
RLJ | RLC 2024

Policy Gradient Algorithms with Monte Carlo Tree
Learning for Non-Markov Decision Processes

Tetsuro Morimura
morimura_tetsuro@cyberagent.co.jp
CyberAgent

Kazuhiro Ota
CyberAgent

Kenshi Abe
CyberAgent

Peinan Zhang
CyberAgent

Abstract

Policy gradient (PG) is a reinforcement learning (RL) approach that optimizes a
parameterized policy model for an expected return using gradient ascent. While
PG can work well even in non-Markovian environments, it may encounter plateaus
or peakiness issues. As another successful RL approach, algorithms based on Monte
Carlo Tree Search (MCTS), which include AlphaZero, have obtained groundbreak-
ing results, especially in the game-playing domain. They are also effective when ap-
plied to non-Markov decision processes. However, the standard MCTS is a method
for decision-time planning, which differs from the online RL setting. In this work,
we first introduce Monte Carlo Tree Learning (MCTL), an adaptation of MCTS for
online RL setups. We then explore a combined policy approach of PG and MCTL to
leverage their strengths. We derive conditions for asymptotic convergence with the
results of a two-timescale stochastic approximation and propose an algorithm that
satisfies these conditions and converges to a reasonable solution. Our numerical
experiments validate the effectiveness of the proposed methods.

1 Introduction

Reinforcement learning (RL) attempts to learn a policy model so as to maximize the average of
cumulative rewards (Sutton & Barto, 2018). Policy gradient (PG) algorithms employ gradient ascent
on policy parameters (Gullapalli, 1990; Williams, 1992; Baxter & Bartlett, 2001). They can benefit
much from recent advances in neural network models and have been applied in various challenging
domains, such as robotics (Peters & Schaal, 2008), text generation (Rennie et al., 2017; Ouyang
et al., 2022), and speech recognition (Zhou et al., 2018).

Monte Carlo Tree Search (MCTS) is another successful RL approach, combining Monte Carlo sam-
pling with an optimistic tree search that balances exploration and exploitation (Kocsis & Szepesvári,
2006; Coulom, 2006; Browne et al., 2012). Notably, when integrated with deep learning, as in Al-
phaZero (Silver et al., 2017b;a) and MuZero (Schrittwieser et al., 2020), MCTS algorithms have
achieved groundbreaking results in board games (Silver et al., 2016).

Ordinary RL assumes the environment has the Markov property, i.e., the reward process and system
dynamics of the underlying process are Markovian. More specifically, they depend only on the
current state (and action); in other words, given the current state, they are independent of the
past states. It enables computationally effective dynamic programming techniques to learn policy
models (Puterman, 1994; Bertsekas, 1995). However, in many real-world RL tasks, it is difficult to
determine in advance a good state set or space that satisfies the Markov property (Yu et al., 2011;
Friedrich et al., 2011; Berg et al., 2012; Clarke et al., 2015; Rennie et al., 2017; Paulus et al., 2018;
Zhou et al., 2018; You et al., 2018).

There are at least two typical scenarios where the Markov property is violated. The first is related to
the observation. If observations are limited and partial, the dynamics and rewards are not Markovian
and need to be modeled with functions of the past observation sequence or functions of a latent state.

RLJ | RLC 2024

Policy Gradient
(random sampling with

parametric model)

MCTS
(optimistic search on non-
parametric tree model)

𝜃!

𝜃"

MCTL
(MCTS variant
for online RL)

decision time planning
online RL

setting

PG-MCTL

Figure 1: Overview of the proposed approach; PG guided by Monte Carlo Tree Learning (PG-MCTL).
Unlike MCTS, which requires a simulator to generate possible future states and rewards, MCTL
builds a tree based on real trajectories experienced by an agent while still inheriting core MCTS
properties. PG and MCTL have fundamentally different properties. PG-MCTL takes advantage of
them.

Typical examples are dialog systems (Young et al., 2013) and robot navigation (Berg et al., 2012).
The other case is when only the reward function is not Markovian. Generation tasks, such as text
(Yu et al., 2017) and molecular graphs (You et al., 2018), are a typical examples since generated
objects are usually evaluated not only from a local but also from a global perspective, such as an
ad-quality score in the domain of text generation for search engine advertising (Kamigaito et al.,
2021). The former scenario is often formulated as a partially observable Markov decision process
(POMDP) (Kaelbling et al., 1996; Sondik, 1971), while the latter is a decision process with non-
Markovian reward (Bacchus et al., 1996). The stochastic process that includes both is called a
non-Markovian decision process (NMDP) or history-based decision process (HDP) (Whitehead &
Lin, 1995; Bacchus et al., 1997; Majeed & Hutter, 2018), which is the focus of this paper.

