

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EWMV: AN ALGORITHM TO IMPROVE THE EFFICIENCY OF CONFORMAL METHODS

Anonymous authors

Paper under double-blind review

ABSTRACT

Conformal prediction is a framework that augments a machine learning model to return a prediction set in lieu of a single prediction. Although these sets contain the correct answer with a guaranteed probability, their size can be ineffectively large and thus lead to costly erroneous decisions. To mitigate this, we propose EWMV, an algorithm that leverages the available calibration data to aggregate multiple accessible predictors into a single, smaller conformal predictor. Empirical evidence across a variety of tasks and conformal methods suggests EWMV often produces smaller and more efficient prediction sets than any of the individual predictors being aggregated. Accordingly, these findings encourage a new paradigm to improve the efficiency of conformal methods with two readily available resources: calibration data and a plethora of pre-trained predictors.

1 INTRODUCTION

Accurately quantifying the uncertainty of a machine learning (ML) model’s prediction enables the identification, and proper management, of cases the model is likely to be wrong about. This is crucial to mitigate errors in costly decision making pipelines where, for instance, a false positive leads to futile clinical trials (Jin & Candes, 2023) or innocent incarceration (Romano et al., 2020a) and a false negative delays time-critical treatments (Angelopoulos et al., 2024; Garcia et al., 2024). Conformal prediction is an increasingly popular strategy to quantify a model’s uncertainty. It does so by mapping an input to a subset of the label space known as the prediction set. The larger the set, the more uncertain the prediction is. To produce accurate uncertainty estimates, conformal methods aim to be “valid” and “efficient”. Intuitively, “valid” limits the proportion of times the true answer is not present in the prediction set; and “efficient” corresponds to smaller sets. In steps towards improving efficiency, the conformal model aggregation (CMA) literature has adopted a model selection paradigm and proposed algorithms to identify the most efficient conformal predictor (i.e. smallest expert) from a collection of valid predictors (Gasparin & Ramdas, 2024a; Liang et al., 2024; Yang & Kuchibhotla, 2025). But what if instead we could combine the individual predictors in a way that preserves validity and further improves efficiency? To answer this question, we propose EWMV (Estimated weighted majority vote -Algorithm 1), an aggregation algorithm that leverages the weighted majority vote (WMV) algorithm (Gasparin & Ramdas, 2024b) to combine multiple conformal predictors into a valid and more efficient predictor. EWMV preserves validity (proposition 5.1) and, empirically, we also observe it improves the efficiency of four different conformal methods (i.e. APS (Angelopoulos & Bates, 2022), RAPS (Angelopoulos et al., 2022), TRAQ (Li et al., 2024), CC (Garcia et al., 2024)) when applied to synthetic multiclass classification (Section 6.1), image classification (Section 6.2), natural question answering (Section 6.3) and risk stratification (Section 6.4), respectively. In this paper, we show with extensive testing that EWMV has practical execution times (Section 6.5); we compare EWMV with a variety of heuristics and other conformal model aggregation algorithms (Section 6.6); we delve deeper into the empirical coverage behavior of the aggregated predictor (Section 6.7); and we observe experimentally that performance improves monotonically, on average, the more predictors we aggregate (Section 6.8). Our results show that EWMV can be regarded as a new paradigm to improve the efficiency of conformal methods by leveraging two readily available resources: pre-estimated models and the calibration dataset.

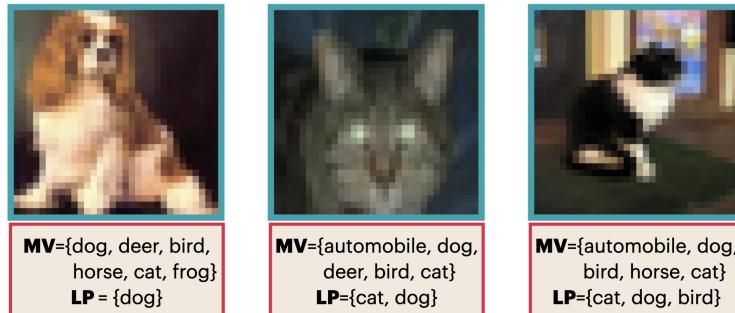


Figure 1: Conformal prediction sets from baseline aggregation method (**MV**) and EWMV (**LP** variant) under corresponding CIFAR10 images.

2 RELATED WORKS

The idea of combining conformal prediction sets stems from cross-validation conformal methods (Vovk, 2015; Barber et al., 2021; Angelopoulos et al., 2025). These aim to improve the computational/statistical tradeoff between full-conformal prediction and split-conformal prediction but are not particularly concerned with set size. In the exploration of preserving validity and improving efficiency, the conformal aggregation literature can be broadly categorized into p-value combination methods (Campagner et al., 2024; Vovk & Wang, 2020; Toccaceli & Gammerman, 2019; Toccaceli, 2019; Cherubin, 2019; Toccaceli & Gammerman, 2017; Balasubramanian et al., 2015; Qin et al., 2025) and set combination methods (Gasparin & Ramdas, 2024b;a; Cherubin, 2019; Liang et al., 2024; Yang & Kuchibhotla, 2025).

P-value combination aggregates multiple conformal p-values, for a given label, into a single p-value. This combined p-value is then used to construct the final conformal prediction set. We roughly categorized the methods as follows: quantile methods like Fisher and SNF (Balasubramanian et al., 2015), merging methods like geometric average and arithmetic average (Vovk & Wang, 2020), order statistic methods like min. and max. (Vovk & Wang, 2020), estimation methods like NCA, ECDF, NP-V-Matrix (Balasubramanian et al., 2015; Toccaceli & Gammerman, 2019). Overall the Fisher quantile method is the most frequently recommended (Balasubramanian et al., 2015; Toccaceli & Gammerman, 2017; Toccaceli, 2019). However, a recent study (Campagner et al., 2024) empirically ranks MV (a prediction set combination method) higher in efficiency than the Fisher method and other p-value combination approaches. In our experiments we observe EWMV has superior performance to p-value aggregation approaches. On a similar note, the work of Luo & Zhou; Tawachi & Laufer-Goldshtein (2025) can be characterized as a form of score-level aggregation. Methodologically, this is complimentary to our proposal, as we can use EWMV combine prediction sets that were constructed with score-level aggregation, either by linearly combining multiple scores or by constructing a multidimensional predictor from multiple heads of the same predictor. That said, a key distinction is that, by virtue of doing aggregation post-quantile computation, we are able to provide three tractable optimization formulations for the weight estimation problem, each varying in computational complexity and empirically validated. Accordingly, our post-conformalization aggregation approach scales better than the pre-conformalization brute-force search approach Luo & Zhou.

Prediction set combination aggregates conformal predictors at the set level rather than at the p-value level. These algorithms are some variant of weighted majority vote (WMV) (Cherubin, 2019). In the theoretical exploration of (Gasparin & Ramdas, 2024b), WMV is parametrized by a weight vector that lives in a probability simplex and, for any weight in this simplex, conservative validity is guaranteed. Unfortunately, the chosen weights may negatively affect efficiency (i.e. one of the individual sets is smaller on average), and thus renders WMV useless (See Tables 4, 3 below and Table 2 from Gasparin & Ramdas (2024b)).

The work by Gasparin & Ramdas (2024a) explores weight estimation for the sequential, non-i.i.d. data setting. According to the authors, in the i.i.d. setting, their algorithm effectively selects the single model with the smallest prediction set (akin to finding the "best" expert). However, in the

108 same setting, our proposal empirically showcases more efficient sets than any of the aggregated
 109 models individually, and thus better than the "best expert" model. Expert selection is an active
 110 area of research (Liang et al., 2024; Yang & Kuchibhotla, 2025). Notably, the approach by Liang
 111 et al. (2024), estimates the smallest conformal set without splitting the calibration data further, nor
 112 compromising validity (a limitation of Yang & Kuchibhotla (2025)). This is useful in situations
 113 where data is scarce and splitting the calibration set is unreasonable. However, according to our
 114 experimental results, granted enough data is available for a split, we can outperform expert selection.

115 With respect to recent methodological developments in conformal prediction, this work stands as
 116 complementary. Rather than posit a new conformal method to guarantee validity or improve effi-
 117 ciency in a new setting (e.g. medical QA (Cherian et al.), class conditional on many classes (Ding
 118 et al.), with multiple scores available Luo & Zhou), our work proposes an algorithm to aggregate
 119 multiple such conformal predictors. We test our methodology using conformal methods for image
 120 classification (APS, RAPS (Angelopoulos et al., 2022)), open-ended question answering (TRAQ
 121 (Li et al., 2024)) and risk stratification (CC (Garcia et al., 2024)) but the scope of the methodology
 122 extends beyond and may be used in conjunction with other recent proposals. Lastly, recent work
 123 has aimed to optimize efficiency in the context of covariate shifts (Kiyani et al., 2024; Ge et al.).
 124 While these work provides a principled way to handle covariates shift, the scalability is limited by
 125 the difficulty of the optimization. For instance, the optimization formulation of Kiyani et al. (2024)
 126 is a saddle point problem and the proposed gradient descent ascent method may not necessarily con-
 127 verge. This limits its applicability in the i.i.d. setting, where the optimization we formulate can be
 128 readily solved with off-the-shelf LP and MILP solvers (Gurobi Optimization, LLC, 2024) and thus
 129 are more amenable for practical applications.

