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Abstract
The remarkable success of generative AI mod-
els, enabled by large-scale training on massive
and diverse datasets, has raised growing concerns
about whether their outputs constitute copyright
infringement. Under U.S. copyright law, two key
elements must be established for infringement:
the model is trained on the copyrighted content
(Access) and its outputs are substantially sim-
ilar to the copyrighted content (Similarity).
However, determining infringement is inherently
complex, and legal practices often rely on sub-
jective assessments. In this paper, we focus on
designing criteria that provide quantitative evi-
dence to help determine AI copyright infringe-
ment. We introduce a game-theoretic framework
that formalizes Access and Similarity as
a membership inference game and a data recon-
struction game, respectively, between a plaintiff
and a defendant. The plaintiff’s performance
in these games serves as a quantifiable criterion
with a clear operational meaning, aligned with the
real-world legal context. We also prove that the
widely adopted Near-Access-Free (NAF) copy-
right framework fails to provide meaningful guar-
antees for either game. Our theoretical findings
are supported by empirical evaluations on image
diffusion models, highlighting the potential of
our framework for informing legal thresholds and
guiding AI copyright regulation.

1. Introduction
Generative AI models have achieved remarkable success,
driven by training on extensive and diverse datasets span-
ning various domains, including images, text, code, music,
and more (Ramesh et al., 2021; 2022; Rombach et al., 2022;
Brown et al., 2020; Achiam et al., 2023; Li et al., 2022;
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Dhariwal et al., 2020). However, this success raises growing
concerns about whether the outputs of these models consti-
tute copyright infringement (Lee et al., 2023; Franceschelli
& Musolesi, 2022; Samuelson, 2023; Zirpoli, 2023). Given
the vast volume of training data, excluding all copyrighted
content is often impractical. Moreover, using copyrighted
material does not necessarily result in infringement, as long
as the model’s output is not a direct copy of protected con-
tent or can be justified as fair use (Elkin-Koren et al., 2024).
A notable example is the recent lawsuit filed by The New
York Times against OpenAI for copying millions of the
Times’s copyrighted news articles, in-depth investigations,
opinion pieces, reviews, how-to guides, and more1. This
case highlights the need for formal AI copyright regulations
and a pressing question: “How can we determine whether
an AI model infringes on copyright?”

This is a complex and ambitious question, one that even
experts in AI copyright law struggle to answer with a single
objective criterion. This challenge also limits the progress
of establishing proper AI copyright regulations. Copyright
laws and legal precedents are inherently subjective; for ex-
ample, the ordinary observer test is one of the most widely
applied copyright tests, where an “ordinary observer” will
determine if a result is substantially similar (Con, 1988;
Scheffler et al., 2022). This is subjective by nature since
it depends on how the chosen “ordinary observer” feels.
Rather than defining a legal standard, we propose to focus
on designing criteria that provide quantitative evidence to
assist lawyers and judges in determining whether the out-
puts of an AI model constitute copyright infringement, and
can be further utilized as an AI copyright regulation.

We begin by revisiting U.S. copyright law, specifically as in-
terpreted by the Ninth Circuit: “On the plaintiff ’s copyright
infringement claim, the plaintiff has the burden of proving
by a preponderance of the evidence that: . . ., and the de-
fendant copied original expression from the copyrighted
work.”2 To establish that an AI model’s output constitutes a
copy of copyrighted content, the plaintiff must demonstrate
at least two necessary (but not necessarily sufficient) key
elements: (1) Access—that the AI model was trained on

1https://nytco-assets.nytimes.com/2023/
12/NYT_Complaint_Dec2023.pdf

2https://www.ce9.uscourts.gov/
jury-instructions/node/261
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PlaintiffDefendant

𝒟, 𝐶, 𝑦
Decide 𝑏 ∈ {0,1}

𝒟 ∈ 𝒳𝑛−1

𝑏 ∼ Bernoulli(1/2)

𝒟train = ൜
𝒟 ∪ {𝐶}, if 𝑏 = 1

𝒟, if 𝑏 = 0
 

generation 𝑦 ∼ 𝑝𝒟train

Access Evidence

For any 𝑏 such that ℙ 𝑏 = 1 𝑏 = 0 ≤ 𝛼,

ℙ 𝑏 = 1 𝑏 = 1 ≤ 𝛽

False accusation: ℙ 𝑏 = 1 𝑏 = 0

Legitimate accusation: ℙ 𝑏 = 1 𝑏 = 1

Operational meaning

copyrighted data 𝐶 ∈ 𝒳
in 𝒟train ?

𝐶

(a) Access as membership inference game.

PlaintiffDefendant

𝒟, 𝜋, 𝑦
Find 𝑓 ∈ ℱ

𝒟 ∈ 𝒳𝑛−1

draw 𝐶 ∼ 𝜋

𝒟train = 𝒟 ∪ {𝐶}

generation 𝑦 ∼ 𝑝𝒟train

Similarity Evidence

sup
𝑓∈ℱ

ℙ(𝑑 𝑓 𝑦 , 𝐶 ≤ 𝜂) ≤ 𝛾

Similarity measure: 𝑑 𝑓 𝑦 , 𝐶 ≤ 𝜂

Probability of similarity: ℙ(𝑑 𝑓 𝑦 , 𝐶 ≤ 𝜂)

Operational meaning

copyrighted data prior 𝜋 𝐶

find 𝑓 ∈ ℱ

𝑦 𝑓(𝑦)

≈
?

ℱ = {rotation, translation, color mapping, … }
Expression-preserving transform

similar

(b) Similarity as data reconstruction game

Figure 1. Copyright evidence framework of Access and Similarity.

the copyrighted content, and (2) Similarity—that the
model’s output is substantially similar to the copyrighted
work. If the defendant exhibits strong evidence of disprov-
ing either Access or Similarity by satisfying some
criteria, they are unlikely to infringe copyright. Such criteria
can thus serve as the foundation of AI copyright regulations.

Our contributions. We propose formal definitions
that provide shreds of evidence pertaining to the two
key elements of copyright infringement—Access and
Similarity—with clear operational meanings. Having
a clear operational meaning is critical, as the criterion must
be understandable to lawyers and judges for serving as ev-
idence in the actual copyright lawsuit, as well as the AI
copyright regulations. Our key idea is to formulate it as
two game-theoretic problems among two players: the plain-
tiff and the defendant. The goal of the plaintiff is to prove
Access (and Similarity respectively) while the defen-
dant aims to disprove it, similar to the actual lawsuit sce-
nario. We show that the membership inference game (Shokri
et al., 2017) directly corresponds to Access, while the data
reconstruction game (Guo et al., 2022; Balle et al., 2022)
is related to Similarity. Our criterion provides a for-
mal quantitative measure regarding these two aspects by
characterizing the “performance of the plaintiff” in each
game and thus clear operational meanings. As a result,
our criterion serves as a strong candidate for AI copyright
regulations with qualitative measures. Furthermore, we
prove that the popular Near-Access-Free (NAF) copyright
definition (Vyas et al., 2023) does not provide meaningful
guarantees in these two games, which the authors argued
to be related to Access and Similarity. By construct-
ing counterexamples, we demonstrate that even a 0-NAF

(perfectly compliant) model can still violate both Access
and Similarity. We provide experiments on image gen-
erative (diffusion) models against practical attackers in the
aforementioned games, which illustrate that NAF and the
achieving algorithms are inadequate for providing evidence
of both Access and Similarity. Our results under-
score the advantage of our criterion, which is aligned with
real-world copyright law.

2. Related Work
Although there are many works on copyright questions for
generative AI (Somepalli et al., 2023; Min et al., 2024;
He et al., 2024; Panaitescu-Liess et al., 2025), remarkably
few have attempted to tackle the problem from a theoret-
ical perspective. (Vyas et al., 2023) is the first to propose
a mathematical framework, NAF, that attempts to quantify
the degree of copyright infringement for a generative AI
system. They also propose a black-box reduction, the Copy-
Protection-∆ algorithm (CP-∆, Algorithm 1) that converts
any generative model to a model satisfying the NAF crite-
rion. This claim is powerful and appealing, where there has
already been some follow-up work developing new algo-
rithms that satisfy the NAF criterion (Golatkar et al., 2024;
Abad et al., 2024). However, we show that NAF fails to
even provide meaningful evidence for both Access and
Similarity, let alone whether it is an appropriate mea-
sure for AI copyright infringement.

Prior works have also critiqued the NAF framework from
different aspects. (Elkin-Koren et al., 2024) argues that copy-
right cannot be reduced to algorithmic stability, such as dif-
ferential privacy (DP) (Dwork et al., 2014) and NAF, due to
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its inherent complexity, such as fair use. (Henderson et al.,
2023; Lee et al., 2023) argues against NAF in cases when
the original expression of one work appears in other works,
which leads to a similar conclusion above. We agree with
these statements, motivating our focus on providing evi-
dence for Access and Similarity instead of directly
determining copyright infringement, leaving the judgment
to actual copyright law experts. In fact, we believe it is
impossible to have a single mathematical criterion for this
purpose, as we state in the introduction. (Cohen) is the clos-
est related work to ours, where they show that when users
use many prompts, the NAF-guaranteed model can generate
training data samples. In contrast, we prove that even in the
promptless setting, the NAF-guaranteed model’s output can
be close to the copyrighted training data in ℓ2 distance with
high probability.

