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Abstract

Projecting visual features into word embedding001
space has become a significant fusion strategy002
adopted by Multimodal Large Language Mod-003
els (MLLMs). However, its internal mecha-004
nisms have yet to be explored. Inspired by mul-005
tilingual research, we identify domain-specific006
neurons in multimodal large language models.007
Specifically, we investigate the distribution of008
domain-specific neurons and the mechanism009
of how MLLMs process features from diverse010
domains. Furthermore, we propose a three-011
stage framework for language model modules012
in MLLMs when handling projected image fea-013
tures, and verify this hypothesis using logit014
lens. Extensive experiments indicate that while015
current MLLMs exhibit Visual Question An-016
swering (VQA) capability, they may not fully017
utilize domain-specific information. Manipu-018
lating domain-specific neurons properly will re-019
sult in a 10% change of accuracy at most, shed-020
ding light on the development of cross-domain,021
all-encompassing MLLMs in the future. The022
source code is available at this URL.023

1 Introduction024

Neuron Analysis, which interprets activation of025

neurons as the recall of learned knowledge in deep026

neural networks, has been widely adopted by re-027

searchers to understand the inner workings of mod-028

els (Sajjad et al., 2022; Fan et al., 2024). Prior stud-029

ies have confirmed that certain neurons within deep030

neural networks play important roles in learning031

particular concepts (Oikarinen and Weng, 2022;032

Bai et al., 2024; Xiao et al., 2024), preserving033

factual knowledge (Chen et al., 2024; Dai et al.,034

2022; Niu et al., 2024) as well as solving spe-035

cific tasks (Stanczak et al., 2022). Beyond en-036

hancing model interpretability, current practical037

applications of Neuron Analysis include model038

distillation (Dalvi et al., 2020), knowledge edit-039

ing (Chavhan et al., 2024; Pan et al., 2023), and040

controllable generation (Bau et al., 2019; Kojima041

Figure 1: Neuron analysis in previous language-specific
setting of large language model (a) and our domain-
specific setting of multimodal large language model (b).

et al., 2024). Central to such endeavors is the identi- 042

fication of neurons responsible for target scenarios. 043

As illustrated in Figure 1 (a), recent studies have 044

focused on interpreting the multilingual capabili- 045

ties of pre-trained large language models (LLMs) 046

under the view of language-specific neurons, which 047

are neurons uniquely responsible for particular lan- 048

guages. For instance, Kojima et al. (2024) iden- 049

tified such neurons in pre-trained decoder-based 050

language models, demonstrating that tampering 051

with a few language-specific neurons significantly 052

alters the occurrence probability of target language 053

in text generation. Similarly, Zhao et al. (2024c) 054

detected language-specific neurons by measuring 055

the significance of neurons when processing multi- 056

lingual inputs and proposed a workflow of LLMs 057

handling multilingual tasks. Moreover, Tang et al. 058

(2024) used language activation probability en- 059

tropy (LAPE) to identify language-specific neu- 060

rons, demonstrating that activating or deactivating 061

certain neurons can change the language of the 062

model’s output. On the other hand, it has also been 063

confirmed that neurons in text-only transformers 064
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Figure 2: PCA visualization of image embeddings ex-
tracted through CLIP’s image encoder.

