
approach is more extensible. Paired character simi-
larity data are limited. Unicode maintains a set of
confusables - constructed with rule-based methods
- but for CJK the only confusables are structurally
identical characters with different Unicode code-
points. Despite a large post-OCR error correction
literature (Lyu et al., 2021; Nguyen et al., 2021; van
Strien. et al., 2020), there is also limited ground
truth data about the types of errors that OCR makes
across architectures, languages, scripts, layouts,
and document contexts.

Using the cosine distance between two charac-

ters as the substitution cost within a Levenshtein
edit distance framework (Levenshtein et al., 1966)
significantly improves record linkage, relative to
other string matching methods. We first examine
linking real world data on supply chains, which
are central to a variety of economic questions. We
use three very different open-source OCR archi-
tectures to digitize supply chain and firm informa-
tion from two 1950s Japanese publications (Jinji
Koshinjo, 1954; Teikoku Koshinjo, 1957). We then
use HOMOGLYPH to link them, significantly improv-
ing linkage over other string matching methods.
This exercise illustrates that OCR errors tend to be
homoglyphic regardless of the OCR architecture
used.

We provide evaluations for additional languages
using synthetically generated data, as creating eval-
uation data is very costly. We augment image ren-
ders of place and firm names written with different
fonts, for the Simplified and Traditional Chinese,
Japanese, and Korean character sets. We then OCR
two different views of each entity with different
OCR engines. The different augmentations and
OCR engines lead with high frequency to differ-
ent text string views of the same entity. We then
link these using string matching methods. Homo-
glyphic matching outperforms other widely used
string matching techniques for all four languages.

While end-to-end deep neural methods could
plausibly outperform string matching, the data
required for them are not always available and
technical requirements for implementation are
higher, explaining why string matching methods
predominate in social science applications. Homo-
glyphic matching is a cheap and extensible way
to improve string matching. Our python package
HomoglyphsCJK (https://pypi.org/project/
HomoglyphsCJK/) provides a simple, off-the-shelf
implementation.

Homoglyphs can be extended to any script. To
explore this, we contrastively train a HOMOGLYPH
model for ancient Chinese characters, using a
database that provides views of the same charac-
ter from different archaeological sites and time
periods (Academia Sinica et al., 2023). Ancient
characters are much more pictorial than their more
abstract, modern equivalents. Fascinatingly, homo-
glyphs constructed with a ViT for the Shang Dy-
nasty (1600 BC-1045 BC) capture ways in which
ancient Chinese society related abstract concepts
that have been noted in the archaeological literature

https://pypi.org/project/HomoglyphsCJK/
https://pypi.org/project/HomoglyphsCJK/


(e.g. Wang (2003)).
The rest of this study is organized as follows:

Section 2 develops methods for learning character
similarity and incorporating it into string match-
ing, and Section 3 describes the evaluation datasets.
Section 4 compares the performance of homo-
glyphic edit distance to other string matching meth-
ods for record linkage, and Section 5 introduces the
HomoglyphsCJK package. Section 6 examines ex-
tensibility by constructing homoglyphs for ancient
Chinese, and Section 7 discusses the limitations of
homoglyphs.

2 Methods

2.1 The HOMOGLYPH model
The HOMOGLYPH model contrastively learns a map-
ping between character crops and dense vector rep-
resentations, such that crops of augmentations of
the same character are nearby, as illustrated in Fig-
ure 1. HOMOGLYPH is trained purely on digital fonts.
Figure 2 shows variations of the same characters
rendered with different fonts, which form positive
examples for training.1 Variations across fonts are
non-trivial, forcing the model to learn character
similarities at varying levels of abstraction.

We use a DINO (Self-Distillation, No Labels)
pre-trained ViT as the encoder (Caron et al., 2021).
DINO ViT embeddings perform well as a nearest
neighbor classifier, making them well-suited for ho-
moglyphic matching. The model is trained using a
Supervised Contrastive loss function (Khosla et al.,
2020), a generalization of the InfoNCE loss (Oord
et al., 2018) that allows for multiple positive and
negative pairs for a given anchor:

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(1)

where τ is a temperature parameter (equal to
0.1), i indexes a sample in a “multiviewed" batch
(in this case multiple fonts/augmentations of char-
acters with the same identity), P (i) is the set of
indices of all positives in the multiviewed batch
that are distinct from i, A(i) is the set of all indices
excluding i, and z is an embedding of a sample
in the batch. Training details are describe in the
supplementary materials.

