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Abstract

Error correcting output code (ECOC) is a classic method that encodes binary
classifiers to tackle the multi-class classification problem in decision trees and
neural networks. Among ECOCs, the one-hot code has become the default choice
in modern deep neural networks (DNNs) due to its simplicity in decision making.
However, it suffers from a significant limitation in its ability to achieve high robust
accuracy, particularly in the presence of weight-errors. While recent studies have
experimentally demonstrated that the non-one-hot ECOCs with multi-bits error
correction ability, could be a better solution, there is a notable absence of theoretical
foundations that can elucidate the relationship between codeword design, weight-
error magnitude, and network characteristics, so as to provide robustness guarantees.
This work is positioned to bridge this gap through the lens of neural tangent kernel
(NTK). We have two important theoretical findings: 1) In clean models (without
weight-errors), utilizing one-hot code and non-one-hot ECOC is akin to altering
decoding metrics from l2 distance to Mahalanobis distance. 2) There exists a
threshold, determined by the normalized distance among codewords, the DNN
architecture, and the scale of weight-errors. If the distance between a clean output
(without weight-errors) and its nearest codewords is smaller than this threshold,
then the DNN can make predictions as if it is free of weight-errors. Based on these
findings, we further demonstrate how to practically use them to identify optimal
ECOCs for simple tasks (small number of classes) and complex tasks (large number
of classes), by balancing the code orthogonality (as per finding 1) and code distance
(as per finding 2). Extensive experimental results across four datasets and four
DNN models validate the superior performance of constructed codes, guided by
our findings, compared to existing ECOCs. To our best knowledge, this is the first
work providing theoretical explanations for the effectiveness of ECOCs and offers
associated design guidance for optimal ECOCs specifically tailored to DNNs.

1 Introduction

Inspired by error correction codes in wireless communication and memory system, error correction
output codes (ECOCs) are proposed to improve the generalization performance of multi-class
classification in decision trees by decomposing a complex problem into simpler binary classification
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tasks [1]. As deep neural networks (DNNs) are ever-increasingly popular in machine learning,
one-hot code, as a special ECOC providing one bit protection, has been most widely adopted in the
output layer of modern DNNs due to its simplicity in decision making and decent generalization
performance. However, it experiences notable accuracy degradation in the presence of weight errors,
such as those originating from hardware defects in non-volatile compute-in-memory (NVCiM) DNN
accelerators [2, 3, 4, 5, 6, 7].

A number of works has adopted general ECOCs (non-one-hot code) to improve DNN’s robust
accuracy against weight errors [8, 9, 10, 11, 12]. While these studies demonstrate that ECOCs with
stronger error correction capability, can outperform one-hot codes to some extent through experiments,
they often directly apply existing ECOCs to DNNs, with no explicit code design optimization tailored
to modern DNNs. In this regard, there lacks a systematic theoretical study to answer the following key
questions: 1) What is the mechanism behind ECOC’s efficacy in DNNs? 2) How effective can ECOC
be? 3) How optimal ECOCs tailored for DNNs can be designed principally? To bridge this gap and
provide insights to code construction, in this work, we overcome the challenges of characterizing the
connection between the actual DNN performance and the application of ECOCs, and answer these
questions rigorously based on novel theoretical proof. For the first question, the prevailing intuition in
existing research, which suggests that enlarging the distance among codewords enhances robustness,
is somewhat imprecise. In fact, we prove that the normalized distance (by the square root of the code
length) among codewords is the crucial quantity in improving the DNNs’ robustness. For the second
question, we establish that there exists a threshold, determined by the normalized distance among
codewords, DNN architecture, and the scale of weight-errors. If the distance between a clean output
(in the absence of weight-errors) and its nearest codewords is smaller than this threshold, the DNN
can make predictions as if it is free of weight-errors. For the third question, we analyze the overall
performance of ECOCs by separating it into clean performance (in the absence of weight-errors)
and performance degradation due to weight-errors. We demonstrate that the clean performance is
influenced by the correlation among ECOC codewords (code orthogonality), while robustness is
determined by the normalized distance among the codewords (code distance). Thus, both aspects
should be carefully considered during code construction.

Contributions: To this end, we provide a theoretical characterization of the efficacy of ECOCs on
DNNs through the lens of the neural tangent kernel (NTK). Building on our theoretical insights, we
propose two ECOC construction methods tailored to DNNs focusing on small tasks and complex
tasks. Our contributions are summarized as follows:

• In clean models (without weight errors), utilizing one-hot code and non-one-hot ECOC is akin to
altering decoding metrics from l2 distance to Mahalanobis distance.

• We prove that there exists a threshold, determined by the normalized distance among codewords,
the DNN architecture, and the scale of weight-errors. If the distance between a clean output (in the
absence of weight-errors) and its nearest codewords is smaller than this threshold, the DNN can make
predictions as if it is free of weight-errors.

• Inspired by our theoretical results, we propose two ECOC construction methods optimizing the
trade-off between codewords orthogonality and distance among codewords.

• Extensive experimental results on four datasets and four DNN models show that our constructed
codes, based on our findings, surpass the performance of existing ECOCs with up to 7%.

To the best of our knowledge, this is the first work providing theoretical explanations for the
effectiveness of ECOCs and offers associated design guidance for optimal ECOCs specifically
tailored to DNNs.

2 Related Works

Error Correction Output Codes Previous works have adopted ECOCs to improve the robustness
of DNNs [8, 9, 10, 12, 11]. Gupta et al. construct ECOCs by maximizing row-wise and column-wise
Hamming distances together [12]. They particularly focus on short codes and weight-error free
scenarios, instead of NN’s robustness against weight-errors. Yu et al. propose a DNN output error
decorrelation framework to enhance performance of ECOCs [11]. Deng et al. apply ECOCs to DNNs
to improve reliability and false rejection rate [8]. Liu et al. adopt Hamming codes to improve the
robustness of DNNs [9]. Verma et al. claim that the robustness provided by ECOCs may stem from
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sigmoid activation functions, which allows larger error margin than softmax [10]. Existing works are
mostly empirical studies and fail to address the theoretical foundation of ECOCs.

Neural Tangent Kernel Jacot et al. propose the concept of neural tangent kernel. They prove that
the learning dynamic of an infinite-width DNN with proper initialization is essentially a dynamic of
kernel ridge regression with defined neural tangent kernel [13]. Lee et al. refine the results in [13]
and prove that infinite-width DNNs evolve like a linear model under gradient descent [14]. Lee et
al. demonstrate that infinitely wide deep neural networks with specific types of initialization and
non-linear activation functions converge to Gaussian processes [15]. These works focus on learning
dynamic of the DNN in NTK regime without considering weight-errors.