can understand visual features extracted by a vision065

encoder (Schwettmann et al., 2023).066

These findings have prompted an interesting067

question: Do similar mechanisms exist in multi-068

modal large language models (MLLMs) during069

the processing of features from different visual070

domains? As shown in Figure 1(b), we aim to071

apply the mechanism similar to multilingual neu-072

ron analysis (Tang et al., 2024) to current repre-073

sentative open-source MLLMs, including LLaVA-074

NeXT (Liu et al., 2024a) and InstructBLIP (Dai075

et al., 2024). The aforementioned models extract076

image features via a pre-trained vision encoder and077

project these features into the word embedding078

space. These post-projection visual features are079

concatenated with language features and fed into080

the model’s LLM module to generate text outputs.081

Specifically, we investigate the activation pat-082

terns of neurons in MLLMs’ feed-forward network083

(FFN) layers across corpora from five distinct do-084

mains, identifying less than 1% as domain-specific085

neurons. The datasets we utilized include Lin-086

goQA (Marcu et al., 2023), RS-VQA (HR) (Lo-087

bry et al., 2020), PMC-VQA (Zhang et al., 2023b),088

DocVQA (Mathew et al., 2021) and VQAv2 (Goyal089

et al., 2017), covering domains such as Auto Driv-090

ing, Remote Sensing, Medicine, Document, and091

Common Scenes. Figure 2 highlights the cluster-092

ing and separation of image features across the093

domains. Image examples of these domains can094

also be found in Appendix A. Based on our experi-095

ment results, we argue that differences exist among096

these visual domains and that the vision encoder097

and LLM modules in MLLMs exhibit distinct pat-098

terns for these domains. Furthermore, we propose099

a three-stage framework based on the distribution 100

of domain-specific neurons among MLLM’s LLM 101

layers, where post-projection visual features are 102

processed by LLM. To validate our hypothesis, we 103

employ logit lens (nostalgebraist, 2020) to decode 104

the hidden states of LLM’s intermediate layers to 105

visualize the feature transformation within trans- 106

former models (Vaswani et al., 2017). 107

Our main contributions are as follows: 108

• We identify the presence of domain-specific 109

neurons in representative MLLMs, which is 110

vital for interpreting domain-specific features. 111

• We analyze the impact of domain-specific 112

neurons, indicating that both LLaVA-NeXT 113

and InstructBLIP do not fully utilize domain- 114

specific information in particular domains. 115

• We compare features from various domains 116

through the lens of domain-specific neurons, 117

revealing that images from different domains 118

vary in conceptual depth. 119

• We propose a three-stage framework of lan- 120

guage models in MLLMs when processing 121

projected image features, shedding light on 122

the internal mechanisms by which image fea- 123

tures align with word embeddings. 124

To the best of our knowledge, we are the 125

first to investigate domain-specific neurons in the 126

multimodal field, although there are already in- 127

sightful discussions on visual representations in 128

MLLMs (Schwettmann et al., 2023; Zhao et al., 129

2024a). Our findings can reveal the neuron-level 130

similarity and distinction among these domains, 131

offering insights to understand and enhance the 132

cross-domain potential of current MLLMs. 133

2 Related Work 134

2.1 Neuron Analysis 135

Neuron analysis has been recently widely explored 136

in computer vision and natural language process- 137

ing, which views neuron activation as the recall of 138

learned knowledge (Mu and Andreas, 2020; Sajjad 139

et al., 2022). Bau et al. (2017) propose to automati- 140

cally inspect the functionality of each visual neu- 141

ron in CNNs by evaluating the alignment between 142

individual hidden units. Hernandez et al. (2021); 143

Oikarinen and Weng (2022); Bai et al. (2024) fur- 144

ther extend this method to open-ended by label- 145

ing hidden neurons in visual models with natu- 146

ral language descriptions. Neuron analysis has 147
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also been adopted to analyze language models, in-148

cluding the ability of sentiment analysis (Radford149

et al., 2017), machine translation (Mu et al., 2024),150

knowledge storing (Dai et al., 2022; Zhao et al.,151

2024b; Chen et al., 2024) and task solving (Wang152

et al., 2022). Recent research has associated spe-153

cific neurons in LLMs with their multilingual abil-154

ity, describing these neurons as language-specific155

neurons (Tang et al., 2024; Zhao et al., 2024c). In-156

spired by their work, we further expand this idea to157

the multimodal domain, being the first to analyze158

the domain-specific neurons in MLLMs.159

2.2 Visual Representation in Word160

Embedding Space161

Aligning image features within the word embed-162

ding space of LLMs has been one of the domi-163

nant frameworks adopted by current open-source164

MLLMs. Large Language and Vision Assistant165

(LLaVA) and its variants (Liu et al., 2024b, 2023a,166

2024a) use a simple linear layer to connect im-167

age features extracted by the vision encoder of168

CLIP (Radford et al., 2021) into the word embed-169

ding space of LLMs (Touvron et al., 2023; Chiang170

et al., 2023; Jiang et al., 2023). Instead of concate-171

nating post-projected embeddings directly with lan-172

guage instructions, InstructBLIP (Dai et al., 2024)173

employs a Q-Former to extract image features174

based on the instruction, which was more efficient.175

Similarly, MiniGPT-4 (Zhu et al., 2023) gained176

image features through pre-trained ViT (Dosovit-177

skiy et al., 2020) or Q-Former (Li et al., 2022),178

which are then projected into the word space by179

a linear layer. Although such a framework has180

gained remarkable performance in various multi-181

modal tasks (Antol et al., 2015; Chen et al., 2015;182

Liu et al., 2023b), the mechanism through which183

image tokens are processed by the LLM module184

still needed to be clarified. Our research has shed185

light on the interpretation of how MLLM under-186

stands the image tokens.187

2.3 Cross-domain MLLM188

Researchers have managed to fine-tune current189

general-domain MLLMs on specific domain cor-190

pus. For example, Kuckreja et al. (2024) train191

MLLM on the Remote Sensing multimodal dataset192

using LLaVA-1.5 architecture. LLaVA-Med (Li193

et al., 2023) was initialized with the general-194

domain LLaVA and then continuously trained in a195

curriculum learning fashion, while VLAAD (Park196

et al., 2024) opts for Video-LLaMA (Zhang et al.,197

Figure 3: The overall framework of our proposed MM-
Neuron method (taking LLaVA architecture as an exam-
ple), which can be applied to any MLP layers with an
activation layer in multimodal large language models.