1We use 62 open-source fonts for Korean, 27 for Simplified
Chinese, 17 for Traditional Chinese, and 13 for Japanese. Our
training budget required us to base the number of fonts for
each script on the total number of characters in that script,
using more fonts for characters with a smaller Unicode range.

To compute characters’ similarity, we embed
their image crops, created with a reference font
(Google Noto) chosen for its comprehensiveness,
and compute cosine similarity with a Facebook
Artificial Intelligence Similarly Search backend
(Johnson et al., 2019).

Figure 3 shows representative examples of char-
acters and their five nearest homoglyphs. Charac-
ters with similar vector representations have quali-
tatively similar appearances.
HOMOGLYPH shares common elements with Ef-

ficientOCR (Carlson et al., 2023), an OCR archi-
tecture that learns to recognize characters by con-
trastively training on character crops rendered with
augmented digital fonts. Different augmentations
of a character provide positive examples. At in-
ference time, localized characters are OCR’ed by
retrieving their nearest neighbor from an offline
index of exemplar character embeddings. Efficien-
tOCR aims to retrieve the same character in an
offline index, whereas HOMOGLYPH measures simi-
larity across characters. While HOMOGLYPH shares
the architecture of the EfficientOCR character rec-
ognizer, it does not use the same model weights or
training data.

2.2 String Matching Methods

Dunn (1946) - in one of the first treatments of
record linkage - wrote: “Each person in the world
creates a Book of Life. This Book starts with birth
and ends with death. Its pages are made up of the
records of the principal events in life. Record link-
age is the name given to the process of assembling
the pages of this Book into a volume.”

Edit distance metrics are widely used for this
task e.g. Levenshtein et al. (1966); Jaro (1989);
Winkler (1990). Another common approach com-
putes the cosine similarity between n-gram repre-
sentations of strings (Okazaki and Tsujii, 2010).

There are a variety of ways that character-level
visual similarity could be incorporated into record
linkage. We follow the literature modifying Lev-
enshtein distance, e.g. Novosad (2018), by using
cosine distance in the HOMOGLYPH space as the sub-
stitution cost. Insertion and deletion costs are set to
one. It is straightforward to scale the insertion and
deletion costs using parameters estimated on a val-
idation set, but we focus on performance without
any tuned parameters to maintain a purely off-the-
shelf, self-supervised implementation.

We compare matching with homoglyphic edit



Figure 1: Training Architecture. Contrastive training architecture for the HOMOGLYPH model.

Figure 2: Character variation across fonts. This fig-
ure illustrates examples of the same character rendered
with different fonts. Augmentations of these comprise
positives in the HOMOGLYPH training data.

distance to a variety of other methods. The first
comparison is to classic Levenshtein distance (in-
sertions, deletions, and substitutions are all equally
costly), to isolate the effect of varying the substitu-
tion cost. We also compare to the popular Simstring
package, which uses a variety of similarity metrics
(Jaccard, cosine, and Dice similarity), computed
with 2-gram substrings (Okazaki and Tsujii, 2010).
The third comparison is to FuzzyChinese, a widely
used package that uses strokes or characters as the
fundamental unit for n-gram substring represen-
tations (we use the default 3-grams). These are
compared using the TF-IDF vectors. The strokes in
each character are drawn from an external database

Figure 3: Homoglyphs. This figure illustrates the five
nearest neighbors in the HOMOGLYPH embedding space
for representative characters.

(kfcd, 2015) covering a subset of the CJK script.

3 Evaluation Datasets

To our knowledge, there are no widely used bench-
marks for evaluating record linkage for the CJK
script, and thus we develop datasets for evaluation.
Table 1 contains information about their sizes.

First, we link a dataset on the customers and sup-
pliers of major Japanese firms, drawn from a 1956
Japanese firm publication (Jinji Koshinjo, 1954), to
a firm index of around 7,000 firms. The index is
from the same publication but written in a different
font. Firm names are localized with LayoutParser
(Shen et al., 2021), using a custom layout analysis



Task Query Target

Hist. Jap. Companies Across (historic-
ja-across)

238 68,352

Hist. Jap. Companies Within (historic-
ja-within)

1,092 6,725

Synthetic Japanese (synth-ja) 86,470 86,470
Synthetic Korean (synth-ko) 48,809 48,809
Synthetic Trad. Chinese (synth-zht) 66,943 66,943
Synthetic Simp. Chinese (synth-zhs) 20,162 20,162

Table 1: Query (items to match) and target (reference dataset) sizes
for each record linkage task.

model that detects individual customers and sup-
pliers in lists. Custom layout analysis is necessary,
as some OCR engines fail to detect the character
separating firms in the customer-supplier list. We
then hand-link a randomly selected sample of 1092
customers and suppliers to the index, keeping only
one instance of each firm in the customer-supplier
lists to create a diverse evaluation set. We call this
dataset historic-ja-within.