Notably, both PG and MCTS algorithms are applicable to HDP-modeled tasks (Kimura et al., 1997;
Aberdeen, 2003; Rennie et al., 2017; Browne et al., 2012), as they are less reliant on the Bellman
optimality equation under the Markov assumption, unlike Q learning. Moreover, PG algorithms
can effectively utilize function approximators like neural networks. However, PGs are known to
occasionally get trapped on plateaus, slowing down learning (Kakade, 2002; Morimura et al., 2014;
Ciosek & Whiteson, 2020). Furthermore, PGs can face the ’peakiness’ issue, where the initially
most probable actions will gain probability mass, even if they are not the most rewarding (Choshen
et al., 2020; Kiegeland & Kreutzer, 2021). Meanwhile, MCTS-based algorithms aim for a global
optimum through optimistic search, balancing exploration and exploitation (Kocsis & Szepesvári,
2006; Lattimore & Szepesvári, 2020; Świechowski et al., 2021). Yet, compared to PGs, they struggle
with state generalization, often lacking information on states outside of their tree. Furthermore,
while PGs do not require a simulator for action selection, MCTSs do. That is, they are decision-
time planning (Sutton & Barto, 2018), in which planning is launched and completed for every action
selection.

Based on the above, we believe that PG and MCTS can complement each other’s difficulties, and
their combination is a promising way to solve problems in HDPs. Specifically, even when PG is suf-
fering from plateaus or the peakiness issue, MCTS is likely to be able to continue improving because
its exploration strategy is fundamentally different from PG’s. In addition, PG with an appropriately
parameterized model would be able to cover the inefficiency in the state generalization of MCTS. It
is also generally known that a combination of models can have a positive effect (Kuncheva, 2014).

This paper considers an online model-free RL problem in HDPs, where the environment will not be
estimated. That is, no simulator is available. We adapt MCTS to the online RL setup and propose
Monte Carlo Tree Learning (MCTL) that selects an action without a simulator. We then consider
an approach that uses a mixture of PG and MCTL policies and adjusts its mixing probability
through learning. We call this approach a policy gradient guided by MCTL (PG-MCTL) (Figure
1). We derive conditions for asymptotic convergence and find that naive mixing of PG and MCTL

RLJ | RLC 2024

will not work in asymptotic convergence. We propose an algorithm that satisfies the conditions for
convergence.

This paper is structured as follows: Section 2 covers the background of RL in HDPs, PG, and
MCTS. In Section 3, we introduce the PG-MCTL approach, detail its convergence conditions using a
two-timescale stochastic approximation, and present an implementation that meets these conditions.
This is our main contribution. Section 4 reviews relevant literature. The effectiveness of the proposed
approach is validated through experiments in Section 5, and Section 6 offers concluding remarks.

2 Preliminaries

We define our problem setting of RL in HDPs in Section 2.1. PG and MCTS algorithms are briefly
reviewed in Sections 2.2 and 2.3, respectively.

2.1 Problem setting of RL in HDP

While problems of RL are usually formulated on a Markov decision process (MDP) for ease of learn-
ing (Sutton & Barto, 2018), as described in Section 1, it is difficult to define Markovian states in many
real-world tasks. Here, we consider a discrete-time episodic HDP (Whitehead & Lin, 1995; Majeed &
Hutter, 2018) as a general decision process without assuming the Markovian property. It is defined
by a tuple HDP ≜ {O, A, T, pini, po, fr}, where O and A are finite sets of observations and actions,
respectively. T is the length of each episode, pini : O → [0, 1] is a probability function of the initial
observation, pini(o0) ≜ Pr(o0)1, and po : O×Ht×A → [0, 1] is a history-dependent observation proba-
bility function at each time step t∈{0, 1, . . . , T−1}, po(ot+1| ht, at)≜Pr(Ot+1=ot+1| Ht =ht, At =at),
where ht≜ [o0, a0, . . . , ot−1, at−1, ot]=[ht−1, at−1, ot] is a history up to a time step t, and
Ht ≜ (O × A)t × O is a set of histories at a time step t. For brevity, we notate the total his-
tory set H ≜

⋃T
t=0 Ht and the history transition probability function ph : Ht+1 × Ht × A → [0, 1]

such as ph(ht+1 = [ht, at, ot+1] | ht, at) ≜ po(ot+1|ht, at). The function fr : H × A → R is a history-
dependent bounded reward function, which defines an immediate reward rt = fr(ht, at) at time step
t ∈ {0, . . . , T}.

A learning agent chooses an action according to a policy model π : A × H → [0, 1], which is a con-
ditional action probability function π(a|ht) ≜ Pr(a | ht, π) at each time step t. Without loss of
generality, we assume that the agent can take any action a ∈ A in any ht ∈ Ht at any t ∈ {0, . . . , T}.

Here, we consider a standard online RL problem, where pini, po, and fr are unknown to the agent.
The agent learns the policy model π by experiencing episodes repeatedly. The objective function
that the agent seeks to maximize is the expected return

Υ(π) ≜ Eπ[G0], (1)

where Eπ[·] ≜ E[· | HDP, π] is the expectation operator and Gt ≜
∑T

κ=t Rκ =
∑T

κ=t fr(Hκ, Aκ) is a
random variable of the return at time step t.

2.2 Policy gradient

We assume that the policy model πθ to be optimized by PG algorithms is parameterized by a
parameter θ ∈ Rd and πθ is differentiable with respect to θ. Examples of πθ include a neural
network for sequence modeling. The PGs are based on the gradient method of the following update
rule with a small learning rate α ≥ 0,

θ := θ + α∇θΥ(πθ),

1Although it should be Pr(O0 = o0) for the random variable O0 and realization o0 to be precise, we write Pr(o0)
for brevity. The same rule is applied to the other probability functions if there is no confusion.