Unlike NAF, (Scheffler et al., 2022) addresses a distinct
problem: determining “substantial similarity” in legal con-
texts. The authors propose a complexity-theoretic similarity
test based on the description length required to derive one
specific work from another. Their framework is designed
to measure the similarity between two specific samples, re-
gardless of whether they are AI-generated. In contrast, we
directly regulate the ability of the AI model to generate
similar output before its actual generation process, and thus,
orthogonal to their approach. (Chiba-Okabe & Su, 2025)
proposes a distance-based originality measure and the cor-
responding genericization for reducing the risk of copyright
infringement. Their work can be viewed as another attempt
that tries to provide evidence regarding Similarity, but
it is still different from our proposal of leveraging the data
reconstruction game and it does not tackle the problem re-
garding Access. (Chu et al., 2024) proposes measuring
the degree of copyright infringement by comparing the av-
erage loss on copyrighted versus non-copyrighted data in
the training set, and aims to mitigate the risk of generating
copyrighted content by increasing this loss gap during train-
ing. However, the loss gap is a heuristic and does not offer
a rigorous guarantee of copyright protection. Besides trying
to provide theoretical measures related to AI copyright in-
fringement, there are works that instead focus on designing
platforms for distributing revenues to copyrighted content
holders based on Shapely values (Wang et al., 2024) or other
data attribution techniques (Deng & Ma, 2024). This is a
very interesting direction but orthogonal to our work.

Another line of research focuses on watermarking generative
models, that is, injecting detectable signals into generated
samples to enable identification of whether a sample orig-
inates from a specific model (Kirchenbauer et al., 2023;
Zhao et al., 2023b;a; Zhang et al., 2024). Although water-
marking was not originally designed to address copyright
concerns, recent empirical studies have shown that water-
marking language models can reduce the generation of copy-

righted content and mitigate membership inference attacks
on copyrighted training data (Panaitescu-Liess et al., 2025).
Nevertheless, watermarking alone does not provide a formal
framework for measuring copyright infringement, nor does
it offer a rigorous guarantee of copyright protection.

3. The Theory of Copyright Evidence
Framework

An ideal copyright criterion should align with real-world
copyright law and regulations, and must exhibit clear op-
erational meaning that allows general audiences and law
experts outside the computer science field to understand and
utilize it. In this section, we propose a copyright evidence
framework that focuses on providing theoretical evidence
with clear operational meaning pertaining to Access (AI
model was trained on the copyrighted content) (Figure 1a)
and Similarity (AI model’s output is substantially sim-
ilar to the copyrighted work) (Figure 1b). We focus on
providing rigorous evidence about aspects that are neces-
sary conditions for copyright infringement, bypassing the
challenge of defining subjective aspects in copyright law.
While our main focus is to establish the copyright evidence
framework instead of algorithms tailored to it, we briefly
discuss a naive approach for achieving it and how it can be
potentially improved at the end of this section.

Notation. Let D = {x1, ..., xn} ∈ Xn be a dataset. A
training algorithm A applied to D produces a generative
model A(D) = pD. We simply write p whenever the train-
ing dataset is clear in the context. We denote p(·|z) as the
generating probability distribution over X given a prompt
z. Under the promptless setting, we simply use p(·). A
generation y from p is denoted by y ∼ p. We denote C ∈ X
as the copyrighted data of interest.

While our discussion in this section primarily focuses on the
promptless setting p(·), the formulation and the proposed
criterion of copyright evidence naturally generalizes to the
prompt-conditioned case p(·|z) for any given prompt z, as
a promptless model can be viewed as a special instance of a
prompt-conditioned model with a fixed prompt.

3.1. Criterion of Defendant’s Evidence on Access

To establish copyright infringement through Access, the
plaintiff must demonstrate that the defendant (i.e., the model
developer) used a piece of copyrighted data during the train-
ing process. This naturally leads to a game-theoretic setting
between the plaintiff and the defendant: the defendant trains
a generative model, while the plaintiff seeks to determine
whether the model has utilized the copyrighted data based
on its generated samples. This is well-known as the mem-
bership inference game (Shokri et al., 2017).

Definition 3.1 (Membership inference game). Let D be a
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dataset and C be a piece of copyrighted data. The defendant
tosses a fair coin b: if the outcome is heads (b = 1), set
Dtrain = D ∪ {C} and Dtrain = D otherwise (b = 0). She
then trains a generative model pDtrain

. The plaintiff aims to
make a decision b̂ to decide if b = 1 (Dtrain = D ∪ {C})
or b = 0 (Dtrain = D) using the following information: (1)
dataset D and the copyrighted data C; (2) generated samples
y ∼ pDtrain .

The performance of the plaintiff in a membership inference
game can serve as quantitative evidence for the legal no-
tion of Access. If the plaintiff performs poorly in the
game—they fail to prove that the copyrighted data is con-
tained in the training dataset—it constitutes strong evidence
against Access. Accordingly, a low plaintiff performance
serves as a strong AI copyright regulation as well.

Criterion of Access Evidence. The performance of a
membership inference attack is characterized by the Re-
ceiver Operating Characteristic curve (ROC curve), which
shows the the tradeoff curve between true positive rate (TPR)
P(b̂ = 1|b = 1) (when the plaintiff correctly identifies ac-
cess) and false positive rate (FPR) P(b̂ = 1|b = 0) (when
the plaintiff falsely accuses the defendant) at different deci-
sion thresholds. AUROC (Area under the ROC curve) is a
widely-used summary metric that equally treats positive and
negative cases. However, we argue that AUROC is not a
proper metric for copyright access criterion, due to the asym-
metric role of membership prediction and non-membership
prediction. The accurate prediction of non-membership
P(b̂ = 0|b = 0) is not a primary concern, since AI models
without access to the copyrighted data cannot violate copy-
right. Consequently, the prediction of membership, given
by the TPR probability P(b̂ = 1|b = 1), is more relevant.
To deal with this evaluation asymmetry, a better evaluation
metric than AUROC is the TPR at a low FPR (Carlini et al.,
2022) to ensure strong power of the plaintiff. Based on this
analysis, we propose a formal definition based on the perfor-
mance of a defendant’s model in the membership inference
game.
Definition 3.2 ((α, β)-Access-Evidence). A generative
model g satisfies (α, β)-Access-Evidence w.r.t. copyrighted
data C and dataset D, if for all the membership predictors
b̂ defined in Definition 3.1 (w.r.t. D, C) such that P(b̂ =

1|b = 0) ≤ α, the predictor b̂ satisfies P(b̂ = 1|b = 1) ≤ β.

Operational meaning of α, β. The parameter β is a thresh-
old for the probability that the plaintiff correctly identifies
the data access. A lower β restricts the “successful rate”
of membership prediction, thereby enforcing stronger reg-
ulation on the AI model’s use of copyrighted data. The
parameter α is a threshold for the probability of the plaintiff
making a false accusation against the defendant. A plaintiff
with a high false accusation rate is unreliable, and thus their

claims about data access should not be considered mean-
ingful. For example, a plaintiff could trivially accuse every
model of using copyrighted data regardless of evidence. Al-
though this strategy would achieve perfect detection when
copyrighted data is actually used, the corresponding error
probability, P(b̂ = 1|b = 0) = 1, renders such claims
meaningless. By setting α (typically a small number, e.g.,
0.05), we filter out such invalid predictors, ensuring that
only meaningful predictors are considered.

Comparing (α, β)-Access-Evidence with Differential Pri-
vacy. Differential privacy is a popular notion of data privacy
that provides provable protection against membership in-
ference attack (Dwork, 2006; Dwork et al., 2014; Balle
et al., 2020) by ensuring the probabilistic distribution of
model weights/outputs trained on a dataset is robust to the
removal of any individual data point. A generative model
satisfying differential privacy thus offers guarantees for the
membership inference game and thus for (α, β)-Access-
Evidence. However, there are some key differences be-
tween Definition 3.2 and differential privacy, which sug-
gests differential privacy may not be an ideal notion in the
context of Access. For example, a (ε, δ)-DP generative
model satisfies (α, eεα + δ)-Access-Evidence. Neverthe-
less, the original definition of (ε, δ)-DP is not designed
to directly characterize the trade-off curve between α and
β, and it does not distinguish membership prediction and
non-membership prediction, which may make the derived
bounds (e.g., eεα+ δ) too loose. f -DP (Dong et al., 2022)
instead directly defines the differential privacy in terms of
the trade-off between α and β. If A generative model is f -
DP, then it satisfies (α, 1− f(α))-Access-Evidence for any
α by definition. Still, f -DP (and (ε, δ)-DP as well) requires
the privacy guarantee to hold for any dataset and any data
point removal, which can be overly restrictive and may com-
promise model utility. In contrast, for copyright Access,
we are generally only concerned with a particular dataset D
held by model developers and some specified copyrighted
data C. This allows us to retain better model performance
under our Access-Evidence constraint compared to the dif-
ferential privacy framework.