2023a) as the foundational model to assist LLM in 198

comprehending video data from auto driving sce- 199

narios. There are also researches trying to enhance 200

MLLM’s performance in specific domains (Bazi 201

et al., 2024; Seyfioglu et al., 2023; Shao et al., 2023; 202

Tian et al., 2024). Despite these efforts, it has also 203

been proved that general-domain MLLMs without 204

further domain-specific fine-tuning have demon- 205

strated some cross-domain capability on some less 206

common domains (Verma et al., 2024; Lu et al., 207

2023). In our research, we select virgin (i.e., with- 208

out further fine-tuning) LLaVA-NeXT and Instruct- 209

BLIP as our baseline, hoping to bring insights 210

into the interpretation of general-domain MLLM’s 211

cross-domain potential and the development of all- 212

around MLLMs qualified for different domains. 213

3 Method 214

3.1 Neuron Activation Detection 215

A prevalent framework for vision-language models 216

involves utilizing a pre-trained vision encoder to 217

extract image features Zv from image Xv. These 218

features are then aligned with the word embed- 219

ding space via a projection module, yielding post- 220

projection features denoted as Hv. This process 221

can be formalized as follows: 222

Hv = fΠ(Zv), with Zv = fΘ(Xv). (1) 223

Here, fΠ(·) and fΘ(·) represent the projection mod- 224

ule parameterized by Π and the vision encoder pa- 225

rameterized by Θ. In LLaVA, the projection mod- 226

ule is a simple linear layer, whereas in InstructBLIP, 227

it is implemented via a Q-Former (Li et al., 2022). 228

The post-projection features are then concatenated 229

with language instruction embeddings Hq and fed 230

into an LLM to generate text answer Xa: 231

Xa = fΦ([Hv, Hq]), (2) 232

3



where fΦ(·) refers to the language model parame-233

terized by Φ.234

For each Feed-Forward Network (FFN) layer,235

we consider every activation function as a neuron,236

as depicted in Figure 3. Given the hidden state237

hi ∈ Rd of the input of the i-th FFN layer, the238

output of the FFN layer can be expressed as:239

hi+1 = act_fn(hiW i
1)W

i
2, (3)240

where act_fn(·) denotes the activation function241

(e.g., GELU in Figure 3), and W i
1 ∈ Rd×s and242

W i
2 ∈ Rs×d represent the parameters of first Linear243

Layer and second Linear Layer. Here, s is the inter-244

mediate size of FFN layer. Therefore, there are s245

neurons in this FFN layer. Conventionally, the j-th246

neuron inside the i-th FFN layer is activated only247

if its respective activation value act_fn(hiW i
1)j248

exceeds zero (Nair and Hinton, 2010).249

3.2 Domain-Specific Neuron Selection250

Our selection method is based on (Tang et al.,251

2024). For each domain Di, i = 1, 2, ..., k, we252

feed its image-text corpus into MLLM, and record253

the activated frequency of each neuron u as well as254

the total token nums Nu,i
1. The activation proba-255

bility of a neuron u in domain Di is denoted as:256

pu,i =
Mu,i

Nu,i
. (4)257

We denote the probability distribution of neuron u258

across all domains as Pu:259

Pu = (pu,1, pu,2, ..., pu,k). (5)260

The distribution can be normalized to a valid prob-261

ability distribution through L1 normalization:262

P ′
u = (p′u,1, p

′
u,2, ..., p

′
u,k),

where P ′
u,i =

Pu,i∑k
j=1 Pu,j

.
(6)263

Such a valid probability distribution allows us to264

calculate its corresponding entropy, termed domain265

activation probability entropy (DAPE):266

DAPEu = −
k∑

j=1

pu,j log pu,j . (7)267

1Note that neurons in the vision encoder and language
model may receive different numbers of tokens, since pro-
jected image features are concatenated with language embed-
dings before being fed into language model.

Figure 4: General Framework of logit len analysis,
where it takes the hidden state at an intermediate layer
(e.g., h1 above), and convert the hidden state into logits
with the unembedding layer. Note that Emb, Pos Emb,
Res, and Unemb stand for Embedding, Position Embed-
ding, Residual Layer, and Unembedding, respectively.

Intuitively, a lower entropy indicates a tendency for 268

activation in response to one or two domains, with 269

reduced activation probabilities for others. Thus, 270

neurons with low DAPE are designated as domain- 271

specific neurons, following (Tang et al., 2024). In 272

our work, we select those neurons with the bottom 273

1% DAPE scores as domain-specific neurons. 274

Upon identifying domain-specific neurons, we 275

further analyze their specificity across five domains. 276

A domain-specific neuron u is considered specific 277

to domain Dj if its activation probability pu,j ex- 278

ceeds a predefined threshold. 279

3.3 Latent Embeddings Interpretation 280

Consider a transformer model, where its l-th layer 281

updates the representation as follows: 282

hl+1 = hl + Fl(hl). (8) 283

Here, Fi is the residual output of layer i. By apply- 284

ing Equation 8 recursively, the final output logits of 285

model can be written as a function of an arbitrary 286

hidden state hi at the i-th layer: 287

logit(hl) = LayerNorm(hl +
L∑
i=l

Fi(hi))WU ,

(9) 288

where the term
∑L

i=l Fi(hi) represents the residual 289

updates in the subsequent layers, and WU denotes 290

the so-called unembedding matrix. The logit lens 291

approach involves setting the residuals to zero (Bel- 292

rose et al., 2023): 293

LogitLens(hl) = LayerNorm(hl)WU . (10) 294

As shown in Figure 4, the logit lens decodes the 295

hidden states of the transformer’s intermediate lay- 296

ers into the distribution over the vocabulary, which 297

can be used to interpret the model’s latent embed- 298

dings (nostalgebraist, 2020). Ideally, the decoded 299

distribution converges monotonically toward the 300

next token predicted by the model. 301
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We apply this trick to decode the hidden states302

