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A B S T R A C T

We introduce an egocentric video and eye-tracking dataset, comprised of 108 first-person videos of 36 shoppers
searching for three different products (orange juice, KitKat chocolate bars, and canned tuna) in a convenience
store, along with the frame-centered eye fixation locations for each video frame. The dataset also includes
demographic information about each participant in the form of an 11-question survey. The paper describes
two applications using the dataset — an analysis of eye fixations during search in the store, and a training
of a clustered saliency model for predicting saliency of viewers engaged in product search in the store. The
fixation analysis shows that fixation duration statistics are very similar to those found in image and video
viewing, suggesting that similar visual processing is employed during search in 3D environments and during
viewing of imagery on computer screens. A clustering technique was applied to the questionnaire data, which
resulted in two clusters being detected. Based on these clusters, personalized saliency prediction models were
trained on the store fixation data, which provided improved performance in prediction saliency on the store
video data compared to state-of-the art universal saliency prediction methods.
. Introduction

The vast majority of research into human visual attention has
ocused on measuring and modeling human behavior during viewing
f 2D imagery and video. But humans normally act in a complex
D environment, and it is therefore important to study how humans
llocate attention in these situations. In the computer vision field there
as been an increasing emphasis on research involving egocentric video
e.g. Grauman et al. (2022)). Egocentric videos are obtained from video
ameras mounted on the bodies of humans (usually head-mounted)
hile carrying out various activities such as cooking. These record the

cenes as seen by observers and can be used for human-centric visual
nderstanding.

There has also been much research into human attention in 3D
irtual environments (i.e. VR), including eye tracking studies. These
ave generally focused on studying eye movements and visual saliency
n panoramic viewing with a fixed viewer position (Sitzmann et al.,
018). Other studies have concentrated on analyzing eye movements
nd saliency when viewing scenes with isolated 3D objects. Many of
he latter studies model what is known as mesh saliency, which looks
t eye fixations as mapped to mesh models of the 3D object structures
e.g. Ding and Chen (2022)).

In our work, we focus on the understanding of how people pay
ttention while moving about in unconstrained 3D environments such

∗ Corresponding author.
E-mail address: james.j.clark@mcgill.ca (J.J. Clark).

as grocery stores or convenience stores. Shopping is a complex task that
involves navigation, visual search, decision making, human-object in-
teraction and so on. Understanding shoppers’ behavior in convenience
stores is beneficial to the understanding of human visual attention
mechanisms under different tasks. To this end, we created a dataset
of egocentric videos with eye fixation information recording shoppers’
visual inputs while purchasing different products in a convenience
store. In our experiment, 36 participants were asked to fill out a
demographic questionnaire after which they carried out a search for
three target products, one at a time, in the convenience store while
wearing a Tobii glasses-mounted binocular eye-tracking device. While
the participants were searching for the products in the store, their eye
positions were tracked and recorded, and the scene from their head
viewpoint was recorded in an HD video.

This dataset is information rich, and should be useful for many
and varied research programs. In this paper we describe two specific
studies that make use of the dataset. First, we describe a study of the
fixation characteristics, including the statistics of the fixation durations
and post-fixation saccade amplitudes, as well as an analysis of the
types of objects that are fixated during search. Analysis of the eye
fixation metrics from our experiments suggest that cognitive processes
underlying eye movement behavior is similar in exploration of 3D
ttps://doi.org/10.1016/j.cviu.2024.104129
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environments as in 2D image viewing in the lab. Second, we use the
fixation data to create saliency heatmaps and use these to train task-
and population-specific saliency prediction models to improve saliency
prediction in the store environment over what is provided by standard
static image-based saliency prediction methods.

2. Related work

2.1. Egocentric video datasets

Egocentric videos are videos that are recorded from a first-person
perspective, showing the scenes as recorded by a camera that is fixed
on the observer’s head. This video is different from what observers
actually perceive since observers may also move their eyes to fixate
onto various objects. While it is hard to get a camera that mimics the
real time movement of eyes, we can record what the observers pay
attention to by overlaying fixation information from an eye tracker on
top of the scene camera videos. Various egocentric video datasets have
been introduced over the past decades. For instance, the Georgia Tech
egocentric activity datasets include: the GTEA dataset for seven types
of daily activities (Fathi et al., 2011); the GTEA Gaze dataset for meal
reparation activities, with no constraints on the participants (Fathi
t al., 2012); the GTEA Gaze+ dataset for seven specific meal prepa-

ration activities (Fathi et al., 2012); and the Extended GTEA Gaze+
(EGTEA Gaze+) dataset (Li et al., 2018), which subsumes GTEA Gaze+
with 15 K hand masks and more than 15 K action instances from 200
ction categories. The EPIC-KITCHENS dataset (Damen et al., 2018)
ecords 32 participants’ cooking activities in their kitchens and includes
abels for action segments and object bounding boxes. The Ego4D
ataset (Grauman et al., 2022) records daily activity videos for hun-

dreds of scenarios, greatly expanding the diversity of publicly available
gocentric footage. The Ego4D dataset also has abundant annotations
upporting various complex tasks. The EGTEA Gaze+, EPIC-KITCHENS
nd Ego4D datasets have annotations of action segments alongside the

egocentric videos. The egocentric dataset for browsing situations (Su
nd Grauman, 2016) includes scenarios for shopping in a market, win-

dow shopping in shopping mall, and touring in a museum. Participants
determined on their own which activity to engage in, so that they
would act naturally. Our dataset is complementary to this, in that
it is captured in a controlled environment where the shoppers were
shown the specific target products to buy before each visual search
session. Other egocentric datasets include categorized activities such
as dynamic outdoor sports (Kitani et al., 2011) and activities of daily
iving (Pirsiavash and Ramanan, 2012). These datasets record different
ctivities from our dataset.

Egocentric video datasets can be used to train models for different
tasks such as activity recognition (Kazakos et al., 2019; Ghadiyaram
et al., 2019; Li et al., 2021; Wang et al., 2020; Zhou and Berg, 2015),
human-object interaction (Darkhalil et al., 2022; Liu et al., 2020),
activity anticipation (Kitani et al., 2012; Abu Farha et al., 2018; Furnari
and Farinella, 2020; Girdhar and Grauman, 2021), video summariza-
tion (Lee et al., 2012; Del Molino et al., 2016; Lee and Grauman,
2015; Lu and Grauman, 2013) and so on. In contrast to most existing
egocentric video datasets, our dataset focuses on controlled search
tasks in a convenience store. Specifically, our dataset maintains the
consistency of target products as well as the background environment,
across each search trial with different participants. This control of
ariables enables identification of consistent and divergent behaviors
mong individuals during search tasks.

2.2. Eye movements in 3D VR and AR environments

Traditional saliency datasets capture eye fixation data of people
looking at static images on computer screens. Notable examples include
the MIT1003 dataset (Judd et al., 2009), the MIT300 dataset (Judd
t al., 2012), and the CAT2000 dataset (Borji and Itti, 2015). These
 b

2

datasets all measure visual saliency for observers engaged in free-
viewing (no specific visual task given). The SALIency in CONtext
SALICON) dataset (Jiang et al., 2015) is currently the largest dataset
or saliency prediction, which contains 10000 training images, 5000

validation images and 5000 test images.
More recently, many saliency datasets have been collected in virtual

reality (VR) or augmented reality (AR) environments. Salient360 (Rai
et al., 2017) and AOI (Xu et al., 2021) are omnidirectional datasets
or VR saliency prediction tasks. Duan et al. (2022) introduced the
aliency in AR Dataset (SARD), which contains visual saliency maps for

background images, AR images, and superimposed images generated by
overlaying AR images onto background images with different opacity
levels.