3.2. Criterion of Defendant’s Evidence on
Similarity

Expression-preserving Transforms. In practice, U.S.
courts also test for “substantial similarity” to decide whether
infringement has occurred (pet; alt; Samuelson, 2012). The
overall goal of any such test is to determine whether a trans-
formed, derived work retains protectable elements of the
original work’s expression, or whether it has diverged suf-
ficiently to constitute a new, non-infringing work. How-
ever, defining and testing “substantial similarity” is often
subjective (Scheffler et al., 2022). While there are some
natural similarity measures for common domains, such as
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the ℓ2 distance d(x, y) = ∥x−y∥2 for images, edit distance
d(x, y) = Edit(x, y) for natural languages, one key pitfall
of these similarity measures is that they only consider the
“absolute similarity” and ignore the possibility of underlying
shared expression. One naive example of this possibility, in
the context of image generation, is when a model generates
a rotated or color-hashed version of a copyrighted image in
the training dataset. This transformed image retains “sub-
stantial similarity” from the perspective of lawmakers and
can be argued to infringe on the original work’s copyright,
but it may also have large ℓ2 distance from the original
work. In other words, certain transformations of the work
that do not add new expressions may not be considered
transformative enough to avoid copyright infringement.

Let us denote the set of such abstract transformations by
F , and assume F is given in the following discussion. It is
worth noticing that determinations about what constitutes an
expression-preserving transformation are domain-specific
and often made on a case-by-case basis. Of course, F should
at least include the identity map, i.e., direct comparison. In
the end, we will also discuss how to bypass the difficulty
of determining F by relaxing it to all possible reconstruc-
tion functions in the context of a data reconstruction game,
providing a stronger regulating criterion.

Similarity as Data Reconstruction Game. Suppose
the plaintiff is able to identify an expression-preserving
transformation f ∈ F such that the transformed generated
sample closely resembles the copyrighted content. Then it
is strong evidence of potential copyright infringement. Note
that this process can be viewed as the plaintiff selecting a
reconstruction function from F , with the goal of accurately
recovering the original content C from the generated sample
y. This perspective naturally leads to a data reconstruction
game between the plaintiff and the defendant.

Definition 3.3 (Data reconstruction game). Let D be a
dataset with copyrighted data C. Let pD∪{C} be a gen-
erative model trained on dataset D ∪ {C} by the defendant.
The plaintiff aims to find a transformation f ∈ F to recover
C based on the following information: (1) the dataset D;
(2) generated samples y ∼ pD∪{C}; (3) prior (knowledge)
π about C.

Criterion of Similarity Evidence. The performance
of the plaintiff in the data reconstruction game quanti-
fies the evidence for Similarity. To reduce the like-
lihood of generating copyright-infringing content, we seek
a provable guarantee such that none of the transforma-
tions in F leads to a low reconstruction error of C. A
possible candidate to measure the reconstruction error is
the (normalized) Mean Square Error (MSE) (Guo et al.,
2022). In our case, we can write the expected recon-
struction error as inff∈F EC∼π,y∼pD∪{C}d(f(y), C) with
d(f(y), C) = ℓ2(f(y), C) = ∥f(y) − C∥2/

√
d, where d

is the dimension of the generated data. However, we argue
that this average-case error is not a suitable metric in the
context of copyright similarity, since a model generating
copyrighted content with high probability could yield a large
MSE. For instance, assume y = C with probability 0.99
and y = C + ∆ otherwise. This deviation ∆ can be arbi-
trarily large, e.g, ∆ = 106, which “hacks” the regulation
based on MSE. The model can still generate the copyrighted
content C with probability 0.99, which is a clear copyright
infringement. Alternatively, we propose to directly restrict
the probability that similar samples are generated.

Definition 3.4 ((η, γ)-Similarity-Evidence). A generative
model p satisfies (η, γ)-Similarity-Evidence w.r.t. dataset
D, prior π and function class F , if

sup
f∈F

PC∼π,y∼pD∪{C}(d(f(y), C) ≤ η) ≤ γ. (1)

In practice, the set of expression-preserving transformations
F is domain-specific and may be difficult to determine or
characterize. In this case, from the perspective of reducing
the risk of copyright infringement and regulating generated
content, one conservative choice is to consider all possible
reconstruction functions f applied to samples y ∼ pD∪{C}.
This relaxation provides a stronger criterion and bypasses
the difficulty of specifying F when it is hard to define.

Operational Meaning of η, γ. The error parameter η mea-
sures the reconstruction error, which quantifies the thresh-
old under which the generated and copyrighted contents are
considered “similar” after applying all kinds of expression-
preserving transforms. The probability parameter γ mea-
sures how likely “similar” contents will be generated by the
AI models. The specific choice of η, γ should be determined
by the lawmaker, and the operational meaning helps to make
decisions more clearly.

The Choice of Prior π. In Definition 3.3, one important
component is the prior π that the data reconstructor can
leverage. Indeed, the more π concentrated around the copy-
righted content, the “harder” to ensure low (η, γ) in Defini-
tion 3.4. Consider the case that F is the set of all possible
reconstruction functions. Set π = 1C , the Dirac delta mea-
sure on C. Then there is no generative model p that can
satisfy Definition 3.4 with low (η, γ), since there is always a
trivial reconstruction function f(y) = argmaxy π(y) = C
that perfectly recovers C without leveraging the generated
output y ∼ p. In this case, the “success” of the plain-
tiff in the data reconstruction game is not because the de-
fendant’s output is substantially similar to the copyrighted
content, but instead because the prior π reveals too much
information about the copyrighted data C. It is hence re-
quired that the lawmaker choose a reasonable π so that
the data reconstruction game reflects the main purpose
pertaining to Similarity. The non-informative prior
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π = Uniform(X ) indicates that any information leakage is
purely from samples y ∼ p. It is also possible to choose a
more informative prior (even π = 1C) when the choice of
F avoids the trivial reconstruction issue mentioned above.
We leave the choice of π to be decided by the lawmaker as
well.

Comparing (η, γ)-Similarity-Evidence with Other Data
Reconstruction Guarantees. (Guo et al., 2022) proposes
to measure the degree of data reconstruction guarantees
by MSE Ex∼gD∪{C}∥f(x)− C∥. However, as we dis-
cussed earlier, the notion of average error is not a suit-
able metric for the copyright context, since a large MSE
could still yield a high probability of generating verba-
tim copy of the protected data. On the other hand, (Balle
et al., 2022; Hayes et al., 2023) proposes to directly bound
the probability of approximately correct reconstruction
PC∼π,x∼gD∪{C}(d(f(x), C) ≤ η) ≤ γ. This is a stronger
requirement compared to our Definition 3.4, in the sense
that the guarantee of (Balle et al., 2022; Hayes et al., 2023)
holds for arbitrary reconstruction functions and arbitrary
dataset D. As a result, one would sacrifice more model util-
ity in satisfying such a guarantee. In contrast, for copyright
Similarity, only a particular class of transformation
functions F and a specific dataset D held by model devel-
opers are considered.
Remark 3.5 (Naive achieving algorithm). A straightfor-
ward approach to providing guarantees for Access and
Similarity, as defined in Definitions 3.2 and 3.4, is
to train generative models using noisy gradient methods
such as DP-SGD (Abadi et al., 2016) based on the analy-
sis of (Dong et al., 2022; Balle et al., 2022; Hayes et al.,
2023). However, we stress that this does not imply that
our copyright evidence reduces to privacy guarantees.
As discussed, privacy guarantees impose stricter require-
ments on the model, necessitating greater noise injection
during training and thus leading to degraded model util-
ity. We believe there exist algorithms tailored for copyright
that are better suited than the naive application of DP-SGD
for achieving our copyright evidence goals, highlighting a
promising direction for future research.

4. NAF Cannot Provide Evidence for Access
and Similarity

We demonstrate that the NAF criterion fails to provide ap-
propriate copyright evidence with respect to Access and
Similarity. This highlights the importance of our pro-
posed criteria and, more broadly, underscores that any copy-
right criterion should have a clear and rigorous operational
meaning aligned with the principles of copyright law. We
begin by introducing the NAF criterion.

Definition 4.1 (Near Access Freeness (Vyas et al., 2023)).
Let C be a set of copyrighted datapoints, let safe : C → M

Algorithm 1 CP-∆ algorithm (Vyas et al., 2023)
Input: Divergence ∆ ∈ {∆max,∆KL}, dataset D, learning

algorithm A.
Learning: Partition D into D1 and D2 and set qi =

A(Di), i ∈ [2].
return Model p, where N(z) is the normalizing constant
and

p(y|z) =


min(q1(y|z),q2(y|z))

N(z) if ∆ = ∆max√
q1(y|z)·q2(y|z)

N(z) if ∆ = ∆KL

be a safe reference model, and let ∆ be a divergence between
distributions. We say that a generative model p is kz-near
access-free on some prompt z with respect to C, safe, and
∆ if for all C ∈ C, ∆(p(·|z)∥safeC(·|z)) ≤ kz.

(Vyas et al., 2023) focuses on the sharded-safe model de-
fined as follows. For any learning algorithm A, dataset
D = D1 ∪ D2 with partition D1,D2, and copyrighted data
C ∈ D, we have safeC = A(Di), where C /∈ Di, i ∈ [2].
In the rest of the manuscript, we will focus on this choice of
safe model as well. They propose the Copy-Protection-∆ al-
gorithm (CP-∆ Algorithm 1), which is an ad-hoc approach
allowing generative models to satisfy a kz-NAF guarantee
where kz depends on the divergence between distributions
q1, q2 conditioned on the prompt z. See Theorem A.2 in
Appendix A for more detail. Note that the “best” model
under the NAF criterion is the one satisfying the 0-NAF
guarantee due to the non-negativity of divergence ∆. The
authors of (Vyas et al., 2023) interpret the k-NAF guaran-
tee as leaking k bits of information about the copyrighted
content.