of the language model, which allows us to under-303

stand the transformation of post-projection features304

within the language model module of the MLLM.305

4 Experiment306

In this section, we present empirical evaluation to307

elucidate the impact of domain-specific neurons,308

showing the potential mechanism of how MLLMs309

interpret image and language instructions.310

4.1 Experimental Setup311

4.1.1 Models312

We study two public models: LLaVA-NeXT (Liu313

et al., 2024a) and InstructBLIP (Dai et al., 2024).314

The former utilizes a simple MLP layer to project315

image features extracted by CLIP’s vision encoder316

into the word embedding space. The latter, how-317

ever, employs the Q-Former (Li et al., 2022) to318

refine the image features extracted by ViT (Dosovit-319

skiy et al., 2020). Specifically, we select llava-v1.6-320

vicuna-7b-hf2 and Instructblip-vicuna-7b3, both of321

which use Vicuna-7b (Chiang et al., 2023) as the322

language model base. The number of neurons in323

llava-v1.6-vicuna-7b-hf and Instructblip-vicuna-7b324

are 454.7K and 665.6K, respectively.325

4.1.2 Dataset and Metrics326

We select five datasets representing five different327

domains, namely, VQAv2 (Goyal et al., 2017) for328

common scenes, PMC-VQA (Zhang et al., 2023b)329

for Medical domain, DocVQA (Mathew et al.,330

2021) for Document domain, LingoQA (Marcu331

et al., 2023) for Auto Driving domain and RS-332

VQA (Lobry et al., 2020) for Remote Sensing do-333

main. For LingoQA, visual instruction for each334

question includes multiple images, as shown in335

Figure 13a. We prepare image-question pairs of336

nearly the same token numbers for each domain337

during identifying, around 20 million tokens in338

LLaVA-NeXT. During evaluation, the scale of the339

validation set is aligned with LingoQA to make340

a fair comparison. For DocVQA, we report Av-341

erage Normalized Levenshtein Similarity (ANLS)342

score (Biten et al., 2019) followed by the official343

benchmark. For LingoQA, we use the score of344

Lingo-Judge (Marcu et al., 2023) with the official345

2https://huggingface.co/llava-hf/llava-v1.
6-vicuna-7b-hf

3https://huggingface.co/Salesforce/
instructblip-vicuna-7b

Baseline Module VQAv2 PMC-VQA LingoQA DocVQA RS-VQA

LLaVA-NeXT
Vision Encoder 65 233 168 409 465
MLP Projector 8 13 13 11 20

LLM 683 915 1536 423 2120

InstructBLIP
Vision Encoder 94 488 279 916 891

Q-Former 39 206 334 175 72
LLM 410 774 1567 556 1419

Table 1: The number of neurons in each domain in
different modules of MLLMs. Bold is used to highlight
the domain with the most neurons in each module.

implementation. For all other datasets, we report 346

the top-1 accuracy (%) as the metric. 347

4.1.3 Implementation Details 348

We adhere to the default prompt templates from the 349

official repository or the original paper during eval- 350

uation, with an additional role description for the 351

auto-driving scenes. For more details, please refer 352

to Appendix B. We perform the forward pass with- 353

out padding or truncation during the identification 354

process. When evaluating models across different 355

datasets, we employ beam search with max_length 356

of 512 and num_beams of 5 to generate answers. 357

The temperature and length_penalty arguments are 358

set as 0.9 and -1, respectively. 359

4.2 Results & Discussion 360

4.2.1 Distribution of Domain-specific Neurons 361

We identify domain-specific neurons using the 362

method described in Section 3.2. Since neurons 363

in different modules may have different activation 364

patterns, as shown in Appendix C, we detected 365

those domain-specific neurons module by module. 366

Figure 5 shows the distribution of domain-specific 367

neurons for each layer in each module of MLLMs. 368

Three-stage framework of LLM understand- 369

ing multimodal features. Two obvious turning 370

points can be observed in both LLaVA-NeXT and 371

InstructBLIP’s language model, one in the inter- 372

mediate layer and the other near the output layer. 373

Inspired by (Zhao et al., 2024c), we thus propose a 374

three-stage framework of LLM understanding mul- 375

timodal features: 1) In the first several layers, pro- 376

jected features are further aligned with word space. 377

Around the turning point, the multimodal features 378

are embedded into a uniform representation space, 379

where included domain-specific information needs 380

to be processed by more domain-specific neurons. 381

2) Transitioning into the second phase, features are 382

further generalized and understood by language 383

models, where domain-specific neurons decrease 384

sharply. 3)In the third stage, language models gen- 385
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(a) Distribution of domain-specific neurons in InstructBLIP.
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(b) Distribution of domain-specific neurons in LLaVA-NeXT. ⋆: The MLP projector of LLaVA-NeXT consists of only one
single layer.

