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ABSTRACT

Conformal prediction is a framework that augments a machine learning model to
return a prediction set in lieu of a single prediction. Although these sets contain the
correct answer with a guaranteed probability, their size can be ineffectively large
and thus lead to costly erroneous decisions. To mitigate this, we propose EWMV,
an algorithm that leverages the available calibration data to aggregate multiple ac-
cessible predictors into a single, smaller conformal predictor. Empirical evidence
across a variety of tasks and conformal methods suggests EWMV often produces
smaller and more efficient prediction sets than any of the individual predictors
being aggregated. Accordingly, these findings encourage a new paradigm to im-
prove the efficiency of conformal methods with two readily available resources:
calibration data and a plethora of pre-trained predictors.

1 INTRODUCTION

Accurately quantifying the uncertainty of a machine learning (ML) model’s prediction enables the
identification, and proper management, of cases the model is likely to be wrong about. This is cru-
cial to mitigate errors in costly decision making pipelines where, for instance, a false positive leads
to futile clinical trials (Jin & Candes, 2023) or innocent incarceration (Romano et al., 2020a) and a
false negative delays time-critical treatments (Angelopoulos et al., 2024; Garcıa et al., 2024). Con-
formal prediction is an increasingly popular strategy to quantify a model’s uncertainty. It does so by
mapping an input to a subset of the label space known as the prediction set. The larger the set, the
more uncertain the prediction is. To produce accurate uncertainty estimates, conformal methods aim
to be “valid” and “efficient”. Intuitively, “valid” limits the proportion of times the true answer is not
present in the prediction set; and “efficient” corresponds to smaller sets. In steps towards improv-
ing efficiency, the conformal model aggregation (CMA) literature has adopted a model selection
paradigm and proposed algorithms to identify the most efficient conformal predictor (i.e. small-
est expert) from a collection of valid predictors (Gasparin & Ramdas, 2024a; Liang et al., 2024;
Yang & Kuchibhotla, 2025). But what if instead we could combine the individual predictors in a
way that preserves validity and further improves efficiency? To answer this question, we propose
EWMV (Estimated weighted majority vote -Algorithm 1), an aggregation algorithm that leverages
the weighted majority vote (WMV) algorithm (Gasparin & Ramdas, 2024b) to combine multiple
conformal predictors into a valid and more efficient predictor. EWMV preserves validity (propo-
sition 5.1) and, empirically, we also observe it improves the efficiency of four different conformal
methods (i.e. APS (Angelopoulos & Bates, 2022), RAPS (Angelopoulos et al., 2022), TRAQ (Li
et al., 2024), CC (Garcıa et al., 2024)) when applied to synthetic multiclass classification (Section
6.1), image classification (Section 6.2), natural question answering (Section 6.3) and risk stratifi-
cation (Section 6.4), respectively. In this paper, we show with extensive testing that EWMV has
practical execution times (Section 6.5); we compare EWMV with a variety of heuristics and other
conformal model aggregation algorithms (Section 6.6); we delve deeper into the empirical coverage
behavior of the aggregated predictor (Section 6.7); and we observe experimentally that performance
improves monotonically, on average, the more predictors we aggregate (Section 6.8). Our results
show that EWMV can be regarded as a new paradigm to improve the efficiency of conformal meth-
ods by leveraging two readily available resources: pre-estimated models and the calibration dataset.
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Figure 1: Conformal prediction sets from baseline aggregation method (MV) and EWMV (LP
variant) under corresponding CIFAR10 images.

2 RELATED WORKS

The idea of combining conformal prediction sets stems from cross-validation conformal methods
(Vovk, 2015; Barber et al., 2021; Angelopoulos et al., 2025). These aim to improve the computa-
tional/statistical tradeoff between full-conformal prediction and split-conformal prediction but are
not particularly concerned with set size. In the exploration of preserving validity and improving
efficiency, the conformal aggregation literature can be broadly categorized into p-value combination
methods (Campagner et al., 2024; Vovk & Wang, 2020; Toccaceli & Gammerman, 2019; Toccaceli,
2019; Cherubin, 2019; Toccaceli & Gammerman, 2017; Balasubramanian et al., 2015; Qin et al.,
2025) and set combination methods (Gasparin & Ramdas, 2024b;a; Cherubin, 2019; Liang et al.,
2024; Yang & Kuchibhotla, 2025).

P-value combination aggregates multiple conformal p-values, for a given label, into a single p-value.
This combined p-value is then used to construct the final conformal prediction set. We roughly cat-
egorized the methods as follows: quantile methods like Fisher and SNF (Balasubramanian et al.,
2015), merging methods like geometric average and arithmetic average (Vovk & Wang, 2020), order
statistic methods like min. and max. (Vovk & Wang, 2020), estimation methods like NCA, ECDF,
NP-V-Matrix (Balasubramanian et al., 2015; Toccaceli & Gammerman, 2019). Overall the Fisher
quantile method is the most frequently recommended (Balasubramanian et al., 2015; Toccaceli &
Gammerman, 2017; Toccaceli, 2019). However, a recent study (Campagner et al., 2024) empiri-
cally ranks MV (a prediction set combination method) higher in efficiency than the Fisher method
and other p-value combination approaches. In our experiments we observe EWMV has superior per-
formance to p-value aggregation approaches. On a similar note, the work of Luo & Zhou; Tawachi
& Laufer-Goldshtein (2025) can be characterize as a form of score-level aggregation. Methodolog-
ically, this is complimentary to our proposal, as we can use EWMV combine prediction sets that
were constructed with score-level aggregation, either by linearly combining multiple scores or by
constructing a multidimensional predictor from multiple heads of the same predictor. That said,
a key distinction is that, by virtue of doing aggregation post-quantile computation, we are able to
provide three tractable optimization formulations for the weight estimation problem, each varying
in computational complexity and empirically validated. Accordingly, our post-conformalization ag-
gregation approach scales better than the pre-conformalization brute-force search approach Luo &
Zhou.

Prediction set combination aggregates conformal predictors at the set level rather than at the p-value
level. These algorithms are some variant of weighted majority vote (WMV) (Cherubin, 2019). In
the theoretical exploration of (Gasparin & Ramdas, 2024b), WMV is parametrized by a weight
vector that lives in a probability simplex and, for any weight in this simplex, conservative validity
is guaranteed. Unfortunately, the chosen weights may negatively affect efficiency (i.e. one of the
individual sets is smaller on average), and thus renders WMV useless (See Tables 4, 3 below and
Table 2 from Gasparin & Ramdas (2024b)).

The work by Gasparin & Ramdas (2024a) explores weight estimation for the sequential, non-i.i.d.
data setting. According to the authors, in the i.i.d. setting, their algorithm effectively selects the
single model with the smallest prediction set (akin to finding the ”best” expert). However, in the
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same setting, our proposal empirically showcases more efficient sets than any of the aggregated
models individually, and thus better than the ”best expert” model. Expert selection is an active
area of research (Liang et al., 2024; Yang & Kuchibhotla, 2025). Notably, the approach by Liang
et al. (2024), estimates the smallest conformal set without splitting the calibration data further, nor
compromising validity (a limitation of Yang & Kuchibhotla (2025)). This is useful in situations
where data is scarce and splitting the calibration set is unreasonable. However, according to our
experimental results, granted enough data is available for a split, we can outperform expert selection.