Firm names are OCR’ed twice, to shed light
on whether errors tend to be homoglyphic for
both vision-only and vision-language sequence-
to-sequence OCR architectures. We employ two
widely used, open-source engines: EasyOCR and
PaddleOCR. EasyOCR uses a convolutional recur-
rent neural network (CRNN) (Shi et al., 2016), with
learned embeddings from a vision model serving
as inputs to a learned language model. PaddleOCR
abandons language modeling, dividing text images
into small patches, using mixing blocks to perceive
inter- and intra-character patterns, and recognizing
text by linear prediction (Du et al., 2022). Neither
engine localizes individual characters.

In a second exercise, we use a hand-curated
dataset that links 238 firms to a much larger firm
directory containing over 70,000 firms (Teikoku
Koshinjo, 1957). This latter source is written ver-
tically, which PaddleOCR and EasyOCR do not
support. Instead, we digitize them with Efficien-
tOCR (Bryan et al., 2023), custom-trained on both
target publications. We would expect Efficien-
tOCR’s character retrieval framework to make ho-
moglyphic errors. The large firm directory con-
tains some firms with duplicate names; these are
removed for the purposes of this analysis, as space
constraints do not permit a discussion of varied
blocking methods (Binette and Steorts, 2022).

Because creating ground truth data for record
linkage is costly, we use synthetically generated
data for a third set of evaluations. For Simpli-

fied Chinese (synth-zhs), Japanese (synth-ja), and
Korean (synth-ko), we draw placenames from the
Geonames database (Geonames, 2023). Because
Traditional Chinese placenames in Geonames are
rare, we instead draw from a list of Taiwanese
firms (Taiwan Ministry of Economic Affairs, 2023),
as Taiwan still uses Traditional Chinese (forming
the dataset synth-zht). We augment the images of
each entity name, randomly select two image crops
for each entity, and OCR them using EasyOCR
and PaddleOCR. Anywhere from 40% (Simplified
Chinese) to 88% (Traditional Chinese) of OCR’ed
string pairs differ between the two OCR engines,
and we use homoglyphic edit distance to match
these strings.2

4 Results

Homoglyphic edit distance outperforms the other
string matching methods in all three evaluation
exercises - across different OCR engines and lan-
guages - typically by an appreciable margin. This
illustrates that homoglyphic errors in OCR are com-
mon and can be captured with self-supervised vi-
sion transformers.

We show that homoglyphs are useful for real-
world research tasks, starting with supply chains.
Supply chain are widely studied, as they are fun-
damental to the transmission of economic shocks
(Acemoglu et al., 2016, 2012), agglomeration (El-
lison et al., 2010), and economic development
(Hirschman, 1958; Myrdal and Sitohang, 1957;
Rasmussen, 1956; Bartelme and Gorodnichenko,
2015; Lane, 2022). Yet their role in long-run eco-
nomic development has been difficult to study due
to the challenges of accurately linking large-scale
historical records

Our first evaluation exercise, with linked
Japanese supply chain data (historic-ja-within) -
aims to elucidate whether homoglyphic matching
is as helpful for linking datasets created with vision-
language OCR (EasyOCR) as for linking datasets
created with vision-only OCR (PaddleOCR), and
whether it can similarly be useful for linking
datasets created with different OCR architectures.
We hence separately consider results linking Pad-
dleOCR’ed customers and suppliers to the Easy-
OCR’ed firm index, and vice-versa, as well as link-
ing when both are OCR’ed by either PaddleOCR

2The sample size is 20,162 for Simplified Chinese, 66,943
for Traditional Chinese, 86,470 for Japanese, and 48,809 for
Korean.