130 3 METHODOLOGY

131 Consider a classification task over a space of features \mathcal{X} and countable classes \mathcal{Y} . Suppose we have
 132 a sequence of i.i.d. samples $D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) \in (\mathcal{X} \times \mathcal{Y})^n$ and let X_{n+1} represent a
 133 test feature to classify. Conformal prediction uses the sample D_n , a non-conformity score (typically
 134 from a pre-estimated probabilistic classifier $f : \mathcal{X} \rightarrow \mathcal{Y}$), and a user-specified error level $\alpha \in (0, 1)$,
 135 to construct a set-valued classifier (i.e. $C^{(\alpha)} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$).¹ For instance, in Figure 1 we can observe
 136 the prediction of two conformal classifiers for a given image. The advantage of using $C^{(\alpha)}$, instead
 137 of the underlying model f , is that the true label Y_{n+1} is excluded from $C^{(\alpha)}(X_{n+1})$ no more than α
 138 proportion of the time. This property is often referred to as validity and is formalized as $\mathbb{P}(Y_{n+1} \notin$
 139 $C^{(\alpha)}(X_{n+1})) \leq \alpha$, where the probability \mathbb{P} is taken w.r.t. the randomness in both the calibration
 140 data D_n (used to construct $C^{(\alpha)}$) and the test point (X_{n+1}, Y_{n+1}) . Define $[M] := \{1, \dots, M\}$ and
 141 let $(C_m^{(\alpha)})_{m \in [M]}$ be a collection of M distinct conformal predictors with error level α . The goal of
 142 conformal model aggregation is to combine this collection and produce a new conformal predictor
 143 $\Gamma^{(\alpha)}$ that preserves validity (i.e. $\mathbb{P}(Y_{n+1} \notin \Gamma^{(\alpha)}(X_{n+1})) \leq \alpha$) and is more efficient, in the sense
 144 of producing smaller sets than any individual predictor in the collection. More efficient can be
 145 precisely stated as $\forall_{m \in [M]} (\mathbb{E}_X |\Gamma^{(\alpha)}(X)| \leq \mathbb{E}_X |C_m^{(\alpha)}(X)|)$ where $|\cdot|$ measures the cardinality of
 146 the predicted set and the expectation \mathbb{E}_X is only w.r.t. $X \sim \mathbb{P}_X$ (D_n is kept fixed). Motivated by the
 147 goal of preserving validity and improving efficiency, we now expand on a method to construct $\Gamma^{(\alpha)}$
 148 known as weighted majority vote.

151 3.1 WEIGHTED MAJORITY VOTE (WMV)

152 This approach was originally proposed by (Cherubin, 2019) and it constructs $\Gamma^{(\alpha)}$ by including every
 153 $y \in \mathcal{Y}$ that is present in the majority of the prediction sets (i.e. $y \in \Gamma^{(\alpha)} \iff \sum_{m=1}^M \frac{1}{M} \mathbf{1}\{y \in$
 154 $C_m^{(\alpha)}(X)\} > 1/2$). We refer to this initial construction as majority vote (**MV**). To generalize MV,

160 ¹The non-conformity score we use is $1 - f_m(X_i)_{Y_i}$ where $f_m(X_i)_{Y_i}$ corresponds to the model estimate
 161 of $P(Y_i | X_i)$. For instance, if f_m is a neural network, the score is one minus the softmax output of the correct
 162 class (Angelopoulos & Bates, 2022)

162 we can parametrize the weight each conformal predictor gets, leading to weighted majority vote:
 163

$$\Gamma_w^{(\alpha)}(X) = \{y \in Y : \sum_{m=1}^M w_m \mathbf{1}\{y \in C_m^{(\alpha)}(X)\} > 1/2, w \in \Delta\} \quad (1)$$

$$\Delta = \{w \in R_+^M : \sum_{m=1}^M w_m = 1\} \quad (2)$$

167 As the name suggests, a label $y \in \mathcal{Y}$ is in $\Gamma_w^{(\alpha)}$ if it is present in the “weighted majority” of the
 168 conformal predictors (i.e. $y \in \Gamma^{(\alpha)} \iff \sum_{m=1}^M w_m \mathbf{1}\{y \in C_m^{(\alpha)}(X)\} > 1/2$). Following
 169 results from Gasparin & Ramdas (2024b), equation (1) guarantees $\mathbb{P}(Y_{n+1} \notin \Gamma_w^{(\alpha)}(X_{n+1})) \leq 2\alpha$
 170 for all $w \in \Delta$ and thus validity is preserved if we reconstruct the collection of prediction sets at
 171 a more conservative error level (i.e. $C_m^{(\alpha/2)}$ instead of $C_m^{(\alpha)}$). Nonetheless, the issue with more
 172 conservative sets is that they tend to be larger (i.e. $|C_m^{(\alpha/2)}(X)| \geq |C_m^{(\alpha)}(X)|$ for all $m \in [M]$)
 173 and thus inappropriate choices of w can render aggregation useless (i.e. there exists $m \in [M]$
 174 such that $\mathbb{E}_X |\Gamma_w^{(\alpha/2)}(X)| \geq \mathbb{E}_X |C_m^{(\alpha)}(X)|$). For instance, in Figure 1 naively choosing MV (i.e.
 175 $w = (1/M, \dots, 1/M)$) results in larger prediction sets than choosing the estimated by EWMV.
 176 Accordingly, in the next section we propose an approach to estimate the aggregation weights w in a
 177 data driven way so as to mitigate the efficiency issue.
 178

179 4 ESTIMATING EFFICIENT WEIGHTS FOR WMV

181 Given the WMV aggregation algorithm, the optimal aggregation weights are:
 182

$$w^* = \arg \min_{w \in \Delta} \mathbb{E}_X |\Gamma_w^{(\alpha/2)}(X)| \quad (3)$$

185 To approximate $\mathbb{E}_X |\Gamma_w^{(\alpha/2)}(X)|$ in equation 3, we employ a sample $D_{n_{\text{est}}} := (X_i)_{i=1}^{n_{\text{est}}} \stackrel{\text{iid}}{\sim} \mathbb{P}_X$,
 186 separate from the calibration sample D_n , and perform empirical risk minimization (ERM):
 187

$$\hat{w} = \arg \min_{w \in \Delta} \frac{1}{n_{\text{est}}} \sum_{i=1}^{n_{\text{est}}} |\Gamma_w^{(\alpha/2)}(X_i)| \quad (4)$$

190 Assuming \mathcal{Y} countable, we can compute cardinality with the counting measure $|\Gamma_w^{(\alpha/2)}(X)| =$
 191 $\sum_{y \in \mathcal{Y}} \mathbf{1}\{y \in \Gamma_w^{(\alpha/2)}(X)\}$. By plugging this into equation 4 and replacing $\Gamma_w^{(\alpha/2)}(X)$
 192 with equation 1, our optimization problem becomes:
 193

$$\hat{w} = \arg \min_{w \in \Delta} \frac{1}{n_{\text{est}}} \sum_{i=1}^{n_{\text{est}}} \sum_{y \in \mathcal{Y}} l_i^{(y)}(w) \quad \text{s.t. } l_i^{(y)}(w) = \mathbf{1} \left\{ \sum_{m=1}^M w_m \mathbf{1}\{y \in C_m^{(\alpha/2)}(X_i)\} > \frac{1}{2} \right\} \quad (5)$$

197 Now we delve into two strategies to solve the optimization problem (5).
 198

199 4.1 MIXED INTEGER LINEAR PROGRAM FORMULATION (MILP)

201 We reformulate optimization problem (5) as an MILP and let $\delta_i^{(y)} = \mathbf{1}\{\sum_{m=1}^M w_m \mathbf{1}\{y \in$
 202 $C_m^{(\alpha/2)}(X_i)\} > 1/2\}$ play the role of $l_i^{(y)}(w)$. We refer to this as **MILP**
 203

$$\hat{w}_{\text{MILP}} = \arg \min_{\substack{w \in \Delta \\ \delta_i^{(y)} \in \{0,1\}}} \sum_{i=1}^{n_{\text{est}}} \sum_{y \in \mathcal{Y}} \delta_i^{(y)} \quad \text{s.t. } \delta_i^{(y)} \geq \sum_{m=1}^M w_m \mathbf{1}\{y \in C_m^{(\alpha/2)}(x_i)\} - \frac{1}{2} \quad (6)$$

208 4.2 LINEAR PROGRAM FORMULATION (LP)

210 Unfortunately, the MILP reformulation equation 6, in the worst case, can result in exhaustive search.
 211 Accordingly, we relax it into a convex problem by approximating the outmost indicator function
 212 with a hinge loss; we then reformulate it as a linear program using the epigraph trick and refer to the
 213 solution as **LP**.
 214

$$\hat{w}_{\text{LP}} = \arg \min_{\substack{w \in \Delta \\ t \geq 0}} \sum_{i=1}^{n_{\text{est}}} \sum_{y \in \mathcal{Y}} t_i^{(y)} \quad \text{s.t. } t_i^{(y)} \geq \sum_{m=1}^M w_m \mathbf{1}\{y \in C_m^{(\alpha/2)}(x_i)\} - \frac{1}{2} \quad (7)$$