3 Preliminaries

3.1 Error Correction Output Codes (ECOCs)

ECOC is a generalization of conventional one-hot codes with various code length and arbitrary binary
entries. An ECOC is defined by an encoding function E : [C] → {1,−1}nL , where C is the number
of classes, and [C] denotes the set [C] ≜ {1, 2, ..., C}. Here nL is the code length, which is equal to
the dimension of the DNN’s outputs. The encoding function essentially maps a class label to a binary
codeword. Let D denote the training data set with each entry as a pair (x, c), where x ∈ Rn0 and
c ∈ [C] are DNN inputs and the corresponding label, respectively; n0 is the input dimension of the
DNN. Let f(x; θ) : Rn0 → RnL be the DNN model parameterized with weights θ. The objective
during the training process is to minimize the loss function

L(θ) ≜ 1

|D|
∑

(x,c)∈D

g(f(x; θ), E(c)), (1)

where g(·, ·) is referred to as sample loss. During the inference, the DNN outputs f(x; θ) are mapped
to classification decisions through the following decoding process

D(f(x; θ)) ≜ arg min
c∈[C]

∥f(x; θ)− E(c)∥ , (2)

where D(·) : RK → [C] is the decoding function. We can choose arbitrary metric in Eq. (2) for
decoding, but we mainly focus on the l2 norm in this paper.

3.2 Neural Tangent Kernel (NTK)

NTK is a tool for analyzing the learning dynamic and generalization of DNNs. It allows us to study
DNNs in a reproducible kernel Hilbert space (RKHS) instead of intractable DNN weights space. We
adopt a fully-connected feed-forward neural networks with L layers. At the (l + 1)-th layer, we have{

hl+1 = wl+1xl + bl+1

xl+1 = ϕ(hl+1)
(3)

for l = 0, 1, ..., L− 2, where hl+1 ∈ Rnl+1 and xl+1 ∈ Rnl+1 are the pre- and post-activation values
at the (l + 1)-th layer; wl+1 ∈ Rnl+1×nl and bl+1 ∈ Rnl+1 are the weights and bias accordingly;
nl is the width of the l-th layer; ϕ(·) is the activation function. In this case, n0 is the dimension
of DNN inputs and nL is the dimension of DNN outputs (also the ECOC code length). With
NTK parameterization, the entries of wl+1 and bl+1 are initialized with independent and identically
distributed (i.i.d.) Gaussian random variables with N (0, 1

nl
) and N (0, 1), respectively.

Let X ∈ Rn0×|D| be the input set in D, where each column represents a sample of inputs, and let
Y ∈ RnL×|D| be the corresponding codewords, where each column represents the corresponding
target. Without loss of generality, we parameterize nl = αln with some αl > 0 and n > 0, for
1 ≤ l ≤ L− 1, then training DNNs in the NTK regime minimizing MSE will result in the following
DNN function according to [13] when hidden layer width parameter n → ∞,

f(x) = YK(X ,X )−1K(X , x) (4)

where K : Rn0 × Rn0 → R is the NTK, K(X ,X ) ∈ R|D|×|D|, and K(X , x) ∈ R|D|×1.
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4 Theoretical Results

In this section, we analyze the efficacy of ECOCs on DNNs through the lens of NTK. To the best of
our knowledge, this represents the first theoretical exploration of ECOCs’ effectiveness on DNNs.
Our findings are summarized as follows:

• We prove that adopting ECOC as a replacement of one-hot codes is equivalent to changing the
decoding metric from l2 distance to a Mahalanobis distance.

• We establish an upper bound for the perturbation of DNN outputs, suggesting that the normalized
distance of code is a crucial factor determining the error correction capability of ECOCs.

4.1 Assumptions

Assumption 1. The activation functions in the hidden layers are bounded at 0, i.e., ϕ(0) < ∞, and
they are Lipschitz continuous with parameter B, i.e., for any h and h′, we have

|ϕ(h)− ϕ(h′)| ≤ B|h− h′|. (5)

Assumption 2. For any DNN input x0, we have ∥x0∥2√
n0

≤ 1.

Assumption 3. The matrix K(X ,X ) ∈ R|D|×|D| is full-rank.
Assumption 4. The initial gradient with respect to the DNN output is bounded, i.e., there exists a
constant R0 such that

∥∥∇f(X ,θ0)L
∥∥
2
< R0.

Assumption 1 holds for most of the common state-of-the-art (SOTA) activation functions, such as
ReLU, sigmoid and tanh. Assumption 2 essentially assumes a bounded norm of all DNN inputs.
Without loss of generality, this assumption holds after input normalization. Assumption 3 holds
almost surely for smooth kernel and continuous probability distribution of input samples. The
assumption here is used to avoid the corner cases of uninvertible K(X ,X ). Assumption 4 should
hold with high probability with proper choice of R0 due to random initialization.

4.2 Efficacy of ECOCs in Absence of Weight-errors

In this subsection, we discuss the behavior of DNNs after being trained with ECOC. Our first result
is based on eq. (4) proved in [13].
Proposition 1. Let Assumption 1, 2, 3 and 4 hold. Suppose there is no weight-errors and hidden
layer width parameter n → ∞, then applying ECOC is equivalent to changing the decoding function
of one-hot codes (with 0 and 1 entries) to the following

D(f(x)) = arg min
c∈[C]

∥f(x)− ec∥2E([C])T E([C]) (6)

where ec ∈ RC is the c-th one-hot codeword and ∥x∥A ≜
√
xTAx is referred as the Mahalanobis

norm with positive definite matrix A.
Remark 1. From Proposition 1 we observe that, in NTK regime, ECOCs affect the performance of
DNNs through the correlation matrix E([C])TE([C]) of the codewords when the DNNs are free of
weight-errors. For both one-hot and ECOCs, their target spaces RnL are equipped with l2-norm and
the corresponding decoding metrics. Proposition 1 suggests that ECOCs generalize the decoding
metric. Applying ECOCs is equivalent to equipping the target space of one-hot code with the
Mahalanobis norm and the corresponding decoding metric.

Although it remains unclear which correlation matrices yield the best performance for ECOCs in
absence of weight-errors, we know that codewords that are approximately orthogonal generally
perform comparably to one-hot codes. Consequently, it is reasonable to regularize the orthogonality
of the codewards during the ECOC construction.

4.3 Efficacy of ECOCs on the Robustness of DNNs

It has been reported in multiple works that ECOCs can improve the robustness of DNNs against
weight-errors [8, 9, 11]. However, these studies lack a rigorous theoretical explanation of why DNNs
become more robust after ECOC application. In this section, we provide theoretical guarantee on the
error correction capability of ECOCs. We begin with the weight-error model.
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4.3.1 Weight-error Model

We consider the weight-errors proportional to the weight scale. Considering the typically small initial
values of neural network weights and the minimal changes from these initial values after training
in the NTK regime [14], we assume that the noise terms are independent and identically distributed
(i.i.d.) Gaussian variables with zero mean and variance σ̄2/n.