Virtual Reality displays have enabled studies of visual behavior in
simulated 3D environments of many kinds. These serve as an interme-
iate step in moving from studies of attention in 2D image viewing
o those of attention in real-world 3D environments. Research on VR

environments have provided data on many of the questions and issues
that our work is concerned with, such as whether eye movement
behavior is similar during 3D search or exploration in 3D environments
as it is in 2D image viewing. In a key work, Song et al. (2023) asked the
question ‘‘is 3D visual saliency an independent perceptual measure or
is it a derivative of 2D image saliency’’. They approached this question
by creating a new dataset, called 3DVisA, which consists of 540 view-
dependent saliency maps for 180 3D object meshes. They develop a
method for predicting 3D saliency for viewing single objects as well as
for viewing of scenes constructed from multiple objects. They conclude
that while prediction of 3D visual saliency for both a single objects and
complex scenes can make use of 2D image saliency to some extent, it
still requires from 3D specific information, such as depth maps.

Sitzmann et al. (2018) study how people explore virtual environ-
ents from a fixed viewpoint. They consider how models of 2D image

iewing extend to the case of viewing in panoramic environments.
hey create a dataset of head orientations and gaze directions of 169
iewers of 22 panoramic scenes. Their study shows a high similarity
etween the saliency maps obtained for viewers viewing 2D images on
 computer screen and the full VR immersive panoramic viewing. This
uggests that eye movement control and processing mechanisms are
imilar in the 2D and 3D viewing situations. Their experiments also
how that viewers of VR imagery exhibit a clear center bias, in this
ase in the form of a horizon bias, where fixation is likely to be near
he center of the panoramic display.

Haskins et al. (2020) studied eye movements of viewers in a VR
environment, viewing panoramic natural scenes. They looked at differ-
ences between passive viewing, in which the panoramic images were
moved while the viewers head was fixed, and active viewing where
observers were able to move their heads and bodies while the panorama
image was fixed. They found that active viewers preferentially allocate
their eye movements to semantically relevant scene features than in
the passive case, and the eye movements were quicker and more
exploratory.

Zhu et al. (2019) constructed a saliency dataset for omnidirectional
videos with augmented bounding box contents. However, in real-world
AR applications, the augmented contents are typically more complex
than simple bounding boxes, as there are different superimposition
levels of AR contents onto real-world scenes. Duan et al. (2022) showed
that visual attention in AR is jointly and significantly influenced by
multiple factors including background images, virtual contents (i.e., AR
images), and the opacity of the virtual contents (i.e., superimposition
levels). A higher opacity value generally leads to more attention to
ugmented contents, and a lower opacity value leads to more salient
ackground scenes.
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2.3. Visual attention during search

The human brain has limited computational resources (Marois and
vanoff, 2005). Visual attention is a way for the brain to prioritize
nd focus computation when presented with multiple stimuli. In search
asks, observers are faced with targets and non-targets simultaneously,
nd need to direct their attention to the objects that might be task
elevant.

Most computational models of visual attention during search tasks
are based on the idea of a saliency map that highlights likely target
reas (Treisman, 1988; Olshausen et al., 1993; Wolfe, 1994; Niebur
nd Koch, 1995; Itti et al., 1998; Itti and Koch, 2000). These models

are mostly developed using data from experiments conducted on a 2D
onitor, displaying a diverse range of image contents. These images

nclude synthetic and natural images with various distortions. Modern
visual search models are predominantly based on five factors that
affect the search behavior in combination, namely bottom-up salience,
top-down feature guidance, scene structure and meaning (Wolfe and

orowitz, 2017).
With the emergence of deep learning, there has been a shift towards

sing automatic data-driven approaches for visual saliency prediction.
Deep neural networks have exhibited a remarkable performance in
numerous computer vision tasks, including saliency prediction. These
models take advantage of various deep learning architectures to auto-
matically extract features from input images. For example, in 2014, Vig
et al. introduced eDN, one of the first deep convolutional networks that
could automatically extract features from 2D natural images and obtain
a saliency map by combining the feature maps from different lay-
ers (Vig et al., 2014). Following eDN, Kümmerer et al. presented Deep
Gaze I (Kümmerer et al., 2014), a CNN model based on AlexNet that
sed pre-trained weights on the ImageNet dataset (Deng et al., 2009)
o boost its saliency prediction on the MIT1003 dataset (Judd et al.,

2009). In 2016, Kümmerer et al. proposed DeepGaze II (Kümmerer
t al., 2016), which used the features of VGG-19 network instead

of AlexNet to predict the visual saliency on the MIT1003 dataset.
However, relatively little work has been done on developing neural
network saliency prediction methods specifically for visual search.
Chen et al. (2021) introduced a model called DeepSearch, which fine-
tunes a ResNet50 network pretrained on MS-COCO to predict fixation
density maps (saliency maps). This is trained on fixation data from the
COCO-Search18 dataset (Chen et al., 2021). Samiei and Clark (Samiei
and Clark, 2022) introduced a dual-channel deep network that uses
n input image of the search target, and predicts saliency of humans
uring search for that target. It provides similar performance to the
eepSearch approach.

In visual search it is well known that the ordering of fixation points
(i.e. the scan-path) is more important than raw saliency values, as
aliency changes during the search process, and different features be-

come salient at different times. Because of this, more recent research on
odeling of attention during search has focused on scanpath prediction

ather than saliency. In addition, attention at the object level rather
han at the pixel level has gathered increasing scrutiny by cognitive
odelers (Cavanagh et al., 2023; Roth et al., 2023). This has led to the

development of neural networks that predict scan-paths at the object
level. A recent example of this is found in Fang et al. (2024), which
presents the Object-level Attention Transformer (OAT), which predicts
human scan-paths during search tasks. Finally, existing research on
ttention during search has mainly focused on modeling attention on
D displays. There has been very little work modeling visual attention
uring search in 3D environments. This lack motivates the creation
f a new dataset supporting studies of attention during search in 3D
nvironments, as described in the next section.
 u
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Table 1
The participants’ favorite colors.
Color Number of participants

Blue 14
Green 8
Purple 4
Red 3
Cyan 2
Orange 2
Black 1
Yellow 1

3. Dataset creation : Experiment and data gathering

Motivated by the recent developments described in the previous sec-
ions, we set out to create a dataset that would support studies of visual
ttention during search in 3D environments. To support development of

saliency and scan-path prediction techniques, we captured timestamped
eye-fixation positions in the 3D space, as well as egocentric videos from
the shoppers’ perspective. To aid in studying object-centric attention,
ur dataset includes the identity of objects fixated. To provide a rela-
ively constrained experimental setting, we limited our data gathering

to monitoring of the visual attention of shoppers searching for a small
set of products in a single convenience store.

The experimental data gathering process took place in the McGill
University Retail Innovation Lab, which comprises a fully-operational
convenience store managed by the Couche-Tard chain of stores. This
store is located on the McGill University campus and supports research
activity as well as normal retail operations.

Each participant in the experiment made three separate search runs
in the store, each time looking for a predetermined single product. The
order of the runs was the same for all participants and was ordered in
increasing search difficulty. The three search tasks, in order, consisted
of search for the following products: a bottle of orange juice, a KitKat
chocolate bar, and a tin of canned tuna fish. Our pre-experiment
expectation was that the search for the bottle of orange juice would
be the easiest, as the refrigerator cases are clearly evident from the
entrance of the store. The KitKat chocolate bar search would be next
easiest, as this is a common item that people search for, but is made
somewhat difficult due to the great variety of different chocolate bars
nearby that could act as distractors. It is also harder to locate the
shelves containing the chocolate bars than the orange juice refrigerator
cases as there are many shelves with similar appearance. Finally, it
is expected that the search for the canned tuna would be the most
challenging, as it is a product not normally searched for in convenience
stores, and occupies a small area of a single shelf in the store.

Each participant filled out a questionnaire (shown in Appendix)
before their experimental runs. The questionnaire answers are of po-
tential utility in relating shopper’s attention patterns to demographic
and preference information.

At the beginning of each of the three search runs, the participant
put on the eye-tracking glasses (described below), and ran a brief
alibration process. The participants were then shown an instance of
he product to be searched for, and began the search process. They
lways started their run at the same spot, near the entrance to the store.
he search process took varying amounts of time, ranging from 10 s to
20 s, depending on the difficulties the participant had in locating the
earch target.