216 **5 AGGREGATION ALGORITHM: EWMV**
217218 In practice, we generally do not have direct access to the collection of conformal predictors
219 $(C_m^{(\alpha/2)})_{m \in [M]}$. Instead, we have access to a calibration dataset D_n , a collection of pre-estimated
220 classifiers $(f_m : \mathcal{X} \rightarrow \mathcal{Y})_{m \in [M]}$, a user-specified error level α and a conformal method (CM). We
221 assume the conformal method (CM) constructs a valid conformal predictor $C_m^{(\alpha)}$ using the corre-
222 sponding f_m classifier to produce the non-conformity scores for D_{n+1} .
223224 We propose Algorithm 1 (EWMV) to estimate aggregation weights \hat{w} and produce the aggregated
225 conformal predictor $\Gamma_{\hat{w}}^{(\alpha/2)} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ with desired error level α .
226227 **Algorithm 1 (EWMV)**
228229 **Input:** i.i.d. sample (D_n) , collection of classifiers $(f_m : \mathcal{X} \rightarrow \mathcal{Y})_{m \in [M]}$, conformal method (CM),
230 error level $\alpha \in (0, 1)$
231 $D_{n_{\text{est}}}, D_{n_{\text{cal}}} \leftarrow \text{Split}(D_n)$
232 **for** $m = 1$ **to** M **do**
233 **for** $x_i \in D_{n_{\text{est}}}$ **do**
234 $C_m^{(\alpha/2)}(x_i) \leftarrow \text{CM}(f_m(\cdot), x_i, D_{n_{\text{cal}}}, \alpha/2)$
235 **end for**
236 **end for**
237 $\hat{w} \leftarrow \{\text{LP or MILP}\}(C_m^{(\alpha/2)}(x_i) \forall x_i \in D_{n_{\text{est}}}, m \in [M])$
238 **return** \hat{w}
239240 **Proposition 5.1.** Let D_{n+1} be an i.i.d. sample, let $\mathbb{P}(Y_{n+1} \notin C_m^{(\alpha/2)}(X_{n+1})) \leq \alpha/2$ for every
241 $m \in [M]$, and let \hat{w} be estimated by Algorithm 1 on a hold-out set. It then follows that for a set
242 $\Gamma_{\hat{w}}^{(\alpha/2)}(X_{n+1})$ constructed using equation equation 1:
243

244
$$\mathbb{P}(Y_{n+1} \notin \Gamma_{\hat{w}}^{(\alpha/2)}(X_{n+1})) \leq \alpha. \quad (8)$$

245

246 *Proof in appendix section A.1.* □
247248 We emphasize that EWMV, in essence, returns a set-valued function (i.e. $\Gamma_{\hat{w}}^{(\alpha/2)}$) and not the specific
249 prediction set of a given input (i.e. $\Gamma_{\hat{w}}^{(\alpha/2)}(X)$). In the case EWMV returns an indicator vector (i.e.
250 $\hat{w} = e^{(i)}$), the indicated conformal predictor at level (α) should be used (i.e. $C_i^{(\alpha)}$) instead of $\Gamma_{\hat{w}}^{(\alpha/2)}$.
251 Lastly, if the average size of the most efficient predictor does not change when we re-estimate it at a
252 more conservative level, in the limit of estimation samples, we expect EWMV will provide a valid
253 predictor that is as efficient or better. Proposition A.1 establishes this. This can materialize when the
254 distribution of the non-conformity score is discrete (e.g. in risk stratification Garcia et al. (2024)).
255256 **6 EXPERIMENTS**
257258 In these experiments we measure the efficiency and validity of EWMV (Algorithm 1) on four tasks:
259 multi-class classification on synthetic data, image classification, risk stratification and natural ques-
260 tion answering. For each task we collect a dataset, a conformal method and a multitude of pre-
261 estimated predictors. We then split the data randomly into a calibration set ($D_{n_{\text{cal}}}$), an estimation
262 set ($D_{n_{\text{est}}}$) and a test set. Given a validity limit α , we perform EWMV to estimate the aggregation
263 weights \hat{w} using both the MILP equation 6 and LP equation 7 formulations (See appendix figure
264 15). Lastly, we measure the empirical validity (i.e. $\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} \mathbf{1}\{y_i \in \Gamma_{\hat{w}}^{(\alpha/2)}(x_i)\}$) and empirical
265 efficiency (i.e. $\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} |\Gamma_{\hat{w}}^{(\alpha/2)}(x_i)|$) of the corresponding combined set. We compare against ev-
266 ery recomputed prediction sets $(C_m^{(\alpha)})_{m \in [M]}$ at error level α using the entire available dataset (i.e.
267 $D_n = D_{\text{est}} \cup D_{\text{cal}}$). The reason for the recomputation is to provide a fair comparison with respect
268 to not doing aggregation and instead performing standard conformal prediction over an individual
269

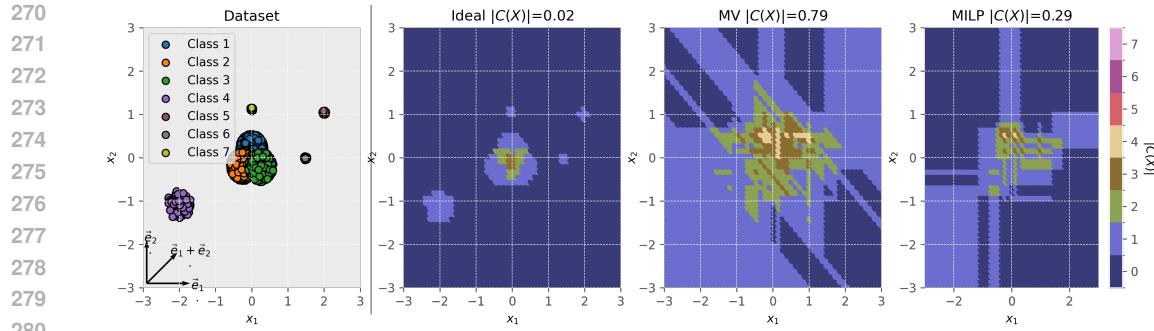


Figure 2: (left-most) Synthetic 2D dataset with color coded classes. (middle-left) Ideal prediction set size. (middle-right) Estimated prediction set size with MV. (right-most) Estimated prediction set size using MILP.

predictor (See appendix figure 14). Note that for the synthetic (section 6.1) and risk stratification (section 6.4) experiments, we further split the estimation data (D_{est}) into a training set (D_{train}) for model training.

6.1 SYNTHETIC EXPERIMENT

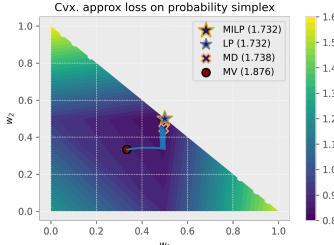


Figure 3: Loss landscape formulation equation 7 w.r.t. the probability simplex. Marked are the estimated weights.

the adaptive prediction sets (APS) algorithm (Angelopoulos & Bates, 2022). We then aggregate the $C_{1:3}$ using Algorithm 1 with **MILP** optimization. In Figure 2 (middle-right) we color code the size of the prediction sets produced by **MV** (see section 3.1). In Figure 2 (right-most) we color code the size of the sets from the **MILP** method. We qualitatively observe the **MILP** set (0.29) is on average smaller than the **MV** set (0.79) and that both are valid. In turn, **MILP** is closer to the ideal performance. This supports the hypothesis that data-driven parametrization of the WMV algorithm can result in efficiency gains. Interestingly, we observe that the discrepancy between prediction sets result in empty sets. We speculate this discrepancy between sets is connected to discrepancy between predictors and, accordingly, could inform the epistemic uncertainty of a point (Hüllermeier & Waegeman, 2021). This follows from not having data around that point to ground different predictors to a specific label. Lastly, Figure 3 also explains the relationship between **MV** and **LP**. In particular, we can solve the constraint convex optimization problem equation 7 with Mirror Descent (Nemirovskij & Yudin, 1983). The optimization weights are initialized at **MV** and, given an appropriate step-size, iteratively converge to **LP**. Accordingly, w.r.t. the convex loss and the estimation set, **LP** is a better solution than **MV**. Surprisingly, **LP** and **MILP** coincide.

6.2 APPLICATION: IMAGE CLASSIFICATION

The goal is to correctly classify images from CIFAR-100 (Krizhevsky, 2009) and Imagenet (Russakovsky et al., 2015) datasets. We use RAPS from Angelopoulos et al. (2022) as the conformal

Name	Inefficiency (\downarrow)	Validity ($\geq .90$)
AlexNet+RAPS	13.81 ± 0.97	0.899 ± 0.005
SqueezeNet+RAPS	11.67 ± 0.45	0.900 ± 0.005
MobileNet+RAPS	8.24 ± 0.27	0.900 ± 0.006
Resnet50+RAPS	6.98 ± 0.28	0.900 ± 0.005
Inception+RAPS	6.32 ± 0.11	0.900 ± 0.005
VGG+RAPS	4.10 ± 0.11	0.900 ± 0.007
ConvNext+RAPS	3.67 ± 0.24	0.901 ± 0.008
Resnet+RAPS	3.30 ± 0.10	0.900 ± 0.008
DenseNet+RAPS	3.18 ± 0.10	0.901 ± 0.007
Swin+RAPS	2.46 ± 0.07	0.900 ± 0.005
Regnet+RAPS	2.41 ± 0.06	0.900 ± 0.006
DinoV2+RAPS	2.14 ± 0.03	0.901 ± 0.006
ViT+RAPS	1.76 ± 0.04	0.900 ± 0.005
MV	3.46 ± 0.16	0.975 ± 0.002
LP (Ours)	1.86 ± 0.28	0.964 ± 0.009
MILP (Ours)	1.54 ± 0.14	0.916 ± 0.008

Table 1: Inefficiency and validity of multiple conformal predictors on Imagenet. Experiment is repeated 10 times on random splits of the data and we report $\mu \pm 2\sigma$.

