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Abstract—In this paper, a dynamic threshold global
performance-guaranteed formation control method is proposed
for wheeled mobile robots (WMRs). Unlike existing prescribed
performance formation control methods that are constrained by
initial values, we design a dynamic threshold global performance-
guaranteed (DTGPG) function to address the initial value con-
straints while being able to secondary adjust the steady state
performance boundaries. Moreover, we design a smooth extended
state observer (SESO) based on a sigmoid-like function to
mitigate the chattering problem of the existing event-triggered
ESO. Then a DTGPG-based guidance law and a SESO-based
control law are designed to implement the formation control.
The proof shows that the total closed-loop system is input-to-
state stable (ISS). Through simulation, the benefits and validity
of the proposed control methodology are confirmed.

Index Terms—WMRs, dynamic threshold global performance-
guaranteed function, formation control, SESO

I. INTRODUCTION

Multi-wheeled mobile robots (WMRs) formation control

with extremely high demands on transient and steady state

performance. In the transient phase, small overshoots and

fast convergence can avoid collisions between WMRs. In

the steady state phase, high accuracy tracking performance

can significantly improve the overall coordination and task

execution efficiency. Therefore, it is crucial to prescribe the

performance of the multi-WMRs system. In [1], a collision

avoidance prescribed performance control (PPC) method is

proposed for WMR formations, which guarantees the per-

formance of the multi-WMR system by adding communica-

tion limits and collision limits to the prescribed performance
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function. In [2], a fixed-time performance-guaranteed forma-

tion control problem for multi-WMRs is investigated, which

achieves fixed-time convergence by introducing a segmented

time-varying function into the performance function. In [3],

a field-of-view constrained performance-guaranteed formation

control method is proposed for multi-WMRs, which designs

a guaranteed performance function that considers leader and

follower distance maintenance to avoid collisions. Although

the above work [1]–[3] can effectively improve the perfor-

mance of multi-WMRs, there are still two points that need to

be improved: 1. They are all subject to initial conditions, which

will increase the human intervention in practical applications,

i.e., calculating the starting position of the WMRs in advance.

2. The standard PPC cannot perform a secondary adjustment

of the performance boundaries after reaching the steady state.

On the other hand, when performing tasks in complex

environments, frozen and uneven road surfaces are usually en-

countered. These disturbances may affect the stability of WMR

formations. Therefore, how to quickly and accurately estimate

the external disturbances is also crucial. In [4], a nonlinear

extended state observer (ESO) is proposed to estimate the

external disturbance, which recovers the velocity and estimates

the external disturbance through position and heading errors.

Then to improve the estimation rate, a finite time ESO is

designed. In [5], an event-triggered ESO is designed to adjust

the allocation of resources. Note that event-triggered ESO

[5] can save resources when estimating disturbances, but will

inevitably have chattering problems.

Inspired by the aforementioned observations, we propose a

dynamic threshold global performance-guaranteed (DTGPG)

formation control method for WMRs with a smooth extended

state observer (SESO). The key contributions of this work are:

Unlike the standard PPC methods described in [6] and the



TABLE I
SYMBOL DEFINITION

Symbol Definition

R
n n-dimensional Euclidean Space

R
+ Positive real space

‖ · ‖ Euclidean norm

diag{· · · } Block-diagonal matrix

λmax(·) Maximum eigenvalue of a matrix

λmin(·) Minimum eigenvalue of a matrix

sgn(·) Sign function

exp(·) Exponential function

col(·) Column vector

TPP methods in [7]–[9], this paper proposes DTGPG capable

of solving the initial value constraints problem and secondary

adjustment of the steady state performance bounds. In contrast

to event-triggered ESO [5], we design the SESO to mitigate

chattering by introducing a sigmoid-like function to smooth

the estimation error. The total closed-loop system is proved

to be input-to-state stable (ISS). Some of the symbols in this

paper are defined in Table I.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

To describe the communication among the virtual leader

and WMRs, a directed graph is described as G = {V,M}.