Figure 5: Layer-wise Distribution of domain-specific neurons in different modules.

erate responses to the input, showing a rise of neu-386

rons specific to target tasks.387

Our hypothesis aligns with the previous con-388

clusion on smaller multimodal models like GPT-389

J (Wang and Komatsuzaki, 2021), as (Schwettmann390

et al., 2023) argue that outputs of the projection391

layer are further translated in deeper layers within392

the transformer. To further validate our hypothesis,393

we employ logit lens to visualize the transformation394

of multimodal features within language models in395

Section 4.2.3.396

Domain-specific information in different seman-397

tic levels. Domain-specific neurons are mainly398

distributed in shallow and intermediate layers399

within MLLMs’ vision encoders. Prior research400

discussed the correlation between the semantic401

level and layer depth, which found that more deep402

layers will focus on higher-level concepts in visual403

networks. In our settings, the document domain404

contains more low-level concepts, such as line and405

shape, while the remote sensing and medical do-406

main may include more high-level concepts, like407

architectures and organs. Therefore, document neu-408

rons are mainly gathered in bottom layers close409

to the input end. Another interesting phenomenon410

is the rise of auto driving neurons near the output411

layer of InstructBLIP’s Q-Former, we conjecture412

this may reflect the struggle of model to understand413

the language instructions of auto driving domain.414

Gap between the ability of MLLM to handle 415

visual and lingual instructions. Table 1 demon- 416

strates the number of neurons in each domain. Re- 417

mote sensing neurons have the largest proportion 418

in LLaVA-NeXT’s vision encoder, MLP projector 419

and language model, while in InstructBLIP, the do- 420

main owns most specific neurons are document, 421

auto driving and auto driving separately. We ar- 422

gue that the number of specific neurons reflects 423

the understanding ability of MLLM in the target 424

domain, as more specific neurons may mean more 425

demanding to process domain-specific information. 426

In contrast, less specific neurons mean more gen- 427

eralized features in the target domain (Tang et al., 428

2024). In this way, we find that there exists a large 429

visual gap between domains like remote sensing, 430

document and medical, comparing the two domains 431

left. Moreover, InstructBLIP seems less proficient 432

in processing questions from auto driving, as neu- 433

rons of this domain exhibit the highest number in 434

Q-Former and LLM. There is also a similar pat- 435

tern in its language model as for the auto driving 436

domain. In other words, while visual features of 437

auto driving domain can be processed well by exist- 438

ing vision encoder, the language instruction of this 439

domain may be hard to handle for language model. 440

4.2.2 Influence of domain-specific neurons 441

Perturbation for Performance in VQA Tasks 442

Table 2 demonstrates the performance of LLaVA- 443
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Model Deactivated Module(s) VQAv2 PMC-VQA LingoQA RS-VQA DocVQA

LLaVA-NeXT

None 74.9 34.4 20.6 42.5 59.2

Vision Encoder 75.8 34.3 24.6 42.1 58.3
MLP Projector 74.9 34.4 24.2 42.5 59.2

LLM 75.7 34.5 24.2 41.0 59.0
All 73.5 34.5 24.2 38.5 57.0

InstructBLIP

None 66.1 28.1 20.6 34.7 24.0

Vision Encoder 66.9 31.0 21.8 34.8 23.8
Q-Former 67.1 32.4 20.0 33.1 24.6

LLM 67.1 32.6 24.2 35.5 24.4
All 68.6 30.9 18.0 33.6 23.8

Table 2: Accuracy (%) of LLaVA-NeXT and Instruct-
BLIP on selected domains with corresponding domain-
specific neurons deactivated. “None” means no neurons
are deactivated, while “All” means deactivating domain-
specific neurons in all the modules above. Bold is used
to highlight the worst performance in each column.

Baseline Module VQAv2 PMC-VQA LingoQA DocVQA RS-VQA

LLaVA-NeXT

Random (Avg.) 8.41 18.90 16.04 21.81 32.76

LLM 0.01 0.01 0.02 0.10 0.02
Vision Encoder 17.19 30.98 35.74 46.75 49.90
MLP Projector 0.0 0.0 0.0 0.0 0.0

All 17.19 30.98 35.74 46.75 49.90

InstructBLIP

Random (Avg.) 5.13 8.15 8.57 14.85 9.91

LLM 6.84 12.13 9.62 7.80 11.98
Vision Encoder 2.44 17.93 5.33 26.11 23.76

Q-Former 2.93 11.61 6.95 14.58 6.52
All 8.00 24.84 12.77 29.04 26.58

Table 3: The deviation (%) of hidden states of MLLMs’
last layer after deactivating domain-specific neurons.
We calculate the deviation d=∥Hn−Hd∥2

∥Hn∥2
, where Hn and

Hd denotes the hidden states before and after deactivat-
ing neurons separately. Bold is used to highlight the
largest deviation in each column. Random (Avg.) refers
to the average deviation by randomly deactivating neu-
rons of the same number in all modules.