Name	Inefficiency (\downarrow)	Validity ($\geq .90$)
Resnet50+RAPS	2.98 ± 0.19	0.899 ± 0.015
Swin-tiny-p4w7+RAPS	2.84 ± 0.15	0.899 ± 0.014
ConvNext+RAPS	2.19 ± 0.13	0.898 ± 0.016
Swin-tiny+RAPS	2.06 ± 0.06	0.902 ± 0.008
Swin-small+RAPS	1.66 ± 0.06	0.898 ± 0.011
ViT-base+RAPS	1.51 ± 0.06	0.898 ± 0.009
ViT-large+RAPS	1.38 ± 0.07	0.899 ± 0.015
ViT+RAPS	1.32 ± 0.07	0.900 ± 0.018
Swin-base+RAPS	1.29 ± 0.03	0.901 ± 0.014
ViT-base-in21k+RAPS	1.28 ± 0.05	0.900 ± 0.012
MV	1.44 ± 0.04	0.982 ± 0.003
LP (Ours)	1.20 ± 0.14	0.950 ± 0.058
MILP (Ours)	1.14 ± 0.13	0.910 ± 0.011

Table 2: Inefficiency and validity of multiple conformal predictors on CIFAR-100. Experiment is repeated 10 times on random splits of the data and we report $\mu \pm 2\sigma$.

method and obtain all the fine-tuned models along with the dataset are available from HuggingFace and Torchvision. We split the dataset into two-thirds for testing D_{test} and one-third for calibration D_n . To evaluate methods (i.e. MV, LP and MILP), we further split the calibration dataset D_n into 90% for calibration D_{cal} and 10% for estimation D_{est} . CIFAR-100 results are on Table 2 and Imagenet results are on Table 1. Both suggest MILP is more efficient than any individual, or aggregated, conformal predictor. Furthermore, its validity is closer to nominal levels than MV or LP. The reason why aggregation methods have larger validity is because the individual predictors are estimated at a more conservative error-level (i.e. $\alpha/2$). It is also interesting to note that adding models tends to benefit aggregation efficiency. We expect this is because the estimated weights tease out the most efficient models to aggregate. This last point is further explored in Section 6.8.

6.3 APPLICATION: NATURAL QUESTION ANSWERING

For this experiment we closely follow the setup from Li et al. (2024). The goal is to correctly answer a query using a collection of passages from Wikipedia. We use the TRAQ (Li et al., 2024) as the conformal method. In short, this method applies standard conformal prediction in two stages: (1) to construct a prediction set of passages from a retriever model; (2) to construct a set of answers associated with each passage from an LLM. The final prediction set corresponds to the union of the answers sets of all passages. The main difficulty arises in determining when the true answer y is in the set $C_m^{(\alpha)}(X)$, due to the multitude of semantically similar words that could arise. Accordingly, like Li et al. (2024), we consider $y \in C_m^{(\alpha)}(X)$ when $\exists_{e \in C_m^{(\alpha)}(X)} (\text{rouge-1}(y, e) > 0.3)$ and where the rouge-1 score measures semantic similarity (Lin, 2004). In terms of the architecture, we utilize the Dense Passage Retriever (DPR) from Karpukhin et al. (2020) as a retriever model and a variety of LLMs from Huggingface as predictors. We evaluate these methods using 560 queries from the Natural questions dataset (Kwiatkowski et al., 2019) and use the WikiDPR dataset for passages (Karpukhin et al., 2020). We randomly split the data into calibration (35%), estimation (35%) and testing (30%). We compute the TRAQ prediction sets for multiple models with both the calibration and estimation splits setting $\alpha = 0.2$ as the validity limit. We then use EWMV to compute the aggregation weights with the estimation split. We repeat this experiment 10 times and report the validity and efficiency in Table 3. We observe that the MV method yields combination useless. Nonetheless, both the LP and MILP method improve efficiency without compromising validity. It is important to note that, like Li et al. (2024), the prediction sets can be quite large (approx. 30 answers) to guarantee validity. Li et al. (2024) recommends semantic clustering to remove redundancies during deployment.

Figure 4: Smallest LLM prediction set (**LLM+TRAQ**) and from proposal (**MILP**) for a given query **Q**. Green indicates correct answer.

Model	Inefficiency (\downarrow)	Validity (≥ 0.80)
MiniLM+TRAQ	29.53 ± 5.0	0.84 ± 0.1
DynamicBert+TRAQ	28.72 ± 5.0	0.85 ± 0.1
Roberta+TRAQ	28.68 ± 5.0	0.87 ± 0.1
DistillBert+TRAQ	27.33 ± 4.5	0.86 ± 0.1
MobileBert+TRAQ	27.25 ± 4.4	0.86 ± 0.1
MV	29.34 ± 3.3	0.90 ± 0.1
LP (Ours)	22.22 ± 2.3	0.89 ± 0.1
MILP (Ours)	18.01 ± 1.9	0.86 ± 0.1

Table 3: LLM experiment. Experiment is repeated 10 times on random splits of the data. We report $\mu \pm 2\sigma$.

6.4 APPLICATION: ACUTE CORONARY SYNDROME (ACS) RISK STRATIFICATION

The goal is to correctly stratify ACS cases as high/low risk while minimizing the number of intermediate risk cases (Garcia et al., 2024). The dataset contains 3300 samples for training, calibration, estimation, and 400 samples for testing. The models to be aggregated are GBDT (Malinin et al., 2021), FR (Liu et al., 2022), and ECG-DL (Xiao et al., 2022). The setting is multi-modal, as each case has a collection of signs and symptoms processed by GBDT and FR, and a ECG trace processed by ECG-DL model. Prediction sets are estimated using class-conditional conformal estimation (CC) (Lei, 2014). Risk stratification performance is measured in terms of definitive percentage (i.e. proportion of prediction sets that are either $\{0\}$ or $\{1\}$) and balanced accuracy (BACC) performance (i.e. $(\text{ sensitivity} + \text{ specificity})/2$). The higher the definitive percentage and the BACC, the better. The validity limit is set to 5% (i.e. $\alpha = .05$). The results in Table 4 suggest that LP is the most efficient of the aggregation methods and reasonably exceeds the validity limit per chapter three in Angelopoulos & Bates (2023). In the context of early ACS detection, as long as validity stays within set limits, greater efficiency increases definitive percentages, and thus reduces resource misallocation and prevents delays in time-sensitive therapies.

6.5 WHAT IS THE RUNTIME COMPLEXITY OF EWMV?

The worst case runtime complexity of EWMV depends on the specific optimization formulation. Consider n_{est} to be the number of estimation samples in $D_{n_{\text{est}}}$ and $|\mathcal{Y}|$ to be the cardinality of our label space. In the worst case, the time complexity of **MILP** is exponential in this product (i.e. $\mathcal{O}(e^{|\mathcal{Y}| \times n_{\text{est}}})$); and for **LP**, the worst time complexity is polynomial (i.e. $\mathcal{O}(W(|\mathcal{Y}| \times n_{\text{est}})^{1/2} + (|\mathcal{Y}| \times n_{\text{est}})^{5/2})$), where $nnz(A) < W$, $A \in \{0, 1\}^{n_{\text{est}} \times |\mathcal{Y}|}$ and $A_{ij} = 1\{y_j \in C(x_i)\}$ per Lee & Sidford (2015). In figure 5, we empirically assess the runtime of MILP in seconds (s) across a variety of $|\mathcal{Y}| \times n_{\text{est}}$ products. When $|\mathcal{Y}| \times n_{\text{est}} = 200K$, on V2-8 TPU, the runtime is 12m and 7m for MILP and LP respectively, with the runtime rate of MILP growing faster than LP as expected. For reference, we also plot the runtime of MD (From section 6.1) with a fixed number of iterations. As opposed to LP and MILP, MD requires hyperparameter tuning to work.

6.6 COMPARING EWMV WITH CONFORMAL AGGREGATION BASELINES

We compare EWMV with multiple p-value methods from section 2 (i.e. $\frac{K}{k} p_{(k)}$ (Rüger, 1978), Average ($2\bar{p}$) (Rüschendorf, 1982)) on the task of image classification on CIFAR-100 with $\alpha = 0.05$. In table 5, k parametrizes the corrected k 'th ordered p-value $\frac{K}{k} p_{(k)}$ approach from Rüger (1978) where K represents the number of models. Per Gasparin & Ramdas (2024a), $k = 1$ recovers Bon-

Method	Validity (≥ 95)	Inefficiency (\downarrow)	Definitive-% (\uparrow)	BACC (\uparrow)
FR+CC	100 ± 0	1.62 ± 0.22	38 ± 22	100 ± 1
GBDT+CC	99 ± 3	1.46 ± 0.25	54 ± 25	94 ± 19
ECG-DL+CC	98 ± 1	1.94 ± 0.07	6 ± 7	64 ± 40
MV	99 ± 1	1.64 ± 0.20	36 ± 20	99 ± 2
LP (Ours)	94 ± 1	1.32 ± 0.10	65 ± 10	96 ± 4
MILP (Ours)	94 ± 1	1.32 ± 0.10	65 ± 10	96 ± 4

Table 4: Risk stratification experiment. Experiment is repeated 10 times on random splits of the data. We report $\mu \pm 2\sigma$

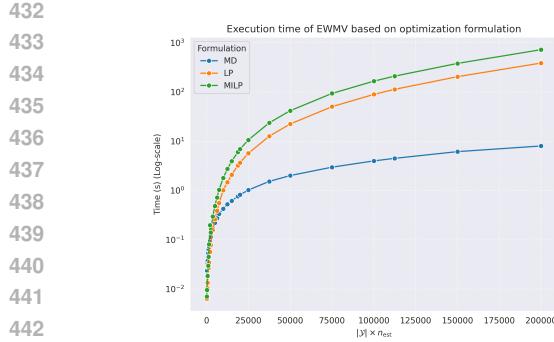


Figure 5: Runtime in seconds (s) of EWMV for different formulations across multiple label space sizes and estimation dataset sizes.

ferroni correction, $k = 5$ recovers MV, $k = 10$ recovers set union and $k = 3$ is the most efficient of the k values. For reference, we also include the most efficient individual model conformalized at level ($\alpha = .05$) with all the calibration data (i.e. Single+RAPS), WMV with a heuristic weight (e.g. weights inversely proportional to the empirical size), and the Fisher p-value method (Balasubramanian et al., 2015) included for completeness. We also consider three methods from Yang & Kuchibhotla (2025) (i.e. YK, YKadj, YKsplit) which correspond to the standard, adjusted and data-split proposal to perform model selection Liang et al. (2025). Results in table 5 showcase EWMV as the only valid aggregation method more efficient than the best individual model (i.e. Single+RAPS). Fisher’s method cannot guarantee validity because it assumes independence among the p-values being aggregated and all these p-values depend on the same random variable X_{n+1} .