V = {n1, . . . , nM} and M = {(ni, nj) ∈ V × V} represent a

vertex set and an edge set, respectively. An adjacency matrix

associated with G is defined as A = [aij ] ∈ R
M×M . Corre-

spondingly, a degree matrix connected with G is characterized

as D = diag{di} ∈ R
M×M with di =

∑M
j=1 aij . Additionally,

a Laplacian matrix associated with G is defined as L = D−A.

Note that here i = 1, ...,M, j = 1, ...,M .

B. Problem Statement

Suppose that there exist N followers, labeled as agents n1

to nN , and M − N leaders, labeled as agents nN+1 to nM ,

under a communication topology graph. A group of followers

consisting of N wheeled mobile robots is modelled as follows⎧⎪⎨
⎪⎩
η̇i = Riνi

ν̇i = riJ
+
i M

−1
i τ i + riJ

+
i M

−1
i T i

−Diθr
2
i J

+
i M

−1
i J iR

−1
i η̇i−J+

i M
−1
i F ir

2
i

(1)

where i=1, ..., N . ηi = [xi, yi, ψi]
T ∈ R

3 denotes the position

and yaw angle. νi = [ui, vi, wi]
T ∈ R

3 denotes the velocity

vector. τ i = [τi1, τi2, τi3, τi4]
T ∈ R

4 denotes the control

input. T i = [Ti1, Ti2, Ti3, Ti4]T ∈ R
4 denotes the external

disturbance. The kinetic parameters and matrices of this WMR

can be found in [10]. J i ∈ R
4×3 and J+

i ∈ R
3×4 satisfy the

relationship J+
i J i = I3.

Assumption 1: The graph G contains a spanning tree with

the virtual leader as the root node.

C. Dynamic Threshold Global Performance-Guaranteed and
Barrier Function

We define the distributed error as follows

Ei =
N∑
j=1

aij(ηi − ηj) +
M∑

j=N+1

aij(ηi − ηjr) (2)

where ηjr = [ηjx, ηjy, ηjψ]
T ∈ R

3 represents the trajectory

of the virtual leader. The coefficient aij is defined in [11]. To

ensure that the developed control is free from the influence

of initial conditions and can dynamically adjust prescribed

thresholds, the error is constrained within the following pre-

scribed regions

Iik(−Wik) ≤ Eik ≤ Iik(Wik), k = x, y, ψ (3)

where Iik(Wik) is a dynamic threshold global performance-

guaranteed (DTGPG) function similar to the [12], and is

defined as follows

Iik(Wik) =

√
likWik√
1−W2

ik

(4)

with Wik = 1/Pik. Pik is a dynamic threshold finite-time

prescribed function similar to the [13]

Pik(t)=

⎧⎪⎨
⎪⎩
(1−Θik,∞)exp(−�ik Tik,at

Tik,a−t)+Θik,∞,0≤t<Tik,a

Θik,∞(1−ωik

2 +ωik

2 cos( π
cik

(t−Tik,a))),Tik,a≤t<Tik,b

Θik,∞(1− ωik), t≥Tik,b

(5)

where lik and ωik are positive constants. Θik,∞ =
limt→∞ Θik(t) is the steady-state value. �ik > 0 represents

the convergence rate. Tik,a is the settling time to reach steady

state. cik = Tik,b − Tik,a is the duration of the dynamic

adjustment.

Then, we employ the following barrier function to imple-

ment the error constraint in (3)

Zik =
Jik

1− J 2
ik

(6)

where Jik = PikHik with Hik = Eik/
√
E2

ik + lik. The

properties of the barrier function are described in [12].