With respect to recent methodological developments in conformal prediction, this work stands as
complementary. Rather than posit a new conformal method to guarantee validity or improve effi-
ciency in a new setting (e.g. medical QA (Cherian et al.), class conditional on many classes (Ding
et al.), with multiple scores available Luo & Zhou), our work proposes an algorithm to aggregate
multiple such conformal predictors. We test our methodology using conformal methods for image
classification (APS, RAPS (Angelopoulos et al., 2022)), open-ended question answering (TRAQ
(Li et al., 2024)) and risk stratification (CC (Garcıa et al., 2024)) but the scope of the methodology
extends beyond and may be used in conjunction with other recent proposals. Lastly, recent work
has aimed to optimize efficiency in the context of covariate shifts (Kiyani et al., 2024; Ge et al.).
While these work provides a principled way to handle covariates shift, the scalability is limited by
the difficulty of the optimization. For instance, the optimization formulation of Kiyani et al. (2024)
is a saddle point problem and the proposed gradient descent ascent method may not necessarily con-
verge. This limits its applicability in the i.i.d. setting, where the optimization we formulate can be
readily solved with off-the-shelf LP and MILP solvers (Gurobi Optimization, LLC, 2024) and thus
are more amenable for practical applications.

3 METHODOLOGY

Consider a classification task over a space of features X and countable classes Y . Suppose we have
a sequence of i.i.d. samples Dn = ((X1, Y1), ..., (Xn, Yn)) ∈ (X × Y)n and let Xn+1 represent a
test feature to classify. Conformal prediction uses the sample Dn, a non-conformity score (typically
from a pre-estimated probabilistic classifier f : X → Y), and a user-specified error level α ∈ (0, 1),
to construct a set-valued classifier (i.e. C(α) : X → 2Y ). 1 For instance, in Figure 1 we can observe
the prediction of two conformal classifiers for a given image. The advantage of using C(α), instead
of the underlying model f , is that the true label Yn+1 is excluded from C(α)(Xn+1) no more than α
proportion of the time. This property is often referred to as validity and is formalized as P(Yn+1 /∈
C(α)(Xn+1)) ≤ α, where the probability P is taken w.r.t. the randomness in both the calibration
data Dn (used to construct C(α)) and the test point (Xn+1, Yn+1). Define [M ] := {1, ...,M} and
let (C(α)

m )m∈[M ] be a collection of M distinct conformal predictors with error level α. The goal of
conformal model aggregation is to combine this collection and produce a new conformal predictor
Γ(α) that preserves validity (i.e. P(Yn+1 /∈ Γ(α)(Xn+1)) ≤ α) and is more efficient, in the sense
of producing smaller sets than any individual predictor in the collection. More efficient can be
precisely stated as ∀m∈[M ](EX |Γ(α)(X)| ≤ EX |C(α)

m (X)|) where | · | measures the cardinality of
the predicted set and the expectation EX is only w.r.t. X ∼ PX (Dn is kept fixed). Motivated by the
goal of preserving validity and improving efficiency, we now expand on a method to construct Γ(α)

known as weighted majority vote.

3.1 WEIGHTED MAJORITY VOTE (WMV)

This approach was originally proposed by (Cherubin, 2019) and it constructs Γ(α) by including every
y ∈ Y that is present in the majority of the prediction sets (i.e. y ∈ Γ(α) ⇐⇒

∑M
m=1

1
M 1{y ∈

C
(α)
m (X)} > 1/2). We refer to this initial construction as majority vote (MV). To generalize MV,

1The non-conformity score we use is 1 − fm(Xi)Yi
where fm(Xi)Yi

corresponds to the model estimate
of P (Yi|Xi). For instance, if fm is a neural network, the score is one minus the softmax output of the correct
class (Angelopoulos & Bates, 2022)
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we can parametrize the weight each conformal predictor gets, leading to weighted majority vote:

Γ(α)
w (X) = {y ∈ Y :

∑M
m=1 wm 1{y ∈ C

(α)
m (X)} > 1/2, w ∈ ∆} (1)

∆ =
{
w ∈ RM

+ :
∑M

m=1 wm = 1
}

(2)

As the name suggests, a label y ∈ Y is in Γ
(α)
w if it is present in the “weighted majority” of the

conformal predictors (i.e. y ∈ Γ(α) ⇐⇒
∑M

m=1 wm 1{y ∈ C
(α)
m (X)} > 1/2)). Following

results from Gasparin & Ramdas (2024b), equation (1) guarantees P(Yn+1 /∈ Γ
(α)
w (Xn+1) ≤ 2α

for all w ∈ ∆ and thus validity is preserved if we reconstruct the collection of prediction sets at
a more conservative error level (i.e. C

(α/2)
m instead of C

(α)
m ). Nonetheless, the issue with more

conservative sets is that they tend to be larger (i.e. |C(α/2)
m (X)| ≥ |C(α)

m (X)| for all m ∈ [M ])
and thus inappropriate choices of w can render aggregation useless (i.e. there exists m ∈ [M ]

such that EX |Γ(α/2)
w (X)| ≥ EX |C(α)

m (X)|). For instance, in Figure 1 naively choosing MV (i.e.
w = (1/M, ..., 1/M)) results in larger prediction sets than choosing the estimated by EWMV.
Accordingly, in the next section we propose an approach to estimate the aggregation weights w in a
data driven way so as to mitigate the efficiency issue.

4 ESTIMATING EFFICIENT WEIGHTS FOR WMV

Given the WMV aggregation algorithm, the optimal aggregation weights are:

w∗ = argmin
w∈∆

EX |Γ(α/2)
w (X)| (3)

To approximate EX |Γ(α/2)
w (X)| in equation equation 3, we employ a sample Dnest := (Xi)

nest
i=1

iid∼
PX , separate from the calibration sample Dn, and perform empirical risk minimization (ERM):

ŵ = argmin
w∈∆

1

nest

nest∑
i=1

|Γ(α/2)
w (Xi)| (4)

Assuming Y countable, we can compute cardinality with the counting measure |Γ(α/2)
w (X)| =∑

y∈Y 1{y ∈ Γ
(α/2)
w (X)}. By plugging this into equation equation 4 and replacing Γ

(a/2)
w (X)

with equation equation 1, our optimization problem becomes:

ŵ = argmin
w∈∆

1

nest

nest∑
i=1

∑
y∈Y

l
(y)
i (w) s.t. l(y)i (w) = 1

{
M∑

m=1

wm 1{y ∈ C(α/2)
m (Xi)} >

1

2

}
(5)

Now we delve into two strategies to solve the optimization problem (5).