4.3.2 Theoretical Guarantee for Robustness with ECOCs

We first show the bound of hidden layer outputs in absence of weight-errors, which will be used to
prove other results.
Lemma 1 (Hidden layer output bound). Let Assumptions 1, 2, 3, and 4 hold. Then, for any hidden
layer l ≤ L− 1 and any δ > 0,

∥xl∥2√
nl

≤
(
1− B + |ϕ(0)|

1−B

)
Bl +

B + |ϕ(0)|
1−B

+ δ (7)

holds with probability at least 1− δ when n is large enough, where the hidden layer width nl = αln
with constant αl > 0 for all 1 ≤ l ≤ L− 1.

Based on the lemma, we show the perturbation bound in the following theorem.
Theorem 1 (Perturbation bound). Let Assumptions 1, 2, 3, and 4 hold. Adopt the weight-error model
in Sec. 4.3.1, and denote σ2 = maxl αlσ̄

2. Let xL and x̃L denote any clean output (in absence of
weight-errors) and its perturbed counterpart due to weight-errors, respectively. Then for arbitrary
δ > 0 and arbitrary DNN input, we have

∥xL − x̃L∥2√
nL

≤ Ξ(σ,B, |ϕ(0)|, L) + δ (8)

with probability at least 1− δ − o(n−1
L δ−1) when n and nL are large enough, where

Ξ(σ,B, |ϕ(0)|, L)=σBL

(
1−B+|ϕ(0)|

1−B

)√
1+σ2

L−1√
1+σ2−1

+Bσ
1 + |ϕ(0)|
1−B

(
B
√
1+σ2

)L−1

B
√
1+σ2−1

. (9)

Remark 2. The theorem suggests that the normalized output perturbation ∥xL−x̃L∥2√
nL

can be bounded
in terms of weight-error scale σ, Lipschitz constant B, absolute activation function value |ϕ(0)| and
DNN depth L with high probability when hidden layer width n and code length nL are large enough.
It can be observed that: 1) The bound can be made arbitrarily small when σ = 0, suggesting that the
bound is tight. 2) The bound can be made arbitrarily small when B = 0, which means the activation
function ϕ always outputs a constant regardless of its input. Obviously, in this situation, there will
be no output perturbation, but training this DNN will be meaningless. 3) The DNN depth L on the
exponents accounts for the error propagation due to the feed-forward architecture of the DNNs.

Based on Theorem 1, we present our main result in the following corollary to characterize the error
correction capability of ECOCs.
Corollary 1 (Main result). Let all the conditions in Theorem 1 hold. Denote normalized (l2) distance
of a codeword E(i) and normalized uncertainty of clean prediction given the clean output xL as
dist(E(i)) and U(xL), respectively, with the following definition:

dist(E(i)) = min
j:j ̸=i

1
√
nL

∥E(i)− E(j)∥2 , U(xL) = min
i

1
√
nL

∥E(i)− xL∥2 . (10)

Then a DNN with an ECOC can make prediction with x̃L as if it is free of weight-errors after decoding,
i.e., D(x̃L) = D(xL) with probability arbitrarily close to 1, if the ECOC satisfies

dist(D(xL))

2
> U(xL) + Ξ(σ,B, |ϕ(0)|, L) + δ (11)

for arbitrary small δ > 0 when n, nL → ∞.
Remark 3. In eq. (40), U(xL) accounts for the distance between clean output xL and its closest
codewords, and Ξ(σ,B, |ϕ(0)|, L) + δ accounts for the output perturbation due to weight-errors.
Note that Corollary 1 specifies conditions under which predictions can be made as if the DNN is free
of weight-errors; however, it does not guarantee that these predictions will be the ground-truth labels.
Even in the absence of weight-errors, DNNs may still produce incorrect predictions due to the data
and model generalization, which cannot be corrected by ECOCs.
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Figure 1: An illustration for Corollary 1.

A geometric explanation of Corollary 1 is given in Figure
1. The perturbed output x̃L (red diamond) is within the
ball centered at clean output xL (blue dot) with radius
Ξ + δ according to Theorem 1. If eq. (40) holds, then
distance between x̃L and the codeword D(xL) (black dot
at the bottom left), which is the decoding result of clean
output xL, will be smaller than the distance from x̃L to
any other codewords (black dot at top right), mean that
D(xL) = D(x̃L) after decoding.

5 ECOC Constructions

Inspired by our theoretical results, in this section, we pro-
pose two ECOC construction methods for small scale and
large scale classification tasks, respectively.

5.1 Problem Formulation

The final performance of ECOCs is determined by weight-error free performance and performance
degradation on top of that due to weight-errors, which are discussed in Proposition 1 and Corollary
1, respectively. According to Proposition 1, the weight-error free performance is influenced by
the correlation matrices of ECOCs. Although the optimal correlation matrices remain unidentified,
extensive experiments have verified that near orthogonal codewords are generally good. Therefore,
we penalize the correlation of codewords during code construction. On the other hand, according to
Corollary 1, larger normalized distance of codes leads to better error correction capability of ECOCs,
therefore we encourage the distances of the codes during code construction. Let Z ∈ {−1, 1}nL×C

be the ECOC codebook, i.e., a horizontal stack of codeword, then we construct the code by solving
the following optimization problem:

min
Z∈{−1,1}nL×C

−
∑

i,j:i ̸=j

∥Z[i]− Z[j]∥2︸ ︷︷ ︸
pair-wise distance

+λ

∑
i ̸=j

(Z[i]TZ[j])2 − β
∑
i

∥Z[i]∥2


︸ ︷︷ ︸
correlation

.
(12)

Note the second part of the objective penalizes the magnitude of off-diagonal elements while
promoting the amplitude of diagonal elements in the correlation matrix ZTZ.

5.2 Method 1: Direct Optimization

Before employing standard optimization algorithms, it is necessary to relax the feasible set from the
discrete binary domain {−1, 1}nL×C to the continuous interval [−1, 1]nL×C . To further eliminate
these box constraints, we reparameterize Z with Z = tanh(Z ′). This allows the application of
gradient descent to effectively solve the optimization problem. Finally, we take the sign of each
elements in Z as the generated codebook.

5.3 Method 2: Picking from Hadamard

Since the objective in eq. (12) is non-convex, Method 1 can be easily trapped in local optima,
especially for ECOCs with large number of classes C. For this reason, we introduce Method 2 in
this section which constructs ECOCs on top of Hadamard codes. Hadamard codes exhibit several
beneficial properties: 1) the number of codewords is equal to the code length, and both are powers
of 2; 2) all codewords are orthogonal to each other; 3) the Hamming distance between any two
codewords is half of the code length. This property allows Hadamard codes to achieve the upper
bound of the minimum Hamming distance of ECOCs given the code length. Hadamard code is
an excellent choice for ECOCs, which has been validated in previous works [10, 11, 12, 16]. An
example of Hadamard code with code length 8 is given in Section A.2.