III. CONTROLLER DESIGN AND ANALYSIS

A. Smooth Extended State Observer

To facilitate the subsequent strategy design, define Λi =
riJ

+
i M

−1
i T i −Diθr

2
i J

+
i M

−1
i J iR

−1
i η̇i −J+

i M
−1
i F ir

2
i to

denote internal uncertainty and external disturbances suffered

by the ith WMR. (1) can be reformulated as{
η̇i = Riνi

ν̇i = riJ
+
i M

−1
i τ i +Λi.

(7)

Assumption 2: For the multi-WMR system, the unknown

total disturbance Λi is smooth and continuous.



Then, we regard the total disturbances Λi as an extended

state, and to avoid unnecessary waste of resources when ap-

proximating the disturbances, an ESO based on event-triggered

mechanism is designed as [5]⎧⎪⎨
⎪⎩
ν̃s
i = ν̂i − ν�

i

˙̂νi = −εi1ν̃
s
i + Λ̂i + riJ

+
i M

−1
i τ i

˙̂
Λi = −εi2ν̃

s
i

(8)

where εi1 and εi2∈R3×3 denote positive diagonal matrices.

The variables ν̂i=[ûi, v̂i, ŵi]
T∈R3 and Λ̂i=[Λ̂iu, Λ̂iv, Λ̂iw]

T∈
R

3 denote the estimates of νi and Λi, respectively. ν�
i ∈ R

3

represents the aperiodic sampling of νi. The event-triggered

mechanism is defined as{
ν�
i (t)=νi(t

νi
�),∀t∈[tνi

� , tνi
�+1), ν̃is(t)=ν

�
i (t)−νi(t)

tνi
�+1 = inf{t ∈ R | ‖ν̃is(t)‖ ≥ Xi}

(9)

where Xi ∈ R
+ denotes the event triggering threshold, and

ν̃is(t) denotes the aperiodic sampling error. When ‖ν̃is(t)‖ ≥
Xi, update ν�

i (t); otherwise, maintain the last updated value.

Remark 1: In addition to using ESO to estimate the external

disturbances, the neural network [14] and the neural predictor

[15] also achieve the same objective.

Existing ESO based on event-triggered mechanism [5]

suffers from unavoidable chattering when approximating the

disturbances. To solve the chattering problem, we design the

SESO as follows{
˙̂νi = −εi1ν̃

s
i + Λ̂i + riJ

+
i M

−1
i τ i

˙̂
Λi = −εi2B(ν̃s

i )
(10)

where B(ν̃s
i ) = col(B(ν̃siΞ)), Ξ = u, v, w ∈ R

3 is the

sigmoid-like function vector, defined as follows

B(ν̃siΞ) =

⎧⎨
⎩

1− exp(−|ν̃siΞ |)
1 + exp(−|ν̃siΞ |)

ν̃siΞ
|ν̃siΞ |

, ν̃siΞ �= 0

ν̃siΞ , ν̃siΞ = 0.
(11)

Next, to facilitate the stability analysis of the SESO, define

a positive vector Vi = diag{ViΞ} ∈ R
3×3 with

ViΞ =

⎧⎨
⎩

1− exp(−|ν̃siΞ |)
1 + exp(−|ν̃siΞ |)

1

|ν̃siΞ |
, ν̃siΞ �= 0

1, ν̃siΞ = 0.
(12)

The (10) can be rewritten as{
˙̂νi = −εi1ν̃i + εi1ν̃is + Λ̂i + riJ

+
i M

−1
i τ i

˙̂
Λi = −εi2V iν̃i + εi2V iν̃is

(13)

where ν̃i = ν̂i−νi, Λ̃i = Λ̂i−Λi. Define N i1 = [ν̃i, Λ̃i]
T ∈

R
6, one has

Ṅ i1 = Ai1N i1 +Bi1ν̃is +Ci1Λ̇i (14)

where{
Ai1 =

[
−εi1I3 I3

−εi2V i O3

]
Bi1 =

[
εi1I3

εi2V i

]
Ci1 =

[
O3

I3

]
.