There were 36 participants in the experiment, including 20 females
and 16 males. Of these, 11 were in the age range of 20–24 years, 12 in
the range 25–29, 8 in the range 30–39, and 5 with ages 40 and above.
Participants’ favorite colors are shown in Table 1 (one participant’s
response was excluded due to the selection of multiple colors):

The distribution of the participant occupations is given in Table 2.
The demographic composition is quite diverse, encompassing a wide
range of age groups and genders. Our coverage includes not only

niversity students but also individuals from various other occupations.
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Table 2
Occupation distribution among participants.
Occupation Number of participants

Student 24
Teacher/Professor 4
Executive Director 1
Customer Service Representative 1
Administrator 1
Advancement Officer 1
Manager 1
Marketing 1
Program Administrator 1
Statistician 1

Fig. 1. The Tobii Pro Glasses 3 eye-tracker.
Image credit: https://www.tobii.cn/products/
eye-trackers/wearables/tobii-pro-glasses-3.

3.1. Eye-tracking device

During each experimental search run, the participants wore the Tobii
ro Glasses 3 eye-tracker, shown in Fig. 1.

This lightweight glasses-mounted device enables the tracking of
oth eyes’ gaze and fixation coordinates with respect to the video

captured by a scene camera. This scene camera, located on the bridge
of the glasses, captures videos at full-HD resolution with 106 degree
field of view, recording what is in front of the participants. On each
side of the glasses, there are eight infrared illuminators and two eye
tracking cameras. The illuminators illuminate the eyes to assist the eye
tracking sensors, and the eye tracking cameras record eye orientation
and movements. A cable from the head unit connects to a separate
recording unit that records and stores eye-tracking data and scene
camera video on a removable SD card. The eye tracker also includes
a microphone, a gyroscope (sampled at 100 Hz), an accelerometer
(sampled at 100 Hz), and a magnetometer (sampled at 10 Hz). The eye
position information is also sampled at 100 Hz, giving a time resolution
of 10 ms.

3.2. Eye-tracking technique

When humans fixate on an object, they can only perceive fine
details within the foveal vision area, a small central region of the retina
densely packed with cone cells (Snowden et al., 2012). To construct
 comprehensive visual representation, individuals must continuously
erform saccadic eye movements, shifting their focus to different parts
f the visual field. This dynamic process enables the brain to integrate
nformation from various fixations, creating a detailed and cohesive
iew of the environment. The condition where the image falling on
he fovea is steady is called a fixation. When transitioning from one
ixation point to the next, the eyes perform rapid movements known as

saccade.

4

Visual information used for scene analysis and object identifica-
tion is primarily acquired during fixations. The duration of a fixation
typically varies from 100 to 600 ms, with occasional fixations of up
o 3 s. The frequency of fixations is about 3 Hz. During saccadic

movements between fixation locations, vision is largely suppressed.
It typically takes between 150–175 ms for the brain to plan out a
saccadic movement. Once the saccade is planned, the end point cannot
e altered. The average duration of saccades is approximately 20–

40 ms. These rapid eye movements can reach angular velocities of up
to 900◦/s.

The eye-tracking technique utilizes corneal reflection, dark pupil
etection, and stereo geometry to track eye movements, thus allowing
he detection of fixations and saccades. During the calibration process,
he eye tracking system maps the participant’s eyes onto a standard
ye model. During the eye-tracking process, the eye tracking cameras
apture the reflection of the illuminators on the cornea. The relative
ositions of the pupils and illuminator reflections are used to determine
he orientation of the eyes. By tracking how eyes move and the duration
f each movement, we can detect fixations and saccades.

The eye position measurement provided by the Tobii Pro Glasses 3
eye-tracker has an accuracy of 0.6 degrees of visual angle. The gaze
ecovery time and blink recovery time are both 1 video frame time
40 ms).

3.3. Raw eye-tracker data

The raw data captured by the Tobii eye-tracker for a single experi-
ental run consists of the scene camera video file in mp4 format and

everal files readable by the Tobii Pro Lab software. Using the Tobii Pro
ab software, we export the eye tracker information as a single human
eadable .csv file. The exported file includes the information shown

in Table 3. This information file is very rich and includes eye-related
data such as video-frame related gaze position, pupil diameters, and 3D
vergence point location information. It also includes non-eye-related
sensor data such as accelerometer (linear acceleration), gyro (angular
elocity), and magnetometer (compass heading) measurements from
ensors mounted on the glasses.

At the same time the eye fixation information is being acquired by
the eye-tracker, the scene camera captures video imagery at 24.95 fps
40.08 msec per frame) with a resolution of 1920 × 1080 pixels. An
xample of a video frame captured by the scene camera is shown in

Fig. 2 (top).
The timestamp recorded by the eye-tracker allows us to align the

scene video frames with the corresponding eye fixation coordinates.
This synchronization enables us to overlay gaze data onto each video
frame and visualize the participants’ fixation points at any given record-
ing timestamp. An example of such an overlay is shown in Fig. 2
(bottom).

3.4. Data post-processing

We perform two additional post-processing steps on the acquired
scene video files. First, we trim the videos to remove the frames after
the time when the search target has been found. This removes task-
irrelevant frames. Secondly, we blur the appearance of any people that

ay be present in the video frames. This blurring is required by the
cGill Research Ethics Board to maintain the anonymity of any and all

eople visible in the videos.

3.5. Public dataset description and access

The dataset will be made available on written request to the authors
at the following URL: https://library.cim.mcgill.ca/data/datasets/
Retail_Innovation_Lab_Egocentric_Video_Eyetracking_Dataset/.

The dataset consists of the following items:

https://www.tobii.cn/products/eye-trackers/wearables/tobii-pro-glasses-3
https://www.tobii.cn/products/eye-trackers/wearables/tobii-pro-glasses-3
https://library.cim.mcgill.ca/data/datasets/Retail_Innovation_Lab_Egocentric_Video_Eyetracking_Dataset/
https://library.cim.mcgill.ca/data/datasets/Retail_Innovation_Lab_Egocentric_Video_Eyetracking_Dataset/
https://library.cim.mcgill.ca/data/datasets/Retail_Innovation_Lab_Egocentric_Video_Eyetracking_Dataset/
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Table 3
Raw eye-tracker data items present in the dataset .csv file. HUCS refers to the 3D head-centered coordinate system, determined using the
vergence of the two eyes. MCS refers to the media coordinate system, which is the projection of the eye positions onto the 2D video frames.
Recording timestamp [μs] The recording timestamp in microseconds

Computer timestamp [μs] The computer timestamp in microseconds
Sensor The sensor type. Available values: Eye Tracker/Gyroscope/Accelerometer
Participant name The six-digit ID of each participant followed by the target object
Recording date UTC The date when the recording was performed in UTC. Format: YYYY-MM-DD
Recording start time UTC The start time of the recording in UTC. Format: HH.MM.SS.FFF
Recording duration [ms] Total duration of the recording. Format: milliseconds
Recording Fixation filter name The name of the fixation filter applied on the recording eye tracking data in the export
Event Name of the event
Event value The event value
Gaze point X, Y [MCS px] Raw gaze coordinates for both eyes combined. Format: pixels (MCS)
Gaze point 3D X, Y, Z [HUCS mm] The 3D vergence point of left and right gaze vectors. Format: millimeters (HUCS)
Gaze direction left X, Y, Z [HUCS norm] Unit vector for left eye gaze direction. Format: Normalized coordinates (HUCS)
Gaze direction right X, Y, Z [HUCS norm] Unit vector for right eye gaze direction. Format: Normalized coordinates (HUCS)
Pupil position left X, Y, Z [HUCS mm] The 3D coordinates of the left eye pupil. Format: millimeters (HUCS)
Pupil position right X, Y, Z [HUCS mm] The 3D coordinates of the right eye pupil. Format: millimeters (HUCS)
Pupil diameter left [mm] Left eye pupil diameter. Format: millimeters
Pupil diameter right [mm] Right eye pupil diameter. Format: millimeters
Pupil diameter filtered [mm] The pupil diameter filtered. Format: millimeters
Validity left Indicates if the left eye has been correctly identified. Available values: Valid/Invalid
Validity right Indicates if the right eye has been correctly identified. Available values: Valid/Invalid
Recording media width, Height [px] Dimension of the recording media. Format: pixels
Eye movement type Format: Fixation, Saccade, Eyes Not Found, Unclassified
Gaze event duration [ms] The duration of the current active eye movement. Format: milliseconds
Eye movement type index Sequential number for each instance of an eye movement type
Fixation point X, Y [MCS px] Coordinates of the fixation point. Format: pixels (MCS)
Ungrouped The ungrouped data (empty)
Gyro X [◦/s] Angular velocity about the X axis. Format: degrees/second
Gyro Y [◦/s] Angular velocity about the Y axis. Format: degrees/second
Gyro Z [◦/s] Angular velocity about the Z axis. Format: degrees/second
Accelerometer X [m/s2] Linear acceleration along the X axis. Format: meters/second2

Accelerometer Y [m/s2] Linear acceleration along the Y axis. Format: meters/second2

Accelerometer Z [m/s2] Linear acceleration along the Z axis. Format: meters/second2

Magnetometer X [μT] Magnetic field along the X axis. Format: microteslas
Magnetometer Y [μT] Magnetic field along the Y axis. Format: microteslas
Magnetometer Z [μT] Magnetic field along the Z axis. Format: microteslas
s

t
o

Table 4
Summary statistics of video lengths.