OCR Engines
Method Paddle Easy Paddle Easy

to Easy to Paddle to Paddle to Easy

Homoglyphic 0.808 0.753 0.844 0.728
distance

Levenshtein 0.766 0.697 0.807 0.693
distance

Simstring 0.762 0.662 0.787 0.673
(cosine)

Simstring 0.763 0.663 0.788 0.673
(dice)

Simstring 0.763 0.663 0.788 0.673
(jaccard)

FuzzyChinese 0.690 0.567 0.717 0.554
(stroke)

FuzzyChinese 0.533 0.445 0.559 0.464
(character)

Table 2: String Matching Across OCR Engines for
historic-ja-within. This table reports accuracy using a
variety of different methods for linking Japanese firms
from supply chain records (Jinji Koshinjo, 1954) to a
firm index created from the same publication. The four
columns report results when (1) PaddleOCR is used
to OCR the firm list and EasyOCR the directory, (2)
EasyOCR is used to OCR the firm list and PaddleOCR
the directory, (3) PaddleOCR is used to OCR both lists,
(4) EasyOCR is used to OCR both lists.

or EasyOCR. Homoglyphic edit distance outper-
forms other string matching methods and does so
by a similar margin (around 4 percentage points
higher accuracy) regardless of the OCR architec-
ture used. FuzzyChinese has the weakest perfor-
mance, as expected since many Japanese characters
are not covered in their stroke dictionary.

Our second evaluation, historic-ja-across exam-
ines matching to a different, vertically written book,
with around ten times more firms, digitized with
EfficientOCR because it supports vertical Japanese.
Homoglyphic distance outperforms all other string
matching methods, with a matching accuracy of
82%. This matching exercise is also examined in
Arora et al. (2023), using a customized, end-to-
end multimodal deep neural model to link firms
across the books. This achieves an accuracy of
87.8 with Vision-only contrastive training and a
peak accuracy of 94.5 using a Language-Image
model (CLIP) backbone with multimodal pooling.
The end-to-end deep neural methods outperform
string matching, as would be expected, as they
are leveraging more information (the image crops
as well as the texts) and language understanding.
Yet string matching methods remain prevalent in
the literature, due to their straightforward off-the-

Method Accuracy

Homoglyphic distance 0.824
Levenshtein distance 0.731
Simstring (cosine) 0.748
Simstring (dice) 0.752
Simstring (jaccard) 0.752
FuzzyChinese (stroke) 0.735
FuzzyChinese (character) 0.618

Table 3: Linking Japanese Firms to a Large Direc-
tory: historic-ja-across This table links Japanese firms
from supply chain records (Jinji Koshinjo, 1954) to an
extensive firm directory (Teikoku Koshinjo, 1957), com-
paring various string matching methods.

synth-ja synth-ko synth-zhs synth-zht

Homoglyphic 0.456 0.292 0.476 0.465
distance

Levenshtein 0.396 0.188 0.375 0.407
distance

Simstring 0.376 0.247 0.425 0.383
(cosine)

Simstring 0.380 0.248 0.426 0.385
(dice)

Simstring 0.380 0.248 0.426 0.385
(jaccard)

FuzzyChinese 0.168 0.000 0.473 0.372
(stroke)

FuzzyChinese 0.230 0.110 0.137 0.197
(character)

Table 4: Matching Results: Synthetic Data. This table
reports accuracy linking synthetic paired data generated
by OCR’ing location and firm names - rendered with
augmented digital fonts - with two different OCR en-
gines, four the four languages in out exercise.

shelf implementation, interpretability, familiarity
to users, minimal input requirements (only OCR’ed
strings), and the fact that language understanding
- while relevant for linking firms - may be of less
relevance for linking individuals, placenames, etc.

Finally, Table 4 reports results with the syntheti-
cally generated record linkage datasets, to elucidate
the performance of homoglyphic matching across
languages that use the CJK script. Homoglyphs out-
perform other string-matching methods. The only
case where the performance of another method is
similar is Simplified Chinese, with the FuzzyChi-
nese package using stroke level n-grams. The
stroke dictionary that underlies FuzzyChinese was
crafted for Simplified Chinese, yet homoglyphs
can perform similarly with self-supervised meth-
ods. On Traditional Chinese, which proliferates in
historical documents, homoglyphic edit distance



Figure 4: Error analysis. Panel A shows representative errors from homoglyphic matching. Panel B shows
representative cases that homoglyphic matching gets correct. The ground truth string is shown in column (1).
PaddleOCR is used to OCR the query images (column (2)) and EasyOCR is used to OCR their corresponding keys
(column (3)). Columns (4) through (7) give the selected match to the query using different string matching methods,
with the correct match shown in column (3). Bold characters differ from the query.

offers a nine percentage point accuracy advantage
over FuzzyChinese, illustrating the extensibility ad-
vantages of self-supervised methods. The accuracy
rates are low, but this must be interpreted in the
context of the dataset, which only includes paired
records where the OCR differs.