4.1 MIXED INTEGER LINEAR PROGRAM FORMULATION (MILP)

We reformulate optimization problem (5) as an MILP and let δ
(y)
i = 1{

∑M
m=1 wm 1{y ∈

C
(α/2)
m (Xi)} > 1/2} play the role of l(y)i (w). We refer to this as MILP

ŵMILP = argmin
w∈∆

δ
(y)
i ∈{0,1}

nest∑
i=1

∑
y∈Y

δ
(y)
i s.t. δ(y)i ≥

M∑
m=1

wm 1{y ∈ C(α/2)
m (xi)} −

1

2
(6)

4.2 LINEAR PROGRAM FORMULATION (LP)

Unfortunately, the MILP reformulation equation 6, in the worst case, can result in exhaustive search.
Accordingly, we relax it into a convex problem by approximating the outmost indicator function
with a hinge loss; we then reformulate it as a linear program using the epigraph trick and refer to the
solution as LP.

ŵLP = argmin
w∈∆
t≥0

nest∑
i=1

∑
y∈Y

t
(y)
i s.t. t(y)i ≥

M∑
m=1

wm 1{y ∈ C(α/2)
m (xi)} −

1

2
(7)
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5 AGGREGATION ALGORITHM: EWMV

In practice, we generally do not have direct access to the collection of conformal predictors
(C

(α/2)
m )m∈[M ]. Instead, we have access to a calibration dataset Dn, a collection of pre-estimated

classifiers (fm : X → Y)m∈[M ], a user-specified error level α and a conformal method (CM). We
assume the conformal method (CM) constructs a valid conformal predictor C(α)

m using the corre-
sponding fm classifier to produce the non-conformity scores for Dn+1.

We propose Algorithm 1 (EWMV) to estimate aggregation weights ŵ and produce the aggregated
conformal predictor Γ(α/2)

ŵ : X → 2Y with desired error level α.

Algorithm 1 (EWMV)

Input: i.i.d. sample (Dn), collection of classifiers (fm : X → Y)m∈[M ], conformal method (CM),
error level α ∈ (0, 1)

Dnest , Dncal ← Split(Dn)

for m = 1 to M do
for xi ∈ Dnest do

C
(α/2)
m (xi)← CM(fm(·), xi, Dncal , α/2)

end for
end for
ŵ ← {LP or MILP}(C(α/2)

m (xi) ∀ xi ∈ Dnest ,m ∈ [M ])

return ŵ

Proposition 5.1. Let Dn+1 be an i.i.d. sample, let P(Yn+1 /∈ C
(α/2)
m (Xn+1)) ≤ α/2 for every

m ∈ [M ], and let ŵ be estimated by Algorithm 1 on a hold-out set. It then follows that for a set
Γ
(α/2)
ŵ (Xn+1) constructed using equation equation 1:

P(Yn+1 /∈ Γ
(α/2)
ŵ (Xn+1)) ≤ α. (8)

Proof in appendix section A.1.

We emphasize that EWMV, in essence, returns a set-valued function (i.e. Γ(α/2)
ŵ ) and not the specific

prediction set of a given input (i.e. Γ(α/2)
ŵ (X)). In the case EWMV returns an indicator vector (i.e.

ŵ = e(i)), the indicated conformal predictor at level (α) should be used (i.e. C(α)
i ) instead of Γ(α/2)

ŵ .
Lastly, if the average size of the most efficient predictor does not change when we re-estimate it at a
more conservative level, in the limit of estimation samples, we expect EWMV will provide a valid
predictor that is as efficient or better. Proposition A.1 establishes this. This can materialize when the
distribution of the non-conformity score is discrete (e.g. in risk stratification Garcıa et al. (2024)).

6 EXPERIMENTS

In these experiments we measure the efficiency and validity of EWMV (Algorithm 1) on four tasks:
multi-class classification on synthetic data, image classification, risk stratification and natural ques-
tion answering. For each task we collect a dataset, a conformal method and a multitude of pre-
estimated predictors. We then split the data randomly into a calibration set (Dncal ), an estimation
set (Dnest ) and a test set. Given a validity limit α, we perform EWMV to estimate the aggregation
weights ŵ using both the MILP equation 6 and LP equation 7 formulations (See appendix figure
15). Lastly, we measure the empirical validity (i.e. 1

ntest

∑ntest
i=1 1{yi ∈ Γ

(α/2)
ŵ (xi)}) and empirical

efficiency (i.e. 1
ntest

∑ntest
i=1 |Γ

(α/2)
ŵ (xi)|) of the corresponding combined set. We compare against ev-

ery recomputed prediction sets (C(α)
m )m∈[M ] at error level α using the entire available dataset (i.e.

Dn = Dest ∪ Dcal). The reason for the recomputation is to provide a fair comparison with respect
to not doing aggregation and instead performing standard conformal prediction over an individual

5
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Figure 2: (left-most) Synthetic 2D dataset with color coded classes. (middle-left) Ideal prediction
set size. (middle-right) Estimated prediction set size with MV. (right-most) Estimated prediction set
size using MILP.

predictor (See appendix figure 14). Note that for the synthetic (section 6.1) and risk stratification
(section 6.4) experiments, we further split the estimation data (Dest) into a training set (Dtrain) for
model training.

6.1 SYNTHETIC EXPERIMENT

Figure 3: Loss landscape formulation
equation 7 w.r.t. the probability sim-
plex. Marked are the estimated weights.

The goal is to qualitatively assess the performance of the
proposed weight estimation methods on a multimodal set-
ting. Consider the 4K sample dataset in the leftmost plot
of Figure 2; we split it into 500 samples for calibration
(Dcal), 500 samples for estimation (Dest), 1K sample for
training (Dtrain), and 2K samples for testing. We synthe-
size the multimodal setting by projecting each 2D-input
onto three linear subspaces: e⃗1, e⃗2, e⃗1 + e⃗2. Three MLP
classifiers are then trained with each separate subspace
projection. The ideal plot color codes the size of the or-
acle prediction set for every input in the 2D-input space.
The goal of an aggregation algorithm is to get qualita-
tively “close” to the ideal plot without compromising va-
lidity beyond α = 0.05. For each method, we estimate
valid conformal sets (i.e. C1(X), C2(X), C3(X)) with

the adaptive prediction sets (APS) algorithm (Angelopoulos & Bates, 2022). We then aggregate the
C1:3 using Algorithm 1 with MILP optimization. In Figure 2 (middle-right) we color code the size
of the prediction sets produced by MV (see section 3.1). In Figure 2 (right-most) we color code
the size of the sets from the MILP method. We qualitatively observe the MILP set (0.29) is on
average smaller than the MV set (0.79) and that both are valid. In turn, MILP is closer to the ideal
performance. This supports the hypothesis that data-driven parametrization of the WMV algorithm
can result in efficiency gains. Interestingly, we observe that the discrepancy between prediction sets
result in empty sets. We speculate this discrepancy between sets is connected to discrepancy be-
tween predictors and, accordingly, could inform the epistemic uncertainty of a point (Hüllermeier
& Waegeman, 2021). This follows from not having data around that point to ground different pre-
dictors to a specific label. Lastly, Figure 3 also explains the relationship between MV and LP. In
particular, we can solve the constraint convex optimization problem equation 7 with Mirror Descent
(Nemirovskij & Yudin, 1983). The optimization weights are initialized at MV and, given an appro-
priate step-size, iteratively converge to LP. Accordingly, w.r.t. the convex loss and the estimation
set, LP is a better solution than MV. Surprisingly, LP and MILP coincide.