6.7 IS THERE A THEORETICAL UPPER BOUND ON THE COVERAGE OF EWMV?

Coverage is the probability the correct answer is in (i.e. $\mathbb{P}(Y_{n+1} \in \Gamma_{\hat{w}}^{(\alpha/2)}(X_{n+1}))$). There is not a practical theoretical upper bound for the coverage of EWMV. Gasparin & Ramdas (2024b) prove an upper bound for the coverage of WMV when the weights are uniform (Theorem 2.5 from Gasparin & Ramdas (2024b)). Unfortunately the bound becomes meaningless when aggregating more than two models at commonplace error-levels $\alpha < 0.25$. Generalizing this bound beyond uniform weights is not trivial because it involves the analysis of a weighted sum of dependent indicator random variables (See definition of $\Gamma_w^{(\alpha)}$ in equation 1). That said, some conformal methods (e.g. RAPS and APS) approach nominal coverage as we increase the number of calibration samples and it begs the question: Does EWMV approach nominal coverage? In figure 6 this appears to be the case albeit at a slower rate than the theoretical rate of the individual predictor (appendix figure 10). Curiously, we observe this is not the case for uniform weights (i.e. MV) in appendix figure 11. Please refer to appendix section A.3.5 for more details.

6.8 HOW DOES THE NUMBER OF MODELS AFFECT THE INEFFICIENCY OF EWMV AND OTHER BASELINES?

For this experiment, we repeat the CIFAR-100 classification experiment from section 6.2 ten times, each with a corresponding number of models to combine. The goal is to measure the impact the

Name	Inefficiency (\downarrow)	Validity ($\geq .95$)
$k = 10$ (Union)	7.95 ± 0.32	0.999 ± 0.001
Average	4.84 ± 0.24	0.998 ± 0.001
YKadj	2.97 ± 0.34	0.983 ± 0.006
YKsplit	2.68 ± 1.74	0.949 ± 0.012
YK	2.00 ± 0.12	0.951 ± 0.010
MV	1.84 ± 0.08	0.991 ± 0.002
$k = 5$	1.84 ± 0.09	0.991 ± 0.002
Bonferroni	1.81 ± 0.31	0.974 ± 0.008
Heuristic	1.76 ± 0.08	0.992 ± 0.002
$k = 3$	1.63 ± 0.13	0.984 ± 0.003
Single+RAPS	1.58 ± 0.07	0.950 ± 0.007
LP (Ours)	1.44 ± 0.22	0.979 ± 0.020
MILP (Ours)	1.32 ± 0.08	0.957 ± 0.007
Fisher*	0.99 ± 0.01	0.914 ± 0.005

Table 5: Efficiency and validity of various conformal combination approaches from section 2. *Fisher does not meet validity.

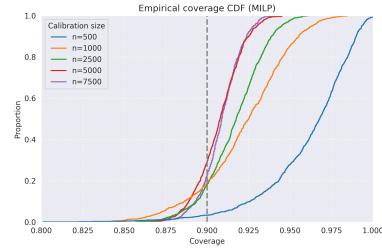
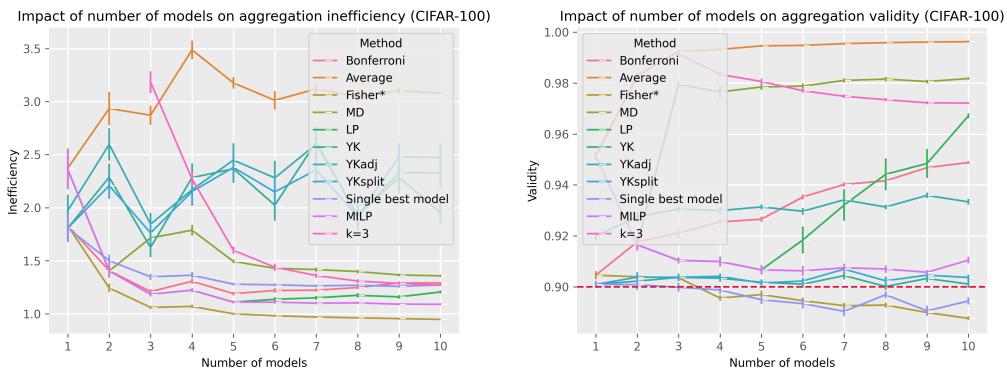


Figure 6: Empirical coverage estimate of EWMV across multiple calibration sample sizes n_{cal} for ($\alpha = 0.1$) using RAPS as the conformal method aggregating three CIFAR-10 predictors.

For this experiment, we repeat the CIFAR-100 classification experiment from section 6.2 ten times, each with a corresponding number of models to combine. The goal is to measure the impact the

486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 7: Inefficiency (left) and validity (right) of the most efficient collection of aggregation baselines from 6.6 as a function of the number of models, reported is $\mu \pm 2\sigma$ over ten runs, with error-level $\alpha = 0.1$. Of the approaches that preserve validity, MILP and LP are the most efficient.

number of models play on the efficiency of EWMV and the baselines from section 6.6. For each model size, we randomly sample the corresponding number of models from the ten models available. For reference, we also report the performance of the single best model in the sample. Results under Figure 7 indicate efficiency improves, on average, the more models we add. We further observe these benefits diminish as we consider more models. This results suggest EWMV estimates the more efficient combination the more models we consider and thus makes an argument for collecting more models. The diminishing returns also suggest a sparse combination may provide a reasonable efficiency/compute tradeoff. This is particularly important for tasks where model inference is costly (e.g. Open QA).

7 CONCLUSIONS & FUTURE WORK

In this work we propose EWMV, a novel algorithm to improve the efficiency of conformal methods by leveraging two readily available resources: the calibration data and a plethora of pre-estimated predictors. We show EWMV leads to more efficient conformal predictors for image classification, natural question answering and risk stratification. This is important because reducing the size of the prediction sets, without compromising validity, mitigates false discovery costs in drug discovery and delayed response of medical emergencies. Future work could explore aggregation of conditionally valid conformal predictors to ensure coverage of relevant groups; furthermore, it may open up the possibility to tailor the weights according to the input, rather than having uniform weights across the space. It could also be fruitful to explore weight estimation to aggregate risk controlling prediction sets, as this has the potential to mitigate inefficiencies in other tasks (e.g. image segmentation).

540 **Reproducibility statement:** All details to reproduce experiments are in appendix section A.3
 541

542 **REFERENCES**
 543

544 Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I. Jordan. Uncertainty Sets
 545 for Image Classifiers using Conformal Prediction, September 2022. URL <http://arxiv.org/abs/2009.14193>. arXiv:2009.14193 [cs].
 546

547 Anastasios N. Angelopoulos and Stephen Bates. A Gentle Introduction to Conformal Prediction and
 548 Distribution-Free Uncertainty Quantification, December 2022. URL <http://arxiv.org/abs/2107.07511>. arXiv:2107.07511 [cs, math, stat].
 549

550 Anastasios N. Angelopoulos and Stephen Bates. Conformal prediction: A gentle introduction.
 551 *Foundations and Trends® in Machine Learning*, 16(4):494–591, 2023. URL <https://www.nowpublishers.com/article/Details/MAL-101>. Publisher: Now Publishers, Inc.
 552

553 Anastasios N. Angelopoulos, Stuart Pomerantz, Synho Do, Stephen Bates, Christopher P. Bridge,
 554 Daniel C. Elton, Michael H. Lev, R. Gilberto González, Michael I. Jordan, and Jitendra Ma-
 555 lik. Conformal Triage for Medical Imaging AI Deployment, February 2024. URL <http://medrxiv.org/lookup/doi/10.1101/2024.02.09.24302543>.
 556

557 Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical Foundations
 558 of Conformal Prediction, March 2025. URL <http://arxiv.org/abs/2411.11824>.
 559 arXiv:2411.11824 [math].

560 Vineeth N. Balasubramanian, Shayok Chakraborty, and Sethuraman Panchanathan. Conformal pre-
 561 dictions for information fusion: A comparative study of p-value combination methods. *Annals
 562 of Mathematics and Artificial Intelligence*, 74(1-2):45–65, June 2015. ISSN 1012-2443, 1573-
 563 7470. doi: 10.1007/s10472-013-9392-4. URL <http://link.springer.com/10.1007/s10472-013-9392-4>.
 564

565 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Predictive
 566 inference with the jackknife+. *The Annals of Statistics*, 49(1):486–507, 2021. Publisher: JSTOR.
 567

568 Andrea Campagner, Marília Barandas, Duarte Folgado, Hugo Gamboa, and Federico Cabitza. En-
 569 semble Predictors: Possibilistic Combination of Conformal Predictors for Multivariate Time Se-
 570 ries Classification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(11):
 571 7205–7216, November 2024. ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.
 572 2024.3388097. URL <https://ieeexplore.ieee.org/document/10497903/>.
 573

574 John J Cherian, Isaac Gibbs, and Emmanuel J Candès. Large language model validity via enhanced
 575 conformal prediction methods.
 576

577 Giovanni Cherubin. Majority vote ensembles of conformal predictors. *Machine Learning*, 108(3):
 578 475–488, March 2019. ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-018-5752-y. URL
 579 <http://link.springer.com/10.1007/s10994-018-5752-y>.
 580

581 Tiffany Ding, Anastasios N Angelopoulos, Stephen Bates, Michael I Jordan, and Ryan J Tibshirani.
 582 Class-Conditional Conformal Prediction with Many Classes.
 583

584 Juan Jose Garcia, Rebecca Kitzmiller, Ashok Krishnamurthy, and Jessica K. Zegre-Hemsey.
 585 Selective classification with machine learning uncertainty estimates improves ACS predic-
 586 tion: A retrospective study in the prehospital setting., June 2024. URL <https://www.researchsquare.com/article/rs-4437265/v1>.
 587

588 Juan Jose Garcia, Nikhil Sarin, Rebecca R Kitzmiller, Ashok Krishnamurthy, and Jessica K Zegre-
 589 Hemsey. Risk stratification through class-conditional conformal estimation: A strategy that im-
 590 proves the rule-out performance of MACE in the prehospital setting. *Proceedings of Machine
 591 Learning Research*, 252:1-15(Machine Learning for Healthcare), July 2024.
 592

593 Matteo Gasparin and Aaditya Ramdas. Conformal online model aggregation, May 2024a. URL
<http://arxiv.org/abs/2403.15527>. arXiv:2403.15527 [stat].