Note that the matrix Ai1 is a Hurwitz matrix. There exists a

positive-definite matrix P i1 satisfying the following inequality

AT
i1P i1 + P i1Ai1 ≤ −ji1I6. (15)

Lemma 1: The system (14) is ISS.

Proof: Consider a Lyapunov function candidate as follows

V1 =
1

2

N∑
i=1

N T
i1P i1N i1. (16)

The time derivative V1 based on (14) and (15) satisfies

V̇1 ≤− j1
2
‖N 1‖2 + ‖N 1‖‖P 1B1‖‖ν̃s‖

+ ‖N 1‖‖P 1C1‖‖Λ̇‖
(17)

where j1=mini=1,...,N (ji1),N 1=[N T
11, ...,N T

N1]
T∈R6N, ν̃s=

[ν̃T
1s, ..., ν̃

T
Ns]

T ∈ R
3N , Λ̇ = [Λ̇

T

1 , ..., Λ̇
T

N ]T ∈ R
3N , P 1=

diag{P 11, ...,PN1} ∈ R
6N×6N ,B1=diag{B11, ...,BN1} ∈

R
6N×3N , and C1 = diag{C11, ...,CN1} ∈ R

6N×3N . Since

‖N 1‖ ≥ 2(‖P 1B1‖‖ν̃s‖ + ‖P 1C1‖‖Λ̇‖)/j1σ1, one has

V̇1 ≤ −j1(1−σ1)‖N 1‖2/2, where 0 < σ1 < 1. It follows that

the subsystem (14) is ISS. There exists a KL function Y1(·)
and K∞ function Cν̃s(·) and CΛ̇(·) satisfying ‖N 1(t)‖ ≤
Y1(‖N 1(0)‖, t) + Cν̃s(‖ν̃s‖) + CΛ̇(‖Λ̇‖), where Cν̃s(s) =

((2s‖P 1B1‖
√
λmax(P 1))/(j1σ1

√
λmin(P 1))) and CΛ̇(s) =

((2s‖P 1C1‖
√
λmax(P 1))/(j1σ1

√
λmin(P 1))).

B. Design of Guidance Law and Control Law

In this section, we design the DTGPG-based guidance law

and the SESO-based control law. First, we design the guidance

law. The time derivative of (6) is represented by

Żik = μikPikρikĖik + μikṖikHik (18)

where μik = (1 + J 2
ik)/(1 − J 2

ik)
2 and ρik =

lik/(
√
E2

ik + lik(E
2
ik + lik)).

Next, to simplify the design of the controller, we rewrite

(18) in a vector form

Żi = μi1Ėi + μi2 (19)

where Zi = [Zix,Ziy,Ziψ]
T ∈ R

3,Ei = [Eix, Eiy, Eiψ]
T ∈

R
3,μi1 = diag{μixPixρix, μiyPiyρiy, μiψPiψρiψ} ∈ R

3×3,

and μi2=diag{μixṖixHix, μiyṖiyHiy, μiψṖiψHiψ} ∈ R
3×3.

Take the time derivative of (2) based on (1) satisfies

Ėi = ιiRiνi −
N∑
j=1

aijRjνj −
M∑

j=N+1

aij η̇jr (20)

where ιi =
∑N

j=1 aij +
∑M

j=N+1 aij . Substituting (20) into

(19) results in

Żi = μi1(ιiRiνi −
N∑
j=1

aijRjνj −
M∑

j=N+1

aij η̇jr) + μi2. (21)

From (21), the DTGPG-based guidance law is chosen as

αi=
1

ιiRi
(

N∑
j=1

aijRj ν̂j+
M∑

j=N+1

aij η̇jr−
1

μi1

(κi1Zi+μi2)). (22)



We substitute (22) into (21), and it follows that

Żi = μi1

N∑
j=1

aijRj ν̃j − κi1Zi (23)

with κi1 ∈ R
3×3 being a positive diagonal matrix.