RLJ | RLC 2024

where := is the right-to-left substitution operator and ∇θΥ(πθ) ≜ [∂Υ(πθ)/∂θ1, ..., ∂Υ(πθ)/∂θd]⊤ is
the gradient of Υ(πθ) with respect to θ. Because the analytical evaluation of ∇θΥ(πθ) is generally
intractable, a PG method, called REINFORCE (Williams, 1992), updates θn after every episode n
of experience [o0, a0, r0, . . . , oT , aT , rT] according to a stochastic gradient method as follows:

θn+1 = θn + αn

T∑
t=0

∇θ log πθn(at|ht) (gt − b(ht)), (2)

since the gradient ∇θΥ(πθ) is written as

∇θΥ(πθ) = Eπθ

[
T∑

t=0
∇θ log πθ(At, Ht) (Gt − b(Ht))

]
,

where gt is the realized value of the return Gt and b : H → R is an arbitrary baseline function. The
baseline function b is used for reducing the variance of the stochastic gradient, and does not induce
any bias to the gradient because of Eπθ[∇θ log πθ(At|h) b(h)] = b(h)∇θ

∑
a∈Aπθ(a|h) = b(h)∇θ1 = 0.

2.3 Monte Carlo tree search

Monte Carlo tree search (MCTS) is developed to identify the best action in a given situation for
decision processes (Kocsis & Szepesvári, 2006; Coulom, 2006; Browne et al., 2012). It is typically
employed for decision-time planning, where planning is initiated and completed per action selection.

It is typically employed for decision-time planning, where planning is initiated and completed per
action selection with a simulator. Here, a simulator is an environment model that can generate
possible future states and rewards given a current state and action. This allows the algorithm to
simulate different action sequences to plan the optimal policy. In planning, MCTS iteratively runs
an episode from a given situation and stores its result in a tree by expanding the tree and updating
statistics in nodes of the tree. After a certain number of iterations, it estimates the best action in
the situation by using statistics of the root node and terminates the planning.

In single-agent learning in a stochastic system, the tree usually has two kinds of nodes, a history node
and a history-action node, alternating in the depth direction. A history node represents a history and
does not store additional information. At a history node, the tree-search policy determines which
child history-action node to transition to, based on the statistics in its child nodes. In contrast, the
transition from a history-action node to a history node follows the transition probability ph.

Each history-action node holds a return estimate q and the number of visits m as the statistics.
Here, we notate those statistics in each history-action node (h, a) with a tabular representation, as
q(h, a) and m(h, a), for simplicity. The tree policy at a history node h, often utilizing the Upper
Confidence Bounds applied for Trees (UCT) formula (Kocsis & Szepesvári, 2006), decides an action
based on the statistics of its child nodes:

arg max
a

{
q(h, a) + C

√
log(

∑
b m(h, b))

m(h, a)

}
, (3)

where C ≥ 0 is a hyper-parameter to control the balance between exploration and exploitation.

Each iteration of the MCTS consists of four consecutive phases:
(i) selection of child nodes from the root to a leaf node in the tree,
(ii) tree expansion by creating new child nodes that are initialized as m :=1, q :=0,
(iii) simulation from one of the new nodes according to a default policy to sample a return,
(iv) backpropagation of the results until the root node.

Note that (ii) and (iii) are skipped if the leaf node reached is a terminal node, and (iii) is the “Monte
Carlo” part of the algorithm. The default policy in (iii) is usually a uniform random policy.

RLJ | RLC 2024

In the backpropagation phase of (iv), the statistics of the node visited at each depth t of iteration
n ∈ {1, 2, . . . } are updated as follows:{

mn+1(ht, at) = mn(ht, at) + 1,

qn+1(ht, at) = qn(ht, at) + 1
mn(ht,at) (gt − qn(ht, at)).

(4)

Note that many other update rules have been proposed, such as the TD(λ) learning type (Browne
et al., 2012; Vodopivec et al., 2017).

3 Policy gradient guided by MCTL

In Section 3.1, we introduce Monte Carlo Tree Learning (MCTL) as an MCTS variant for online
RL. We then outline our approach, PG guided by MCTL (PG-MCTL), in Section 3.2. Convergence
analysis is discussed in Section 3.3, followed by a convergent implementation proposal in Section 3.4.

3.1 Monte Carlo tree learning (MCTL)

Our focus is an online model-free RL problem in HDPs, where no simulator is available. An agent
learns through interactions with an unknown environment without estimating it. The standard
MCTS, however, typically necessitates a simulator. In response, we propose a variant of MCTS that
inherits its key features but eliminates the need for a simulator. This is referred to as a lazy MCTS
or simply, MCTL.

MCTL gradually grows a tree according to the trajectories experienced by the agent interacting
with an unknown environment. Unlike MCTS, MCTL maintains and updates a tree over multiple
episodes.2 Specifically, after experiencing an episode, the tree is updated according to MCTS’s tree
expansion and backpropagation procedures (e.g. Eq. (4)). Depending on the presence of a node for
the current situation h in the tree, the MCTL policy adjusts its action selection. If an MCTL policy
is queried on a history h that the tree contains, it selects an action according to the node selection
procedure of MCTS (e.g. Eq. (3)). Otherwise, it selects an action randomly.