In Method 2, we pick C codewords from Hadamard codes and their complementary codes. Without
loss of generality, we decompose C into C = 2a+ b, where a and b are non-negative integers. Let
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Hadamard Method 2

(a) Geometric structure

Hadamard Method 2

(b) Correlation matrix
Hadamard Method 2

(c) Distance matrix

Figure 2: A comparison between Hadamard codes and the codes constructed by Method 2. (a)
Geometric structure: the codewords of Hadamard code are orthogonal to each other. In contrast,
Method 2 allows one codeword to be located in the opposite direction from another. (b) Correlation
matrix: correlation matrix for the codes constructed by Method 2 contain off-diagonal elements,
indicating a higher level of correlation compared to that of Hadamard codes. (c) Distance matrix:
codewords of Hadamard codes have uniform Hamming distances, whereas Method 2 produces some
codeword pairs with larger Hamming distances and others are equivalent to those found in Hadamard
codes, where the colors black, grey, and white are values of 8, 4, and 0, respectively.

{v1, v2, ..., vH} be the Hadamard codewords, then the code constructed by Method 2 is given by

Epick
a,b (i) =


vi, for 1 ≤ i ≤ a

− vi−a, for a < i ≤ 2a

vi−a, for 2a < i ≤ C.

(13)

In other words, its codebook Epick
a,b ([C]]) = {v1, v2, ..., va,−v1,−v2, ...,−va, va+1, va+2, ..., va+b}.

We can observe that for a codeword Epick
a,b (i) = vi with i ≤ a, it is orthogonal to all other codewords

except Epick
a,b (i+ a) = −vi. In addition, the Hamming distance between it and other codewords is

half of the code length nL

2 , except Epick
a,b (i+ a), where the Hamming distance is nL. When a = 0,

codebook Epick
a,b ([C]]) = {v1, v2, ..., vC} is composed of codewords from a Hadamard code.

Figure 2 provides a more intuitive comparison between Hadamard codes and the codes constructed
by Method 2. Figure 2(a) illustrates the geometric structure of Hadamard codes and the codes
constructed by Method 2 with C = 3, a = 1. As previously mentioned, the codewords of a Hadamard
code are orthogonal to each other. In contrast, some pairs of codewords in Method 2 are located
in the opposite direction from another. Figure 2(b) compares the correlation matrices of Hadamard
code with code length nL = 8 and the code constructed by Method 2 with C = 8, a = 3. We
observe that the correlation matrix of Method 2 contains off-diagonal elements, indicating a higher
level of correlation compared to that of Hadamard codes. Figure 2(c) shows the distance matrices
of Hadamard code and Method 2 with C = 8, a = 3. We observe that the codewords of Hadamard
codes have uniform Hamming distances (the number of different entries), whereas the codewords
constructed by Method 2 produces some codeword pairs with larger Hamming distances and others
that are equivalent to those found in Hadamard codes. Notice that, by adjusting a and b we can
achieve different trade-off between averaged codeword distance and correlations.

6 Experiments

6.1 Experimental Setup

We conducted all simulations using PyTorch framework on a workstation equipped with an AMD
EPYC 7542 32-Core Processor and four NVIDIA RTX A6000 GPUs, each with 40GB of memory.

Datasets and models MNIST [17], CIFAR10 and CIFAR100 [18], and Tiny ImageNet [19] datasets
are used for evaluation. In our experiments, MNIST and CIFAR10 represent small scale tasks, while
CIFAR100 [18] and Tiny ImageNet represent large scale tasks. We adopt a (784-4096-4096-10)
multilayer perceptron (MLP), AlexNet, VGG16 and ResNet-50 for MNIST, CIFAR10, CIFAR100
and Tiny ImageNet, respectively.
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Benchmarks Our ECOCs are compared against one-hot codes, repetition codes, random codes,
and Hadamard codes [10]. For a given number of classes, both the number of codewords and code
length for one-hot codes are the same as the number of classes. We further derive a repetition code
from a one-hot code: each codeword of a one-hot code is repeated for multiple times. Hence, the
number of codewords in a repetition code is the same as the number of classes, but its code length
is a multiple of the number of classes. The codewords of a random code is obtained by choosing
random binary entries of −1 and 1 with equal probability. For small scale tasks such as MNIST and
CIFAR10, we compare codes constructed using Method 1 to with benchmarks. For large scale tasks,
i.e., CIFAR100 and Tiny ImageNet, codes constructed based on Method 2 are used for comparison.

Weight-errors Gaussian noises with different variance ω2 are added to the weights during infer-
ences to test the robustness of the networks. For each code, except for random codes, the network
is trained 20 times. After each training session, we perform 200 inference runs, each with different
randomly generated weight-errors applied. For random codes, each training uses a different randomly
generated codes.

6.2 Results and Analysis

Superior performance of the proposed methods over existing ECOCs The performances of
different ECOCs on small scale tasks (MNIST and CIFAR10) and large scale tasks (CIFAR100 and
Tiny ImageNet) are summarized in Tables 1 and 2, respectively. We made the following observations
from Tables 1 and 2: 1) The clean accuracy (ω = 0) of different codes are similar for small scale
tasks in Table 1, even with different code lengths. We believe this is partially due to the simplicity of
the tasks. Besides, these codes all have good orthogonality, therefore they have similar generalization
performance according to Proposition 1. In contrast, the clean accuracy is more varied for large scale
tasks in Table 2. We believe this is because the assumption of infinitely wide DNN does not hold when
the code length is comparable to the width of networks. In these cases, ECOCs with better structures
can reduce more generalization error. 2) One-hot and repetition codes have much worse performance
than other codes under large weight-errors. This is due to their smaller normalized distances. On the
contrary, our proposed codes outperform other benchmarks under large weight-errors because of their
larger normalized distances. 3) Larger code length nL yields better robustness under weight-errors
since more protections are applied by the additional nodes. Besides, longer codes lead to higher
success probability of bounds in our theoretical results, making the proposed methods inspired by
them more effective. 4) Interestingly, Hadamard and random codes perform similarly when the code
length is large. This is because the expectation of correlation matrices and pair-wise distances of

Table 1: Performance of different ECOCs with various code length (nL) on small scale tasks, i.e.,
MNIST and CIFAR10. The proposed method achieves better performance in the presence of weight-
errors.