We challenge this claim by theoretically proving that a 0-
NAF guarantee does not provide meaningful evidence for
both Access and Similarity. We will prove this by
constructing counterexamples, where even if the defendant
obtains a 0-NAF generative model via the CP-∆ algorithm,
the model is still vulnerable against membership inference
attacks (MIA) and data reconstruction attacks (DRA). Nu-
merical results are presented in Figure ?? against provably
successful attackers. Our results indicate that even if the
defendant provides a 0-NAF guarantee of their model, it is
possible that the plaintiff can still accurately infer whether a
copyrighted content C is used (Access) or the model out-
put will be close to C with high probability (Similarity).
We now state our main results regarding this argument.

Theorem 4.2 (0-NAF Does Not Provide Evidence for
Access). There exists a dataset D, generative model p
and a membership inference attacker Attack such that p
is 0-NAF with divergence choice ∆KL or ∆max but Attack
achieves FPR α and TPR β with any α, β ∈ (0, 1).
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Theorem 4.2 states that even if a generative model p has
0-NAF guarantee, there is still an attack (i.e. membership
inference) that can discern if p is trained with specific copy-
righted content that achieves arbitrarily high accuracy. As a
result, Theorem 4.2 implies that NAF does not provide
meaningful evidence for Access, since even a 0-NAF
model can be proven to have access to specific copyright
content in the training dataset under the membership infer-
ence attack game.

Proof Sketch. Our proof relies on providing a dataset D
and the learning algorithm A that will output an generative
model q. We show that there exists an instance (D,A) such
that running CP-∆ (Algorithm 1) provides 0-NAF guar-
antees, but there exists a membership inference attacker
Attack with arbitrarily well performance. Specifically,
consider the dataset D = {0, 0,−C,C} for some copy-
righted data C > 0 (a scalar here for simplicity) and
the learned generative model q = A(D) = N(µ(D), 1).
This is the simplified Gaussian mixture model that learns
the mean with a deterministic rule of averaging the train-
ing data. Firstly, note that the partitioned dataset D1 =
{0, 0},D2 = {−C,C} both gives identical generative
model q1 = q2 = N(0, 1). It is obvious that the final
generative model p of Algorithm 1 satisfies the 0-NAF guar-
antee. In the meanwhile, Algorithm 1 will clearly give
a different generative model p′ when the input dataset is
D′ = {0, 0,−C} that does not contain the copyright con-
tent C. By setting Attack to be the likelihood ratio test,
we can characterize the TPR and FPR rate by the KL di-
vergence between p, p′. Finally, we conclude our proof by
showing both ∆KL(p||p′),∆KL(p

′||p) → ∞ as C → ∞ for
both options of ∆KL,∆max in the CP-∆ algorithm.

We prove that a 0-NAF guarantee does not provide mean-
ingful evidence for Similarity as well.

Theorem 4.3 (0-NAF Does Not Provide Evidence for
Similarity). There exists a dataset D and a genera-
tive model p, such that p is 0-NAF with divergence choice
∆KL or ∆max, but still generates substantially similar output
to the copyrighted content C ∈ D with arbitrarily high
probability. Specifically, for any C > 0 and γ ∈ (0, 1],
there exists an instance (D, C, p) with 0-NAF guarantee
such that PZ∼p(∥Z − C∥ ≤ η) ≥ 1− γ.

Proof Sketch. We again consider the simplified Gaussian
mixture model as the generative model q = A(D) =
N(µ(D), σ2). Consider the dataset D = {C1, C2, C} for
some copyrighted data C ∈ R and (C1+C2)/2 = C. Then
both the partitioned dataset D1 = {C1, C2} and D2 = {C}
give identical generative model q1 = q2 = N(C, σ2). It
is obvious that the final generative model p of Algorithm 1
satisfies the 0-NAF guarantee and p = N(C, σ2). This

construction guarantees that for any C > 0 and γ ∈ (0, 1],
there is always a sufficiently small σ such that Theorem 4.3
holds.

The counterexamples presented above, though simple and
specific, already demonstrate that the NAF criterion is insuf-
ficient as evidence for either Access or Similarity. In
contrast, our proposed notions of evidence, Definitions 3.2
and 3.4, have precise operational meanings and are grounded
in a formal game-theoretic formulation between plaintiff and
defendant. These definitions directly quantify the strength of
evidence regarding Access and Similarity, providing
a more principled and interpretable foundation for assessing
copyright-related claims.

5. Experiments: Against the Real-World
Validator

In theory, we have demonstrated that NAF is inadequate as
a criterion for disproving Access and Similarity. We
show that there exist strong MIA or DRA approaches for
the plaintiff to confidently predict if the defendant’s 0-NAF
model was trained using the copyrighted data C, or is highly
likely to output a sample y that is substantially similar to
C. However, such strong approaches may not be available
in practice, where practical MIA and DRA approaches are
often weaker. In this section, we empirically evaluate the
strength of copyright evidence provided by different copy-
right protection mechanisms for image generation tasks.
This simulates how the defendant and plaintiff may realis-
tically play the copyright game with practical approaches
during a copyright trial.

5.1. Experiment Setup

We train conditional diffusion models using the DDPM
framework (Ho et al., 2020) on the CIFAR-10 dataset
(Krizhevsky et al., 2009). We test three approaches of the
defendant (i.e. model provider) in the MIA and DRA game.
First, we consider the case where the defendant trains a
baseline diffusion model. The second case considers mod-
ified diffusion models with k-NAF guarantee. The third
case assumes the defendant has trained a diffusion model
with DP-Adam (Abadi et al., 2016) (ε ∈ {100, 500, 1000},
δ = 10−5) via Opacus (Yousefpour et al., 2021), which can
naively provide (α, β)-Access-Evidence (Definition 3.2)
and (η, γ)-Similarity-Evidence. See Remark 3.5 for further
details. Notably, (Carlini et al., 2023) reports that training
a diffusion model on CIFAR-10 with ε ≥ 50 can already
diverge. This aligns with our findings, where diffusion mod-
els trained with (ε = 100, δ = 10−5) have relatively poor
generation quality. We emphasize that it is possible to de-
velop more sophisticated algorithms that are tailored for
our criterion, and we employ off-the-shelf DP algorithms

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

GenAI Copyright Evidence with Operational Meaning

as a naive solution to merely show that our criterion can be
satisfied.

Additionally, it is worth noting that while CP-∆ (Algo-
rithm 1) provides a k-NAF guarantee, the sampling mech-
anism does not have explicit control of the resulting value
k. (Vyas et al., 2023) also proposes a rejection-sampling-
based approach, CP-k, which allows a generative model to
satisfy k-NAF for any k. See Appendix D and Algorithm 2
for further details. At a high level, the CP-k algorithm takes
three models: a draft model p, trained on the full dataset, and
q1, q2 trained on the datasets D1,D2 respectively, as in CP-
∆. Then, for each generated output y ∼ p with prompt z, the
CP-k algorithm will release sample y only if the maximum
log-likelihood ratio maxi={1,2} log(p(y|z)/qi(y|z)) ≤ k.
When αk denotes the corresponding one-shot acceptance
probability, the CP-k algorithm achieves a (k+log(1/αk))-
NAF guarantee (Vyas et al., 2023). In our experiments,
we study different acceptance probabilities αk ∈ [0, 1] and
examine how the CP-k algorithm affects the performance
of MIA and DRA.

For the plaintiff, we describe the corresponding MIA
and DRA approaches for evaluation of Access and
Similarity evidence below.

Access Evaluation. We employ proximal initialization at-
tacks (PIA) (Kong et al., 2023), the state-of-the-art MIA
approach for diffusion models, to distinguish whether the
defendant’s model was trained with a particular copyrighted
training sample. Performance is characterized by the TPR-
FPR tradeoff curve, as well as TPR at low FPR, according to
our criterion (α, β)-Access-Evidence (Definition 3.2). Fol-
lowing the literature, we also report the FID score (Heusel
et al., 2017) for image generation quality (utility).

Similarity Evaluation. We adapt the data extraction at-
tack of (Carlini et al., 2023) to our setting: the plaintiff
conditionally (using prompts containing class information)
samples images from the defendant’s model, then selects the
top 10% of the samples that are most likely in the training
dataset based on MIA scores computed using PIA on the re-
constructed images. Note that this attack only considers the
simplest expression-preserving operations F = {identity},
yet it already serves as a lower-bound of the actual similar-
ity probability γ in (η, γ)-Access-Evidence for a general
F . We also emphasize that there are stronger DRAs for the
plaintiff, e.g., training reconstruction networks (Hayes et al.,
2023).

We characterize performance by computing the fraction of
reconstructions that have d(y, C) ≤ η for a fixed recon-
struction threshold η, which is an empirical estimate of
P(d(y, C) ≤ η), thereby aligning with our proposed notion
of (η, γ)-Similarity-Evidence (Definition 3.4). Throughout
the DRA experiment, we use the normalized ℓ2 distance

(a) (b)

(c)

Figure 2. The performance against MIA. (a) TPR-FPR tradeoff
curve. The shaded interval indicates 2 standard deviations com-
puted over 5 independent rejection sampling trials for CP-k. (b)
TPR at low FPR performance in varying αk. (c) TPR@FPR=1%
versus image quality measured in FID.

d(y, C) = ℓ2(y, C) = ∥y − C∥2/
√
d, where d denotes the

dimension of the generated data.

We provide full experimental details in Appendix D and
additional results in Appendix E.