Total length of all egocentric videos 6159.63 s
Average length of all egocentric videos 57.03 s
Minimum length of all egocentric videos 9.98 s
Maximum length of all egocentric videos 320.0 s
Total length of ‘kitkat chocolate bar’ search videos 2438.57 s
Average length of ‘kitkat chocolate bar’ search videos 67.74 s
Minimum length of ‘kitkat chocolate bar’ search videos 11.98 s
Maximum length of ‘kitkat chocolate bar’ search videos 283.97 s
Total length of ‘orange juice’ search videos 803.51 s
Average length of ‘orange juice’ search videos 22.32 s
Minimum length of ‘orange juice’ search videos 13.99 s
Maximum length of ‘orange juice’ search videos 51.02 s
Total length of ‘canned tuna’ search videos 2917.55 s
Average length of ‘canned tuna’ search videos 81.04 s
Minimum length of ‘canned tuna’ search videos 9.98 s
Maximum length of ‘canned tuna’ search videos 320.0 s

• 108 trimmed and sanitized egocentric scene videos in mp4 for-
mat, one per experimental run (36 participants with 3 search runs
per participant).

• 108 eye-tracker data .csv files, as described in Table 3, one per
experimental run.

• questionnaire .csv file with responses from all 36 participants.

As each experimental participant takes varying amounts of time to
omplete the search tasks, the video files are all of different lengths.
he summary statistics of the video data lengths are shown in Table 4.

The total compressed size of the dataset is 4.6 Gbytes.
5

4. Dataset use Case 1: Analysis of fixations during visual search

In the next two sections of the paper we describe two studies that
were done using the data from the dataset. In the first use case, we
analyze the fixations collected from eye movements of the participants
during their searches for orange juice, KitKat chocolate bar and canned
tuna. Our primary goal in this study is to determine if there are mea-
surable differences in eye fixation behavior between the three search
tasks. In particular we wish to identify which types of objects people
fixate on during search for a specific target, and whether the number
of non-target object fixations depends on the relative difficulty of the
earch task.

A key aspect of visual search is the response of the searcher to search
argets, anchor objects, or distractors. Anchor objects (Võ, 2021) are
bjects in the scene that provide information about other objects, in this

case the target objects. This information may help guide the searcher to
locate and identify a particular search target. For example, the refrig-
erator case is an anchor object for the orange juice bottle. Other candy
bars may be anchor objects for the KitKat chocolate bar. Distractors
are objects that are similar to the search target or objects that attract
the searcher’s attention, but are non-informative to actually performing
the search task. For example, someone searching for orange juice might
be distracted by the coffee dispenser. Knowledge of distractor objects
can potentially aid retail store operations by predicting future sales (of
products attended to while searching for other products) or suggesting
more effective layout of products in the store shelves. To this end, we
analyze the scene video frames to identify the objects that are being
fixated, and classify them as being search targets, anchor objects, or
distractors, based on their fixation durations and object types.

Most studies of fixation durations concentrate on the role of fixa-
tions with durations less than 500 ms, with durations less than 250 ms
indicating so-called ambient processing serving spatial localization, and
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Fig. 2. (Top) An example video frame captured by the Tobii Pro Glasses 3 scene camera. (Bottom) The same video frame with the current fixation location indicated by a red
ircle.
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those with durations between 250–500 ms indicating focal processing
serving visual identification (Trevarthen, 1968; Unema et al., 2005;
Eisenberg and Zacks, 2016). Such studies have been done almost exclu-
sively on stationary viewing of static images or videos. In our study we
wish to determine whether similar fixation duration patterns emerge
during active task-specific activity in 3D environments.

4.1. Fixation duration

For each experimental run, the duration of each fixation was com-
puted by the Tobii software. The normalized fixation duration his-
togram of each experimental run are shown overlaid in Fig. 3. The bin
size is 60 ms. It is important to recall that each participant did the
search tasks in the same order: orange juice run, KitKat chocolate bar
run and canned tuna run, so that task effects are confounded with any
atigue and learning effects. However, the total time taken for all three
 t

6

runs was relatively short (about 5 min in total), suggesting that there
was little fatigue or task learning. We observe that the chocolate bar
and tuna can searches (runs 2 and 3) have more short fixations (less
than 250 ms) than for the orange juice search (run 1). For the fixations
that are greater than 250 ms, run 1 has a larger normalized frequency
than run 2 and 3.

We see that there are similarities and differences between the three
istograms. We see that each histogram appears to consist of a mixture
f two distributions - a compact dense unimodal group of fixation
urations with a peak around 100 ms, and a sparse group of fixation
urations spread over a range from 1000 to 3000 ms. This long-tailed
orm of fixation duration distribution was also noted by Negi and Mitra

(2020) who stressed the importance of considering the long tail of the
distribution. This is seen in the histogram of Fig. 4, reproduced from
igure 1 of Negi and Mitra (2020), which shows the distribution of fixa-
ion durations for a person viewing an instructional video. The fixation
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Fig. 3. Histograms of fixation duration for each search task.
Fig. 4. Representative frequency distribution of raw fixation durations (n = 51238) from a single participant watching a long instructional video.
Source: Reproduced with permission from Figure 1 of Negi and Mitra (2020).
duration distribution for 3D search is seen to be very similar to those
seen in viewing of video imagery, indicating that visual processing in
3D dynamic environments is similar to that in viewing 2D images or
videos.

It is evident that there are more fixations on average in the tuna
an search runs than in the KitKat bar search runs, which again have

more fixations on average than the Orange Juice search runs. This is
due to the differences in the length of time taken for each task. From
Table 4 we see that, on average, searching for the tuna cans takes longer
han the search for the KitKat chocolate bars, which takes longer than
he search for the orange juice. These average search times reflect the
elative difficulty of the three search tasks.
7

4.2. Saccade amplitude

For each search task the amplitude of each saccade after a fixation
was computed using the following equations (Miranda et al., 2018):

𝑎 =
√

(

𝑔𝑥(𝑡1) − 𝑝𝑥(𝑡1)
)2 +

(

𝑔𝑦(𝑡1) − 𝑝𝑦(𝑡1)
)2 +

(

𝑔𝑧(𝑡1) − 𝑝𝑧(𝑡1)
)2 (1)

𝑏 =
√

(

𝑔𝑥(𝑡2) − 𝑝𝑥(𝑡2)
)2 +

(

𝑔𝑦(𝑡2) − 𝑝𝑦(𝑡2)
)2 +

(

𝑔𝑧(𝑡2) − 𝑝𝑧(𝑡2)
)2 (2)

𝑐 =
√

(

𝑔𝑥(𝑡2) − 𝑔𝑥(𝑡1)
)2 +

(

𝑔𝑦(𝑡2) − 𝑔𝑦(𝑡1)
)2 +

(

𝑔𝑧(𝑡2) − 𝑔𝑧(𝑡1)
)2 (3)

𝛼 = ar ccos
(

𝑎2 + 𝑏2 − 𝑐2
)

(4)