By design, an MCTL tree will have nodes for states near the initial state and/or frequently visited
states. The presence of a node h implies that the history h is somewhat known to an MCTL policy.
In contrast, the absence of a node h′ implies that the history h′ is unknown and the policy should
select an action for exploration at h′. This is analogous to a common class of algorithms, knows
what it knows (KWIK), for efficient exploration (Li et al., 2011).

We will notate an MCTL policy as πω, whose parameter is ω. Specific implementations, including
update rules, are described in Section 3.4.

3.2 General approach

As discussed in the introduction, combining PG and MCTL aims to leverage the strengths and
mitigate the weaknesses of each individual method. Our proposed approach, PG guided by MCTL
(PG-MCTL), integrates them by randomly selecting a policy of either PG or MCTL at each time
step. Specifically, we consider the following mixture of policies πθ and πω:

πθ,ω(a|h) ≜ (1 − λ(h))πθ(a|h) + λ(h)πω(a|h), (5)

where λ is a mixing probability. The λ may be constant or depend on an observation o, history h,
and parameters θ, ω. The parameters θ and ω are updated with modified update rules of a PG and
MCTL, respectively, which are proposed in Section 3.4 by using the results in Section 3.3.

2In MCTS, the search tree is built and used within a single episode, often requiring a simulator to generate
possible future states. In contrast, MCTL continuously updates a single tree over multiple episodes using only the
states experienced by the agent. This allows MCTL to function without a simulator, as it relies solely on real-world
interactions.

RLJ | RLC 2024

3.3 Convergence analysis

We present the convergence conditions of PG-MCTL on a few settings of the mixing probability λn

in Eq. (5). Proofs are shown in Appendix A.

We will validate our assumptions in the next section. For now, let’s assume the updates of parameters
θ ∈ Rd for a PG policy and ω ∈ Re for an MCTL policy can be rewritten as follows:

θn+1 = θn + αn[k(θn, ωn) + M
(1)
n+1 + ϵ(1)

n], (6)
ωn+1 = ωn + ηn[l(θn, ωn) + M

(2)
n+1 + ϵ(2)

n], (7)

where k : Rd × Re → Rd and l : Rd × Re → Re are the expected update functions, M (1) ∈ Rd and
M (2) ∈ Re are noise terms, and ϵ(1) ∈ Rd and ϵ(2) ∈ Re are bias terms.
We make the following assumptions about the noise and bias terms, which are common in the
stochastic approximation (Borkar, 2008).
Assumption 1. The stochastic series {M

(i)
n } for i = 1, 2 is a martingale dierence sequence, i.e.,

with respect to the increasing σ-elds, Fn ≜ σ(θm, ωm, M
(1)
m , M

(2)
m , m ≤ n), for some constant K > 0,

the following holds for all n ∈ {1, 2, . . . },

E[M
(i)
n+1 | Fn] = 0,

E[∥M
(i)
n+1∥2 | Fn] ≤ K(1 + ∥θn∥2 + ∥ωn∥2).

Assumption 2. The bias {ϵ
(i)
n } for i = 1, 2 is a deterministic or random bounded sequence which

is o(1), i.e., limn→∞ ϵ
(i)
n = 0.

In our problem setting, the size of the history set H is bounded, which ensures that the assumptions
regarding the noise and bias terms in Eqs. (6) and (7) are realistic and not overly restrictive.

For our analysis, we use the ordinary dierential equation (ODE) approach for the stochastic approx-
imation (Bertsekas & Tsitsiklis, 1996; Borkar, 2008). The limiting ODEs that Eqs.(6) and (7) might
be expected to track asymptotically is, for τ ≥ 0,

θ̇(τ) = k(θ(τ), ω(τ)), (8)
ω̇(τ) = l(θ(τ), ω(τ)). (9)

We also make the assumption about the expected update functions k and l.
Assumption 3. The functions k and l be Lipschitz continuous maps.

Assumption 4. The ODE of Eq. (9) has a globally asymptotically stable equilibrium φ(θ), where
φ : Rd → Re is a Lipschitz map.
Assumption 5. supn(∥θn∥ + ∥ωn∥) < ∞.

We first show the convergence analysis result for the case of that the mixing probability λ is a
constant or a fixed function such as λ : H → [0, 1].
Proposition 1. Assume Assumptions 1–5 hold. Let the mixing probability function λ : H → [0, 1]
be invariant to the number of episodes n, and the learning rates αn and ηn satisfying

limN→∞
∑N

n=0 αn = limN→∞
∑N

n=0 ηn = ∞,

limN→∞
∑N

n=0
(
α2

n + η2
n

)
< ∞,

limN→∞
αN

ηN
= 0.

(10)

Then, almost surely, the sequence {(θn, ωn)} generated by Eqs. (6) and (7) converges to a compact
connected internally chain transitive invariant set of Eqs. (8) and (9), respectively.

RLJ | RLC 2024

The above results indicate how the learning rates αn and ηn should be set for convergence. Since
ηn in an MCTL policy is basically proportional to 1

n , an obvious choice of αn will be 1
1+n log n .