Figure 4 provides an error analysis for the syn-
thetic record linkage exercise. The ground truth
string, taken from the original image, is shown in
the first column. PaddleOCR is used to OCR the
query (column 2). EasyOCR is used to OCR the
key, with the resulting string shown in column (3).
The matches selected from the key by different
string-matching methods are shown in columns (4)
through (7). Bold characters differ from the query
OCR. Panel A shows cases where homoglyphic
edit distance selects an incorrect match. This typi-
cally occurs when the OCR’ed key has a similar vi-
sual appearance to an incorrect match in the query,
showing the limits of homoglyphs to fully alleviate
the OCR information bottleneck. Panel B shows
cases where homoglyphic edit distance selects a
correct match.

5 The HomoglyphsCJK package

We distribute the homoglyphic matching approach
for CJK languages as a Python package 3 which
has an API designed around the standard merge
operation in pandas - effectively reducing the entry

3https://pypi.org/project/HomoglyphsCJK/

barrier to using it not only for Python users but
also those experienced in using R or Stata for data
analysis. All the user needs are the two datasets
to match (with the key to match on) and one line
of code. The package comes pre-loaded with the
lookup tables that contain pairwise distances be-
tween different characters for a script. The files are
also available on HuggingFace4.

We provide two main functions in the pack-
age - one to calculate the homoglyphic distance
(hg_distance) between a pair of strings and the
other for matching two data frames (hg_merge).
Here is example usage.

1 import pandas as pd
2 from HomoglyphsCJK import hg_distance ,

hg_merge
3

4 df1=pd.read_csv("df1.csv")
5 df2=pd.read_csv("df2.csv")
6 df_merged = hg_merge(’zhs’,df1 ,df2 ,’

query’,’key’,homo_lambda =1,
insertion=1, deletion =1)

1 hg_distance("太阳村","月亮湾",
2 ’zhs’,homo_lambda =1, insertion=1,

deletion =1)

The distance calculations are fully customizable,
with the weights of insertion and deletion tunable.
"homo_lambda" allows the user to scale the homo-
glyphic substitution cost, thereby adding another
dimension to tune the match quality. (In the results

4https://huggingface.co/datasets/dell-research-
harvard/HomoglyphsCJKTraining



above, we use the default of setting these all to 1.)
The package repo contains more documentation
and a colab notebook to allow quick exploration
of the package’s functionality.5 For users who are
interested in computing their own character visual
similarity indices, we provide our training code in
a separate repo.6

6 Extending Homoglyphs

While this study focuses on the modern CJK script,
HOMOGLYPH can be extended to any character set.
As a proof of concept, we explore its extensibility
to ancient Chinese characters. Like other early
forms of human writing, ancient Chinese scripts
are highly pictorial relative to modern characters.

Since we do not have multiple fonts for ancient
Chinese characters, we instead use an existing
database of grouped ancient characters - from dif-
ferent archaeological sites and periods - that cor-
respond to the same concept (Academia Sinica
et al., 2023). These ancient characters are also
linked to their descendant modern (Traditional)
Chinese character, identified by the database. We
contrastively learn a metric space where the repre-
sentations of ancient characters denoting the same
concept are nearby. We train on 25,984 ancient
characters, as well as the corresponding augmented
Traditional Chinese characters. The dataset in-
cludes characters from the Shang Dynasty (1600
BC-1045 BC), the Western Zhou (1045 BC-771
BC), the Spring and Autumn Warring States Era
(770 BBC -221 BC), and the Qin-Han Dynasties
(221BC - circa third century).7 To illustrate ho-
moglyphs, we create a reference set for the Shang
Dynasty, randomly choosing one character for each
concept.

Figure 5 shows representative examples of these
homoglyphs, consisting of a character and its five
nearest neighbors. The modern character descen-
dant as well as a short description of the ancient
concept (which may differ significantly in meaning
from the modern descendent) are provided. The
description draws upon Li (2012).

Fascinatingly, the homoglyph sets are able to
capture related abstract concepts noted in the ar-

5https://github.com/dell-research-
harvard/HomoglyphsCJK

6https://github.com/dell-research-
harvard/HomoglyphsCJKTraining

7We exclude images from the Shuowen Jiezi - a book on
ancient characters - limiting to the most reliable character
renders, which were drawn from archaeological sites.