2𝑎𝑏
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where 𝑔𝑥(𝑡), 𝑔𝑦(𝑡) and 𝑔𝑧(𝑡) are the gaze positions along the x, 𝑦 and
 directions at time 𝑡, and 𝑝𝑥(𝑡), 𝑝𝑦(𝑡) and 𝑝𝑧(𝑡) are the pupil positions

along the x, 𝑦 and z directions at time 𝑡. 𝑡1 is the time when a saccade
tarts while 𝑡2 is the time when the saccade ends (Miranda et al., 2018).
𝛼 represents the saccade amplitude in degrees. Fig. 5 shows a histogram
of saccade amplitude with a bin width of 1◦ for each search target. We
bserve that each histogram consists of an unimodal distribution with
 peak at 2.5◦. In target-driven searches, where participants look for a
pecific item, saccades tend to be directed towards the most probable
arget locations and participants engage in a more cautious search to
ot miss the target (Zelinsky, 2008). This often results in smaller, more

frequent saccades. Indeed, as observed in Fig. 5, similar trends are seen
n each histogram, where more than 30% of the data are within a range
f 2 to 3◦. The larger saccades may be caused by participants quickly
oving their gaze towards salient features in the visual field, such as

right colors or high-contrast objects. These larger saccade amplitudes
an also be interpreted as participants conducting a more confident
earch, eventually knowing where the search target is (Zelinsky, 2008).

We also studied the relationship between the fixation duration
nd the amplitude of the follow-on saccade (post-fixation). The paper
f Negi and Mitra (2020) investigated this relationship in detail and
ummarized many different studies. They found that many studies

observed that ambient fixations generally are followed by relatively
large saccades, while focal fixations tend to be followed by short
saccades. This follows the study of Velichkovsky et al. (2002) who
investigated eye movements of people viewing dynamic 2D imagery in
a driving simulator. They also found that fixation durations less than
50 msec were associated with follow-on saccades often larger than 4

degrees (i.e. parafoveal), while longer duration fixations tended to have
shorter succeeding saccades, indicating attention guide exploration of
the focal region. In Fig. 6 we show scatter plots of fixation duration
and the amplitude of the post-fixation saccades for each search task
in our study. We can see that the same trend observed in the 2D
viewing studies occurs in our 3D viewing case. We see a wide spread in
post-fixation saccade amplitudes for short fixation durations, including
saccades larger than 5 degrees, and a narrow range of saccade ampli-
tudes less than 5 degrees for the longer duration saccades. This provides
additional evidence for the hypothesis that visual attention and eye
movement control processes involved in 3D viewing are similar to that
of 2D image viewing.

4.3. Labeling of fixated objects

For each fixation that occurs during each experiment search run,
e identified the object type that the fixation lands on in the scene.
o do this, we manually select a video frame from among those in the
ixation period for which the object being fixated is clearly visible. If
o fixated objects are visible (say due to motion blur), or there is no
bject at the fixation location, then we do not assign a label to that
ixation. To speed up the manual labeling process, we ran Meta AI’s
egment Anything Model (SAM) (Kirillov et al., 2023) on the video

frames. The model was able to crop specific objects from each video
frame. Among all the cropped objects, the image of the fixated object
was preserved. This process was followed for each video frame of all
108 raw videos. Each fixated image object was then manually labeled.
The labels include both general categories, such as soft drink, chips and
andy as well as specific brands, such as Pepsi soft drink, Ruffles chips
nd Maynards candy. An example of a segmented video frame is shown
n Fig. 7.

4.4. Analysis of fixated object type

Once the fixated objects have been identified we can filter them
based on their fixation durations. We divide the fixations into three
lasses based on their durations - ambient (0–250 msec), focal (250–

1000 msec), and long (1000+ msec). Following the literature, we
8

operate under the assumption that the focal fixations are the most
important ones for visual processing of the object identity. The ambient
fixations serve shifting to and aligning with objects, but are not in-
volved with detailed visual processing. We observe from the video data
that the long duration fixations are almost always related to grasping
of the target object. Based on these considerations, we concentrate our
study on the focal fixations. In particular, we identify which object
ypes are fixated frequently across all participants for the three search
ask types. The convenience store contains thousands of SKUs (stock-
eeping units, or distinct products to be purchased), but only a small
raction of these are frequently fixated by searchers. In Tables 5–7

we see the average fixation duration and average number of fixations
per run, averaged over the 36 participants, for the three search tasks.
These tables only show the values for object types that have an average
number of fixations per run greater than 2, and are sorted according to
the average number of fixations per run.

We see that different types of objects had frequent focal fixations
in the different search tasks. The orange juice search task was usually
hort and direct, and the objects fixated were all in the refrigerator
ases and drink-related. For the KitKat chocolate bar search, most of the
bjects fixated were other types of chocolate bars. As there was some
xploration of the store required in this task, some other objects were
ixated, notably an advertising sign and other people in the store. But
o unrelated products were fixated focally. The tuna can search task
equired significant exploration of the store, as the shelf containing the
una can was small and hard to locate. In this case we see that the
earchers often fixated on unrelated products, such as ice cream and
ookies.

5. Dataset use Case 2: Clustered saliency prediction

In our second application of the dataset, we use it to train and
evaluate a method for predicting the saliency maps of video frame
mages during the three different search tasks for groups of individuals.

It is well established that there are significant differences between
the attention and eye fixation patterns between individuals. A recent
study by De Haas et al. (2019) shows that much of the individual
differences in saliency lies along semantic directions. That is, people
tend to attend to different types of objects. However, most state-of-the-
rt saliency prediction methods have been based on pooled data from
arge groups of people. These so-called universal saliency methods then
aturally predict the average, or population, attention allocation, and
o rather poorly in predicting individual saliency. This observation has
ed to the development of personalized salience models and predictors
uch as those by Yu and Clark (2017), Li and Chen (2018), Xu et al.

(2017a, 2018). Personalized saliency prediction takes into account
the individual differences in attention, which can be influenced by
personal preferences, prior knowledge, interests, and psychological or
physiological traits. The development of personalized saliency models
is greatly hampered by a lack of suitable training data. Collecting
sufficient personalized data is challenging, as it requires tracking the
attention of individual users over a wide range of images.

The main reason that the state-of-the-art saliency prediction meth-
ods are aimed at predicting the average behavior for large populations
is that in this way a large amount of training data can be obtained.
Some personalized methods address this problem by applying machine
learning techniques that do not require much training data, such as few-
shot learning or meta-learning techniques (Luo et al., 2022). In previous

ork (Sherkati and Clark, 2023), we proposed to ameliorate the data
problem by predicting saliency for groups of people. The intuition here
is that multiple people may have similar attention biases, and these may
be discoverable through clustering along demographic and preference
dimensions. Additionally, aggregating individuals into groups can aid
in anonymization and enhance privacy protection.

There is a vast literature describing a wide variety of approaches to
universal saliency prediction. In this paper we build upon, and compare
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Fig. 5. (Top) Histograms of post-fixation saccade amplitude for each search task. (Bottom) Zoom-in on the saccade amplitudes less than 20 degrees.
to, two current state-of-the-art universal saliency prediction methods
 DeepGaze IIE and ML-Net. DeepGaze I (Kümmerer et al., 2014) was

 pioneering approach to saliency prediction, which applied transfer
earning to the saliency domain. This approach has since evolved into
eepGaze II (Kümmerer et al., 2016), which was built on the VGG19

network. Following the lead of DeepGaze I, nearly all high-performing
saliency models have adopted transfer learning, typically starting with
networks pre-trained on ImageNet. DeepGaze IIE (Linardos et al., 2021)
urther improves upon DeepGaze II by replacing the VGG19 backbone
ith a ResNet50 network. DeepGaze IIE combines some of the state of

he art ImageNet backbones, leveraging inter- and intra-model comple-
entarity. In DeepGaze IIE a Gaussian prior is incorporated to account

or center-bias, which is the natural tendency of human observers to
ocus on the center of an image. This network effectively converts
 f

9

the feature information into a probability distribution over the image,
indicating the likelihood of gaze fixation at each pixel.