6.2 APPLICATION: IMAGE CLASSIFICATION

The goal is to correctly classify images from CIFAR-100 (Krizhevsky, 2009) and Imagenet (Rus-
sakovsky et al., 2015) datasets. We use RAPS from Angelopoulos et al. (2022) as the conformal

6
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Name Inefficiency (↓) Validity (≥ .90)

AlexNet+RAPS 13.81± 0.97 0.899± 0.005
SqueezeNet+RAPS 11.67± 0.45 0.900± 0.005
MobileNet+RAPS 8.24± 0.27 0.900± 0.006
Resnet50+RAPS 6.98± 0.28 0.900± 0.005
Inception+RAPS 6.32± 0.11 0.900± 0.005
VGG+RAPS 4.10± 0.11 0.900± 0.007
ConvnNext+RAPS 3.67± 0.24 0.901± 0.008
Resnet+RAPS 3.30± 0.10 0.900± 0.008
DenseNet+RAPS 3.18± 0.10 0.901± 0.007
Swin+RAPS 2.46± 0.07 0.900± 0.005
Regnet+RAPS 2.41± 0.06 0.900± 0.006
DinoV2+RAPS 2.14± 0.03 0.901± 0.006
ViT+RAPS 1.76± 0.04 0.900± 0.005

MV 3.46± 0.16 0.975± 0.002

LP (Ours) 1.86± 0.28 0.964± 0.009
MILP (Ours) 1.54± 0.14 0.916± 0.008

Table 1: Inefficiency and validity of multiple
conformal predictors on Imagenet. Experi-
ment is repeated 10 times on random splits
of the data and we report µ± 2σ.

Name Inefficiency (↓) Validity (≥ .90)

Resnet50+RAPS 2.98± 0.19 0.899± 0.015
Swin-tiny-p4w7+RAPS 2.84± 0.15 0.899± 0.014
ConvNext+RAPS 2.19± 0.13 0.898± 0.016
Swin-tiny+RAPS 2.06± 0.06 0.902± 0.008
Swin-small+RAPS 1.66± 0.06 0.898± 0.011
ViT-base+RAPS 1.51± 0.06 0.898± 0.009
ViT-large+RAPS 1.38± 0.07 0.899± 0.015
ViT+RAPS 1.32± 0.07 0.900± 0.018
Swin-base+RAPS 1.29± 0.03 0.901± 0.014
ViT-base-in21k+RAPS 1.28± 0.05 0.900± 0.012

MV 1.44± 0.04 0.982± 0.003

LP (Ours) 1.20± 0.14 0.950± 0.058
MILP (Ours) 1.14± 0.13 0.910± 0.011

Table 2: Inefficiency and validity of multiple
conformal predictors on CIFAR-100. Exper-
iment is repeated 10 times on random splits
of the data and we report µ± 2σ.

method and obtain all the fine-tuned models along with the dataset are available from HuggingFace
and Torchvision. We split the dataset into two-thirds for testing Dtest and one-third for calibration
Dn. To evaluate methods (i.e. MV, LP and MILP), we further split the calibration dataset Dn into
90% for calibration Dcal and 10% for estimation Dest. CIFAR-100 results are on Table 2 and Ima-
genet results are on Table 1. Both suggest MILP is more efficient than any individual, or aggregated,
conformal predictor. Furthermore, its validity is closer to nominal levels than MV or LP. The reason
why aggregation methods have larger validity is because the individual predictors are estimated at
a more conservative error-level (i.e. α/2). It is also interesting to note that adding models tends to
benefit aggregation efficiency. We expect this is because the estimated weights tease out the most
efficient models to aggregate. This last point is further explored in Section 6.8.

6.3 APPLICATION: NATURAL QUESTION ANSWERING

For this experiment we closely follow the setup from Li et al. (2024). The goal is to correctly answer
a query using a collection of passages from Wikipedia. We use the TRAQ (Li et al., 2024) as the
conformal method. In short, this method applies standard conformal prediction in two stages: (1)
to construct a prediction set of passages from a retriever model; (2) to construct a set of answers
associated with each passage from an LLM. The final prediction set corresponds to the union of the
answers sets of all passages. The main difficulty arises in determining when the true answer y is in
the set C(α)

m (X), due to the multitude of semantically similar words that could arise. Accordingly,
like Li et al. (2024), we consider y ∈ C

(α)
m (X) when ∃

e∈C
(α)
m (X)

(rouge-1(y, e) > 0.3) and where
the rouge-1 score measures semantic similarity (Lin, 2004). In terms of the architecture, we utilize
the Dense Passage Retriever (DPR) from Karpukhin et al. (2020) as a retriever model and a variety
of LLMs from Huggingface as predictors. We evaluate these methods using 560 queries from the
Natural questions dataset (Kwiatkowski et al., 2019) and use the WikiDPR dataset for passages
(Karpukhin et al., 2020). We randomly split the data into calibration (35%), estimation (35%) and
testing (30%). We compute the TRAQ prediction sets for multiple models with both the calibration
and estimation splits setting α = 0.2 as the validity limit. We then use EWMV to compute the
aggregation weights with the estimation split. We repeat this experiment 10 times and report the
validity and efficiency in Table 3. We observe that the MV method yields combination useless.
Nonetheless, both the LP and MILP method improve efficiency without compromising validity. It is
important to note that, like Li et al. (2024), the prediction sets can be quite large (approx. 30 answers)
to guarantee validity. Li et al. (2024) recommends semantic clustering to remove redundancies
during deployment.
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Figure 4: Smallest LLM prediction set
(LLM+TRAQ) and from proposal (MILP) for
a given query Q. Green indicates correct answer.

Model Inefficiency (↓) Validity (≥ 0.80)

MiniLM+TRAQ 29.53± 5.0 0.84± 0.1
DynamicBert+TRAQ 28.72± 5.0 0.85± 0.1
Roberta+TRAQ 28.68± 5.0 0.87± 0.1
DistillBert+TRAQ 27.33± 4.5 0.86± 0.1
MobileBert+TRAQ 27.25± 4.4 0.86± 0.1

MV 29.34± 3.3 0.90± 0.1

LP (Ours) 22.22± 2.3 0.89± 0.1
MILP (Ours) 18.01± 1.9 0.86± 0.1

Table 3: LLM experiment. Experiment is re-
peated 10 times on random splits of the data.
We report µ± 2σ.