Figure 5: Ancient Homoglyphs. This figure shows ho-
moglyph sets constructed for ancient Chinese, with the
descendant modern Chinese character and a description
of the character’s ancient meaning.

chaeological literature. The first line shows that
the concepts of writing, law, learning, and morning
(“recording the sun”) are homoglyphs, and the sec-
ond line shows that characters for different types of
officials are homoglyphs, as are characters denot-
ing “joining.” The final line shows that history and
government official are homoglyphs - underscoring
the central role of the government in writing history
- as are characters denoting conquest, tying up, and
city center (denoted by a prisoner to be executed by
the government, which occurred in the city center).

Not all concepts within each set are related, but
many of the connections above have been noted
in an archaeological literature examining how an-
cient peoples conceptualized the world (e.g. Wang
(2003)). That these meanings can be captured using
vision transformers is a fascinating illustration of
the relationship between images, written language,
and meaning in ancient societies.

Another test of extensibility is to compute ho-
moglyphs for all (ancient and modern) characters
in Unicode, clustering the embeddings to create
homoglyphic sets (termed "Confusables" (Consor-
tium, 2023) by Unicode). Training a homoglyphic
space for all of Unicode generally gives sensible
results and also has the advantage of being able to
measure similarity within a set, something standard
Unicode confusables cannot do. An example set,
spanning different scripts, is displayed in Figure 6.



Figure 6: A confusable set across writing systems de-
tected by our model that was trained on all of Unicode

7 Limitations

Using homoglyphs for string matching inherits
the well-known limitations of string matching. In
some cases, OCR destroys too much information
for record linkage to be feasible with the resulting
strings. Even with clean OCR, sometimes language
understanding is necessary to determine the correct
match, as in the case of firm names that can be
written differently. Homoglyphs do not address
other types of string substitutions, like those that
result from enumerator misspellings, although in
principle a similar contrastive approach could also
be developed to quantify other types of string sub-
stitutions.

More sophisticated methods have been devel-
oped as alternatives to string matching. For exam-
ple, Ventura et al. (2015) use a random forest classi-
fier trained on labeled data to disambiguate authors
of U.S. patents, applying clustering to the resulting
dissimilarity scores to enforce transitivity. Arora
et al. (2023) develop multimodal record linkage
methods that combine the image crops of entities
and their OCR. They also develop a vision-only
linkage method, which avoids the OCR informa-
tion bottleneck. Bayesian methods have also been
used, e.g. Sadinle (2014, 2017). They offer the
advantage of uncertainty quantification - another
well-known limitation of string matching - but do
not scale well.

While these methods offer various advantages,
they are not always applicable. Researchers may
lack access to the original document images, or
may lack the compute or technical resources to
process images, limiting the use of OCR-free or
multimodal approaches. Language models are less
likely to be useful in linking individual or place
names, common applications.

Moreover, general purpose, off-the-shelf, end-to-
end deep neural methods for record linkage do not
exist, e.g. the model in Arora et al. (2023) is tuned

to a specific Japanese use case. To the extent that
labels are required to develop specialized models,
the data can be costly to create at a sufficient scale
for training end-to-end models. Finally, most so-
cial science researchers lack familiarity with deep
learning methods but are comfortable processing
strings.

For these reasons, off-the-shelf string match-
ing algorithms are often preferred by practition-
ers and can be the most suitable tool given the
constraints. Homoglyphic edit distance integrates
information about character similarity from purely
self-supervised vision transformers. It can be im-
plemented using our publicly available, simple, off-
the-shelf string matching package and is highly
extensible, as illustrated by our exercise with char-
acters from ancient Chinese societies. We hope
that highly extensible string-matching methods will
make the contexts that are feasible for quantitative
social scientists to study more representative of the
diversity of human societies.
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Supplementary Materials

S-1 HOMOGLYPH Model Details

S-1.1 Encoder

For both of our applications, we use a DINO pre-
trained (Caron et al., 2021) vision transformer
(ViT) as the encoder. Our implementation of the
ViT comes from the Pytorch Image Models library
(timm) (Wightman, 2019). Specifically, we use
the vit_base_patch16_224.dino model that corre-
sponds to the official DINO-pretained ViT-base
model with a patch size of 16 and with input reso-
lution of 2242. The pretrained checkpoint does not
have a classification head.

S-1.2 Loss function

We use Supervised Contrastive loss (Khosla et al.,
2020) as our training objective, as implemented
in the PyTorch Metric Learning library (Musgrave
et al., 2020), where the temperature parameter is
set to 0.1.

S-1.3 Data Augmentation

We deploy several image augmentations, using
transformations provided in the Torchvision library
(TorchVision, 2016). These include Affine transfor-
mation (only slight translation and scaling allowed),
Random Color Jitter, Random Autocontrast, Ran-
dom Gaussian Blurring, and Random Grayscale.
Additionally, we pad the character to make the im-
age square while preserving the aspect ratio of the
character render. We do not use common augmen-
tations like Random Cropping or Center Cropping,
to avoid destroying too much information.