ML-Net (Cornia et al., 2016) is another powerful model for predic-
tion of universal saliency maps. The architecture of ML-Net is based on
a deep CNN backbone, such as VGG-16, to extract features from various
levels of the image. ML-Net integrates features from different layers of
the CNN to create a comprehensive representation of the image. The
integrated representation is passed through additional convolutional
layers to produce the final saliency map. Unlike many other saliency
models such as DeepGaze IIE, ML-Net does not explicitly incorporate a
center-bias prior.

The Clustered Saliency Prediction method (Sherkati and Clark,
2023) is a method for personalizing saliency prediction. It does this by
irst clustering observers into groups and then refining the predictions
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Table 5
Object type at focal fixations, for the canned tuna search task. Only object types with more than 2 focal
fixations per run are shown.
Object type Average fixation duration (msec) Average frequency of fixation per run

Ice Cream 402 8.33
Kraft Dinner 385 4
Cookies 310 4
Chewing Gum 332 3.833
Energy Drink 311 3.8
Noodles Pack 392 2.75
Canned Tuna (target) 392 2.56
Milk 276 2.5
Sunflower Seeds 285 2.5
Cheftop Oven 397 2.5
Cold Ready-made Meal 343 2.42
Person 402 2.28
Nuts 323 2.17
Table 6
Object type at focal fixations, for the KitKat chocolate bar search task. Only object types with more than 2
focal fixations per run are shown.
Object type Average fixation duration (msec) Average frequency of fixation per run

KitKat bar (target) 400 6.09
Advertising Signage 445 5.25
Floor 392 3
KitKat bar (non-target) 368 4
Maltesers chocolate 479 3.5
Nuts 312 3
Lindor chocolate bar 324 2.71
Other chocolate 358 2.35
Person 356 2.1
Table 7
Object type at focal fixations, for the orange juice search task. Only object types with more than 2 focal
fixations per run are shown.
Object type Average fixation duration (msec) Average frequency of fixation per run

Energy drink 340 4.33
Orange juice (target) 400 3.54
Other bottled juice 413 2.87
Vitamin water 325 2.25
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of a high-performing universal saliency model, such as DeepGaze IIE or
L-Net, to provide predictions for each group. The technique leverages

 conditional generative adversarial network (cGAN) architecture for
mage-to-image translation, to map the universal predictions to the

group predictions.
In this paper, we apply the Clustered Saliency Prediction method to

he prediction of saliency of shoppers carrying out search for products
n a convenience store. We cluster the participants into (two) groups
sing the approach outlined in Sherkati and Clark (2023). Then, we use
aliency heatmaps derived from a portion of the eye-tracking dataset to

independently train a neural network saliency predictor for each group,
and for each search task. We validate our approach on the remaining
part of the dataset, and compare the results to those obtained with a
tandard universal saliency model.

5.1. Salience heatmap generation

For each of the 108 videos in the dataset, between 5 to 10 keyframes
were selected, choosing frames from among those that were not im-
acted by motion blur. The assisted mapping function in the Tobii
ro Lab software was used to automatically map the participants’ gaze
ata from nearby video frames onto the keyframes and accumulate a
eatmap of the overall gaze locations. The time interval over which the
ontent of each keyframe appears is manually determined and the Tobii
ssisted mapping function is applied to that interval. The result is a
et of 712 keyframe images and their corresponding fixation heatmaps.
n example of one such keyframe and its associated heatmap is shown

n Fig. 8. As the assisted mapping process combines a small number
 e

10
of discrete fixations of a single observer, the resulting heatmaps are
uite compact and localized. To reflect the saliency maps that would be
btained with a large number of viewers, we follow standard practice
e.g. Gilani et al. (2015)) and obtain a fixation density estimate by

Gaussian blurring with a circularly symmetric Gaussian kernel with
standard deviation of 201‘pixels. This models the variability of fixation
ocation that would be expected with multiple observers. Examples of
lurred heatmaps can be seen in Fig. 11. These blurred heatmaps are

used as the ground truth in training and testing our saliency prediction
echnique.

5.2. Grouping of participants

The dataset includes data from 36 participants. We group these par-
ticipants based on their answers to the pre-experiment questionnaire.
The grouping method used follows the clustering technique described
by Sherkati and Clark (2023). To divide the participants into groups
of individuals with similar traits, we create a complex weighted graph
capturing the relationships between the 36 individuals in the dataset.
Each individual is considered as a node in the graph. We connect every
air of individuals with an edge and assign a weight to this edge

equal to the sum of the number of commonalities in their answers
in the questionnaire. All questions have equal weight when summing
the commonalities. After constructing the graph, we run the Louvain
community detection method (Blondel et al., 2008) to determine the
ommunities, or clusters, that have a high degree of connectivity or
nteraction among their members. The Louvain method is known for
ts scalability and ability to detect communities in large-scale graphs
fficiently.
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Fig. 6. Scatter-plots of post-fixation saccade amplitude and fixation duration. (Top)
Orange juice search, (Middle) Kitkat chocolate bar search, (Bottom) Tuna can search
task.

After running the community detection algorithm on the dataset,
e obtain the network shown in Fig. 9. In the figure nodes of the same

color belong to the same cluster. The ID of each node is the ID of the
corresponding subject in the dataset. The red colored edge is the edge
with highest weight, which connects the two individuals with the most
11
Table 8
Comparison of average edge weights in each network, induced
by the sets of nodes in the first column.
Network Average of edge weights

Cluster 1 7.0784
Cluster 2 7.3595
All Subjects 6.5952

similar chosen answers in the questionnaire. We see that the algorithm
results in only two clusters.

To compare the inter-observer similarity with the inter-group sim-
ilarity, we focus on the average edges weights in the two clusters
nd average edge weights in the whole network. This is because the
dge weight between two observers represents the similarity of their
uestionnaire answers. For each cluster we compute the average of
he edge weights between each two individuals in that cluster. We
lso compute the average edge weight between each two individuals
n the entire network. The results are shown in Table 8. We see that
he average edge weight in each cluster is higher than the average

edge weight in the whole network. This shows that individuals in each
cluster have greater intra-cluster similarity than inter-cluster similarity.

For each question in the questionnaire, we compare the average
similarity of each pair of individuals in each cluster vs. the whole
network. The results can be seen in Table 9. We see that, for the age
(Q1), education level (Q7), products preference (Q11) questions, the
scores for each cluster are similar, and similar to that of all participants,
indicating that the answers were similar in both clusters. The average
similarity scores for the visual impairment question (Q3) are similar
for both clusters, and higher than the average similarities over all
the participants. This indicates that there is a significant separation
between the clusters for this question. For the gender identity (Q2), eye
surgery (Q4), color blindness (Q6), work (Q8), food identity (Q9) and
color preference (Q10) questions one cluster had a significantly higher
similarity than the other, indicating that that question was important in
determining the membership of one of the clusters but not the other. In
general, we conclude that the membership of cluster 1 is mainly driven
by the answers to questions 3, 5, 8 and 10, while that of cluster 2 is
mainly driven by the answers to questions 2, 3, 4, 6, and 9.

5.3. Prediction of saliency using the MDST approach

After clustering the individuals using the questionnaire, we use the
ulti-domain Saliency Translation (MDST) technique from Sherkati

and Clark (2023) to predict the saliency heatmaps at the cluster or
roup level. A general illustration of this framework is shown in Fig. 10.

The MDST method is based on Conditional Generative Adversarial
etworks (cGANs) and is an adaptation of the Pix2Pix image translation
odel of Isola et al. (2017). The MDST model incorporates a cluster-

mapping network that takes the cluster label as input and produces a
point in the class space. It consists of an embedding layer followed by
our fully connected layers. The output of the cluster-mapping network
or each cluster label is concatenated with the input image and its

universal saliency map. This combined input serves as a latent code
that is fed into a generator network that produces the personalized
saliency map. The generator is based on the architecture of the U-Net
generator used in the Pix2Pix model. The GAN discriminator uses the
same architecture as the Pix2Pix model’s discriminator. We concatenate
the original image and its universal saliency map, along with the output
generated by the generator, which is then passed to the discriminator.