Differing from the first-order low-pass filtering method in

the traditional DSC, a second-order linear tracking differen-

tiator (LTD) with respect to αi is introduced{
α̇if = α∗

if

α̇∗
if = −γ2

i

(
(αif −αi) + 2(α∗

if/γi)
) (24)

where α∗
if ∈ R

3 is the filtered value of α̇i, and γi ∈ R
+.

Second, we design the control law. Defining a velocity error

Zie = νi −αi ∈ R
3, Żie along (7) satisfies

Żie = riJ
+
i M

−1
i τ i +Λi − α̇i. (25)

Then, we designed the SESO-based control law to stabilize

(25)

τ i =
M iJ i

ri

(
α∗

if − Λ̂i − κi2Zie

)
(26)

with κi2 ∈ R
3×3 being a positive diagonal matrix.

The dynamics of Zie is further obtained by substituting (26)

into (25)

Żie = α̃∗
i − Λ̃i − κi2Zie (27)

where α̃∗
i = α∗

if − α̇i.

From (23) and (27), we can obtain the following subsystems{
Żi = μi1

∑N
j=1 aijRj ν̃j − κi1Zi

Żie = α̃∗
i − Λ̃i − κi2Zie.

(28)

Lemma 2: The system (28) is ISS.

Proof: Consider a Lyapunov function candidate as V2 =
(1/2)

∑N
i=1(ZT

i Zi + ZT
ieZie). The time derivative of V2

based on (28) satisfies

V̇2 ≤− n1‖Z‖2 − n2‖Ze‖2 + n3n
∗‖Z‖‖ν̃‖

+ ‖Ze‖‖α̃∗‖+ ‖Ze‖‖Λ̃‖
(29)

where n1 = λmin(κ1) with κ1 = diag{κ11, ...,κN1} ∈
R

3N×3N . n2 = λmin(κ2) with κ2 = diag{κ12, ...,κN2} ∈
R

3N×3N . n3=maxi=1,...,N (λmax(μi1)). n
∗=maxi=1,...,N (n∗

i )

with n∗
i =

∑N
j=1 aji. Z = [ZT

1 , ...,ZT
N ]T ∈R

3N , Ze =

[ZT
1e, ...,ZT

Ne]
T ∈R

3N , ν̃ = [ν̃T
1 , ..., ν̃

T
N ]T ∈ R

3N , α̃∗ =

[α̃∗T
1 , ..., α̃∗T

N ]T ∈ R
3N , and Λ̃=[Λ̃

T

1 , ..., Λ̃
T

N ]T ∈ R
3N .

Define n = min(n1, n2) and N 2 = [‖Z‖, ‖Ze‖]T ∈ R
2.

Then, (29) is further put into

V̇2 ≤− n‖N 2‖2 + n3n
∗‖N 2‖‖ν̃‖

+ ‖N 2‖‖α̃∗‖+ ‖N 2‖‖Λ̃‖.
(30)

Since ‖N 2‖ ≥ 2(n3n
∗‖ν̃‖+‖α̃∗‖+‖Λ̃‖)/n, one has V̇2 ≤

−n‖N 2‖2/2. It follows that the subsystem (28) is ISS. There

exists a KL function Y2(·) and K∞ function Cν̃(·), Cα̃∗
(·),

and CΛ̃(·) satisfying ‖N 2(t)‖ ≤ Y2(‖N 2(0)‖, t)+Cν̃(‖ν̃‖)+
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Fig. 1. Circular formation using the proposed method.

Cα̃∗
(‖α̃∗‖)+CΛ̃(‖Λ̃‖), where Cν̃(s) = 2n3n

∗s/n, Cα̃∗
(s) =

2s/n, and CΛ̃(s) = 2s/n.

Theorem 1: For multi-WMRs (1) subject to initial condi-

tions, the closed-loop system is ISS consisting of SESO (10),

the DTGPG-based guidance law (22), and the SESO-based

control law (26). Moreover, Zeno behavior can be avoided.