Note that, if a deterministic policy such as UCT (Eq. (3)) is used, k and l will not be the Lipschitz
maps and thus the above convergence results cannot be applied. Therefore, we will use the softmax
function (Sutton & Barto, 2018) in the implementation in Section 3.4.

The invariant condition of λ can be relaxed.
Proposition 2. Let λθn

: H → [0, 1] be a function parameterized by a part of θ and a Lipschitz
continuous map with respect to θ. Assume that all the conditions of Proposition 1 are satisfied except
for λ. The consequence of Proposition 1 still holds.

Finally, we consider a specific scenario that λn is a decreasing function of the number of episodes n,
where an MCTL policy πω is just used for guiding the PG. The goal, in this case, will be to obtain a
parameterized policy πθ that demonstrates good performance by itself. In the case of λn decreasing,
the convergence condition can be significantly relaxed as follows.
Proposition 3. Assume Assumptions 1 and 2 only for i = 1 hold, k is Lipschitz continuous map,
and supn(∥θn∥) < ∞ holds. Let the mixing probability λn be o(1) and satisfy 0 ≤ λn ≤ 1 − ε for all
n and a constant ε > 0, and the learning rate of a PG policy satisfy

lim
N→∞

N∑
n=0

αn = ∞, lim
N→∞

N∑
n=0

α2
n < ∞.

Then, almost surely, the sequence {θn} generated by Eqs. (6) and (7) converges to a compact con-
nected internally chain transitive invariant set of the ODE, θ̇(τ) = ∇θΥ(πθ(τ)).

This proposition shows that, unlike the previous cases, the convergence property is guaranteed even
if a deterministic policy like UCT is used for an MCTL policy.

3.4 Implementation

We present an implementation of PG-MCTL that satisfies the convergence conditions and converges
to a reasonable solution.

First, we consider revising the update of a PG policy πθ. Since the goal is to maximize the expected
return of Eq. (1), the following update at each episode n will be appropriate, instead of the ordinary
one of Eq. (2):

θn+1 = θn + αn

T∑
t=0

∇θ log πθn,ωn(at|ht)(gt − b(ht))

= θn + αn

T∑
t=0

ρt∇θ log πθn(at|ht)(gt − b(ht)), (11)

where we assume πθn,ωn is the behavior policy of episode n. The ρt is a scaled probability ratio or
a kind of importance weight (Sutton & Barto, 2018),

ρt ≜
(1 − λ(ht))πθ(at|ht)

πθ,ω(at|ht)
. (12)

Note that according to Proposition 2, learning the mixture probability λ via this PG update, rather
than assuming λ is predefined and fixed, still ensures convergence. When adopting this approach,
termed PG-MCTL-adpt, we assume that λθ is parameterized by a subset of parameters within θ.
The update rule of θ is derived as

θn+1 = θn+αn

T∑
t=0

{
ρt∇θ log πθn(at|ht) + (πωn(at|ht) − πθn(at|ht))

πθn,ωn(at|ht)
∇θλθn

(ht)
}

(gt − b(ht)). (13)

RLJ | RLC 2024

From here on, we will only consider the case where the mixing probability λ is constant, but the
results presented here will be straightforwardly applied to other settings of λ.
Next, we consider an implementation of an MCTL policy πω. The update rule of MCTS that MCTL
follows differs from the general stochastic approximation in Eq.(7). In particular, the learning rate in
the MCTS update of Eq. (4) varies among nodes. On the other hand, the stochastic approximation
assumes a global learning rate ηn as seen in Eq. (7). Furthermore, although Assumption 5, vital
for convergence, states that parameters should remain bounded, the parameter m, the number of
visits, could diverge. To reconcile these differences, we introduce a tree-inclusion probability and
reformulate the MCTS update by replacing m(h, a) with u :H×A → [0, 1] so that m(h, a)=1/u(h, a).
Consequently, the parameter of the MCTL policy πω becomes ω ≜ {u, q}. With a learning rate of
ηn = 1/n and initializing u :=1 and q :=0, the conventional MCTS update in Eq.(4) can be rewritten
as: un+1(ht, at)= un(ht, at) + ηnκn,t

−un(ht,at)
un(ht,at)+1 ,

qn+1(ht, at)= qn(ht, at) + ηnκn,t(gt − qn(ht, at)),
(14)

where κn,t is the following and can be regarded as an adjustment term for the learning rate per
node,

κn,t ≜ pn,t
un(ht, at)

ηn
,

and pn,t is the following tree-inclusion probability,

pn,t ≜
{

1, if t = 0,

min
(

1
un(ht−1,at−1) − 1, 1

)
, otherwise.

(15)

If un(ht−1, at−1) = 1, the tree-inclusion probability pn,t is zero, and thus the values of (ht, at) are not
updated. It corresponds to the case where the tree does not have a node (ht, at), indicating that this
node hasn’t been expanded. If un(ht−1, at−1) ≤ 0.5, the values of a node (ht, at) are updated with
probability 1. The equivalence of the original MCTS update and Eq. (14) is shown in Appendix A.5.