ω One-hot Repetition Random Hadamard [10] Method 1
nL = 10 nL = 20 nL = 16 nL = 16 nL = 16

MNIST

0 98.44 ± 0.05 98.45 ± 0.05 98.27 ± 0.10 98.48 ± 0.04 98.51 ± 0.05
0.03 88.67 ± 0.75 89.60 ± 0.62 87.27 ± 2.81 93.54 ± 0.18 93.43 ± 0.23
0.05 35.46 ± 1.26 46.39 ± 0.88 45.59 ± 4.53 60.49 ± 0.86 58.35 ± 0.94
0.08 11.61 ± 0.46 17.39 ± 0.28 19.65 ± 1.42 23.65 ± 0.43 23.31 ± 0.36
0.1 10.80 ± 0.26 13.71 ± 0.34 14.94 ± 0.58 16.59 ± 0.25 16.48 ± 0.33

nL = 130 nL = 128 nL = 128 nL = 128
0 98.40 ± 0.04 98.49 ± 0.04 98.51 ± 0.04 98.51 ± 0.05

0.03 94.10 ± 0.15 96.72 ± 0.22 96.90 ± 0.05 97.04 ± 0.06
0.05 58.43 ± 0.69 80.78 ± 2.53 83.52 ± 0.89 84.33 ± 0.72
0.08 24.54 ± 0.41 38.34 ± 2.05 40.27 ± 0.89 42.47 ± 0.59
0.1 17.59 ± 0.25 24.44 ± 0.93 25.43 ± 0.39 26.54 ± 0.39

nL = 10 nL = 20 nL = 16 nL = 16 nL = 16

CIFAR10

0 82.48 ± 0.20 82.50 ± 0.28 81.56 ± 0.24 82.08 ± 0.30 82.08 ± 0.33
0.01 78.83 ± 0.13 78.92 ± 0.16 80.41 ± 0.23 81.09 ± 0.25 81.18 ± 0.23
0.02 60.40 ± 0.58 61.10 ± 0.48 71.38 ± 1.99 75.78 ± 0.31 76.21 ± 0.31
0.03 11.15 ± 0.17 13.93 ± 0.48 32.52 ± 5.51 45.66 ± 0.74 50.18 ± 0.84
0.04 10.00 ± 0.19 10.01 ± 0.04 14.47 ± 1.39 17.43 ± 0.25 19.58 ± 0.25

nL = 130 nL = 128 nL = 128 nL = 128
0 82.59 ± 0.21 82.14 ± 0.28 82.30 ± 0.20 82.30 ± 0.29

0.01 80.90 ± 0.17 81.14 ± 0.19 81.27 ± 0.13 81.28 ± 0.24
0.02 72.70 ± 0.29 76.58 ± 0.23 76.82 ± 0.17 77.15 ± 0.24
0.03 41.30 ± 0.75 54.45 ± 1.93 57.23 ± 0.50 59.52 ± 0.65
0.04 16.61 ± 0.26 21.08 ± 0.92 22.92 ± 0.34 24.52 ± 0.47
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Table 2: Performance of different ECOCs with various code length (nL) on large scale tasks, i.e.,
CIFAR100 and Tiny ImageNet. The proposed method shows better performance among all.

ω One-hot Repetition Random Hadamard [10] Method 2
nL = 100 nL = 1100 nL = 1024 nL = 1024 nL = 1024

CIFAR100

0 62.81 ± 0.03 64.95 ± 0.92 67.37 ± 0.35 67.45 ± 0.35 68.25 ± 0.22
0.008 3.72 ± 0.01 29.83 ± 5.03 58.73 ± 0.37 60.41 ± 0.32 61.71 ± 0.27
0.01 1.56 ± 0.00 13.05 ± 3.65 49.08 ± 0.84 53.26 ± 0.39 55.69 ± 0.54

0.012 1.05 ± 0.00 4.78 ± 1.53 30.64 ± 1.57 38.87 ± 0.95 44.49 ± 1.07
0.013 1.00 ± 0.00 3.07 ± 0.92 19.75 ± 1.66 28.63 ± 1.21 36.13 ± 1.41

nL = 2100 nL = 2048 nL = 2048 nL = 2048
0 66.50 ± 0.46 67.98 ± 0.32 67.90 ± 0.34 68.42 ± 0.14

0.008 39.58 ± 6.60 64.77 ± 0.23 65.26 ± 0.25 65.79 ± 0.12
0.01 21.53 ± 6.14 62.39 ± 0.23 63.47 ± 0.25 64.00 ± 0.13

0.012 8.47 ± 3.24 58.51 ± 0.32 60.74 ± 0.25 61.38 ± 0.20
0.013 5.10 ± 2.00 55.60± 0.46 58.82 ± 0.27 59.55 ± 0.12

nL = 200 nL = 1200 nL = 1024 nL = 1024 nL = 1024

Tiny ImageNet

0 48.74 ± 0.43 49.36 ± 0.21 53.34 ± 0.47 53.15 ± 0.41 56.42 ± 0.42
0.001 42.99 ± 0.26 46.63 ± 0.20 52.96 ± 0.38 52.92 ± 0.42 56.24 ± 0.38
0.003 13.41 ± 0.45 26.24 ± 0.28 50.28 ± 0.27 51.04 ± 0.43 54.53 ± 0.31
0.005 2.29 ± 0.07 6.46 ± 0.06 44.19 ± 0.18 46.87 ± 0.45 50.69 ± 0.29
0.008 0.55 ± 0.02 0.92 ± 0.02 25.91 ± 0.48 34.02 ± 0.64 38.17 ± 0.43

nL = 2200 nL = 2048 nL = 2048 nL = 2048
0 49.83 ± 0.21 54.60 ± 0.43 55.53 ± 0.15 57.64 ± 0.37

0.001 47.66 ± 0.18 54.52 ± 0.45 55.39 ± 0.07 57.56 ± 0.33
0.003 31.23 ± 0.17 53.65 ± 0.39 54.33 ± 0.11 56.93 ± 0.28
0.005 9.46 ± 0.16 51.78 ± 0.35 52.13 ± 0.16 55.54 ± 0.27
0.008 1.06 ± 0.06 46.07 ± 0.17 46.62 ± 0.34 51.73 ± 0.25

Table 3: Performance of Method 1 and Method 2 on CIFAR100, CIFAR80, CIFAR40, CIFAR20, and
CIFAR10. The datasets are constructed by taking the corresponding number classes from CIFAR100.
We choose VGG16 as the model and code length nL = 1024 for all codes. Method 1 is better at
small tasks, i.e., CIFAR10; while Method 2 is better at large tasks, i.e., CIFAR 20, 40, 60, 80 and 100.