In order to train the MDST network we first generate the ground
truth saliency heatmaps from the video frames, as mentioned in Sec-
tion 5.1. Then, for the individuals in each group obtained in Fig. 9,
we create 3 sub-clusters with the sets of images obtained for each of
the three search tasks (searching for Orange juice, Kitkat and Tuna
cans). Considering that we have two groups of individuals in Fig. 9, we
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Fig. 7. (Top) An example video frame segmented with the Segment Anything Model. The segmented images are used to speed up manual labeling of objects at fixation points.
Table 9
The average similarity of answers for each question in each cluster and the whole network.

Cluster 1 Cluster 2 All subjects

Q1: How old are you? 0.2484 0.2353 0.2429

Q2: What is your gender identity? 0.4967 0.5752 0.4921

Q3: Do you have any form of visual impairment
(hyperopia, myopia or astigmatism, etc..)

0.8889 1.0 0.4873

Q4: Have you had any form of eye surgery (corneal
(e.g. LASIK, RK), cataract, intraocular implants)?

0.7908 1.0 0.8921

Q5: Do you have any eye movement or alignment
abnormality (amblyopia, strabismus, nystagmus)?

0.8889 0.7908 0.8429

Q6: Do you have colorblindness? 0.8889 1.0 0.9444

Q7: Education level (last level obtained) 0.3922 0.3137 0.3286

Q8: Work/occupation 0.6928 0.3137 0.473

Q9: Do you feel you have a food identity? If so,
which of the following do you identify with?
Select all that apply.

0.4575 0.7843 0.6111

Q10: Which of the following colors do you prefer?
(select one)

0.3333 0.183 0.2349

Q11: Which of the following products do you often
buy at a convenience store? (select all that apply)

1.0 1.1634 1.046
T
0
f
t
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have 6 training clusters in total (3 search specific sub-clusters for each
of the 2 groups) 𝐶1, 𝐶2,… , 𝐶6. Then, in training the MDST network,
for each cluster 𝐶𝑖 such that 1 ≤ 𝑖 ≤ 6, we define the source images
s the original video frames and the DeepGaze IIE (Linardos et al.,

2021) universal saliency maps of the frames seen by the individuals
n cluster 𝐶𝑖. The ground truth target images are the Gaussian blurred
aliency heatmaps of the individuals for the corresponding frame and
orresponding search task of cluster 𝐶𝑖. Note that in this method, as
xplained in Sherkati and Clark (2023), during training each set of

video frame image and DeepGaze IIE saliency map of this frame in
the source domain has a corresponding image in the target domain.
Moreover, if we have multiple participants in the same cluster who
observed the same frame image, for the target image we use the average
of their corresponding saliency heatmaps.

Following the procedure outlined in Sherkati and Clark (2023), we
train the MDST network for 200 epochs, with a batch size of 16. We
se the Adam optimizer, with an initial learning rate of 0.0002 for 100
12
epochs, which then linearly decays to 0 over the remaining 100 epochs.
he Adam optimizer uses momentum parameters 𝛽1 = 0.5 and 𝛽2 =
.999, and a weight decay of 0.00001 is applied to help prevent over-
itting. We apply data augmentation techniques, specifically resizing
he input images to 286 × 286 pixels, followed by a random crop to
56 × 256 pixels, and a random horizontal flip. This process is applied

to the input images as well as the universal saliency maps and ground
truth generated saliency heatmaps. The cluster label is transformed
into a latent code of size 256 × 16 via an embedding layer, and this
code is passed through four consecutive fully connected layers, each
maintaining the input and output size of 256 × 16. The resulting output
is then duplicated four times, concatenated, and resized to a shape of
256 × 256. We use random splits of all the images in each cluster with
proportions of 80%, 10% and 10% for the train, validation and test
sets. We trained the MDST network for 5 different independent random
splits and averaged all the results.
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Fig. 8. (Top) A key-frame from a video of a participant searching for a chocolate bar. (Bottom) The fixation heatmap generated by the Tobii Pro Lab assisted mapping function.
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5.4. Experimental evaluation

For evaluation of the results, the Pearson’s Correlation Coefficient
CC) and Similarity (SIM) metrics were used. The reason for selecting
he CC and SIM metrics for evaluation is that they consider saliency
eatmaps as the ground truth. As mentioned earlier, the saliency
eatmaps for each key frame contains only a few fixation points. To
ccount for the variability in fixation locations, we apply a Gaussian
lur. This altered saliency heatmap is then used as the ground truth
or our performance evaluations. Metrics such as Normalized Scan-path
aliency (NSS), which consider fixation points as the ground truth,
annot incorporate these modifications to the ground truth heatmap.

Pearson’s Correlation Coefficient (CC): is a statistical measure used
to assess the degree of correlation or dependency between two vari-
ables. It evaluates the linear relationship between variables, treating
them as random variables. CC is symmetric and penalizes both false
positives and false negatives equally, making it invariant to linear
13
transformations. In the context of saliency maps, CC can quantify the
linear relationship between predicted saliency maps and ground truth
fixation maps.

Similarity (SIM): also known as histogram intersection, quantifies the
similarity between two distributions considered as histograms. SIM
s calculated by summing the minimum values at each pixel after

normalizing the two saliency maps being compared. A SIM value of one
signifies that the distributions are identical, whereas a SIM value of zero
indicates no overlap between them. SIM is highly sensitive to missing
data and penalizes predictions that do not encompass all aspects of the
round truth distribution.

In Table 10, adapted from Table 1 of Sherkati and Clark (2023), our
MDST method shows 9.60% improvement in Correlation Coefficient
(CC) metric and 7.06% improvement in Similarity (SIM) metric in
prediction of saliency maps of subjects compared to direct application
of the DeepGaze IIE model on the Personalized Saliency Maps (PSM)
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Fig. 9. Clustering network of the dataset participants. The red edge is the edge with the highest weight, indicating the two subjects that have the most answers in common. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. A general framework of clustering and prediction of clustered saliency maps for our dataset.
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dataset of Xu et al. (2017b). This model also shows significant improve-
ment compared to the ML-Net (Cornia et al., 2016) universal saliency
prediction model.

In evaluating the results the average metric values were measured
n each cluster. Then the metric values for each cluster were averaged
cross all the clusters for the final performance. We also evaluated the

test set results for training MDST on the setting with only 3 clusters
ather than 6, where each cluster contains the saliency maps of all

the individuals for one search task. We also obtained the average
performance of DeepGaze IIE on these 3 clusters. The evaluations of
the results are summarized in Table 11. We see in this table that the
MDST model, on both the 6 cluster and 3 cluster cases, outperforms the
DeepGaze IIE and ML-Net models. We also see that the MDST model
on 6 clusters has higher performance than the MDST model on 3 task
clusters. This suggests that our questionnaire based clustering method
has a positive impact on the saliency prediction results. Furthermore,
DeepGaze IIE’s performance on all images within a single cluster is
lower than its performance when images are divided into multiple
clusters, providing additional evidence of the clustering method’s ef-
fectiveness in grouping similar individuals. Note that in Table 11,
the metrics for the DeepGaze IIE model in the 3 and 6 cluster cases
re not the same. This is because all the 6 clusters of Section 5.3

have test sets of different sizes. While the Gaussian center-bias prior
with 𝜎 = 100 performs better than ML-Net and DeepGaze IIE on this
dataset, the MDST approach still outperforms the Gaussian center-bias
prior. Previous research has demonstrated a significant center bias for
saliency in 3D viewing (e.g. Sitzmann et al. (2018), Ding and Chen
(2022)), which likely explains the high scores for the center-bias prior
baseline. In Fig. 11 we see some examples of saliency predictions
provided by the MDST and DeepGaze IIE approach.
 p

14
Table 10
Mean performance of Clustered Saliency Prediction model of Sherkati and Clark (2023)
for all subjects in Personalized Saliency Maps (PSM) dataset (Xu et al., 2017b) and
omparison to the DeepGaze IIE and ML-Net universal saliency prediction methods.
dapted from Table 1 of Sherkati and Clark (2023).
Prediction method CC SIM

DeepGaze IIE based Clustered 0.7418 0.6369
DeepGaze IIE 0.6768 0.5949
ML-Net based Clustered 0.7115 0.6145
ML-Net 0.6504 0.5701

It should be noted that the performance metric values for all ap-
proaches tested on our dataset are relatively low as compared to their
values on large free-viewing saliency datasets, where typical CC scores
are above 0.7 (e.g. Table 10). We hypothesize that this is mainly due to
the difference in saliency patterns for visual search tasks as compared to
free-viewing tasks. DeepGaze IIE was trained on saliency maps acquired
during free-viewing tasks. Similarly, the MDST approach takes in the
DeepGaze IIE universal map as input, and will thus inherit its bias
towards free-viewing saliency patterns. However, the MDST approach
has the advantage of being trained on the task specific saliency data
from the store experiments, and thus should do better than using
DeepGaze IIE alone.