We next investigate Assumption 3 about Lipschitz continuity of the expected update functions k
and l. The PG update of Eq. (11) is based on the gradient ascent, and thus the expected update
functions k with an ordinary implementation will satisfy Lipschitz continuity. However, the update
of Eq. (14) does not allow l to have Lipschitz continuity since κn,t diverges as ηn → 0. This problem
can be solved by modifying κn,t with a large value M > 0 as follows:

κ̄n,t ≜ min(κn,t, M). (16)

Theorem 1. Let the PG-MCTL update the parameterized policy πθ by Eq. (11) and the MCTL
policy πω by the rule in which κ in Eq. (14) is replaced by κ̄ of Eq. (16), and the learning rates satisfy
the conditions of Eq. (10). Also let πθ be defined on a compact parameter space and have always
bounded first and second partial derivatives, and πω be a softmax policy with hyper-parameters β ≥ 0
and C ≥ 0,

πω(a|h) ∝ exp
(

β
{

q(h, a) + C
√

u(h, a) log
∑

b
1

u(h,b)

})
. (17)

Then, limn→∞ ∇θΥ(πθn,ωn) = 0 holds.

Finally, we propose a heuristic to avoid a vanishing gradient problem of the PG update of Eq. (11).
By the definition of ρt in Eq. (12), if πθ and πθ,ω are significantly different, ρt can be close to zero
and thus the stochastic gradient at time t can vanish. In order to avoid this problem, we modify ρt

to ρ
t

as, with υ ∈ [0, 1],

ρ
t
≜ max(υ, ρt). (18)

RLJ | RLC 2024

Algorithm 1 A PG-MCTS implementation
1: given:
2: - an initialized PG policy πθ(a|h) and mixing probability function λθ(h) 3

3: - an initialized MCTL policy πω(a|h), e.g., Eq. (17)
4: - hyper-parameters for the PG and MCTS policies
5: while within computational budget do
6: // interaction with environment HDP
7: observe an initial observation h0 ∼ pini
8: empty a memory M and store h0 in M
9: for t = 0 to T do

10: choose a policy π ∈ {πθ, πω}, using λ(ht) (see Eq. (5))
11: choose and execute an action at ∼ π(· |ht)
12: observe a reward rt := fr(ht, at)
13: observe a new history ht+1 ∼ ph(· |ht, at)
14: store rt and ht+1 in the memory M
15: end for
16: // update of policies πθ, πω and mixing probability λθ with M
17: compute the return gt, ∀t ∈ {0, . . . , T}
18: update πθ and λθ by the PG update of Eqs. (11) and (13) with (18)
19: update πω by the MCTL update of Eq. (14) with (16)
20: end while
21: return the learned policy πθ,ω ≜ λπθ + (1 − λ)πω

When υn = o(1), the convergence property in Theorem 1 still holds because υn is absorbed into ϵn

in Eq. (6). Note also that ρt is upper bounded by 1. Thus there is no need to care about ρt taking
a large value. The entire PG-MCTL implementation is shown in Algorithm 1.

It should be noted that the memory size may continue to grow over time as more episodes are
experienced. Additionally, the maximum memory usage of the MCTL policy is on the order of the
tree size, O(|H|). While this can be significant, it is generally not expected to explore all trajectories
and construct a complete tree, resulting in a smaller memory consumption.

4 Related work

Numerous studies integrate MCTS and RL algorithms. Most of them are based on the standard
MCTS setting (decision time planning) and propose to use value-based RL (Vodopivec et al., 2017;
Jiang et al., 2018; Efroni et al., 2019) or supervised learning (Guo et al., 2014; Silver et al., 2017b;
Anthony et al., 2017; Schrittwieser et al., 2020; Dam et al., 2021), where deep neural networks are
trained from targets generated by the MCTS iterations. The latter approach is also known as expert
iteration (Anthony et al., 2017). AlphaZero and MuZero are prominent algorithms adopting this
approach. The key distinction between expert iteration and PG-MCTL lies in their policy updates.
While the PG-MCTL is weighting the experiences with the return gt and importance weight ρt

(see Eq. (11)), the standard expert iteration does not, assuming that all instances are positive
examples since they are the result of MCTS iteration. Another difference pertains to the type of
learning. Specifically, the expert iteration is classified as decision-time planning or model-based RL.
In contrast, PG-MCTL is model-free and doesn’t rely on a simulator. Grill et al. (2020) also extend
AlphaZero or MuZero with the notion of PG, which is also model-based RL.
Several studies, among others, combine PG and MCTS. Soemers et al. (2019) runs MCTS to compute
a value function that PG uses. Guo et al. (2016) uses PG to design reward-bonus functions to improve
the performance of MCTS. Anthony et al. (2019) uses PG for updating local policies and investigates

3The mixing probability function λ may be given as a hyper-parameter instead of parameterizing it with θ. In
that case, the update λ of line 18 by Eq. (13) is skipped.