ω 0 0.008 0.01 0.012 0.013

CIFAR100 Method 1 67.65 ± 0.21 61.18 ± 0.19 55.00 ± 0.17 42.75 ± 0.45 33.83 ± 0.76
Method 2 68.25 ± 0.22 61.71 ± 0.27 55.69 ± 0.54 44.49 ± 1.07 36.13 ± 1.41

CIFAR80 Method 1 69.47 ± 0.13 63.19 ± 0.18 57.47 ± 0.27 46.34 ± 0.68 38.08 ± 0.83
Method 2 69.52 ± 0.18 63.22 ± 0.12 57.56 ± 0.25 46.56 ± 0.37 38.21 ± 0.86

CIFAR40 Method 1 75.78 ± 0.14 71.60 ± 0.16 68.12 ± 0.24 62.67 ± 0.48 58.50 ± 0.74
Method 2 76.01 ± 0.29 71.83 ± 0.23 68.33 ± 0.28 63.17 ± 0.41 59.57 ± 0.63

CIFAR20 Method 1 81.59 ± 0.50 77.18 ± 0.28 73.69 ± 0.29 67.72 ± 0.46 63.34 ± 0.74
Method 2 81.88 ± 0.37 77.53 ± 0.25 74.27 ± 0.34 69.02 ± 0.53 65.68 ± 0.48

CIFAR10 Method 1 88.30 ± 0.33 84.61 ± 0.24 80.90 ± 0.44 72.74 ± 1.20 66.35 ± 1.93
Method 2 88.58 ± 0.21 84.67 ± 0.33 80.85 ± 0.54 72.54 ± 1.12 66.19 ± 1.27

codeword in random codes are exactly same to those of Hadamard codes. When the code length is
larger, the randomness of these quantities concentrate due to the law of large number.

Performance comparison between Method 1 and Method 2 Recall that Method 1 and Method 2
are proposed for small scale and large scale tasks, respectively. Here, we compare the performance of
Method 1 and Method 2 on tasks with different number of classes, which is summarized in Table 3.
For small scale task, i.e., CIFAR10, Method 1 outperforms Method 2. However, for larger tasks with
more classes, i.e., CIFAR20-100, Method 2 outperforms Method 1. As mentioned previously, we
believe this is because Method 1 is more likely to be trapped in bad local minima in large scale tasks
than small scale tasks. Additional experiments and analysis can be found in Section A.3.

7 Conclusion

In this paper, we provide theoretical explanations for the efficacy of ECOCs. We showed that using
ECOCs to replace one-hot code is equivalent to changing the decoding metric from l2 norm to a
Mahalanobis norm corresponding to the correlation matrix of the codewords. Moreover, we provided
an NN output perturbation bound, implying that the quantity normalized distance of codes is the key
factor of the robustness of DNN with ECOCs. Based on the theoretical findings, we proposed two
code construction methods for small and large scale classification tasks. Experimental results show
that our proposed methods perform better than existing ECOCs.
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A Supplementary Material

A.1 Proofs for Theoretical Results

We start with a results in [14], which will be used in our proof.

Theorem 2 (Theorem G.1 in [14]). Let Assumptions 1, 2, 3, and 4 be satisfied. For any given δ > 0, there exist
constants n′ > 0, A > 0, and η0 > 0, such that for all n > n′ and any step t, employing gradient descent with
a learning rate of η = η0

n
ensures that

∥θt − θ0∥2 ≤ AR0√
n

(14)

with probability at least 1− δ.

A.1.1 Proofs of Proposition 1

Proposition 1. Let Assumption 1, 2, 3 and 4 hold. Suppose there is no weight-errors and hidden layer width
parameter n → ∞, then applying ECOC is equivalent to changing the decoding function of one-hot codes (with
0 and 1 entries) to the following

D(f(x)) = arg min
c∈[C]

∥f(x)− ec∥2E([C])T E([C]) (15)

where ec ∈ RC is the c-th one-hot codeword and E is the ECOC encoding function.

Proof. Let Ỹ denote the target encoded by the one-hot code. Notice that E(c) = E([C])ec, then the ECOC
target can be written as Y = E([C])Ỹ . The decoding process can be described as

D(f(x)) = arg min
c∈[C]

∥∥E(c)− YK−1(X ,X )K(X , x)
∥∥2

= arg min
c∈[C]

∥∥∥E([C])ec − E([C])ỸK̄−1(X ,X )K(X , x)
∥∥∥2

= arg min
c∈[C]

∥∥∥ec − ỸK−1
(X ,X )K(X , x)

∥∥∥2
E([C])T E([C])

.

(16)

A.1.2 Proofs of Lemma 1

Lemma 1 (Hidden layer output bound). Let Assumptions 1, 2, 3, and 4 hold. Then, for any hidden layer
l ≤ L− 1 and any δ > 0,

∥xl∥2√
nl

≤
(
1− B + |ϕ(0)|

1−B

)
Bl +

B + |ϕ(0)|
1−B

+ δ (17)

holds with probability at least 1 − δ when n is large enough, where the hidden later width nl = αln with
constant αl > 0 for all l.

Proof. Consider wini,l and bini,l as the initial weights and bias of the l-th layer, respectively. Define ul and vl as
the adjustments to the weights and bias of the l-th layer due to training, respectively, meaning wl = wini,l + ul

and bl = bini,l + vl. From eq. (3), we get

hl = (wini,l + ul)xl−1 + bini,l + vl

= wini,lxl−1 + bini,l + ulxl−1 + vl.
(18)

Applying the triangle inequality, we obtain

∥hl∥2 ≤ ∥wini,lxl−1 + bini,l∥2 + ∥ulxl−1 + vl∥2 . (19)

Recall that the entries of wini,l and bini,l follow N (0, 1/nl−1) and N (0, 1), respectively, the elements of
(wini,lxl−1 + bini,l) are independently and identically distributed Gaussian with zero mean and variance
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(∥xl−1∥22 /nl−1 + 1). The square of each element follows a χ2 distribution with mean (∥xl−1∥22 /nl−1 + 1)

and variance 2(∥xl−1∥22 /nl−1 + 1). Leveraging Chebyshev’s inequality, for any δ1 > 0,

∥wini,lxl−1 + bini,l∥2√
nl

≤

√
∥xl−1∥22
nl−1

+ 1 + δ1 ≤
∥xl−1∥2√

nl−1
+ 1 + δ1 (20)

with a probability of at least 1−
2(∥xl−1∥2

2
/nl−1+1)

nlδ1
. For the second term,

∥ulxl−1 + vl∥2√
nl

≤
∥ul∥F ∥xl−1∥2√

nl
+

∥vl∥2√
nl

=

√
αl−1√
αl

∥ul∥F ∥xl−1∥2√
nl−1

+

√
αl−1√
αl

∥vl∥2√
nl−1

≤ AR0√
n

√
αl−1√
αl

∥xl−1∥2√
nl−1

+
AR0√

n

√
αl−1√
αl

1
√
nl−1

≤ AR0√
n

√
αl−1√
αl

(
∥xl−1∥2 + 1

√
nl−1

)
(21)

where the second inequality uses Theorem 2 and the definition of αl = nl/n. Acknowledging Assumption 1,
which posits |ϕ(h)− ϕ(0)| ≤ B|h|, and combining eq. (19) with eqs. (20) and (21), we have

∥xl∥2√
nl

≤
B ∥hl∥2√

nl
+ |ϕ(0)|

≤ B

(
1 +

AR0√
n

√
αl−1√
αl

)
∥xl−1∥2√

nl−1
+B +

BAR0√
n

√
αl−1√
αl

1
√
nl−1

+Bδ1 + |ϕ(0)|.
(22)

with a probability of at least 1−
2(∥xl−1∥2

2
/nl−1+1)

nlδ1
. With sufficiently large n, we have

∥xl∥2√
nl

≤
B ∥xl−1∥2√

nl−1
+ (B + |ϕ(0)|) + δ′ (23)

with probability at least 1− δ′ and n large enough. After recursion, we have

∥xl∥2√
nl

≤ Bl ∥x0∥2√
n0

+ (B + |ϕ(0)|)1−Bl

1−B
+ δ

≤ Bl + (B + |ϕ(0)|)1−Bl

1−B
+ δ

(24)

with probability at least 1− δ′ and n large enough, where the last inequality uses Assumption 2.