For augmenting the skeleton of the rendered
character itself, we use a variety of digital fonts
to render the images. We use 27 fonts for Simpli-
fied Chinese, 17 fonts for Traditional Chinese (for
both string matching and ancient Chinese), 62 fonts
for Korean, and 14 fonts for Japanese.

S-2 Application-specific details

S-2.1 Record Linkage

S-2.1.1 Data
For each language, the dataset consists of images
of characters from the corresponding language ren-
dered with different fonts and augmented during
training. The number of characters for each lan-
guage seen during training is given in Table S-1.
Each character can be considered a "class" to which

Script Training Inference

Japanese 17,963 17,963
Simplified Chinese 6,621 7,806
Traditional Chinese 8,415 8,628
Korean 3,686 3,729

Total 36,685 38,126

Table S-1: Training and Inference Sizes. This table
shows the training and inference sizes for different lan-
guages.

its digital renders belong. Characters do not need
to be seen during training to be considered at infer-
ence time, an advantage if users wish to expand the
homoglpyph sets (e.g. because an OCR engine uses
a different character set). We illustrate this empiri-
cally by expanding the character set to characters
covered by the three OCR engines we explore that
were not included in our character ranges used ini-
tially for training.

S-2.1.2 Batching

Without hard-negative mining
Let B = 128 denote the batch size. A batch

consists of m = 4 views of
B
m

characters sampled
without replacement. When all the views for a
character are utilized, all images are replaced and
the sampling process without replacement starts
again. “Views” of a character are augmented
digital renders using the fonts and transformations
described above. One training epoch is defined as
seeing the 4 views of all characters exactly once.

With hard-negative mining
We find the k = 8 nearest neighbors of each

character on a checkpoint trained without hard neg-
atives. We do this by rendering all characters in
a language with a reference font, Noto Serif CJK
font (Tc/Sc/Jp/Ko), chosen for its broad coverage
of characters. Each hard negative set includes 4
views of the anchor character, as well as 4 views of
each of its k nearest neighbor characters. We ran-
domly intersperse hard negative sets in the batches.
One training epoch is now defined as seeing all
hard negative sets once. Table S-2 contains the
number of epochs we trained each model for.

S-2.1.3 Model Validation
80% of characters are used for training, 10% are
used to select hyperparameters, and 10% are used



Model lr weight decay T_0 T_mult Epochs

Japanese - (No HN) 2e-5 5e-3 1 2 100
distance

Japanese - (HN) 2e-5 5e-3 1 2 30
distance

Simplified Chinese - (No HN) 2e-5 5e-3 1 2 30
distance

Simplified Chinese - (HN) 2e-5 5e-3 1 2 30
distance

Traditional Chinese - (No HN) 2e-5 5e-3 1 2 30
distance

Traditional Chinese - (HN) 2e-5 5e-3 1 2 30
distance

Korean - (No HN) 2e-5 5e-3 1 2 60
distance

Korean - (HN) 2e-5 5e-3 1 2 30
distance

Ancient Chinese - (No HN) 2e-5 5e-3 300 1 200
distance

Ancient Chinese - (HN) 2e-5 5e-3 300 3 24
distance

Table S-2: Training Hyperparameters. This table
reports the training hyperparameters used for the models.
The lr stands for learning rate, weight decay represents
the weight decay factor, T_0 is the number of steps until
the first restart of the learning rate scheduler, T_mult
denotes the factor by which T_0 is multiplied at each
restart, and Epochs indicates the total number of training
epochs. Parameters not mentioned here use PyTorch
defaults. HN denotes offline hard-negative mining.

to select the best checkpoint. We embed the vali-
dation images and find the nearest neighbor among
the embeddings of digital renders of the universe
of characters in the language, rendered with the
reference font described above. The top-1 retrieval
accuracy is used as the validation metric for the
selection of the best checkpoint. We see a peak
validation accuracy of 90% for Japanese, 98% for
Korean, 91% for Traditional Chinese, and 91% for
Simplified Chinese.