RLJ | RLC 2024

planning without an explicit tree search. Dieb et al. (2020) uses PG in the tree expansion phase to
choose a promising child node to be created, assuming a situation where the number of actions is
huge.
From another perspective, the PG-MCTL can be regarded as using MCTS for PG to enhance the
efficiency of exploration. Most exploration approaches in PG focus on designing reward functions,
often incorporating a bonus of intrinsic motivation or curiosity to explore unknown states (Bellemare
et al., 2016; Tang et al., 2017; Zheng et al., 2018; Burda et al., 2019). Haarnoja et al. (2018)
demonstrates remarkable success using an entropy bonus to aid exploration in benchmark control
tasks. Unlike many approaches, PG-MCTL does not modify the objective function, however, it
remains compatible with most of them.
For RL in an HDP or NMDP, there are two major directions. The first one assumes the existence of
latent dynamics and considers the identification of the dynamics (Thiébaux et al., 2006; Poupart &
Vlassis, 2008; Silver & Veness, 2010; Singh et al., 2012; Doshi-Velez et al., 2015; Brafman & Giacomo,
2019). A POMDP (Kaelbling et al., 1998) serves as a widely-recognized mathematical model for
this purpose. Doshi-Velez et al. (2015) identifies an environment as a POMDP with Bayesian non-
parametric methods and then compute a policy by solving the POMDP. The other direction is
to use a function approximator whose output depends not only on a current observation but also
on past observations (Loch & Singh, 1998; Hernandez-Gardiol & Mahadevan, 2000; Bakker, 2002;
Hausknecht & Stone, 2015; Rennie et al., 2017; Qin et al., 2023). One of the successful approaches
uses a neural network for sequence learning as a policy model and optimizes it by PG (Wierstra
et al., 2010; Rennie et al., 2017; Paulus et al., 2018; Kamigaito et al., 2021), as corresponds to the
PG policy in our proposed PG-MCTL.
While the proposed implementation of PG-MCTL integrates standard PG and MCTS algorithms in
a well-designed way, there are a lot of studies on enhancing those algorithms, such as stabilization of
PG by a conservative update (Kakade, 2002; Schulman et al., 2015; 2017), the entropy regularization
for explicitly controlling the exploration-exploitation trade-off (Haarnoja et al., 2017; 2018; Xiao
et al., 2019; Grill et al., 2020), and extensions of MCTS to continuous spaces (Couëtoux et al., 2011;
Mansley et al., 2011; Kim et al., 2020; Mao et al., 2020). Incorporating these technologies, including
the expert iteration, into the PG-MCTL is an interesting avenue for future work.

5 Numerical Experiments

We apply the PG-MCTL algorithm to two different tasks in HDPs. The first task is a randomly
synthesizing task, which does not contain domain-specific structures and is not overly complex.
Therefore, this task will help investigate the primary performance of algorithms. The second task
is the long-term dependency T-maze, which is known as a standard benchmark for learning a deep-
memory POMDP (Bakker, 2002; Wierstra et al., 2010). Details of the experimental setup are given
in Appendix B.

The goal here is not to nd the best model for the above two tasks, but to investigate if/how combining
the PG and MCTL (MCTS variant) by the PG-MCTL is effective. Therefore, the applied algorithms
here are simple, not state-of-the-art algorithms. In this regard, model-based RLs including MuZero
(Schrittwieser et al., 2020) are also out of the scope of this work. We used REINFORCE with a
baseline (Williams, 1992) for the PG and MCTL for the original MCTS, which are introduced in
Sections 2.2 and 3.2, respectively. Note that REINFORCE, although it is classic, is still appealing
due to its good empirical performance and simplicity (Grooten et al., 2022; Zhang et al., 2021).
It and its variants are used in many applications (Rennie et al., 2017; Paulus et al., 2018; Chen
et al., 2019; Xia et al., 2020; Wang et al., 2021; Liu et al., 2022). Thus, we believe that improving
REINFORCE itself is still important in the practical implementation of RL.

While our focus is on fundamental algorithms, we also included the proximal policy optimization
(PPO) (Schulman et al., 2017), a modern and practical variation of the PG algorithm, to provide
a comparative perspective on performance. Additionally, we utilized a simple version of AlphaZero

RLJ | RLC 2024

(Silver et al., 2017b), termed lazy AlphaZero. It employs the same adaptation to the online RL
setting as MCTL (also called lazy MCTS). The parameterized policy model, serving as the prior
policy in lazy AlphaZero, is updated based on online experiences according to likelihood maximiza-
tion. Furthermore, we also implemented a naive mixture of the PG and MCTL that follows Eq. (5)
but uses the learning rules of the standalone REINFORCE and MCTL. For fair evaluation, we first
tuned the hyper-parameters of standalone algorithms and then used them for the PG-MCTL and
the naive mixture model.

5.1 Randomly synthesized task

This task is a randomly synthesized non-Markovian model. It is analogous to generation tasks such
as text generation and compound synthesis, presenting as a simple yet challenging HDP. There are
five observations and ten actions. The observation probability function po was synthesized to depend
on the time-step, observation, and action. The reward function fr was composed of the sum of the
per-step sub-reward function rlocal and the history-based sub-reward function rglobal. The function
rglobal was synthesized by using a Gaussian process, such that the more similar the histories, the
closer their rewards tend to be. This reward function fr can be interpreted in the context of text
generation as follows: rlocal represents the quality of local word connections, and rglobal represents
the quality of the generated text. The policy πθ was a softmax and parameterized by using the
reward structure. We set T =15. Thus, there are an enormous number of variations in the histories
(∼ 1025).