594 Matteo Gasparin and Aaditya Ramdas. Merging uncertainty sets via majority vote, March 2024b.
 595 URL <http://arxiv.org/abs/2401.09379>. arXiv:2401.09379 [stat].
 596

597 Jiawei Ge, Debarghya Mukherjee, and Jianqing Fan. Optimal Aggregation of Prediction Intervals
 598 under Unsupervised Domain Shift.

599 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.
 600

602 Ahmed9275 Hugginface. Vit-Cifar100, May 2022. URL <https://huggingface.co/Ahmed9275/Vit-Cifar100>.
 603

604 Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. *Machine Learning*, 110(3):457–506, March 2021. ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-021-05946-3. URL <https://link.springer.com/10.1007/s10994-021-05946-3>.
 605

606 jaycamper. swin-tiny-patch4-window7-224-finetuned-cifar100. URL <https://huggingface.co/jaycamper/swin-tiny-patch4-window7-224-finetuned-cifar100>.
 607

608 jialicheng. cifar100-resnet-50, a. URL <https://huggingface.co/jialicheng/cifar100-resnet-50>.
 609

610 jialicheng. cifar100-vit-base, b. URL <https://huggingface.co/jialicheng/cifar100-vit-base>.
 611

612 jialicheng. cifar100-vit-large, c. URL <https://huggingface.co/jialicheng/cifar100-vit-large>.
 613

614 Ying Jin and Emmanuel J Candes. Selection by Prediction with Conformal p-values. *JMLR*, (24), April 2023.
 615

616 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 617 Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. In Bonnie
 618 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on
 619 Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
 620 URL <https://aclanthology.org/2020.emnlp-main.550>.
 621

622 Shayan Kiyani, George Pappas, and Hamed Hassani. Length Optimization in Conformal Prediction,
 623 December 2024. URL <http://arxiv.org/abs/2406.18814>. arXiv:2406.18814 [stat].
 624

625 A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. *Master's thesis, University
 626 of Tront*, 2009. URL <https://cir.nii.ac.jp/crid/1572824499126417408>.
 627

628 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 629 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 630 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 631 Petrov. Natural Questions: A Benchmark for Question Answering Research. *Transactions of
 632 the Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276.
 633 URL <https://aclanthology.org/Q19-1026/>. Place: Cambridge, MA Publisher: MIT
 634 Press.
 635

636 Yin Tat Lee and Aaron Sidford. Efficient Inverse Maintenance and Faster Algorithms for Linear
 637 Programming. In *2015 IEEE 56th Annual Symposium on Foundations of Computer Science*, pp.
 638 230–249, October 2015. doi: 10.1109/FOCS.2015.23. URL <https://ieeexplore.ieee.org/abstract/document/7354397>. ISSN: 0272-5428.
 639

640 J. Lei. Classification with confidence. *Biometrika*, 101(4):755–769, December 2014. ISSN
 641 0006-3444, 1464-3510. doi: 10.1093/biomet/asu038. URL <https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asu038>.
 642

648 Shuo Li, Sangdon Park, Insup Lee, and Osbert Bastani. TRAQ: Trustworthy Retrieval Augmented
 649 Question Answering via Conformal Prediction, April 2024. URL <http://arxiv.org/abs/2307.04642>. arXiv:2307.04642 [cs].
 650

651 Ruiting Liang, Wanrong Zhu, and Rina Foygel Barber. Conformal prediction after efficiency-
 652 oriented model selection, November 2024. URL <http://arxiv.org/abs/2408.07066>.
 653 arXiv:2408.07066 [stat].
 654

655 Ruiting Liang, Wanrong Zhu, and Rina Foygel Barber. Conformal prediction after data-
 656 dependent model selection, July 2025. URL <http://arxiv.org/abs/2408.07066>.
 657 arXiv:2408.07066 [stat].
 658

659 Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In *Text Summa-
 660 rization Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational
 661 Linguistics. URL <https://aclanthology.org/W04-1013/>.
 662

663 Jiachang Liu, Chudi Zhong, Boxuan Li, Margo Seltzer, and Cynthia Rudin. FasterRisk: Fast and
 664 Accurate Interpretable Risk Scores, October 2022. URL <http://arxiv.org/abs/2210.05846>. arXiv:2210.05846 [cs].
 665

666 Rui Luo and Zhixin Zhou. Conformity Score Averaging for Classification.
 667

668 Andrey Malinin, Liudmila Prokhorenkova, and Aleksei Ustimenko. Uncertainty in Gradient Boost-
 669 ing via Ensembles. *arXiv:2006.10562 [cs, stat]*, April 2021. URL <http://arxiv.org/abs/2006.10562>. arXiv: 2006.10562.
 670

671 MazenAmria. swin-base-finetuned-cifar100, a. URL <https://huggingface.co/MazenAmria/swin-base-finetuned-cifar100>.
 672

673 MazenAmria. swin-small-finetuned-cifar100, b. URL <https://huggingface.co/MazenAmria/swin-small-finetuned-cifar100>.
 674

675 MazenAmria. swin-tiny-finetuned-cifar100, c. URL <https://huggingface.co/MazenAmria/swin-tiny-finetuned-cifar100>.
 676

677 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method effi-
 678 ciency in optimization. 1983. URL <https://elibrary.ru/item.asp?id=38229986>.
 679 Publisher: Wiley-Interscience.
 680

681 pk7098. cifar100-vit-base-patch16-224-in21k. URL <https://huggingface.co/pk7098/cifar100-vit-base-patch16-224-in21k>.
 682

683 Shenghao Qin, Jianliang He, Qi Kuang, Bowen Gang, and Yin Xia. Data-light Uncertainty Set
 684 Merging with Admissibility, October 2025. URL <http://arxiv.org/abs/2410.12201>. arXiv:2410.12201 [stat].
 685

686 Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, and Emmanuel Candès. With Malice Toward
 687 None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, April
 688 2020a. doi: 10.1162/99608f92.03f00592. URL <https://hdsr.mitpress.mit.edu/pub/qedrwc3>.
 689

690 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with Valid and Adaptive Cov-
 691 erage. In *Advances in Neural Information Processing Systems*, volume 33, pp. 3581–3591. Cur-
 692 ran Associates, Inc., 2020b. URL <https://proceedings.neurips.cc/paper/2020/hash/244edd7e85dc81602b7615cd705545f5-Abstract.html>.
 693

694 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
 695 heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
 696 Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. *International Jour-
 697 nal of Computer Vision*, 115(3):211–252, December 2015. ISSN 0920-5691, 1573-1405.
 698 doi: 10.1007/s11263-015-0816-y. URL <http://link.springer.com/10.1007/s11263-015-0816-y>.
 699

702 B. Rüger. Das maximale signifikanzniveau des Tests: “LehneH o ab, wennk untern gegebenen tests zur ablehnung führen”. *Metrika*, 25(1):171–178, December 1978. ISSN 0026-1335, 703 1435-926X. doi: 10.1007/BF02204362. URL <http://link.springer.com/10.1007/BF02204362>.

704

705

706 Ludger Rüsendorf. Random variables with maximum sums. *Advances in Applied Probability*, 14(3):623–632, 1982. URL <https://www.cambridge.org/core/journals/advances-in-applied-probability/article/random-variables-with-maximum-sums/DOC10894C200FB77E3F192CB1DD62806>. Publisher: Cambridge University Press.

707

708

709

710

711

712 Yam Tawachi and Bracha Laufer-Goldshtein. MULTI-DIMENSIONAL CONFORMAL PREDICTION. 2025.

713

714 Paolo Toccaceli. Conformal Predictor Combination using Neyman-Pearson Lemma. 2019.

715

716 Paolo Toccaceli and Alexander Gammerman. Combination of Conformal Predictors for Classification. 2017.

717

718 Paolo Toccaceli and Alexander Gammerman. Combination of inductive mondrian conformal predictors. *Machine Learning*, 108(3):489–510, March 2019. ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-018-5754-9. URL <http://link.springer.com/10.1007/s10994-018-5754-9>.

719

720

721

722

723 Vladimir Vovk. Cross-conformal predictors. *Annals of Mathematics and Artificial Intelligence*, 74: 9–28, 2015. Publisher: Springer.

724

725 Vladimir Vovk and Ruodu Wang. Combining p-values via averaging. *Biometrika*, 107(4):791–808, 2020. URL <https://academic.oup.com/biomet/article-abstract/107/4/791/5856302>. Publisher: Oxford University Press.

726

727

728

729 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace’s Transformers: State-of-the-art Natural Language Processing, July 2020. URL <http://arxiv.org/abs/1910.03771>. arXiv:1910.03771 [cs].

730

731

732

733

734

735 Ran Xiao, Cheng Ding, Xiao Hu, and Jessica Zègre-Hemsey. ML for MI - Integrating Multimodal Information in Machine Learning for Predicting Acute Myocardial Infarction, October 2022. URL <http://medrxiv.org/lookup/doi/10.1101/2022.10.25.22281536>.