5.2. (α, β)-Access-Evidence: The Membership
Inference Game

We first study the TPR-FPR tradeoff for all tested methods
(Figure 2 (a)). Compared to baselines, the CP-k mechanism
slightly worsens the MIA (plaintiff) performance in general.
However, we find that having a smaller acceptance rate
(or equivalently, smaller k) in the CP-k algorithm does not
monotonically lead to worse MIA performance (Figure 2
(b,c)). This trend indicates that the CP-k algorithm (and
k-NAF criterion) is inappropriate for meaningful Access
evidence. On the other hand, DP-Adam provides more
consistent behavior in controlling the performance of MIA
via the injected noise scale. Nevertheless, it significantly
degrades the image generation quality as well (Figure 2(c)).
As discussed in Remark 3.5, using DP-Adam for (α, β)-
Access-Evidence may be suboptimal. We envision that
an access-evidence-tailored approach can achieve a much
better evidence-utility tradeoff.

5.3. (η, γ)-Similarity-Evidence: The Data
Reconstruction Game

We now examine how obtaining a stronger k-NAF guarantee
via CP-k affects the DRA performance in Figure 3. Surpris-
ingly, we found that rejecting more generated images via CP-
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(a) (b)

(c)

Figure 3. The performance against DRA. (a) Probability of success
reconstruction based on different distance threshold η. (b) Distribu-
tion of rejected samples in CP-k with respect to their ℓ2 distance to
copyright data C. The density is weighted by the acceptance rate
αk. The baseline distribution indicates the density with respect
to all generated images (i.e., αk = 1, no rejection). (c) Success
probability versus image quality measured in FID.

k (smaller αk) algorithm actually makes the overall system
more vulnerable to DRA. This implies that the plaintiff has a
higher probability of extracting images from the defendant’s
model that are similar to the copyrighted image. We further
investigate this by checking the distance distribution of all
generated images and the rejected images (Figure 3 (b)). We
find that the CP-k algorithm actually rejects images with
large ℓ2 distance from copyrighted samples, which makes
the final output images more likely to be close to the copy-
righted images. Indeed, since the NAF criterion is agnostic
to the underlying metric space of data, the CP-k model is
not guaranteed to reject samples close to copyrighted data.

Figure 4. Perceptual com-
parisons of reconstruction
(left) and copyrighted im-
age (right) with different
distances within the CIFAR-
10 “car” class.

This again indicates that
the NAF criterion is inade-
quate to provide evidence
against Similarity, and
supports our claim that
(η, γ)-Similarity-Evidence,
which incorporates the metric
of sample space, is a more
reasonable criterion.

On the other hand, DP-Adam
can degrade the DRA success
probability when the distance
threshold η ≤ 0.2, corre-
sponding to the plaintiff be-
ing less favored in the data
reconstruction game. From
Figure 4, having a distance

greater than 0.25 corresponds to a noticeable difference
between the reconstruction and a copyrighted image. This
is also why we focus our study on the threshold η ≤ 0.25.
Finally, similar to the MIA experiment, DP training deterio-
rates the image generation quality. Developing a similarity-
evidence-tailored procedure with a better evidence-utility
tradeoff is an important future direction.

Conclusion. This work presents a principled, quantitative
evidence framework based on game-theoretic formulations
of two fundamental aspects of copyright law: Access and
Similarity. By relating these legal concepts to member-
ship inference and data reconstruction games, respectively,
our framework provides operational measures that can as-
sist lawyers and legal professionals in assessing the degree
of copyright infringement by AI models. Furthermore, we
demonstrate that the widely used Near-Access-Free (NAF)
criterion fails to offer meaningful guarantees under these
games, exposing its limitations as a reliable copyright safe-
guard. We believe this work lays an important cornerstone
for incorporating quantitative, legally interpretable evidence
with clear operational meaning into copyright adjudication
and regulation.
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A. Proof of Theorem 4.2
Theorem (0-NAF Does Not Provide Evidence for Access). There exists a dataset D, generative model p and a membership
inference attacker Attack such that p is 0-NAF with divergence choice ∆KL or ∆max but Attack achieves FPR α and
TPR β with any α, β ∈ (0, 1).

Let us first introduce a helpful technical lemma and the NAF guarantee of the CP-∆ algorithm.

Lemma A.1. Let p, q be any probability distribution over the domain X . Consider the Bhattacharya distance with
S = Supp(p) ∪ Supp(q), defined by

dB(p, q) = − log

(∫
S

√
p(t)q(t) dt

)
.

Then
∆KL(p∥q) ≥ 2dB(p, q).

Our proof of the following theorem makes use of A.1.

Theorem A.2 (NAF guarantee of CP-∆). Let p be the model returned by CP-∆, and q1, q2 be model trained on dataset
partitions D1,D2 with learning algorithm A respectively. Then p is kz-NAF with respect to C, SHARDED-SAFE, and ∆,
where

kx ≤

{
− log(1− TV(q1(·|z), q2(·|z))) if ∆ = ∆max

−2 log
(
1− H2(q1(·|z), q2(·|z))

)
if ∆ = ∆KL.

(2)

Here, z is any fixed prompt, and TV(·, ·) and H(·, ·) are total variation and Hellinger distance, respectively.

With this result, we are ready to state our proof. We will start by proving the case of 0-NAF with the divergence ∆KL, and
then finish the proof with the divergence ∆max.

A.1. The case of ∆KL

Proof. We will prove this by construction. Our key idea is to show that there exists a dataset D with partition D1,D2 and
learning algorithm A, such that the CP-∆ algorithm (Algorithm 1) returns a generative model p with a 0-NAF guarantee,
yet remains arbitrarily vulnerable to membership inference attacks. We claim that the main source of this vulnerability is the
notion that a model’s satisfaction of a 0-NAF guarantee is entirely independent of the adjacent dataset D′ = D \ {C} for
copyrighted data C ∈ D). Consequently, it is impossible for the 0-NAF guarantee to provide meaningful protection on the
indistinguishability of cases between accessing D or D′.

Consider a dataset D = {x1, . . . xn−1, xn} with copyrighted data xn. Set D′ = D \ {xn}. Next, we partition both datasets
evenly.

D1 = {x1 . . . , x⌈n/2⌉}, D2 = {x⌈n/2⌉+1, . . . , xn}, D′
1 = D1, D′

2 = D2 \ {xn}. (3)

Using the CP-∆ algorithm, we train the generative models on each of these respective partitions. Let us denote qi = A(Di)
and q′i = A(D′

i) for i = 1, 2. It is not hard to see that q1 = q′1 in this scenario. In the following, we denote p, p′ as the
output of CP-∆ algorithm with dataset D and D′ respectively.

We first prove that in this case, for any prompt z, we have

∆KL(p(·|z)∥p′(·|z)) ≥− 2 logmax
y

q1(y|z) + 2dB(q2(·|z), q′2(·|z)) (4)

− dB(q1(·|z), q2(·|z))− dB(q1(·|z), q′2(·|z)). (5)

Our goal here is to establish a lower bound on ∆KL(p(·|z)∥p′(·|z)), which can later be translated to TPR and FPR in the
membership inference attack game. This is based on the close relation of KL divergence and hypothesis testing, which we
will further elaborate on later.

By Lemma A.1, we establish

∆KL(p(·|z)∥p′(·|z)) ≥ 2dB((p(·|z), p′(·|z)). (6)

12
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Expanding the right side gives

2dB((p(·|z), p′(·|z)) = −2 log

(∫ √
p(y|z)p′(y|z)dy

)
= −2 log

(∫
q1(y|z)

√
q2(y|z)q′2(y|z)
N(z)N ′(z)

dy

)

≥ −2 log

(
maxy q1(y|z)√
N(z)N ′(z)

∫ √
q2(y|z)q′2(y|z)dy

)

= −2 logmax
y

q1(y|z) + logN(z) + logN ′(z)− 2 log

∫ √
q2(y|z)q′2(y|z)dy

= −2 logmax
y

q1(y|z) + logN(z) + logN ′(z) + 2dB(q2(·|z), q′2(·|z)).

For N(z), we have

N(z) = 1− H2(q1(·|z), q2(·|z))

= 1−
(
1−

∫ √
q1(y|z)q2(y|z)dy

)
=

∫ √
q1(y|z)q2(y|z)dy.

Using the same logic for N ′(z), we have

logN(z) = −dB(q1(·|z), q2(·|z)), logN ′(z) = −dB(q1(·|z), q′2(·|z)).

Substituting back into our inequality, we find that

∆KL(p(·|z)∥p′(·|z)) ≥− 2 logmax
y

q1(y|z) + 2dB(q2(·|z), q′2(·|z))

− dB(q1(·|z), q2(·|z))− dB(q1(·|z), q′2(·|z)),

which is exactly equation (4).