Proof: The ISS properties of subsystems (14) and (28) are

proven through Lemma 1 and Lemma 2, respectively. The

state of the subsystem (14), ν̃, and Λ̃ are inputs of the

subsystem (28). Under Assumptions 1-2, according to the

cascade stability theorem, the closed-loop system is ISS. It

yields that the ultimate boundedness of ‖N 2(t)‖ as t → ∞

‖N 2(t)‖t→∞≤2‖α̃∗‖
n

+H∗(‖ν̃s‖‖P 1B1‖+‖Λ̇‖‖P 1C1‖) (31)

with H∗ = (4(n3n
∗ + 1)

√
λmax(P 1))/(nj1σ1

√
λmin(P 1)).

The detailed proof process of the Zeno behavior can be

referred to [5]. The proof of Theorem 1 is complete.

IV. SIMULATION RESULTS

From Fig. 1, it can be seen that we consider a communica-

tion topology consisting of three followers n1, n2, and n3, as

well as two virtual leaders n4 and n5 to verify the effectiveness

of the proposed controller. The physical parameters of the

WMR can refer to [10]. This external disturbance is similar

to [16]. The initial values of three followers are chosen as

η1(0) = [0, 0, 3π/2]T ,η2(0) = [2,−10, π/2]T ,η3(0) =
[2,−17, 4π/3]T . The trajectories of the two virtual leaders are

chosen as{
η4r = [−5 sin(0.2t),−5 cos(0.2t), atan2(η̇4y, η̇4x)]

T

η5r = [−15 sin(0.2t),−15 cos(0.2t), atan2(η̇5y, η̇5x)]
T .

The main design parameters are set as κ11=diag{12, 7, 10},

κ21=diag{7, 7, 10},κ31=diag{12, 9, 10},κi2=diag{20, 20, 20},

εi1=diag{2, 2, 2}, εi2=diag{40, 40, 40}, T1x,a = T1ψ,a =
T2x,a = T2ψ,a = T3x,a = T3ψ,a = 0.5, T1y,a = T2y,a =
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Fig. 2. Tracking errors using the DTGPG.
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Fig. 3. The estimated disturbances using the SESO.
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Fig. 4. The number of triggering events.

T3y,a = 1, T1x,b = T2x,b = T3x,b = 0.7, T1y,b = T2y,b =
T3y,b = 1.2, T1ψ,b = T2ψ,b = T3ψ,b = 1.5, ωik =
0.7,Θik,∞ = 0.9, �ik = 2, lik = 10,X1 = X2 = X3 = 0.06.

Simulation results are depicted in Figs 1-4. Fig. 1 demon-

strates these three vehicles forming a circular formation guided

by two virtual leaders. Fig. 2 shows that the tracking profile is

not constrained by the initial value and is able to dynamically

adjust the performance boundaries using the proposed DTGPG

control scheme. Fig. 3 shows that SESO is not only able

to estimate internal uncertainties and external disturbances

but also to reduce chattering. Fig. 4 shows the number of

triggering events. ν�
1, ν�

2, and ν�
3 are triggered 179, 213,

and 211 times respectively. Compared to time triggering 2800

times, it effectively saves resources.

V. CONCLUSION

In this paper, the dynamic threshold global prescribed

performance formation control problem was investigated for

WMRs in the presence of unknown total disturbances. A

dynamic threshold global performance-guaranteed formation

control method based on SESO was proposed, which had three

advantages: 1) it could adjust the steady-state performance

boundary twice, 2) it resolved the initial value constraints

present in standard PPC, and 3) it mitigated the chattering

problem in event-triggered ESO. This cascade system con-

sisting of the SESO, the DTGPG-based guidance law, and

the SESO-based control law was proved to be ISS. The main

results were demonstrated by the simulation examples.
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