6.4 APPLICATION: ACUTE CORONARY SYNDROME (ACS) RISK STRATIFICATION

The goal is to correctly stratify ACS cases as high/low risk while minimizing the number of inter-
mediate risk cases (Garcıa et al., 2024). The dataset contains 3300 samples for training, calibration,
estimation, and 400 samples for testing. The models to be aggregated are GBDT (Malinin et al.,
2021), FR (Liu et al., 2022), and ECG-DL (Xiao et al., 2022). The setting is multi-modal, as each
case has a collection of signs and symptoms processed by GBDT and FR, and a ECG trace processed
by ECG-DL model. Prediction sets are estimated using class-conditional conformal estimation (CC)
(Lei, 2014). Risk stratification performance is measured in terms of definitive percentage (i.e. pro-
portion of prediction sets that are either {0} or {1}) and balanced accuracy (BACC) performance
(i.e. (sensitivity + specificity)/2). The higher the definitive percentage and the BACC, the better.
The validity limit is set to 5% (i.e. α = .05). The results in Table 4 suggest that LP is the most
efficient of the aggregation methods and reasonably exceeds the validity limit per chapter three in
Angelopoulos & Bates (2023). In the context of early ACS detection, as long as validity stays within
set limits, greater efficiency increases definitive percentages, and thus reduces resource misalloca-
tion and prevents delays in time-sensitive therapies.

6.5 WHAT IS THE RUNTIME COMPLEXITY OF EWMV?

Method Validity (≥ 95) Inefficiency (↓) Definitive-% (↑) BACC (↑)
FR+CC 100± 0 1.62± 0.22 38± 22 100± 1
GBDT+CC 99± 3 1.46± 0.25 54± 25 94± 19
ECG-DL+CC 98± 1 1.94± 0.07 6± 7 64± 40

MV 99± 1 1.64± 0.20 36± 20 99± 2

LP (Ours) 94± 1 1.32± 0.10 65± 10 96± 4
MILP (Ours) 94± 1 1.32± 0.10 65± 10 96± 4

Table 4: Risk stratification experiment.
Experiment is repeated 10 times on ran-
dom splits of the data. We report µ±2σ

The worst case runtime complexity of EWMV depends on
the specific optimization formulation. Consider nest to be
the number of estimation samples in Dnest and |Y| to be
the cardinality of our label space. In the worst case, the
time complexity of MILP is exponential in this product
(i.e. O(e|Y|×nest)); and for LP, the worst time complexity
is polynomial (i.e. O(W (|Y|×nest)

1/2+(|Y|×nest)
5/2)),

where nnz(A) < W , A ∈ {0, 1}nest×|Y| and Aij =
1{yj ∈ C(xi)} per Lee & Sidford (2015). In figure
5, we empirically assess the runtime of MILP in sec-
onds (s) across a variety of |Y| × nest products. When
|Y | × nest = 200K, on V2-8 TPU, the runtime is 12m and 7m for MILP and LP respectively, with
the runtime rate of MILP growing faster than LP as expected. For reference, we also plot the run-
time of MD (From section 6.1) with a fixed number of iterations. As opposed to LP and MILP, MD
requires hyperparameter tuning to work.

6.6 COMPARING EWMV WITH CONFORMAL AGGREGATION BASELINES

We compare EWMV with multiple p-value methods from section 2 (i.e. K
k p(k) (Rüger, 1978), Av-

erage (2p̄) (Rüschendorf, 1982)) on the task of image classification on CIFAR-100 with α = 0.05.
In table 5, k parametrizes the corrected k’th ordered p-value K

k p(k) approach from Rüger (1978)
where K represents the number of models. Per Gasparin & Ramdas (2024a), k = 1 recovers Bon-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Runtime in seconds (s) of EWMV
for different formulations across multiple label
space sizes and estimation dataset sizes.

Name Inefficiency (↓) Validity (≥ .95)

k = 10 (Union) 7.95± 0.32 0.999± 0.001
Average 4.84± 0.24 0.998± 0.001
YKadj 2.97± 0.34 0.983± 0.006
YKsplit 2.68± 1.74 0.949± 0.012
YK 2.00± 0.12 0.951± 0.010
MV 1.84± 0.08 0.991± 0.002
k = 5 1.84± 0.09 0.991± 0.002
Bonferroni 1.81± 0.31 0.974± 0.008
Heuristic 1.76± 0.08 0.992± 0.002
k = 3 1.63± 0.13 0.984± 0.003
Single+RAPS 1.58± 0.07 0.950± 0.007

LP (Ours) 1.44± 0.22 0.979± 0.020
MILP (Ours) 1.32± 0.08 0.957± 0.007
Fisher* 0.99± 0.01 0.914± 0.005

Table 5: Efficiency and validity of various con-
formal combination approaches from section 2.
*Fisher does not meet validity.

ferroni correction, k = 5 recovers MV, k = 10 recovers set union and k = 3 is the most efficient
of the k values. For reference, we also include the most efficient individual model conformalized
at level (α = .05) with all the calibration data (i.e. Single+RAPS), WMV with a heuristic weight
(e.g. weights inversely proportional to the empirical size), and the Fisher p-value method (Bala-
subramanian et al., 2015) included for completeness. We also consider three methods from Yang
& Kuchibhotla (2025) (i.e. YK, YKadj, YKsplit) which correspond to the standard, adjusted and
data-split proposal to perform model selection Liang et al. (2025). Results in table 5 showcase
EWMV as the only valid aggregation method more efficient than the best individual model (i.e. Sin-
gle+RAPS). Fisher’s method cannot guarantee validity because it assumes independence among the
p-values being aggregated and all these p-values depend on the same random variable Xn+1.

6.7 IS THERE A THEORETICAL UPPER BOUND ON THE COVERAGE OF EWMV?

Figure 6: Empirical coverage estimate of EWMV
across multiple calibration sample sizes ncal for
(α = 0.1) using RAPS as the conformal method
aggregating three CIFAR-10 predictors.

Coverage is the probability the correct answer
is in (i.e. P(Yn+1 ∈ Γ

(α/2)
ŵ (Xn+1))). There

is not a practical theoretical upper bound for
the coverage of EWMV. Gasparin & Ramdas
(2024b) prove an upper bound for the coverage
of WMV when the weights are uniform (The-
orem 2.5 from Gasparin & Ramdas (2024b)).
Unfortunately the bound becomes meaningless
when aggregating more than two models at
commonplace error-levels α < 0.25. Gener-
alizing this bound beyond uniform weights is
not trivial because it involves the analysis of a
weighted sum of dependent indicator random
variables variables (See definition of Γ

(α)
w in

equation 1). That said, some conformal meth-
ods (e.g. RAPS and APS) approach nominal
coverage as we increase the number of calibration samples and it begs the question: Does EWMV
approach nominal coverage? In figure 6 this appears to be the case albeit at a slower rate than the
theoretical rate of the individual predictor (appendix figure 10). Curiously, we observe this is not
the case for uniform weights (i.e. MV) in appendix figure 11. Please refer to appendix section A.3.5
for more details.

6.8 HOW DOES THE NUMBER OF MODELS AFFECT THE INEFFICIENCY OF EWMV AND
OTHER BASELINES?

For this experiment, we repeat the CIFAR-100 classification experiment from section 6.2 ten times,
each with a corresponding number of models to combine. The goal is to measure the impact the
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Figure 7: Inefficiency (left) and validity (right) of the most efficient collection of aggregation base-
lines from 6.6 as a function of the number of models, reported is µ±2σ over ten runs, with error-level
α = 0.1. Of the approaches that preserve validity, MILP and LP are the most efficient.

number of models play on the efficiency of EWMV and the baselines from section 6.6. For each
model size, we randomly sample the corresponding number of models from the ten models available.
For reference, we also report the performance of the single best model in the sample. Results under
Figure 7 indicate efficiency improves, on average, the more models we add. We further observe
these benefits diminish as we consider more models. This results suggest EWMV estimates the
more efficient combination the more models we consider and thus makes an argument for collecting
more models. The diminishing returns also suggest a sparse combination may provide a reasonable
efficiency/compute tradeoff. This is particularly important for tasks where model inference is costly
(e.g. Open QA).