A.1.3 Proofs of Theorem 1

Theorem 1 (Perturbation bound). Let Assumptions 1, 2, 3, and 4 hold. Adopt the weight-error model in Sec.
4.3.1, and denote σ2 = maxl αlσ̄

2. Let xL and x̃L denote the clean output (in absence of weight-errors) and
perturbed output due to weight-errors, respectively. Then for arbitrary δ > 0 and arbitrary DNN input, we have

∥xL − x̃L∥2√
nL

≤ Ξ(σ,B, |ϕ(0)|, L) + δ (25)

with probability at least 1− δ − o(n−1
L δ−1) when n and nL are large enough, where

Ξ(σ,B, |ϕ(0)|, L)=σBL

(
1−B+|ϕ(0)|

1−B

)√
1+σ2

L−1√
1+σ2−1

+Bσ
1 + |ϕ(0)|

1−B

(
B
√
1+σ2

)L−1

B
√
1+σ2−1

. (26)

Proof. Let w̃l+1 and b̃l+1 denote the noisy weights and bias at the (l + 1)-th layer, respectively, with the noise
variances being σ2

w/nl for the weights and σ2
b for the bias. Consequently, at the l + 1-th layer, the relationships

can be represented as: {
h̃l+1 = w̃l+1x̃l + b̃l+1,

x̃l+1 = ϕ(h̃l+1).
(27)

Analyzing the preactivation term further, we obtain:

h̃l+1 = (wl+1 +∆wl+1)(xl +∆xl) + (bl+1 +∆bl+1)

= hl+1 +∆wl+1xl + (wl+1 +∆wl+1)∆xl +∆bl+1

= hl+1 +∆wl+1xl + (wini,l+1 +∆wl+1)∆xl + ul+1∆xl +∆bl+1,

(28)
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where wini,l+1 represents the initial weights at the (l + 1)-th layer, characterized by a variance of 1/nl, and
ul+1 is the adjustment of weights as a result of the training process. The prefix ∆ denotes the perturbation of
corresponding variable due to the weight noise. Utilizing the triangle inequality, we deduce:∥∥∥h̃l+1 − hl+1

∥∥∥
2
≤ ∥∆wl+1xl∥2 + ∥(wini,l+1 +∆wl+1)∆xl∥2 + ∥ul+1∆xl∥2 + ∥∆bl+1∥2 . (29)

Recalling that the weight perturbation ∆wl+1 has a zero mean and a variance of σ2/nl for l ≤ L− 2. Similar
to eq. (20), Chebyshev’s inequality gives

∥∆wl+1xl∥2√
nl+1

≤
σ ∥xl∥2√

nl
+ δ1 (30)

for any δ1 > 0, with the probability at least 1− 2σ2∥xl∥22/nl

nl+1δ1
≤ 1− o(n−1δ−1

1 ).

Similarly, for the perturbed weights combined with the perturbed inputs, we obtain:

∥(wini,l+1 +∆wl+1)∆xl∥2√
nl+1

≤
√
1 + σ2 ∥∆xl∥2√

nl
+ δ2 (31)

for any δ2 > 0, with a corresponding probability of at least 1− 2(1+σ2)∥∆xl∥22/nl

nl+1δ2
. For the bias perturbation,

we have
∥∆bl+1∥2√

nl+1
≤ σ + δ3 (32)

for any δ3 > 0 with the probability at least 1− 2σ2
b

nl+1δ3
= 1−o(n−1δ−1

3 ). According to Theorem 2, for arbitrary

δ4 > 0, we have ∥ul+1∥F ≤ AR0n
−1/2 with probability at least 1− δ4 and n large enough, which results in

∥ul+1∆xl∥2√
nl+1

≤
∥ul+1∥F ∥∆xl∥2√

nl+1
≤ AR0√

n

√
nl√

nl+1

∥∆xl∥2√
nl

=
AR0√

n

√
αl√

αl+1

∥∆xl∥2√
nl

. (33)

Note that this term can be arbitrarily small when n is large enough. Combine eq. (29), (30), (31), (32) and (33),
we have

∥∆xl+1∥2√
nl+1

≤
B ∥∆hl+1∥2√

n1+1

≤ B

(
σ ∥xl∥2√

nl
+

√
1 + σ2 ∥∆xl∥2√

nl
+ σ

)
+ δl

≤ B

(
σ

(
Bl + (B + |ϕ(0)|)1−Bl

1−B

)
+

√
1 + σ2 ∥∆xl∥2√

nl
+ σ

)
+ δl

= B
√

1 + σ2
∥∆xl∥2√

nl
+ σ

(
1− B + |ϕ(0)|

1−B

)
Bl+1 +Bσ

1 + |ϕ(0)|
1−B

+ δl

(34)

with probability at least 1− δl for n large enough, where the first inequality uses Assumption 2, and the second
inequality uses Lemma 1. Reuse eq. (34) for multiple times, we have for l ≤ L− 1

∥∆xl∥2√
nl

≤
(
B
√

1 + σ2
)l ∥∆x0∥2√

n0
+ σ

(
1− B + |ϕ(0)|

1−B

) l−1∑
i=0

(
B
√

1 + σ2
)i

Bl−i

+Bσ
1 + |ϕ(0)|
1−B

l−1∑
i=0

(
B
√

1 + σ2
)i

+

l−1∑
i=0

(
B
√

1 + σ2
)i

δn−i

= σBl

(
1− B + |ϕ(0)|

1−B

) l−1∑
i=0

(√
1 + σ2

)i
+Bσ

1 + |ϕ(0)|
1−B

l−1∑
i=0

(
B
√

1 + σ2
)i

+ δ′l

= σBl

(
1− B + |ϕ(0)|

1−B

) √
1 + σ2

l − 1√
1 + σ2 − 1

+Bσ
1 + |ϕ(0)|
1−B

(
B
√
1 + σ2

)l − 1

B
√
1 + σ2 − 1

+ δ′l

(35)

with probability at least 1− δ′l when n is large enough, where the second inequality uses the fact ∥∆x0∥2 = 0,
and that δi can be arbitrarily small for all i when n is large enough.