S-2.1.4 Other training details

CJK glyphs are somewhat similar across languages.
To converge faster, we initialize the weights of the
encoders for Traditional and Simplified Chinese
and Korean with the checkpoint used for Japanese,
which has the largest number of characters. We use
AdamW (Loshchilov and Hutter, 2019) as the opti-
mizer and Cosine Annealing with Warm Restarts
(Loshchilov and Hutter, 2016) as the learning rate
schedule. We use the standard Pytorch implemen-
tation for both. The relevant hyperparameters are
listed in Table S-2. We stop training the mod-
els once the validation accuracy stagnates and the
checkpoint with the best validation accuracy is cho-
sen.

S-2.2 Homoglyph Sets

We allow for the expansion of the character set
beyond what is seen in training because different
OCR engines use different character dictionaries
(a list of characters supported by the engine). We
take the union of characters from the character dic-
tionaries of PaddleOCR, EasyOCR, and Efficien-
tOCR. For each language, we render all its char-
acters using the reference font and embed them
using the language-specific HOMOGLYPH encoder.
For each character, we then find 800-nearest neigh-
bours (measured by Cosine Similarity between the
embeddings) among the set of all renders in the
reference set. We store these as a look-up dictio-
nary that contains, for each character in a language,
its 800 neighbors and its Cosine Similarity with
all of them. This look-up dictionary is used in our
modified Levenshtein distance implementation to
modify the substitution cost. The dictionaries are
available in our GitHub repository.

Table S-1 contains the number of characters that
were used to prepare these sets for each language.

S-2.3 Implementing Homoglyphic Edit
Distance

We use a standard algorithm to calculate Leven-
shtein distance that uses dynamic programming
(Wagner and Fischer, 1974). The space and time
complexity of the algorithm is O(mn) where m
and n are the lengths of the two strings that are
being compared.

We modify this algorithm by switching the stan-
dard substitution cost λ between two characters a
and b with λ∗(1−CosineSimilarity(u(a), u(b)).
Here u(a) and u(b) are the embeddings of the
HOMOGLYPH encoder for the language to which a
and b belong. λ is a tunable hyperparameter but for
simplicity, we fix it as 1 for the results shown in
the paper. We also fixed the addition and deletion
cost as 1 but in the implementation provided in our
package and our GitHub repository, the costs are
tunable hyperparameters.

S-2.4 Ancient Chinese Homoglyphs

S-2.4.1 Data
The source database (Academia Sinica et al., 2023)
from which we collect the ancient Chinese char-
acter crops contains 5,024 concepts, comprised of
25,984 character renderings. Each of these con-
cepts is mapped to a modern character. This en-
ables us to insert digital renders of these modern



characters using the same fonts as above (for tradi-
tional Chinese) to create more variation. A "class"
in this case comprises a character cluster - with both
ancient crops and modern digital renders forming
the positive samples for a class.

We slightly modify the data augmentation
scheme for this application to account for the wide
variation in writing styles across centuries. We
allow for a slight (−10 to +10 degree) rotation
and also add more transformations tailored to this
use case - Random Equalize, Random Posterize,
Random Solarize, Random Inversion and Random
Erase (randomly erase 0-5% of the image). We ap-
ply all augmentations to the digital renders but only
apply Random Affine transformation and Random
Inversion to the ancient crops.

S-2.4.2 Batching
We use the same sampling and batching process
(this time with a larger batch size B = 256) as
we did for the modern homoglyph models. The
only difference is in how the hard-negative sets
are defined. Instead of one nearest neighbor per
concept, for each ancient crop within a concept
cluster, we find k = 8 nearest neighbors. This gives
us as many nearest neighbor sets (hard-negative
sets) as ancient crops in our dataset. This allows
us to account for the fact that the homoglyphs of
a character may differ across different historical
periods, spanning millennia.

S-2.4.3 Model Validation
We use top-1 accuracy as our validation metric, de-
fined as the proportion of correct retrievals of the
corresponding modern render (using the reference
font Noto Serif CJK Tc) for each ancient image
in the validation set. During training, the model
reached a peak validation accuracy of 50% demon-
strating the difficult nature of this task. We use this
metric for selecting the best checkpoint.

S-2.4.4 Other training details
We again use the AdamW optimizer and Cosine
Annealing with Warm Restarts as the learning rate
schedule. Relevant Hyperparameters are listed in
Table S-2. We stop training when validation accu-
racy stagnates.

S-2.4.5 Creation of Ancient Chinese
Homoglyphs

The creation of homolgyph sets is analogous to
the case of modern characters. Instead of using

digital renders from a particular font as the "refer-
ence set", we look at the five nearest neighbors of
ancient characters within a period. We illustrate ho-
moglyphs using The Shang Dynasty period (1600
BC-1045 BC), the most ancient.
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