Now consider the case n = 4, where D = {0, 0,−C,C} and C is our copyrighted content. Let us choose the density
estimation algorithm A(D) = N(µ(D), 1

2π ) as our generative model and learning algorithm, where µ(D) = 1
|D|
∑

x∈D x.
We can view this as learning a Gaussian mixture model from data with one center, which will converge to the maximum-
likelihood estimate of the mean from data (Bishop, 2006). In this scenario, we have

q1 = N
(
0,

1

2π

)
, q2 = N

(
0,

1

2π

)
, q′2 = N

(
−C,

1

2π

)
. (7)

This implies that

dB(q1(·|z), q2(·|z)) = 0, dB(q1(·|z), q′2(·|z)) =
C2

8
, dB(q2(·|z), q′2(·|z)) =

C2

8
. (8)

By substitute these quantities back to equation (4), we have

∆KL(p(·|z)∥p′(·|z)) ≥ −2 logmax
y

q1(y|z) +
C2

8
≥ C2

8
, (9)

where the last inequality is due to the fact that q1(·|z) = N (0, σ2) with σ2 = 1
2π where the maximum happens at

q1(0|z) = 1√
2πσ2

= 1. Clearly, choosing C arbitrarily large leads to an arbitrarily large KL divergence. It is also important
to notice that the same bound holds for ∆KL(p

′(·|z)∥p(·|z)) by symmetry. As a result we have
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min (∆KL(p(·|z)∥p′(·|z)),∆KL(p
′(·|z)∥p(·|z))) ≥ C2

8
. (10)

Finally, note that by the Neyman-Pearson Lemma (Neyman & Pearson, 1933), the most powerful test for hypothesis testing,
or equivalently, the strongest attacker in the MIA game, is the likelihood ratio test. Let us consider the attacker Attack:
declaring the generative model p has access to the copyrighted content C if log

(
p(y|z)
p′(y|z)

)
≥ 0 and no access otherwise. In

this case, we show that Attack can achieve arbitrarily high TPR with arbitrarily low FPR given C is sufficiently large.
Namely, for any α, β ∈ (0, 1), we can always find a sufficiently large C such that

Py∼p(·|z)

(
log

(
p(y|z)
p′(y|z)

)
≥ 0

)
≥ β, Py∼p′(·|z)

(
log

(
p(y|z)
p′(y|z)

)
≥ 0

)
≤ α. (11)

The proof is quite standard in the hypothesis testing literature; see, for example, the lecture note from Robert Nowak (Nowak,
2015). We include all details here for the self-contained purpose. Firstly, consider the random variable Λ = log

(
p(Y |z)
p′(Y |z)

)
.

We first show that Y ∼ p(·|z) or Y ∼ p′(·|z). That is,

P (Λ− EΛ ≥ ϵ) ≤ a exp

(
−bt2

2

)
, (12)

for some constant a, b ≥ 0.

Recall that under our setting, we have

p(y|z) ∝ exp

(
− y2

2σ2

)
, p′(y|z) ∝ exp

(
−y2 + (y − C)2

4σ2

)
, (13)

where σ2 = 2π by our choice. Then, by some manipulation, we have

Λ(y) =
−y2 + (y − C)2

4σ2
+ c1 =

−2Cy + C2

4σ2
+ c1, (14)

for some constant c1 that is independent of y. Clearly, Λ(Y ) is nothing but a linear transformation of Y . As a result, if Y is
subgaussian, then Λ(Y ) is also subgaussian. The case Y ∼ p(·|x) = N(0, σ2) is straightforward. It is also not hard to show
that Y ∼ p′(·|z) is subgaussian as well since

p′(y|z) ∝ exp

(
−y2 + (y − C)2

4σ2

)
= exp

(
− (y − C/2)2

2σ2

)
exp

(
− C2

8σ2

)
. (15)

As a result, we have the following tail bound due to the lecture note (Nowak, 2015).

PY∼p (EY∼pΛ(Y )− Λ(Y ) ≥ ϵ) ≤ exp
(
−c2ϵ

2
)

(16)

PY∼p′ (Λ(Y )− EY∼p′Λ(Y ) ≥ ϵ) ≤ exp
(
−c3ϵ

2
)
, (17)

where c2, c3 ≥ 0 are some constant depending on the subgaussian property of p, p′ respectively.

Now let us first analyze the FPR.

FPR = PY∼p′ (Λ(Y ) ≥ 0) = PY∼p′ (Λ(Y )− EY∼p′Λ(Y ) ≥ −EY∼p′Λ(Y )) . (18)

Note that

EY∼p′Λ(Y ) =

∫
p′(y|z) log

(
p(y|z)
p′(y|z)

)
dy = −∆KL(p

′(·|z)||p(·|z)). (19)

14
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Let us choose ϵ = ∆KL(p
′(·|z)||p(·|z)) ≥ 0 (non-negativity of KL divergence) and apply the tail bound in (16), which leads

to

FPR = PY∼p′ (Λ(Y ) ≥ 0) = PY∼p′ (Λ(Y )− EY∼p′Λ(Y ) ≥ −EY∼p′Λ(Y )) (20)

≤ exp
(
−c3∆KL(p

′(·|z)||p(·|z))2
)

(21)

≤ exp
(
−c3

8
C2
)
, (22)

where the last inequality is due to equation (10). Finally, we are left to prove the bound for TPR. Following a similar
argument we have

TPR = PY∼p (Λ(Y ) ≥ 0) = PY∼p (Λ(Y )− EY∼pΛ(Y ) ≥ −EY∼pΛ(Y )) (23)
= 1− PY∼p (Λ(Y )− EY∼pΛ(Y ) ≤ −EY∼pΛ(Y )) (24)
= 1− PY∼p (EY∼pΛ(Y )− Λ(Y ) ≥ EY∼pΛ(Y )) . (25)

Note that

EY∼pΛ(Y ) =

∫
p(y|z) log

(
p(y|z)
p′(y|z)

)
dy = ∆KL(p(·|z)||p′(·|z)). (26)

Let us choose ϵ = ∆KL(p(·|x)||p′(·|x)) and apply the tail bound in (16), which leads to

PY∼p (EY∼pΛ(Y )− Λ(Y ) ≥ EY∼pΛ(Y )) (27)

≤ exp
(
−c2∆KL(p(·|z)||p′(·|z))2

)
≤ exp

(
−c2

8
C2
)
, (28)

where the last inequality is due to equation (10). Apparently, we can always choose C large enough so that both types of
errors are arbitrarily close to zero. Together we complete the proof for the case of ∆KL.

A.2. The case of ∆max

Proof. We again work with the same example D = {0, 0,−C,C} and C is our copyrighted content. We also choose the
density estimation algorithm A(D) = N(µ(D), 1) as our generative model and learning algorithm similar to the case of
∆KL. Note that we choose the variance σ2 = 1 for simplicity and our proof holds for the choice σ2 = 1

2π as well. Then we
have

q1 = N (0, 1) , q2 = N (0, 1) , q′2 = N (−C, 1) . (29)

The major difference between the case of ∆KL is that the CP-∆ algorithm led to different output distributions. In the case of
∆max, according to Algorithm 1 we have

p(y|z) = min(q1(y|z), q2(y|z))
N(z)

, where N(z) =

∫ ∞

−∞
min(q1(y|z), q2(y|z))dy. (30)

Similarly, we have p′(y|z) = min(q1(y|z),q′2(y|z))
N ′(z) on the adjacent dataset D′ = {0, 0,−C}. Our goal is again to establish

a divergent lower bound of ∆KL(p(·|z)||p′(·|z)) (and the other direction), which lead to the TPR and FPR bound for the
underlying hypothesis problem as before.

First, let us denote the Q-function, which is the tail CDF of the standard normal

Q(t) :=

∫ ∞

t

1√
2π

e−
y2

2 dy. (31)

In the meantime, note that

q1(y|z) ≥ q′2(y|z) ∀ y ∈
(
−∞,−C

2

]
, q1(y|z) ≤ q′2(y|z) ∀ y ∈

(
−C

2
,∞
)
. (32)
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As a result, we first derive the normalizing constant N ′(z) via standard manipulation and the definition of Q-function.

N ′(z) =

∫ ∞

−∞
min(q1(y|z), q′2(y|z))dy =

∫ −C
2

−∞

1√
2π

e−
y2

2 dy +

∫ ∞

−C
2

1√
2π

e−
(y+C)2

2 dy (33)

(a)
= Q

(
C

2

)
+Q

(
C

2

)
= 2Q

(
C

2

)
. (34)

The equality (a) is by the fact that standard normal is symmetric around its mean. Namely, for the first term we

have
∫ −C

2

−∞
1√
2π

e−
y2

2 dy =
∫∞

C
2

1√
2π

e−
y2

2 dy = Q(C2 ). The second term is directly by the definition of Q-function∫∞
−C

2

1√
2π

e−
(y+C)2

2 dy = Q(−C
2 + C) = Q(C2 ). In the meanwhile, note that p = N(0, 1) due to the fact that

q1 = q2 = N(0, 1) and thus N(z) = 1.

Now we can directly lower bound the KL divergence between p, p′. We proceed with the direction ∆KL(p(·|z)||p′(·|z)) first.

∆KL(p(·|z)||p′(·|z)) =
∫

p(y|z) log
(
p(y|z)
p′(y|z)

)
dy (35)

=

∫ −C
2

−∞
q1(y|x) log

(
q1(y|z)
q1(y|z)

)
dy +

∫ ∞

−C
2

q1(y|z) log
(
q1(y|z)
q′2(y|z)

)
dy + log(N ′) (36)

=

∫ ∞

−C
2

q1(y|z) log
(
q1(y|z)
q′2(y|z)

)
dy + log(N ′) (37)

=

∫ ∞

−C
2

q1(y|z)(Cy +
C2

2
)dy + log(N ′). (38)

=

∫ ∞

−C
2

q1(y|z)(Cy)dy +
C2

2
(1−Q(

C

2
)) + log(N ′). (39)

For the first term, note that∫ ∞

−C
2

q1(y|z)Cydy =

∫ C
2

−C
2

q1(y|z)Cydy +

∫ ∞

C
2

q1(y|z)Cydy ≥ C2

2
Q(

C

2
), (40)

where the inequality holds for all C ≥ 0.