NeXT and InstructBLIP after deactivating domain-444

specific neurons in different modules. While the445

performance decrease after deactivating is slight446

for most domains, we find that deactivating remote447

sensing neurons in LLaVA-NeXT and auto driving448

neurons in InstructBLIP will result in a great fall449

of 4.0 and 2.6 accuracy separately. Similarly, in the450

document domain, deactivating domain-specific451

neurons at most causes a 2.2 accuracy decrease for452

LLaVA-NeXT. Interestingly, in some cases, remov-453

ing domain-specific information seems to benefit454

the target task, as the accuracy of LLaVA-NeXT in455

auto driving has risen from 20.6 to 24.2. We leave456

this for future work.457

In summary, deactivating domain-specific neu-458

rons will not cause a sharp decrease in performance459

for some domains. To investigate the reason for460

that further, we compare the influence of domain-461

specific neurons in MLLMs’ hidden states.462

Perturbation for Hidden States We demon-463

strate the influence of domain-specific neurons on464

MLLM’s last hidden states in Table 3. Surpris-465

ingly, deactivating domain-specific neurons causes 466

a large perturbation to LLaVA-NeXT and Instruct- 467

BLIP’s hidden states. In contrast, deactivating all 468

of the domain-specific neurons can have little ef- 469

fect on the accuracy of these domains, as shown 470

in Table 2. Therefore, we argue that both LLaVA 471

and InstructBLIP fail to take full advantage of the 472

domain-specific information in specific domains, 473

which may limit their cross-domain ability. In 474

other words, the representations within MLLM’s 475

language models are highly generalized. 476

4.2.3 Case Study 477

To investigate how MLLM’s language model pro- 478

cesses image tokens, we employ logit lens (nos- 479

talgebraist, 2020) to decode the hidden states of 480

the language model’s intermediate layers into the 481

probability of the next token across the vocabu- 482

lary. As displayed in Figure 6, when feeding a 483

remote sensing image-question pair into Instruct- 484

BLIP, we get that the most likely token next to 485

the second image token is ’</s>’, while the most 486

likely token next of the last text token is the cor- 487

rect answer, ’no’. Interestingly, two place names, 488

"Hermann" and "Baltimore", have appeared among 489

the top token candidates when the image input is a 490

remote sensing picture of New York. In multilin- 491

gual literature, similar phenomena have also been 492

observed. For instance, when Llama 2 receives the 493

French token ’fleur’ in the input, the English con- 494

cept ’__flower’ will appear in the intermediate dis- 495

tribution (Wendler et al., 2024). This suggests that 496

the decoded vocabulary distribution can to some 497

extent reflect the semantic concepts understood by 498

the language model. Despite this observation, we 499

note that the decoded distribution of image tokens 500

is far more sparse than text tokens; even in the out- 501

put layer, the probability of the most likely next 502

token ’</s>’ is lower than 40%. It indicates that 503

projected tokens may be treated as a sparse mixture 504

of concepts in the representation space instead of a 505

simple word. We also demonstrate more cases of 506

logit lens in different domains in Appendix D. 507

To further explore this phenomenon, we calcu- 508

late the average entropy of the next token distribu- 509

tion for image tokens and text tokens separately, 510

as shown in Figure 7. As the curves of image to- 511

kens tend to be above those of text tokens for all 512

the layers, the next token distributions of image 513

tokens are indeed more sparse than those of text 514

tokens. Moreover, the tendency of entropy curves 515

aligns with the hypothesis we have proposed in 516
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Language Input: 

Is a square building present?

Visual Input:

(a) Visaul and language input.
The area in the image is located
in New York.
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(b) The next token distribution of the sec-
ond image token, the expected next token
is ‘</s>’ (i.e., end of sentence).
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(c) The next token distribution of the last
text token, the expected next token is the
correct answer ‘no’.

Figure 6: The logit lens can be applied to decode the hidden states of the language model’s intermediate layers into
the probability distribution of the vocabulary. We only display the top 5 candidates for each layer in the heatmap.
Color indicates the probability of candidates from low (white) to high (blue).
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(a) Average entropy of next-token distribution of InstructBLIP.
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(b) Average entropy of next-token distribution of LLaVA-
NeXT.

Figure 7: The average entropy of next token probability
distribution for image and text tokens. The colors of
lines denote different domains, such as auto driving (ad),
remote sensing (rs), medical (med), common (com), and
document (doc). We use dashed lines and solid lines to
distinguish curves of image and text tokens.