7 CONCLUSIONS & FUTURE WORK

In this work we propose EWMV, a novel algorithm to improve the efficiency of conformal methods
by leveraging two readily available resources: the calibration data and a plethora of pre-estimated
predictors. We show EWMV leads to more efficient conformal predictors for image classification,
natural question answering and risk stratification. This is important because reducing the size of the
prediction sets, without compromising validity, mitigates false discovery costs in drug discovery and
delayed response of medical emergencies. Future work could explore aggregation of conditionally
valid conformal predictors to ensure coverage of relevant groups; furthermore, it may open up the
possibility to tailor the weights according to the input, rather than having uniform weights across the
space. It could also be fruitful to explore weight estimation to aggregate risk controlling prediction
sets, as this has the potential to mitigate inefficiencies in other tasks (e.g. image segmentation).
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Reproducibility statement: All details to reproduce experiments are in appendix section A.3
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Selective classification with machine learning uncertainty estimates improves ACS predic-
tion: A retrospective study in the prehospital setting., June 2024. URL https://www.
researchsquare.com/article/rs-4437265/v1.

Juan Jose Garcıa, Nikhil Sarin, Rebecca R Kitzmiller, Ashok Krishnamurthy, and Jessica K Zegre-
Hemsey. Risk stratification through class-conditional conformal estimation: A strategy that im-
proves the rule-out performance of MACE in the prehospital setting. Proceedings of Machine
Learning Research, 252:1-15(Machine Learning for Healthcare), July 2024.

Matteo Gasparin and Aaditya Ramdas. Conformal online model aggregation, May 2024a. URL
http://arxiv.org/abs/2403.15527. arXiv:2403.15527 [stat].

11

http://arxiv.org/abs/2009.14193
http://arxiv.org/abs/2009.14193
http://arxiv.org/abs/2107.07511
http://arxiv.org/abs/2107.07511
https://www.nowpublishers.com/article/Details/MAL-101
https://www.nowpublishers.com/article/Details/MAL-101
http://medrxiv.org/lookup/doi/10.1101/2024.02.09.24302543
http://medrxiv.org/lookup/doi/10.1101/2024.02.09.24302543
http://arxiv.org/abs/2411.11824
http://link.springer.com/10.1007/s10472-013-9392-4
http://link.springer.com/10.1007/s10472-013-9392-4
https://ieeexplore.ieee.org/document/10497903/
http://link.springer.com/10.1007/s10994-018-5752-y
https://www.researchsquare.com/article/rs-4437265/v1
https://www.researchsquare.com/article/rs-4437265/v1
http://arxiv.org/abs/2403.15527


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matteo Gasparin and Aaditya Ramdas. Merging uncertainty sets via majority vote, March 2024b.
URL http://arxiv.org/abs/2401.09379. arXiv:2401.09379 [stat].

Jiawei Ge, Debarghya Mukherjee, and Jianqing Fan. Optimal Aggregation of Prediction Intervals
under Unsupervised Domain Shift.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Ahmed9275 Hugginface. Vit-Cifar100, May 2022. URL https://huggingface.co/
Ahmed9275/Vit-Cifar100.
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A APPENDIX

A.1 PROOFS

Proof of Proposition 5.1. The solution space for the aggregation weights w to Problems equation 6
and equation 7 is the probability simplex. Accordingly, the estimated weight will satisfy ŵ ∈
∆. Following the same strategy for Theorem 2.1 from Gasparin & Ramdas (2024b), validity is
guaranteed by Markov’s inequality, as well as the linearity and monotonicity of expectation.

Proposition A.1. Let α ∈ [0, 1], t ∈ [0, 1] represent the aggregation threshold (e.g. t = 1/2) and
m = argminm∈[M ]{EX |C(α)

m (X)|} where | · | represents set cardinality. If EX |C(α(1−t))
m (X)| =

EX |C(α)
m (X)| then EX |Γ(α(1−t))

w∗ (X)| ≤ EX |C(α)
m (X)| for all m ∈ [M ] where Γ

(α(1−t))
w∗ is con-

structed with equation 1 .

Proof in appendix section A.1.

Proof of Proposition A.1. Let w ∈ ∆ correspond to a weight vector with unit mass at index m then
EX |Γ(α(1−t))

w∗ (X)| ≤ EX |Γ(α(1−t))
w (X)| = EX |C(α(1−t))

m (X)| = EX |C(α)
m (X)| ≤ EX |C(α)

m (X)|
for all m ∈ [M ]. The first inequality follows from formulation equation 3, the next two equalities
follows from equation equation 1 and the assumption above respectively, and the last inequality
follows from the definition of m.

A.2 EXTRA EXPERIMENTS

A.2.1 WHAT IS THE RECOMMENDED NUMBER OF CALIBRATION/ESTIMATION SAMPLES?

Our approach relies on sufficient data for an estimation split. How much will be problem dependent
but we observe that with (nest < 500) estimation samples MILP/LP is able to estimate (in <30m on
a v2-8 TPU) a more efficient predictor on CIFAR-100, Imagenet and Natural QA experiments. We
recommend to collect the remaining number of calibration samples (ncal) per the guidelines from
section 3.2 Angelopoulos & Bates (2022). Please see figure 15 for references to nest and ncal.

A.2.2 MITIGATING THE NEED FOR ESTIMATIONS SAMPLES

The work of Zeng et al. explores the coverage bias induced by using the calibration data for es-
timation of parametric approaches for conformal prediction (e.g. Angelopoulos et al. (2022); Luo
& Zhou). We repeat the CIFAR-10 experiment done by Zeng et al., and use the entire calibration
dataset for both estimation and calibration (same) and compare it to using the estimation split for
estimation (hold-out). Interestingly, we did not observe a statistically significant difference in the
coverage gap between ”same” and ”hold-out”. This provides some preliminary evidence to mitigate
the need of ”hold-out” data. Future work could extend the analysis of Zeng et al. to determine if the
coverage gap can be asymptotically bounded.

Figure 8: Coverage gap for LP formula-
tion of EWMV.

Figure 9: Coverage gap for MILP for-
mulation of EWMV.
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A.3 EXPERIMENT DETAILS

A.3.1 SYNTHETIC EXPERIMENT: SECTION 6.1

This experiment is run on a Intel(R) Xeon(R) CPU E5-2683 v4 with 32Gb of memory and 125Gb of
Disk. The Synthetic dataset is attached. Data is randomly split into calibration, estimation, training
and test sets. We train three MLPs for using 200 batch size for 300 epochs with 0.01 learning rate.
Each MLP has 500 hidden units. Once all models are trained, we apply APS (Angelopoulos &
Bates, 2022) and our proposed Algorithm 1. We use Gurobi to solve the proposed LP and MILP,
that is formulations equation 7 and equation 6 respectively). Total runtime is (< 2 hours). Both LP
and MILP estimation is (< 10 minutes).