Together we have for any C ≥ 0,

∆KL(p(·|x)||p′(·|z)) ≥
C2

2
+ log(N ′(z)) =

C2

2
+ log

(
2Q(

C

2
)

)
. (41)

Finally, we may further lower bound Q function via standard results in the literature (Borjesson & Sundberg, 1979) to obtain
an explicit formula with respect to C.

Q(t) ≥ t

(1 + t2)
√
2π

e−
t2

2 , ∀z > 0. (42)

As a result, denoting t = C
2 , we have

log(2Q(t)) ≥ log

(
2t

(1 + t2)
√
2π

e−
t2

2

)
= log

(
2t

(1 + t2)
√
2π

)
− t2

2
. (43)

Substituting t = C
2 once again gives

log

(
2Q(

C

2
)

)
≥ log

(
4C

(4 + C2)
√
2π

)
− C2

8
. (44)
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Altogether, we have

∆KL(p(·|z)||p′(·|z)) ≥
C2

2
+ log

(
2Q(

C

2
)

)
≥ 3C2

8
+ log

(
4C

(4 + C2)
√
2π

)
. (45)

Clearly, this lower bound goes to ∞ as C → ∞, which leads to an arbitrarily high TPR rate in the hypothesis testing.
Finally, we prove a similar result for the other direction in a slightly more complicated manner.

∆KL(p
′(·|z)||p(·|z)) =

∫
p′(y|z) log

(
p′(y|z)
p(y|z)

)
dy (46)

=
1

N ′

∫ −C
2

−∞
q1(y|z) log

(
q1(y|z)
q1(y|z)

)
dy +

1

N ′

∫ ∞

−C
2

q′2(y|z) log
(
q′2(y|z)
q1(y|z)

)
dy − log(N ′)

N ′ (47)

=
1

N ′

∫ ∞

−C
2

q′2(y|z) log
(
q′2(y|z)
q1(y|z)

)
dy − log(N ′)

N ′ (48)

=
1

N ′

∫ ∞

−C
2

q′2(y|z)(−Cy − C2

2
)dy − log(N ′)

N ′ . (49)

For the first term, we have∫ ∞

−C
2

1√
2π

e−
(y+C)2

2 (−Cy − C2

2
)dy

(a)
=

∫ ∞

C
2

1√
2π

e−
t2

2 (−Ct+
t2

2
)dz (50)

=

∫ ∞

C
2

1√
2π

e−
t2

2 (−Ct)dz +
t2

2
(1−Q(

C

2
)). (51)

where in (a) we apply the change of variable t = y + C. For the first term above, we unfortunately cannot lower bound it as
before due to the negative factor. Nevertheless, observe that∫ ∞

C
2

t√
2π

e−
t2

2 dt ≤
∫ ∞

0

t√
2π

e−
t2

2 dz =
1

2

∫ ∞

−∞

|t|√
2π

e−
t2

2 dt
(b)
=

1√
2π

, (52)

where (b) is nothing but the expectation of half-normal. As a result, we have

∆KL(p
′(·|x)||p(·|z)) ≥ 1

N ′

(
−C√
2π

+
t2

2
(1−Q(

C

2
))− log(N ′)

)
≥ 1

N ′

(
−C√
2π

− log(N ′)

)
. (53)

In the meanwhile, recall that N ′ = 2Q(C2 ) and that we always have N ′ ≤ 1. Next, we turn to analyze log(N ′). By
leveraging the upper bound of the Q function in the literature (Borjesson & Sundberg, 1979):

Q(t) ≤ 1

t
√
2π

e−
t2

2 , ∀t > 0. (54)

we have for C > 2,

− log(N ′) = − log

(
2Q(

C

2
)

)
≥ − log

(
2√
2π

e−
C2

8

)
= − log

(
2√
2π

)
+

C2

8
. (55)

As a result, for C > 2 we the following lower bound always hold

∆KL(p
′(·|z)||p(·|z)) ≥ 1

N ′

(
−C√
2π

+
t2

2
(1−Q(

C

2
))− log(N ′)

)
(56)

≥ 1

N ′

(
−C√
2π

− log

(
2√
2π

)
+

C2

8

)
(57)

(a)

≥ −C√
2π

− log

(
2√
2π

)
+

C2

8
, (58)

where (a) is due to the fact that we always have N ′ ≤ 1. Evidently, this lower bound goes to ∞ as C → ∞, which leads to
arbitrarily low FPR rate in the hypothesis testing. Together, we complete the proof.
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B. Proof of Theorem 4.3
Theorem (0-NAF Does Not Provide Evidence for Similarity). There exists a dataset D, a generative model p such that
p is 0-NAF with divergence choice ∆KL or ∆max but still generate substantially similar output to the copyrighted content
C ∈ D with arbitrarily high probability. Specifically, for any C > 0 and γ ∈ (0, 1], there exists an instance (D, C, p)
satisfying a 0-NAF guarantee such that

Py∼p(∥y − C∥ ≤ C) ≥ 1− γ. (59)

Proof. We again analyze a similar setting as in the proof of 4.2. Consider the dataset D = {C1, C2, C} where C1+C2

2 = C.
Then we obtain the partitioned dataset as before: D1 = {C1, C2} and D2 = {C}. Then we run the CP-∆ algorithm with
the choice of A(D) = N(µ(D), σ2) similar as the case of Access, where we have

q1 = N(µ(D1), σ
2) = N(C, σ2), q2 = N(µ(D2), σ

2) = N(C, σ2). (60)

Since q1 = q2, for both divergence choices ∆KL,∆max the final generative mode p from the CP-∆ algorithm is 0-NAF and
p = N(C, σ2). Apparently, the probability of the generative model p generating the copyrighted content C is arbitrarily
high as σ → 0. More specifically,

Py∼p(∥y − C∥ ≤ C) = 1− 2Q

(
C

σ

)
, (61)

where Q is the Q-function, the tail probability of the standard Gaussian distribution. By setting γ = 2Q(Cσ ), it is apparent
that for any C > 0 and γ ∈ (0, 1], we can always find a sufficiently small σ to satisfy the inequality stated in the theorem.
Together, we complete the proof.

C. Proof of Lemma A.1
The proof of Lemma A.1 is relatively straightforward. We can write dB(p, q) as

dB(p, q) = − log

(
Ey∼p

[(
q(y)

p(y)

)1/2
])

.

Consider the convex function ϕ(t) = − log t. Applying Jensen’s inequality, we obtain:

− log

(
Ey∼p

[(
q(y)

p(y)

)1/2
])

≤ Ey∼p

[
− log

((
q(y)

p(y)

)1/2
)]

(62)

= Ey∼p

[
1

2
log

p(y)

q(y)

]
(63)

=
1

2
Ey∼p

[
log

p(y)

q(y)

]
(64)

=
1

2
dKL(p, q). (65)

Equivalently, we have
dKL(p, q) ≥ 2 dB(p, q).

D. Experiment Settings
We provide supplementary details regarding the models, datasets, implementation specifics, and evaluation protocols used in
the empirical evaluation presented in Section 5.

D.1. Models and Samplers

In this section, we review the denoising diffusion probabilistic model (Ho et al., 2020), detail the CP-k rejection-sampling
procedure for samplers satisfying the NAF criterion (Vyas et al., 2023), and briefly outline differentially private training
schemes (DP-Adam) used as comparisons in Section 5.
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Algorithm 2 CP-k sampling procedure (Vyas et al., 2023)
Input: Dataset D, learning algorithm A, draft model p(·|z) = A(D), threshold k, sharded models q1, q2.
repeat

if maxi∈{1,2} log p(y|z)
qi(y|z) ≤ k then

break
end

until Sample y ∼ p(·|z) ;
return Sample y

D.1.1. CONDITIONAL DENOISING DIFFUSION PROBABILISTIC MODELS

Conditional DDPMs extend the unconditional diffusion framework (Ho et al., 2020) by incorporating class label infor-
mation y into the reverse process for image generation. Given a data distribution p, a data sample y0 ∼ p and condition
(prompt) z, the forward (noising) process defines a Markov chain

q(yt | yt−1) = N
(
yt;
√
1− βt yt−1, βt I

)
, t = 1, . . . , T, (66)

where {βt}Tt=1 is a fixed variance schedule. One can show in closed form that

q(yt | y0) = N
(
yt;

√
ᾱt y0, (1− ᾱt) I

)
, ᾱt =

t∏
s=1

(1− βs).

The reverse (denoising) process is parameterized by a neural network ϵθ(yt, t, z) which predicts the noise added at step t
conditioned on z. The learned kernel is then

pθ(yt−1 | yt, z) = N
(
yt−1; µθ(yt, t, z), βt I

)
,

with

µθ(yt, t, z) =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t, z)

)
The network is trained by minimizing the simplified noise prediction objective

L(θ) = Ey0,z,ϵ,t

∥∥∥ϵ− ϵθ
(√

ᾱt y0 +
√
1− ᾱt ϵ, t, z

)∥∥∥2
2
, (67)

with y0 ∼ p, ϵ ∼ N (0, I), and t ∼ Uniform{1, . . . , T}. At generation time, one samples yT ∼ N (0, I) and iteratively
applies pθ(yt−1 | yt, z) for t = T, . . . , 1, yielding a sample y0 consistent with the prompt z.