Section 4.2.1. In the first stage, features are aligned 517

into a uniform representation space, where entropy 518

curves level off high. In the second stage, the lan- 519

guage model understands and processes the infor- 520

mation, as curves drop sharply in the intermediate 521

layers. Finally, the model selects the suitable next 522

token to output, resulting in a slight increase in en- 523

tropy. A similar tendency has also been observed in 524

English-native multilingual LLMs when handling 525

non-English inputs (Wendler et al., 2024). 526

5 Conclusion 527

To explore the neuron-level domain-specific inter- 528

pretation in current MLLMs, we propose MMNeu- 529

ron framework inspired by multilingual research. 530

In particular, we first calculate the activation prob- 531

abilities of neurons in LLaVA-NeXT and Instruct- 532

BLIP across five domains, identifying those with 533

low domain DAPE scores as domain-specific neu- 534

rons. By analyzing the distribution of domain- 535

specific neurons and their influence on MLLMs, we 536

find that the language model modules of MLLMs 537

fail to fully utilize domain-specific information in 538

VQA tasks. We further propose a three-stage frame- 539

work that the language model module employs 540

to handle projected visual features and corrobo- 541

rate it indirectly with logit lens. We envision that 542

our work will shed light on the interpretability of 543

current MLLMs, aiding the development of cross- 544

domain, all-encompassing MLLMs in the future. 545
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6 Limitations546

Despite the findings we demonstrate in our work,547

there still exist several limitations:548

1. Our experiments are conducted mainly549

on LLaVA-NeXT and InstructBLIP, whose550

frameworks are similar in aligning visual fea-551

tures with the word embedding space via a552

projector. This means that our findings may553

not be directly applicable to models that uti-554

lize different frameworks, such as those in-555

jecting vision representations into LLMs by556

layer (Wemm, 2023).557

2. Although we find that domain-specific infor-558

mation is not fully utilized by the language559

model modules of MLLMs, how such infor-560

mation is conveyed and ignored between dif-561

ferent layers is still less known. We leave562

these problems for future work.563

3. We discuss the possible workflow of the lan-564

guage model module handling projected vi-565

sual features through logit lens. While there566

do exist special semantic concepts in the de-567

coded representations, we still know little568

about how these concepts are encoded and569

how projected features interact with word em-570

beddings during the forward pass. Therefore,571

further mathematical analysis in this area is572

still required in the future.573
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A Visual Domain Definition879

We define five domains in this work and each of880

them has characterized image features, as displayed881

in Table 4.882

B Prompt Template883

B.1 Instructions templates for VQA884

For instructions with options, we separate options885

in alphabetical order, as shown in Appendix B.2.886

⋆ : A role description has been provided to help887

models better understand the tasks in auto driving.888

As shown below:889

“Role: You are an advanced AI assistant in-890

stalled on the Ego vehicle, equipped with conver-891

sational analysis capabilities for discussing au-892

tonomous driving scenarios. The perspective pre-893

sented is from the point-of-view of the Ego vehicle,894

where the camera is mounted. It’s important to895

note that the Ego vehicle itself is not visible in the896

images provided.”897

B.2 Prompt Examples898

We display the prompt format we use for evaluation899

in LLaVA-NeXT, as shown in Figure 8. The prompt900

for InstructBLIP come from direct format in Table901

B.1.902

C Silent Neurons in MLLM’s Vision903

Encoder904

We observed that several neurons in the vision en-905

coders of LLaVA-NeXT and InstructBLIP remain906

silent regardless of the input images. We refer to907

these as “silent neurons". Figure 9 illustrates the908

distribution of these silent neurons within the vi-909

sion encoders.910

Assistant:
no

Open-Ended (LLaVA-Next)

System:
A chat between a curious user and an artificial intelligence assistant. The assistant 

gives helpful, detailed, and polite answers to the user’s questions.

Question: Is a square building present?

Context: N/A

Answer the question using a single word or phrase.

User:

(a) Prompt example for open-ended tasks, the image and ques-
tion come from RSVQA.

Multi-option (LLaVA-Next)

System:
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, 

detailed, and polite answers to the user’s questions.

Assistant:
B

User:

Question: Is a square building present?

Context: N/A

Options: ['A: Right upper pole', 'B: Right lower pole', 'C: Left upper pole', 'D: Left lower pole']

Answer with the option's letter from the given choices directly.

(b) Prompt example for multi-option tasks, the image and
question come from PMC-VQA.

Figure 8: Prompt examples of conversational format for
LLaVA-NeXT.
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(a) Ratio of silent and activated neurons in IntructBLIP’s
vision encoder.
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(b) Ratio of silent and activated neurons in LLaVA-NeXT’s
vision encoder.

Figure 9: Layer-wise distribution of silent neurons.

D Logit Lens Cases 911

We provide more cases from other four datasets, 912

as displayed in Figure 10, 11, 12 and 13. For Lin- 913

goQA (auto driving domain), the visual inputs for 914

each question are multiple images. 915
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Domain Definition Dataset
Num of
Samples

Example

Common
Scenes

Natural images taken in everyday
life

VQAv2 (Goyal
et al., 2017)

21K

Remote
Sensing

Images captured by remote
sensing sensors such as satellites

RS-VQA (Lobry
et al., 2020)

11K

Medical
Medical images obtained through

techniques like CT and X-ray
PMC-VQA (Zhang

et al., 2023b)
15K

Document
Documents containing charts,
text-rich images, and records

DocVQA (Mathew
et al., 2021)

10K

Auto
Driving

Scenes captured from the
viewpoint of a vehicle’s camera

LingoQA (Marcu
et al., 2023)

14K

Table 4: Domain definition and the corresponding datasets.