A.3.2 IMAGE CLASSIFICATION EXPERIMENTS: SECTION 6.2

The Imagenet validation dataset can be obtained from (Wolf et al., 2020). All the pre-estimated
models listed in Table 1 can be downloaded from (Wolf et al., 2020). The RAPS conformal im-
plementation is taken from (Angelopoulos et al., 2022). For each pre-estimated model, we perform
inference over the entire dataset using on an A-100 GPU and save the softmax outputs. To apply
our proposal, we load the softmax scores, randomly split the scores into test, calibration and esti-
mation sets, and perform Algorithm 1 on a v2-8 TPU with 300Gb of memory and 225Gb of Disk.
We use Gurobi to solve the proposed LP and MILP, that is formulations equation 7 and equation 6
respectively. We repeat this experiment ten times, each with a different random split. Total run-
time is (< 10 hours). Both LP and MILP estimation is (< 30 minutes) for each repetition. This
process is the same for the CIFAR-100 dataset (Available to download from Wolf et al. (2020)).
With corresponding models under table 2 available for download. Please refer to table under A.5 for
corresponding URLS.

A.3.3 OPEN DOMAIN QA EXPERIMENT: SECTION 6.3

We follow the instructions in https://github.com/shuoli90/TRAQ to download the dataset
(Kwiatkowski et al., 2019) and apply the TRAQ conformal method (Li et al., 2024) on the listed
language models from Table 3. All the LMs are publicly available to download from (Wolf et al.,
2020). We perform model inference on the entire dataset, obtain the TRAQ prediction sets and apply
Algorithm 1 on a M2 Mac Studio with 32Gb of memory and 500Gb of disk. We repeat this experi-
ment ten times, each with a different random split of scores into test, calibration and estimation sets.
We use Gurobi to solve the proposed LP and MILP, that is formulations equation 7 and equation 6
respectively. Total runtime is (< 24 hours). Both LP and MILP estimation is (< 30 minutes) for
each repetition. Please refer to table under A.5 for corresponding model URLS.

A.3.4 RISK STRATIFICATION EXPERIMENTS: SECTION 6.4

The dataset is available from Garcıa et al. (2024) upon reasonable request. Data is randomly split
into calibration, estimation, training, and test sets. The models ECG-DL (Xiao et al., 2022), GBDT
(Malinin et al., 2021) and FasterRisk (Liu et al., 2022) with the corresponding Github repos listed in
the papers. The hyper parameters for GBDT are listed in Garcia et al. (2024). The hyper-parameters
for FR are listed in Garcıa et al. (2024). Once each model is trained, we apply class-conditional
conformal (Lei, 2014) and our proposed Algorithm 1 on a Intel(R) Xeon(R) CPU E5-2683 v4 with
32Gb of memory and 125Gb of Disk. We use Gurobi to solve the proposed LP and MILP, that is
formulations equation 7 and equation 6 respectively). We repeat this experiment ten times. Total
runtime is (< 10 hours). Both LP and MILP estimation is (< 15 minutes) for each repetition.

A.3.5 EWMV EMPIRICAL UPPER BOUND: SECTION 6.7

To produce figure 6 we follow the ablation in figure 3.4 from Angelopoulos & Bates (2022). We
fix α = .1, and sample R = 1000 different estimation, calibration and test samples to produce
the empirical CDF of EWMV’s coverage. We repeat this for four different calibration sizes (500,
1000, 2500, 5000, 7500). We fix the estimation samples to 100. Aggregation is over three predictors
(Swin, Vit, Resnet18), with the RAPS conformal method, for CIFAR-10 image classification.
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Figure 10: Empirical coverage estimate that
nominal conformal predictors theoretically
achieve for multiple calibration sample sizes
and (α = 0.1).

Figure 11: Empirical coverage estimate of
MV across multiple calibration sample sizes
ncal for (α = 0.1) using RAPS as the con-
formal method aggregating three CIFAR-10
predictors.

Method Inefficiency (↓) Validity (≥ 0.90)

k=10 5.745± 0.186 0.997± 0.001
k=9 3.233± 0.118 0.996± 0.001
Avg. 3.089± 0.089 0.996± 0.001
YK 2.525± 1.079 0.897± 0.012
YKadj 2.377± 1.548 0.931± 0.011
k=8 2.351± 0.083 0.993± 0.001
YKsplit 2.278± 1.316 0.898± 0.016
k=7 1.878± 0.051 0.990± 0.001
k=6 1.608± 0.041 0.986± 0.002
MD 1.480± 0.037 0.985± 0.002
MV 1.432± 0.027 0.981± 0.003
k=5 1.428± 0.029 0.981± 0.002
k=4 1.324± 0.024 0.975± 0.004
k=1 1.300± 0.097 0.947± 0.009
Bonferroni 1.300± 0.097 0.947± 0.009
Single+RAPS 1.299± 0.051 0.903± 0.014
k=3 1.263± 0.024 0.971± 0.004
k=2 1.246± 0.036 0.962± 0.005

LP (Ours) 1.233± 0.112 0.962± 0.042
MILP (Ours) 1.123± 0.045 0.912± 0.008
Fisher* 0.947± 0.007 0.886± 0.007

Method Inefficiency (↓) Validity (≥ 0.99)

k=10 40.097± 6.885 1.000± 0.000
k=9 19.908± 3.804 1.000± 0.000
Avg. 18.262± 2.943 1.000± 0.000
k=8 13.333± 2.566 1.000± 0.000
k=7 10.897± 1.912 1.000± 0.000
k=6 8.731± 1.611 0.999± 0.000
k=1 7.849± 2.873 0.995± 0.003
Bonferroni 7.849± 2.873 0.995± 0.003
MV 7.603± 1.777 0.999± 0.001
k=5 7.602± 1.747 0.999± 0.001
k=4 6.316± 1.681 0.998± 0.001
k=3 6.209± 2.266 0.997± 0.002
MD 6.077± 1.750 0.999± 0.001
k=2 5.968± 2.219 0.996± 0.003
YK 3.662± 0.487 0.991± 0.004
YKsplit 3.601± 0.736 0.991± 0.004
YKadj N/A N/A
Single+RAPS 2.836± 0.253 0.991± 0.003

LP (Ours) 2.531± 0.680 0.993± 0.005
MILP (Ours) 2.420± 0.455 0.992± 0.003
Fisher* 1.069± 0.009 0.944± 0.005

Table 6: CIFAR-100 baseline from section 6.6 repeated with error level α = 0.1 and α = 0.01.
MILP and LP have the best performance. Fisher* is not valid. N/A means the adjusted error level
ᾱ from Yang & Kuchibhotla (2025) could not be computed for the current number of models and
error level.

A.3.6 BASELINE COMPARISON, EXTRA EXPERIMENTS

In table 6, we repeat the baseline comparison from section 6.6 with other error levels (i.e. α ∈
{0.1, 0.01}). In table 7, we repeat the Imagenet experiment from 6.2 with the same baselines from
table 6. To control computational complexity of p-value methods, we reduce the total sample size to
5000 and consider five models selected at random and α ∈ {0.1, 0.05}. Results on both the CIFAR-
100 and Imagenet experiments suggest both LP and MILP remain the most efficient of the methods
that preserve validity.