D.1.2. CP-k ALGORITHM

As described in Section 5, we use the CP-k algorithm to provide k-NAF guarantees on our trained models. We provide a
precise algorithmic description in Algorithm 2, as described in (Vyas et al., 2023), for the sake of completeness.

While CP-∆ provides a k-NAF guarantee, the sampling mechanism does not have explicit control of the resulting value k.
As a result, (Vyas et al., 2023) also proposes a rejection sampler CP-k, summarized in Algorithm 2, which only requires
sampling from a ”draft" model p and checking a single log-ratio bound against each sharded model. With a fixed threshold
k, at each iteration, one draws y ∼ p(·|z), where z is a prompt, and accepts it if

max
i∈{1,2}

log
p(y|z)
qi(y|z)

≤ k.

By a result of (Vyas et al., 2023), the resulting sampler satisfies a kz-NAF guarantee, with kz = k + log(1/αk(z)), while
incurring at most 1− αk(z) total-variation distance from p, where

αk(z) = Py∼p

[
max

i∈{1,2}
log p(y|z)

qi(y|z) ≤ k
]

is the single-shot acceptance probability, which monotonically increases in k. This trade-off provides direct user control
over the kz-NAF guarantee. In practice, we pick a desired acceptance rate αk(z) and compute a corresponding threshold k
from the lower αk(z)−quantile of the empirical distribution of maxi∈{1,2} log(p(y|z), qi(y|z)).
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D.1.3. DP-ADAM

To train diffusion models with (ϵ, δ)-DP, we employ DP-Adam, a variant of the original DP-SGD method introduced in
(Abadi et al., 2016). We note that the mechanism for maintaining privacy (i.e. adding noise and clipping gradients) remains
the same between both samplers, as post-processing guarantees that the privacy loss is the same.

D.2. Attack Methods

In this section, we discuss the implementation details of the MIA and DRA attacks used in our empirical evaluation of
Access and Similarity evidence.

D.2.1. MEMBERSHIP INFERENCE

As discussed in Section 5, we use proximal initialization attacks (PIA) (Kong et al., 2023) to evaluate the performance of
models in the Access game. We briefly describe this attack here for completeness.

Fix a real sample y0. One first obtains the model’s own noise estimate at t = 0, given by ε0 = εθ(y0, 0). Then, we estimate
the noised input at any later timestep t via the deterministic forward map

yt =
√
ᾱt y0 +

√
1− ᾱt ε0.

A second query yields εθ(yt, t), and the attack score is measure by the ℓp norm difference.

Rt,p(y0) =
∥∥ε0 − εθ(yt, t)

∥∥
p
.

Since training samples tend to reproduce the model’s proximal initialization more faithfully, smaller values of Rt,p indicate
higher likelihood of membership in the training set (Kong et al., 2023). Hence, the formal attack may be written as

f(y0) = 1[Rt,p < τ ],

where τ is some threshold adjusted based on the desired FPR. In our experiments, we set p = 4 and choose t to maximize the
AUROC of the attack curve for each relevant attack, since the plaintiff aims to show the most vulnerability in the defendant’s
model and need not fix the parameters of their attacks across defendants. In general, regardless of the choice of model, this
maximizer was given by t ≈ 200.

For baselines and DP models, we employ a direct implementation of this attack. For the CP-k sampler, we estimate the
log probability ratio, maxi∈{1,2} log(p(y|z), qi(y|z)) with p, qi as given in Appendix D.1.2, of member and nonmember
samples by running the forward DDPM noising process on yt. When a certain sample exceeds the threshold, we simply
exclude it from the attack. This mimics the realistic scenario where a defendant’s model, which implements CP-k, will not
release information about samples that exceed the fixed threshold k.

D.2.2. DATA RECONSTRUCTION ATTACKS

Additionally, as described in Section 5, we employ a modified DRA (Carlini et al., 2023) to evaluate the Similarity
game.

Consider a fixed a class prompt z. We first draw n independent generations yi ∼ p(·|z). Next, for each yi, we compute its
MIA score Rt,p(y

i) exactly as in the proximal initialization attack above, and sort the {yi} in ascending order of Rt,p. We
then select the top ρn samples as candidate reconstructions, where ρ ∈ (0, 1].

To decide whether a candidate y is a successful reconstruction, we set

d(y, C) = min
y′∈Dz

d(y, y′)

be the distance from y to its nearest neighbor in the true class-z training set Dz . We consider y to be a successful
reconstruction if d(y, C) ≤ η. Hence the empirical reconstruction success rate is, with k = ⌊ρn⌋,

P(d(y, C) ≤ η) ≈ 1

k

k∑
i=1

1
(
d(yi, C) ≤ η

)
.

In our experiments we fix ρ = 0.10 and use the normalized distance ℓ2(·, ·) = d(·, ·).
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D.3. Experiment Settings

In this section, we formally list all relevant information used in model training and in attack procedures.

D.3.1. DATASETS

We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009).

CIFAR-10 contains 60 000 RGB images of size 32× 32 pixels, divided into ten non-overlapping classes. To instantiate
the CP-k samplers, we partition the 50,000 training images into two disjoint shards of 25,000 images each, which we use
to train the two shard models q1 and q2. The draft model p is trained on the full set of training images. Baselines and DP
models are trained on the full dataset of 50,000 training images.

D.3.2. HARDWARE

All models were trained with a single NVIDIA H200 GPU with an Intel Xeon Platinum 64-core processor. Other experiments
were run on a server with a single RTX A6000 GPU and a AMD EPYC 7763 64-Core Processor.

D.3.3. HYPERPARAMETERS

We formally list all model training hyperparameters below for completeness.

We also list specific hyperparameters for training models used in the CP-k sampler and for models trained with DP-Adam.
We note that the models used in the CP-k sampler are essentially vanilla diffusion models, so the hyperparameters used
in our work are the same as in (Ho et al., 2020). We tune the hyperparameters to allow for effective learning while using
DP-Adam.

E. Additional Experimental Results
We provide additional results identified during our empirical evaluation.

E.1. Membership Inference Attacks

We report explicit values for MIA success rates discussed in Section 5. We note that the attack procedure outlined in
Appendix D.2.1 is fully deterministic with a fixed model, except for the estimation of log probabilities from member and
nonmember samples. Consequently, each of the measurements in this section that do not require this estimation procedure
to mimic the rejection mechanism are already averaged over all training data (for both members and nonmembers), and thus
do not have seed-varying confidence intervals.

Table 1. Additional MIA experiment results.

Method αk AUROC (↓) TPR@1% FPR (↓) TPR@5% FPR (↓)
Baseline 1.00 0.75± 0.00 0.083± 0.00 0.250± 0.00
CP-k 0.75 0.72± 0.01 0.060± 0.012 0.193± 0.009
CP-k 0.50 0.72± 0.02 0.052± 0.015 0.186± 0.020
CP-k 0.25 0.75± 0.01 0.081± 0.016 0.223± 0.017

(100, 10−5)-DP – 0.64± 0.00 0.029± 0.00 0.145± 0.00
(500, 10−5)-DP – 0.66± 0.00 0.036± 0.00 0.146± 0.00
(1000, 10−5)-DP – 0.68± 0.00 0.033± 0.00 0.149± 0.00

E.2. Data Reconstruction Attacks

We report explicit values for the estimates of success probabilities discussed in Section 5 using the DRA procedure outlined
in Appendix D.2.2. For η ∈ {0.15, 0.20}, DP models provide substantially stronger protection against DRA than the CP-k
mechanism. At larger η, however, the output distributions of DP models diverge noticeably from those of CP-k, so their
higher measured success rates likely reflect these distributional shifts rather than an actual increase in vulnerability. In
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particular, at η ≥ 0.25, reconstructed images can have a large degree of perceptual dissimilarity.

Table 2. Additional DRA experiment results.

Method αk P(ℓ2(y, C) ≤ 0.15)(↓) P(ℓ2(y, C) ≤ 0.20)(↓) P(ℓ2(y, C) ≤ 0.25)(↓)
Baseline 1.00 0.0464± 0.0041 0.2169± 0.0074 0.5309± 0.0066
CP-k 0.75 0.0554± 0.0061 0.2611± 0.0092 0.6247± 0.0100
CP-k 0.50 0.0702± 0.0086 0.3187± 0.0100 0.7251± 0.0051
CP-k 0.25 0.0989± 0.0105 0.4091± 0.0150 0.8266± 0.0131

(100, 10−5)-DP – 0.0080± 0.0019 0.2222± 0.0126 0.6322± 0.0102
(500, 10−5)-DP – 0.0116± 0.0019 0.2075± 0.0111 0.6059± 0.0106
(1000, 10−5)-DP – 0.0156± 0.0033 0.1920± 0.0076 0.6088± 0.0119

F. Limitations
One limitation of this work is that we do not focus on developing training algorithms specifically tailored to satisfy the
proposed copyright criteria. Consequently, there is significant room for future work in designing training methods that better
balance utility and copyright compliance, potentially improving over naive approaches like differentially private training.

G. Broader Impacts
Our work introduces a theoretical framework for quantifying evidence of copyright infringement by generative AI models.
We believe this provides essential groundwork for integrating quantitative, legally interpretable evidence into copyright
adjudication and regulatory processes.

We do not foresee significant negative societal impacts from this work, since our contribution is primarily theoretical and
does not involve the release of high-risk models or data.
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