736

737

738 Yachong Yang and Arun Kumar Kuchibhotla. Selection and Aggregation of Conformal Prediction Sets. *Journal of the American Statistical Association*, 120(549):435–447, January 2025. ISSN 0162-1459, 1537-274X. doi: 10.1080/01621459.2024.2344700. URL <https://tandfonline.com/doi/full/10.1080/01621459.2024.2344700>.

739

740

741

742 Hao Zeng, Kangdao Liu, Bingyi Jing, and Hongxin Wei. Parametric Scaling Law of Tuning Bias in Conformal Prediction.

743

744

745

746

747

748

749

750

751

752

753

754

755

810 A.3 EXPERIMENT DETAILS
811812 A.3.1 SYNTHETIC EXPERIMENT: SECTION 6.1
813

814 This experiment is run on a Intel(R) Xeon(R) CPU E5-2683 v4 with 32Gb of memory and 125Gb of
815 Disk. The Synthetic dataset is attached. Data is randomly split into calibration, estimation, training
816 and test sets. We train three MLPs for using 200 batch size for 300 epochs with 0.01 learning rate.
817 Each MLP has 500 hidden units. Once all models are trained, we apply APS (Angelopoulos &
818 Bates, 2022) and our proposed Algorithm 1. We use Gurobi to solve the proposed LP and MILP,
819 that is formulations equation 7 and equation 6 respectively). Total runtime is (< 2 hours). Both LP
820 and MILP estimation is (< 10 minutes).
821

822 A.3.2 IMAGE CLASSIFICATION EXPERIMENTS: SECTION 6.2
823

824 The Imagenet validation dataset can be obtained from (Wolf et al., 2020). All the pre-estimated
825 models listed in Table 1 can be downloaded from (Wolf et al., 2020). The RAPS conformal
826 implementation is taken from (Angelopoulos et al., 2022). For each pre-estimated model, we perform
827 inference over the entire dataset using on an A-100 GPU and save the softmax outputs. To apply
828 our proposal, we load the softmax scores, randomly split the scores into test, calibration and esti-
829 mation sets, and perform Algorithm 1 on a v2-8 TPU with 300Gb of memory and 225Gb of Disk.
830 We use Gurobi to solve the proposed LP and MILP, that is formulations equation 7 and equation 6
831 respectively. We repeat this experiment ten times, each with a different random split. Total run-
832 time is (< 10 hours). Both LP and MILP estimation is (< 30 minutes) for each repetition. This
833 process is the same for the CIFAR-100 dataset (Available to download from Wolf et al. (2020)).
834 With corresponding models under table 2 available for download. Please refer to table under A.5 for
835 corresponding URLs.
836

A.3.3 OPEN DOMAIN QA EXPERIMENT: SECTION 6.3

837 We follow the instructions in <https://github.com/shuoli90/TRAQ> to download the dataset
838 (Kwiatkowski et al., 2019) and apply the TRAQ conformal method (Li et al., 2024) on the listed
839 language models from Table 3. All the LMs are publicly available to download from (Wolf et al.,
840 2020). We perform model inference on the entire dataset, obtain the TRAQ prediction sets and apply
841 Algorithm 1 on a M2 Mac Studio with 32Gb of memory and 500Gb of disk. We repeat this experi-
842 ment ten times, each with a different random split of scores into test, calibration and estimation sets.
843 We use Gurobi to solve the proposed LP and MILP, that is formulations equation 7 and equation 6
844 respectively. Total runtime is (< 24 hours). Both LP and MILP estimation is (< 30 minutes) for
845 each repetition. Please refer to table under A.5 for corresponding model URLs.
846

A.3.4 RISK STRATIFICATION EXPERIMENTS: SECTION 6.4

847 The dataset is available from Garcia et al. (2024) upon reasonable request. Data is randomly split
848 into calibration, estimation, training, and test sets. The models ECG-DL (Xiao et al., 2022), GBDT
849 (Malinin et al., 2021) and FasterRisk (Liu et al., 2022) with the corresponding Github repos listed in
850 the papers. The hyper parameters for GBDT are listed in Garcia et al. (2024). The hyper-parameters
851 for FR are listed in Garcia et al. (2024). Once each model is trained, we apply class-conditional
852 conformal (Lei, 2014) and our proposed Algorithm 1 on a Intel(R) Xeon(R) CPU E5-2683 v4 with
853 32Gb of memory and 125Gb of Disk. We use Gurobi to solve the proposed LP and MILP, that is
854 formulations equation 7 and equation 6 respectively). We repeat this experiment ten times. Total
855 runtime is (< 10 hours). Both LP and MILP estimation is (< 15 minutes) for each repetition.
856

A.3.5 EWMV EMPIRICAL UPPER BOUND: SECTION 6.7

857 To produce figure 6 we follow the ablation in figure 3.4 from Angelopoulos & Bates (2022). We
858 fix $\alpha = .1$, and sample $R = 1000$ different estimation, calibration and test samples to produce
859 the empirical CDF of EWMV's coverage. We repeat this for four different calibration sizes (500,
860 1000, 2500, 5000, 7500). We fix the estimation samples to 100. Aggregation is over three predictors
861 (Swin, Vit, Resnet18), with the RAPS conformal method, for CIFAR-10 image classification.
862

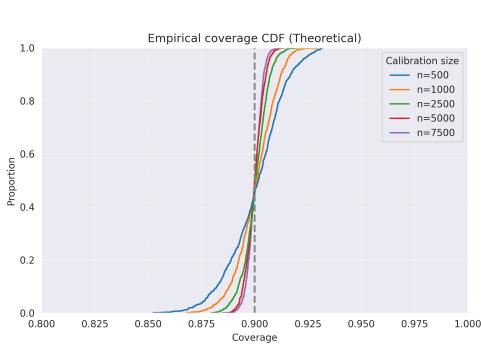


Figure 10: Empirical coverage estimate that nominal conformal predictors theoretically achieve for multiple calibration sample sizes and ($\alpha = 0.1$).

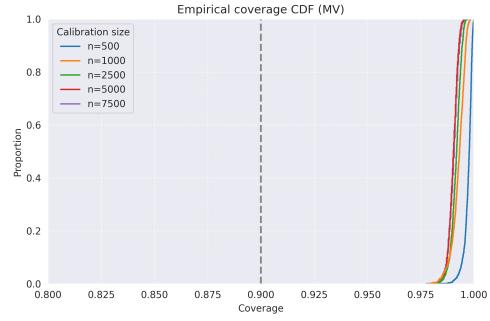


Figure 11: Empirical coverage estimate of MV across multiple calibration sample sizes n_{cal} for ($\alpha = 0.1$) using RAPS as the conformal method aggregating three CIFAR-10 predictors.

Method	Inefficiency (\downarrow)	Validity (≥ 0.90)	Method	Inefficiency (\downarrow)	Validity (≥ 0.99)
k=10	5.745 ± 0.186	0.997 ± 0.001	k=10	40.097 ± 6.885	1.000 ± 0.000
k=9	3.233 ± 0.118	0.996 ± 0.001	k=9	19.908 ± 3.804	1.000 ± 0.000
Avg.	3.089 ± 0.089	0.996 ± 0.001	Avg.	18.262 ± 2.943	1.000 ± 0.000
YK	2.525 ± 1.079	0.897 ± 0.012	k=8	13.333 ± 2.566	1.000 ± 0.000
YKadj	2.377 ± 1.548	0.931 ± 0.011	k=7	10.897 ± 1.912	1.000 ± 0.000
k=8	2.351 ± 0.083	0.993 ± 0.001	k=6	8.731 ± 1.611	0.999 ± 0.000
YKsplit	2.278 ± 1.316	0.898 ± 0.016	k=1	7.849 ± 2.873	0.995 ± 0.003
k=7	1.878 ± 0.051	0.990 ± 0.001	Bonferroni	7.849 ± 2.873	0.995 ± 0.003
k=6	1.608 ± 0.041	0.986 ± 0.002	MV	7.603 ± 1.777	0.999 ± 0.001
MD	1.480 ± 0.037	0.985 ± 0.002	k=5	7.602 ± 1.747	0.999 ± 0.001
MV	1.432 ± 0.027	0.981 ± 0.003	k=4	6.316 ± 1.681	0.998 ± 0.001
k=5	1.428 ± 0.029	0.981 ± 0.002	k=3	6.209 ± 2.266	0.997 ± 0.002
k=4	1.324 ± 0.024	0.975 ± 0.004	MD	6.077 ± 1.750	0.999 ± 0.001
k=1	1.300 ± 0.097	0.947 ± 0.009	k=2	5.968 ± 2.219	0.996 ± 0.003
Bonferroni	1.300 ± 0.097	0.947 ± 0.009	YK	3.662 ± 0.487	0.991 ± 0.004
Single+RAPS	1.299 ± 0.051	0.903 ± 0.014	YKsplit	3.601 ± 0.736	0.991 ± 0.004
k=3	1.263 ± 0.024	0.971 ± 0.004	YKadj	N/A	N/A
k=2	1.246 ± 0.036	0.962 ± 0.005	Single+RAPS	2.836 ± 0.253	0.991 ± 0.003
LP (Ours)	1.233 ± 0.112	0.962 ± 0.042	LP (Ours)	2.531 ± 0.680	0.993 ± 0.005
MILP (Ours)	1.123 ± 0.045	0.912 ± 0.008	MILP (Ours)	2.420 ± 0.455	0.992 ± 0.003
Fisher*	0.947 ± 0.007	0.886 ± 0.007	Fisher*	1.069 ± 0.009	0.944 ± 0.005

Table 6: CIFAR-100 baseline from section 6.6 repeated with error level $\alpha = 0.1$ and $\alpha = 0.01$. MILP and LP have the best performance. Fisher* is not valid. N/A means the adjusted error level $\bar{\alpha}$ from Yang & Kuchibhotla (2025) could not be computed for the current number of models and error level.