A.3.7 PERFORMANCE OF MULTIPLE SCORES AS A FUNTION OF THE ERROR LEVEL

We perform the CIFAR-10 experiment from section 6.2 with two different scores, APS Romano
et al. (2020b) and 1− p(y|x). We split the dataset into two-thirds for testing Dtest and one-third for
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name Inefficiency(↓) Validity(≥ 0.90)

k=5 21.826± 3.679 0.994± 0.001
Avg. 12.388± 1.082 0.993± 0.003
k=4 6.487± 1.495 0.988± 0.004
YKadj 5.495± 1.541 0.940± 0.030
MD 3.819± 0.938 0.984± 0.006
MV 3.790± 0.888 0.984± 0.006
YK 3.482± 0.972 0.898± 0.041
YKsplit 3.482± 0.972 0.898± 0.041
k=3 3.217± 0.726 0.980± 0.008
k=2 2.100± 0.293 0.965± 0.012
Single+RAPS 1.787± 0.047 0.904± 0.005
Bonferroni 1.759± 0.260 0.931± 0.019
k=1 1.759± 0.260 0.931± 0.019

LP (Ours) 1.590± 0.159 0.915± 0.019
MILP (Ours) 1.590± 0.159 0.915± 0.019
Fisher* 1.155± 0.044 0.889± 0.018

name Inefficiency(↓) Validity (≥ 0.95)

k=5 54.636± 13.819 0.998± 0.001
Avg. 25.395± 3.146 0.998± 0.001
k=4 14.338± 1.956 0.995± 0.001
YKadj 8.935± 12.023 0.990± 0.011
MV 7.237± 0.616 0.990± 0.003
YK 6.615± 0.778 0.948± 0.011
YKsplit 6.615± 0.778 0.948± 0.011
k=3 6.287± 0.325 0.989± 0.003
MD 3.881± 0.353 0.987± 0.004
Bonferroni 3.485± 1.595 0.970± 0.017
k=1 3.485± 1.595 0.970± 0.017
k=2 3.306± 0.389 0.979± 0.005
Single+RAPS 2.595± 0.215 0.951± 0.012

LP (Ours) 1.964± 0.189 0.958± 0.012
MILP (Ours) 1.964± 0.189 0.958± 0.012
Fisher* 1.296± 0.033 0.918± 0.013

Table 7: Baseline from section 6.6 repeated with error level α = 0.1 and α = 0.05 for the Imagenet
task. MILP and LP have the best performance. Fisher* is not valid. N/A means the adjusted error
level ᾱ from Yang & Kuchibhotla (2025) could not be computed for the current number of models
and error level.

calibration Dn. To evaluate methods (i.e. LP and MILP), we further split the calibration dataset Dn

into 70% for calibration Dcal and 30% for estimation Dest. We also consider the model selection
approaches (i.e. YK, YKsplit) from section 6.8 and the single smallest individual predictor on the
test data (Oracle single model). Results in figure 12 and figure 13 suggest EWMV is more favorable
w.r.t the smallest oracle model the smaller α is. We speculate this is because the factor of 2 correction
in the error level affects less.

A.4 EXTRAS

A.4.1 LIST OF ACRONYMS

APS: Adaptive prediction sets
RAPS: Random adaptive prediction sets
TRAQ: Trustworthy retrieval augmented question answering
LP: Linear program formulation of EWMV
MILP: Mixed integer linear program formulation of EWMV.
WMV: Weighted majority vote.

Figure 12: Inefficiency as a function of the
error level for the APS score

Figure 13: Inefficiency as a function of the
error level for the 1− p(y|x) score
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MV: Majority vote.

A.5 MODEL AND DATASET LIST

To aid reproducibility, we list the model and URL and license below grouped by each table under
Section 6. We further list the datasets and conformal methods used.

Model URL

Alexnet https://docs.pytorch.org/vision/main/models.html
Squeezenet https://docs.pytorch.org/vision/main/models.html
MobileNet https://huggingface.co/shehan97/mobilevitv2-1.0-imagenet1k-256
Resnet50 https://pytorch.org/hub/nvidia deeplearningexamples resnet50/
Inception https://docs.pytorch.org/vision/main/models.html
VGG19 https://docs.pytorch.org/vision/main/models.html

ConvNext-large https://docs.pytorch.org/vision/main/models.html
Wide-resnet101-2 https://docs.pytorch.org/vision/main/models.html

Densenet161 https://docs.pytorch.org/vision/main/models.html
Swin-b https://docs.pytorch.org/vision/main/models.html

Regnet-Y-32GF https://docs.pytorch.org/vision/main/models.html
Dinov2 https://huggingface.co/facebook/dinov2-large-imagenet1k-1-layer
Vit-h-14 https://docs.pytorch.org/vision/main/models.html

Model URL

Resnet50 jialicheng (a)
Swin-tiny-p4 jaycamper

ConvNext https://huggingface.co/karan99300/ConvNext-finetuned-CIFAR100
Swin-tiny MazenAmria (c)

Swin-small MazenAmria (b)
Vit-base jialicheng (b)
Vit-large jialicheng (c)

Vit Hugginface (2022)
Vit-base-in21k pkr7098

Swin-base MazenAmria (a)

Model URL

Resnet18 https://huggingface.co/edadaltocg/resnet18 cifar10
Swin https://huggingface.co/Weili/swin-base-patch4-window7-224-in22k-finetuned-cifar10
Vit https://huggingface.co/MF21377197/vit-small-patch16-224-finetuned-Cifar10

Model URL

MiniLM https://huggingface.co/deepset/minilm-uncased-squad2
DynamicBert https://huggingface.co/Intel/dynamic tinybert

Roberta https://huggingface.co/deepset/roberta-base-squad2
DistillBert https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad
MobileBert https://huggingface.co/csarron/mobilebert-uncased-squad-v2

Dataset URL

Synthetic Attached
Imagenet https://huggingface.co/datasets/mlx-vision/imagenet-1k
Cifar-10 https://huggingface.co/datasets/renumics/cifar10-outlier
Cifar-100 https://docs.pytorch.org/vision/main/generated/torchvision.datasets.CIFAR100.html

Conformal method code URL

TRAQ https://github.com/shuoli90/TRAQ
RAPS https://github.com/aangelopoulos/conformal-prediction
APS https://github.com/aangelopoulos/conformal-prediction

Class-Conditional https://github.com/jjgarciac/cc-risk-stratification
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Figure 14: Standard CP
pipeline to produce a α-valid
set-valued predictor C

(α)
1 :

X → 2Y with calibration data
Dn.

Figure 15: Proposed pipeline to produce a α-valid set-
valued predictor Γ

(α/2)
ŵ : X → 2Y from calibration data

Dcal and estimation data Dest where Dn = Dcal⊎Dest. Note
Γ
(α/2)
ŵ is a set-generating function and not a prediction set

for a given input.
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