6. Conclusion

In this paper we present an egocentric video and eye-tracking
ataset supporting studies of human attention during search in a com-
lex 3D environment - a convenience store. The dataset includes 108
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Table 11
The comparison of average saliency prediction performance on the store dataset test
set using the MDST (Sherkati and Clark, 2023), DeepGaze IIE (Linardos et al., 2021),

L-Net (Cornia et al., 2016) saliency prediction methods (averaged over 5 independent
andom splits). We also include comparisons to Gaussian center-bias prior maps with
wo different standard deviations. MDST model was trained both on 6 obtained clusters

in Section 5.3 and also on only 3 clusters separated by tasks. For ML-Net, performance
was averaged on the predictions for all the frames (of all subjects and all tasks) within
the same cluster. CC: Pearson’s Correlation Coefficient; SIM: Similarity Metric.

Method CC SIM

MDST on 6 clusters 0.3077 0.2782
MDST on 3 clusters (for only tasks) 0.2947 0.2715
DeepGaze IIE on 6 clusters 0.2839 0.2501
DeepGaze IIE on 3 clusters (for only tasks) 0.2854 0.2514
DeepGaze IIE (on all the frames in one cluster) 0.2795 0.2454
ML-Net (on all the frames in one cluster) 0.2128 0.1876
Gaussian center-bias prior, 𝜎 = 100 0.2969 0.2764
Gaussian center-bias prior, 𝜎 = 80 0.2572 0.2348

HD egocentric videos, with durations from 10 s to 320 s, taken from
 glasses-mounted HD camera worn by a person engaged in search for
hree different products in a convenience store. The dataset also in-

cludes concurrent eye-tracking data aligned with the egocentric videos,
as well as a demographic questionnaire. The dataset will be publicly
available to other researchers on request.

We present two applications that make use of the dataset — an
nalysis of eye fixations during search in the store, and a training of
 clustered saliency model for predicting saliency of shoppers engaged
n product search in the store.

In the fixation analysis study we find that the distributions of
low-level eye movement metrics – fixation duration and post-fixation
saccade amplitude – during search in the 3D store environment are very
imilar to those observed in prior studies involving stationary viewers

of 2D imagery, suggesting that similar visual processing is used in both
situations. Examination of the so-called ‘focal’ fixations, i.e. those that
have duration between 250–1000 msec, indicates that relatively few
objects in the store are frequently attended to during the searches. For
 t

15
the easier searches, where objects are quickly found, the fixated objects
re all related categorically to the search target. Conversely, for longer,
ore difficult, searches, unrelated objects are often fixated, suggesting

ncreased levels of distraction. We observed in the case of the difficult
earch for a can of tuna, experiment participants often fixated on other
ood items such as ice cream and Kraft Dinner, perhaps suggesting that
hese are items frequently consumed by the participant.

We applied the MDST clustered saliency prediction approach of
Sherkati and Clark (2023) to the problem of predicting fixation prob-
ability from the eye tracking data. The clustering was based on the
answers provided in the demographic questionnaires. The clustering
algorithm divided the 36 experiment participants into two groups,
primarily based on the answers to questions on visual impairment, food
identity and color preferences. Our hypothesis is that the two clusters
would exhibit different attention biases that result in measurable dif-
ferences in fixation patterns. We train the MDST network on saliency
heat maps derived from the measured eye-track data separately for
each cluster and each search task. The result is a saliency prediction
for each combination of viewer cluster and search task type (6 differ-
ent predictions in total). Our results show that the clustered saliency
prediction models perform better than with no clustering, and these
work better than using a universal saliency model (one trained on large
numbers of people doing free viewing of images unrelated to the store)
such as DeepGaze IIE (Linardos et al., 2021). The benefit is small, but
does indicate that the store eye-tracking data can be used to provide
fine-tuning of existing state-of-the-art pre-trained saliency models.

CRediT authorship contribution statement

Yinan Wang: Writing – original draft, Validation, Methodology, In-
vestigation, Formal analysis, Data curation. Sansitha Panchadsaram:
nvestigation, Formal analysis, Data curation. Rezvan Sherkati: Writ-
ng – review & editing, Validation, Methodology, Investigation. James
. Clark: Writing – review & editing, Project administration, Investiga-

ion, Funding acquisition, Formal analysis, Conceptualization.



Y. Wang, S. Panchadsaram, R. Sherkati et al. Computer Vision and Image Understanding 248 (2024) 104129

c
i

C
d
p

F

o

s

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Data availability

The dataset is available to the reviewers and will be made publicly
available on request. The link to the data is given in the paper, and is
password protected.

Acknowledgments

We acknowledge the Natural Sciences and Engineering Council of
anada (NSERC) and the Ministère de l’Économie, de l’Innovation et
e l’Énergie (MEIE) for financial support. This research was enabled in
art by computation support provided by Calcul Québec and the Digital

Research Alliance of Canada. We also would like to thank Mme. Valerie
orget from Alimentation Couche-Tard and Mr. Jan Villaluz from the

Bensadoun School of Retail Management at McGill University for their
operational support.

Appendix. Questionnaire

Before the experimental runs, each participant is asked to fill out a
questionnaire, with the following questions.

1. How old are you?

• (a) 16–19
• (b) 20–24
• (c) 25–29
• (d) 30–39
• (e) 40–60
• (f) 60+
• (g) Prefer not to say.

2. What is your gender identity?

• (a) Woman
• (b) Man
• (c) Non-binary
• (d) Prefer not to say

3. Do you have any form of visual impairment (hyperopia, myopia or
astigmatism, etc..)

• (a) Yes
• (b) No
• (c) Prefer not to say

4. Have you had any form of eye surgery (corneal (e.g. LASIK, RK),
cataract, intraocular implants)?

• (a) Yes
• (b) No
• (c) Prefer not to say

5. Do you have any eye movement or alignment abnormality (ambly-
pia, strabismus, nystagmus)?

• (a) Yes
• (b) No
• (c) Prefer not to say

6. Do you have colorblindness?

• (a) Yes
• (b) No
• (c) Prefer not to say
16
7. Education level (last level obtained)

• (a) Primary school
• (b) Secondary/CEGEP
• (c) Tertiary education
• (d) Bachelor’s degree
• (e) Master’s degree
• (f) Doctorate degree
• (g) Prefer not to say

8. Work/occupation
9. Do you feel you have a food identity? If so, which of the following

do you identify with? Select all that apply.

• (a) No, I do not have a food identity.
• (b) Vegan
• (c) Vegetarian
• (d) Gluten-free
• (e) Organic
• (f) Keto
• (g) Other, please specify:
• (h) Prefer not to say

10. Which of the following colors do you prefer? (select one)

• (a) Red
• (b) Orange
• (c) Yellow
• (d) Green
• (e) Cyan
• (f) Blue
• (g) Purple
• (h) White
• (i) Black
• (j) Prefer not to say

11. Which of the following products do you often buy at a convenience
tore? (select all that apply)

• (a) Milk
• (b) Chocolate
• (c) Muffins
• (d) Coffee
• (e) Energy Drinks
• (f) Bottled Water
• (g) Soup
• (h) Juice
• (i) Noodles/ramen
• (j) Ice cream
• (k) Potato chips
• (l) Candy
• (m) Chewing gum
• (n) Canned goods
• (o) Salads
• (p) Sandwiches
• (q) Prefer not to say
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