We take care of the final layer specially due to the finite dimension. Specifically, we first rewrite eq. (33) as∥∥uL∆xL−1

∥∥
2√

nL
≤ AR0√

n

√
nL−1√
nL

∥∆xL−1∥2√
nL−1

≤
AR0

√
αL−1√
nL

∥∆xL−1∥2√
nL−1

. (36)
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According to eq. (34), we have

∥∆hL∥2√
nL

≤
σ ∥xL−1∥2√

nL−1
+

√
1 + σ2 ∥∆xL−1∥2√

nL−1
+

AR0
√
αL−1√
nL

∥∆xL−1∥2√
nL−1

+ σ + δ′L (37)

for arbitrary δ′L > 0 with probability at least 1− δ′L and n large enough. Note that the probability bound in eq.
(29), (30), (31), (32) and (33) all have order o(n−1

L δ−1). Plug in eq. (35) and use Lemma 1, we finally have

∥∆xL∥2√
nL

≤
(
AR0

√
αL−1√
nL

+ 1

)(
σBL

(
1− B + |ϕ(0)|

1−B

) √
1 + σ2

L − 1√
1 + σ2 − 1

+Bσ
1 + |ϕ(0)|
1−B

(
B
√
1 + σ2

)L − 1

B
√
1 + σ2 − 1

)
+ δ

(38)

with probability at least 1− δ − o(n−1
L δ−1) when n is large enough.

A.1.4 Proofs of Corollary 1

Corollary 1 (Main result). Let all the conditions in Theorem 1 hold. Denote normalized (l2) distance of a
codeword E(i) and normalized uncertainty of clean prediction given the clean output xL as dist(E(i)) and
U(xL), respectively, with the following definition:

dist(E(i)) = min
j:j ̸=i

1√
nL

∥E(i)− E(j)∥2 , U(xL) = min
i

1√
nL

∥E(i)− xL∥2 . (39)

Then a DNN with an ECOC can make prediction with x̃L as if it is free of weight-errors after decoding, i.e.,
D(x̃L) = D(xL) with probability arbitrarily close to 1, if the ECOC satisfies

dist(D(xL))

2
> U(xL) + Ξ(σ,B, |ϕ(0)|, L) + δ (40)

for arbitrary small δ > 0 when n, nL → ∞.

Proof. Our goal is to prove that for any codeword E(i) ̸= D(xL), the distance ∥x̃L−D(xL)∥2√
nL

≤ ∥x̃L−E(i)∥2√
nL

,
which suggests that x̃L is mapped to D(xL) instead of any other codewords after decoding. By triangle
inequality, we have

∥x̃L −D(xL)∥2√
nL

≤
∥x̃L − xL∥2√

nL
+ U(xL)≤Ξ(σ,B, |ϕ(0)|, L)+δ+U(xL)≤

dist(D(xL))

2
(41)

where the second and the third inequality use eq. (8) and (40), respectively. Given the definition of dist(D(xL)),
we have ∥E(i)−D(xL)∥2√

nL
≥ dist(D(xL)). By triangle inequality again, we have

∥E(i)− x̃L∥2√
nL

≥
∥E(i)−D(xL)∥2√

nL
−

∥x̃L −D(xL)∥2√
nL

≥ dist(D(xL))

2
(42)

where the second inequality uses eq. (41). Comparing eqs. (41) and (42), we complete the proof.

A.2 Hadamard Codes

Hadamard codes exhibit several beneficial properties: 1) the number of codewords is equal to the code length,
and both are powers of 2; 2) all codewords are orthogonal to each other; 3) the Hamming distance between any
two codewords is half of the code length. This property allows Hadamard codes to achieve the upper bound for
the minimum Hamming distance given the code length. Hadamard code is an excellent choice for ECOC, which
has been validated in previous works [11, 12]. An example of Hadamard code with code length 8 is as follows:

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


(43)
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Table 4: Performance of codes constructed by Method 1 and Method 2 on AlexNet CIFAR10.
nL = 1024 for both codes.

ω 0 0.01 0.02 0.03 0.04
Method 1 82.34 ± 0.23 81.33 ± 0.18 77.54 ± 0.21 65.63 ± 0.60 34.89 ± 0.88
Method 2 82.00 ± 0.28 81.01 ± 0.19 76.71 ± 0.25 63.53 ± 0.62 34.71 ± 0.75
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Figure 3: Accuracy comparisons for different number of complement pairs included when construct-
ing ECOC with Method 2. Including more complement pairs means higher average distance while
larger correlation. 0 complement pair is Hadamard code. In this plot, 40 complement pairs achieve the
best trade-off between distance and correlation. The dataset, model and code length are CIFAR100,
VGG-16 and 1024.

A.3 Additional Experiments

Performance comparison between Method 1 and Method 2 Additionally, we compare the perfor-
mance of ECOC constructed by Method 1 and Method 2 on small scale task with small scale DNN, i.e., AlexNet
CIFAR10. Similarly, as shown in Table 4, Method 1 outperforms Method 2, which emphasizes the benefit of
using Method 1 on small scale tasks.

Performance comparison with correlation and distance trade-off In Section 4, we claimed that
correlation of code matrices determines the weight-error free performance of ECOC and distance of codewords
determines the performance degradation from weight-error. Here we use Method 2 as an example to show such
trade-off. As shown in Figure 3, we vary the number of complement pairs a in ECOC constructed by Method 2
and compare the performance. Larger a means larger correlation while larger distance. In this set of experiments,
a = 40 achieves the best correlation and distance trade-off.

A.4 Limitation

In this paper, experimental results are from simulation without implementation on actual hardware accelerator.
The theoretical results adopt assumptions of NTK, which requires the width of the network to approach to
infinity. This assumption can be strong for some neural networks.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing
issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The
papers not including the checklist will be desk rejected. The checklist should follow the references and
precede the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each
question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area
chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)
with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper
justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or
"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not
grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is
often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer
[Yes] to a question, in the justification please point to the section(s) where related material for the question can
be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main theoretical results and proposed ECOC construction methods are clearly
summarized in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Section A.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and a complete proof in Section 4 and Section
A.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details can be found in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

17



• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code is submitted in a zip file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the details are provided in Section 6 and in the code submitted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experimental results provide error bars as shown in Table 1, Table 2, and Table 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: CPU and GPU types are provided in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research does not violate any of NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: The paper aims to improve the robustness of DNNs, which does not have more potential
societal impact than the original DNN does.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The corresponding papers, which published the datasets used in this paper, are cited in
Section 6.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
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Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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