A.3.6 BASELINE COMPARISON, EXTRA EXPERIMENTS

In table 6, we repeat the baseline comparison from section 6.6 with other error levels (i.e. $\alpha \in \{0.1, 0.01\}$). In table 7, we repeat the Imagenet experiment from 6.2 with the same baselines from table 6. To control computational complexity of p-value methods, we reduce the total sample size to 5000 and consider five models selected at random and $\alpha \in \{0.1, 0.05\}$. Results on both the CIFAR-100 and Imagenet experiments suggest both LP and MILP remain the most efficient of the methods that preserve validity.

A.3.7 PERFORMANCE OF MULTIPLE SCORES AS A FUNTION OF THE ERROR LEVEL

We perform the CIFAR-10 experiment from section 6.2 with two different scores, APS Romano et al. (2020b) and $1 - p(y|x)$. We split the dataset into two-thirds for testing D_{test} and one-third for

name	Inefficiency(\downarrow)	Validity(≥ 0.90)	name	Inefficiency(\downarrow)	Validity (≥ 0.95)
k=5	21.826 \pm 3.679	0.994 \pm 0.001	k=5	54.636 \pm 13.819	0.998 \pm 0.001
Avg.	12.388 \pm 1.082	0.993 \pm 0.003	Avg.	25.395 \pm 3.146	0.998 \pm 0.001
k=4	6.487 \pm 1.495	0.988 \pm 0.004	k=4	14.338 \pm 1.956	0.995 \pm 0.001
YKadj	5.495 \pm 1.541	0.940 \pm 0.030	YKadj	8.935 \pm 12.023	0.990 \pm 0.011
MD	3.819 \pm 0.938	0.984 \pm 0.006	MV	7.237 \pm 0.616	0.990 \pm 0.003
MV	3.790 \pm 0.888	0.984 \pm 0.006	YK	6.615 \pm 0.778	0.948 \pm 0.011
YK	3.482 \pm 0.972	0.898 \pm 0.041	YKsplit	6.615 \pm 0.778	0.948 \pm 0.011
YKsplit	3.482 \pm 0.972	0.898 \pm 0.041	k=3	6.287 \pm 0.325	0.989 \pm 0.003
k=3	3.217 \pm 0.726	0.980 \pm 0.008	MD	3.881 \pm 0.353	0.987 \pm 0.004
k=2	2.100 \pm 0.293	0.965 \pm 0.012	Bonferroni	3.485 \pm 1.595	0.970 \pm 0.017
Single+RAPS	1.787 \pm 0.047	0.904 \pm 0.005	k=1	3.485 \pm 1.595	0.970 \pm 0.017
Bonferroni	1.759 \pm 0.260	0.931 \pm 0.019	k=2	3.306 \pm 0.389	0.979 \pm 0.005
k=1	1.759 \pm 0.260	0.931 \pm 0.019	Single+RAPS	2.595 \pm 0.215	0.951 \pm 0.012
LP (Ours)	1.590 \pm 0.159	0.915 \pm 0.019	LP (Ours)	1.964 \pm 0.189	0.958 \pm 0.012
MILP (Ours)	1.590 \pm 0.159	0.915 \pm 0.019	MILP (Ours)	1.964 \pm 0.189	0.958 \pm 0.012
Fisher*	1.155 \pm 0.044	0.889 \pm 0.018	Fisher*	1.296 \pm 0.033	0.918 \pm 0.013

Table 7: Baseline from section 6.6 repeated with error level $\alpha = 0.1$ and $\alpha = 0.05$ for the Imagenet task. MILP and LP have the best performance. Fisher* is not valid. N/A means the adjusted error level $\bar{\alpha}$ from Yang & Kuchibhotla (2025) could not be computed for the current number of models and error level.

calibration D_n . To evaluate methods (i.e. LP and MILP), we further split the calibration dataset D_n into 70% for calibration D_{cal} and 30% for estimation D_{est} . We also consider the model selection approaches (i.e. YK, YKsplit) from section 6.8 and the single smallest individual predictor on the test data (Oracle single model). Results in figure 12 and figure 13 suggest EWMV is more favorable w.r.t the smallest oracle model the smaller α is. We speculate this is because the factor of 2 correction in the error level affects less.

A.4 EXTRAS

A.4.1 LIST OF ACRONYMS

APS: Adaptive prediction sets

RAPS: Random adaptive prediction sets

TRAQ: Trustworthy retrieval augmented question answering

LP: Linear program formulation of EWMV

MILP: Mixed integer linear program formulation of EWMV.

WMV: Weighted majority vote.

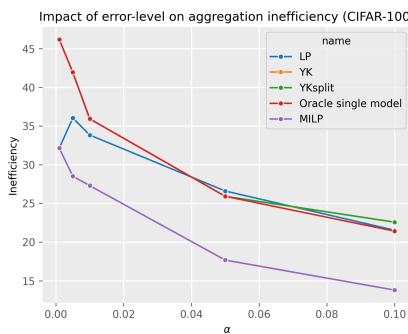


Figure 12: Inefficiency as a function of the error level for the APS score

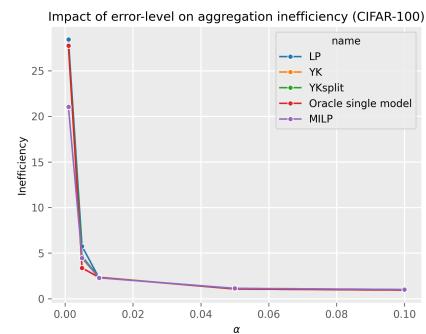
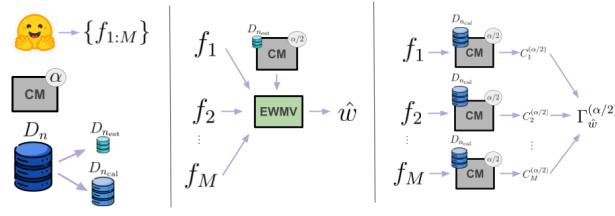


Figure 13: Inefficiency as a function of the error level for the $1 - p(y|x)$ score

972 MV: Majority vote.
973
974975 A.5 MODEL AND DATASET LIST
976977 To aid reproducibility, we list the model and URL and license below grouped by each table under
978 Section 6. We further list the datasets and conformal methods used.
979

Model	URL
Alexnet	https://docs.pytorch.org/vision/main/models.html
SqueezeNet	https://docs.pytorch.org/vision/main/models.html
MobileNet	https://huggingface.co/shehan97/mobilevit2-1.0-imagenet1k-256
Resnet50	https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
Inception	https://docs.pytorch.org/vision/main/models.html
VGG19	https://docs.pytorch.org/vision/main/models.html
ConvNext-large	https://docs.pytorch.org/vision/main/models.html
Wide-resnet101-2	https://docs.pytorch.org/vision/main/models.html
Densenet161	https://docs.pytorch.org/vision/main/models.html
Swin-b	https://docs.pytorch.org/vision/main/models.html
Regnet-Y-32GF	https://docs.pytorch.org/vision/main/models.html
Dinov2	https://huggingface.co/facebook/dinov2-large-imagenet1k-1-layer
Vit-h-14	https://docs.pytorch.org/vision/main/models.html
Model	URL
Resnet50	jialicheng (a)
Swin-tiny-p4	jaycamper
ConvNext	https://huggingface.co/karan99300/ConvNext-finetuned-CIFAR100
Swin-tiny	MazenAmria (c)
Swin-small	MazenAmria (b)
Vit-base	jialicheng (b)
Vit-large	jialicheng (c)
Vit	Hugginface (2022)
Vit-base-in21k	pkr7098
Swin-base	MazenAmria (a)
Model	URL
Resnet18	https://huggingface.co/edadaltocg/resnet18_cifar10
Swin	https://huggingface.co/Weili/swin-base-patch4-window7-224-in22k-finetuned-cifar10
Vit	https://huggingface.co/MF21377197/vit-small-patch16-224-finetuned-Cifar10
Model	URL
MiniLM	https://huggingface.co/deepset/minilm-uncased-squad2
DynamicBert	https://huggingface.co/Intel/dynamic_tinybert
Roberta	https://huggingface.co/deepset/roberta-base-squad2
DistillBert	https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad
MobileBert	https://huggingface.co/csarron/mobilebert-uncased-squad-v2
Dataset	URL
Synthetic	Attached
Imagenet	https://huggingface.co/datasets/mlx-vision/imagenet-1k
Cifar-10	https://huggingface.co/datasets/renumics/cifar10-outlier
Cifar-100	https://docs.pytorch.org/vision/main/generated/torchvision.datasets.CIFAR100.html
Conformal method code	URL
TRAQ	https://github.com/shuoli90/TRAQ
RAPS	https://github.com/aangelopoulos/conformal-prediction
APS	https://github.com/aangelopoulos/conformal-prediction
Class-Conditional	https://github.com/jjgarciac/cc-risk-stratification

1057 Figure 14: Standard **CP**
 1058 pipeline to produce a α -valid
 1059 set-valued predictor $C_1^{(\alpha)} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ with calibration data
 1060 D_n .
 1061



1057 Figure 15: Proposed pipeline to produce a α -valid set-
 1058 valued predictor $\Gamma_{\hat{w}}^{(\alpha/2)} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ from calibration data
 1059 D_{cal} and estimation data D_{est} where $D_n = D_{\text{cal}} \uplus D_{\text{est}}$. Note
 1060 $\Gamma_{\hat{w}}^{(\alpha/2)}$ is a set-generating function and not a prediction set
 1061 for a given input.

1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079