Step Model Prompt

Identification LLaVA-NeXT <Image><Question>

InstructBLIP <Image><Question>

Evaluation (open-ended)

LLaVA-NeXT

A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the
user’s questions.
USER:
<Image>
{Role Description}*
Question: {Question}
Context: N/A
Answer the question using a single word or phrase.
ASSISTANT:

InstructBLIP

<Image>
{Role Description}*
Question: {Question}
Short Answer:

Evaluation (multi-option)

LLaVA-NeXT

A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the
user’s questions.
USER:
<Image>
Question: {Question}
Context: N/A
Options: {Options}
Answer with the option’s letter from the given choices directly.
ASSISTANT:

InstructBLIP

<Image>
Question: {Question}
Options: {Options}
Answer with the option’s letter from the given choices directly.

Table 5: Prompt templates we have used in different steps. For identifying domain-specific neurons, plain questions
are input into models. During evaluation, we follow the templates provided by official repositories or codes.
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Visual Input:

Language Input:
What type of imaging modality was performed 

on admission? 

[' A: CT ', ' B: MRI ', ' C: PET ', ' D: X-ray ']

(a) Visual and language input of
PMC-VQA.

Top 1 Top 2 Top 3 Top 4 Top 5

Layer 2  

Layer 4  

Layer 6  

Layer 8  

Layer 10  

Layer 12  

Layer 14  

Layer 16  

Layer 18  

Layer 20  

Layer 22  

Layer 24  

Layer 26  

Layer 28  

Layer 30  

Layer 32  

Expected Next Token: "</s>"

ov arch Brothers uso rix

ov arch Brothers rix alu

ov arch ami lam rix

ami ov arch rix isch

ami Dig arch treat ov

ami Dig rix <s> isch

<s> Dig dig ogram фо

<s> ogram Dig imag oko

<s> ogram Rad Rad imag

Rad CT scan <s> ogram

CT scan imag Rad brain

CT scan brain imag CT

CT brain scan CT imag

CT brain CT scan imag

CT brain M scan posit

m brain M CT b

(b) The next token distribution of the 8th
image token.
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Expected Next Token: "B"

$}}% ∷ ⊆ ‾ boldmath
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externs ee Portal avant Core
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Yes Asia yes Yes scroll

answer Yes No Answer answers

answer Answer answers Answer  

answer Answer answered Answer answers

answer Answer B Answer answered

B D C answer Answer

B answer C D option

B C D answer option

B C D A answer

B C D A answer

B C A D

(c) The next token distribution of the last
text token.

Figure 10: Case of logit lens in InstructBLIP on PMC-VQA.

Visual Input:

Language Input:
What is the title of Table 12?

(a) Visual and language input of
DocVQA.

Top 1 Top 2 Top 3 Top 4 Top 5
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Expected Next Token: "</s>"

CV pad nim тика slave

CV nim pad Hoff converted

pad CV nim Pad iella

nim oreign adj pad nika

żs oreign eerd adj nim

&=\ ǧ Έ żs iennes

&=\ zon table eerd той

&=\ graphs ilog uche vé

graphs graph graph chart &=\

graph graphs graph chart data

graph graph graphs chart plot

graph scatter graphs plot graph

graph scatter line graphs graph

bars line bar graph scatter

line bars bar graph table

graph line chart table bar

(b) The next token distribution of the
377th image token.
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sentence word answer sentences ь
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word sentence line statement answer

sentence word statement line ,

(c) The next token distribution of the 5th
from last text token.

Figure 11: Case of logit lens in LLaVA-NeXT on DocVQA.
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Visual Input:

Language Input:
Where was this photo taken from?

(a) Visual and language input of
VQAv2.
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beach Beach alg coast actér
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beach pier Santa sur empty

beach pier Ven empty Mal

beach t . day ,

(b) The next token distribution of the 49th
image token.
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question question following Question questions

question question Question following aters

question ater photo aters question

question photo following second Question

photo question message image location

(c) The next token distribution of the 9th
from last text token.

Figure 12: Case of logit lens in LLaVA-NeXT on VQAv2.

(a) Images inputs of LingoQA. Question: Is there a vehicle ahead of you in your lane?

Top 1 Top 2 Top 3 Top 4 Top 5

Layer 2  

Layer 4  

Layer 6  

Layer 8  

Layer 10  

Layer 12  

Layer 14  

Layer 16  

Layer 18  

Layer 20  

Layer 22  

Layer 24  

Layer 26  

Layer 28  

Layer 30  

Layer 32  

Expected Next Token: "</s>"

arda emp pitt ELD telt

emp telt arda ELD empio

ELD telt vier emp arda

vier olds ELD occup vá

zas aum idense лав dru

atos zas arda 郡 dru

пута гар Bedeut atos arda

пута Bedeut гар ardi rile

Bedeut гар ardi пута Pac

Bedeut гар jours пута conde

Bedeut clouds cloud jours conde
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(b) The next token distribution of the 37th image token in
LLaVA-NeXT’s vision encoder.
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image images frame frames final

image images photo picture photos

(c) The next token distribution of the 18th from the last
text token.

Figure 13: Case of logit lens in LLaVA-NeXT on LingoQA.
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