Figure 2 (a) shows the results of ten independent runs, where ’PG-MCTL’ and ’PG-MCTL-adpt’ are
the proposed methods. PG-MCTL uses a fixed mixing probability λn, while PG-MCTL-adpt learns
λθ with the PG update of (13). In each run, an HDP environment was independently generated, as
described above.

The results indicate that REINFORCE learned most quickly but often fell into sub-optimal policies.
In contrast, the MCTL and lazy AlphaZero methods continued to improve but was slow to learn.
This slowness is probably due to the lack of the ability to learn state representation, more concretely,
if trajectories are even slightly different, the nodes differ from each other, and thus information is not
shared among them. Whereas, the proposed PG-MCTL methods were able to continuously improve
and was not slow to learn. It implies that the PG-MCTL approach can successfully incorporate the
advantages of both the PG and MCTL. Specifically, while PG offers rapid learning, MCTL provides
continuous improvement without easily falling into sub-optimal policies.

However, it is worth noting that the poor performance of the naive mixture indicates that the simple
mixing approach of the PG and MCTL policies cannot work. Also, note that their performances
of PG-MCTL and PG-MCTL-adpt were similar. This similarity suggests that in this task, learning
the mixing probability λ did not provide a significant advantage over the fixed probability approach
in PG-MCTL. However, it is important to consider the potential benefits of adaptive methods in
more structured tasks, as explored in Section 5.2.

5.2 T-maze task

The T-maze task of Figure 3 is non-Markovian and designed to test the ability to identify associations
between events with long-time lags (Bakker, 2002; Wierstra et al., 2010). An agent has to remember
an observation made at the first time step until the episode ends. We use a long short-term memory
(LSTM) as a policy model. Since the original setting with the initial position s0 = 0 is not so
difficult, we prepared a more difficult setting, where initial position s0 is the center of the corridor.
In this setting, a policy that chooses the left or right action with probability 0.5 can be sub-optimal.
Note that this is not true in the original setting (s0 = 0) because going left occurs a negative reward.

The results are shown in Figure 2 (b) and indicate the effectivity of the proposed methods. In this
experiment, the performance of PPO and REINFORCE showed only marginal differences, suggesting

RLJ | RLC 2024

(a) (b)

0 50000 100000 150000 200000

episodes

0

2

4

6

8

10

12

av
er

ag
e

re
w

ar
d

REINFORCE

Naive mixture

MCTL (Lazy MCTS)

Lazy AlphaZero

PG-MCTL

PG-MCTL-adpt

0 2000 4000 6000 8000 10000

episode

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

av
er

ag
e

re
tu

rn

REINFORCE

PPO

MCTL (Lazy MCTS)

Lazy AlphaZero

PG-MCTL

PG-MCTL-adpt

0 2000 4000 6000 8000 10000

episode

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

av
er

ag
e

re
tu

rn

REINFORCE

PPO

MCTL (Lazy MCTS)

Lazy AlphaZero

PG-MCTL

PG-MCTL-adpt

Figure 2: Performance comparison by ten independent runs, where the error bar represents the
standard error of the mean: (a) the randomly synthesized task (T = 15). (b) T-maze task; the plot
on the left is the result of an easy setting (the length of corridor L = 30 and the initial position
s0 = 0). The plot on the right is for a more difficult setting, where there exist more sub-optimal
policies (the length of corridor L = 100 and the initial position s0 = 50).

S

G

N

X

Figure 3: Long-term dependency T-maze task: an agent starts at the position S. Only at the initial
time step t = 0, it can observe a signal ’up’ or ’down’ that indicates it should go north or south at
the T-junction in this episode.

that using PPO as the PG module in PG-MCTL would offer limited benefits. The significant
superiority of our approach over PPO, however, underscores the effectiveness of combining PG
with MCTS. Moreover, PG-MCTL-adpt outperformed PG-MCTL, demonstrating that adjusting
the mixing probability through learning, especially at T-junctions, was effective in this task.

6 Conclusion

This paper focused on online reinforcement learning problems in history-based decision processes
(HDPs). We investigated the PG-MCTL approach, a mixture policy approach for the PG and online
MCTS variant (MCTL) that takes advantage of the features of the PG and MCTS algorithms. We
provided the convergence analysis and then proposed an implementation that converges to a reason-
able solution. Through the numerical experiments on two HDP tasks with different characteristics,
we confirmed the significant effect of the proposed approach for the mixture of the PG and MCTL
policies.

In future work, we will apply our algorithms with state-of-the-art neural networks for sequence
data to more practical and challenging domains, such as advertising text generation and incomplete
information games. Also, the analysis of convergence points is crucial because the PG is a local
optimization while MCTS is a global optimization method. For example, guidance from MCTS
may help PGs overcome a bad local optimum and a learning plateau. Another exciting direction
will incorporate state-of-the-art PG and MCTS techniques, such as entropy regularization and the
natural gradient.

RLJ | RLC 2024

References
D. Aberdeen. Policy-Gradient Algorithms for Partially Observable Markov Decision Processes. PhD

thesis, Australian National University, 2003.

T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search. In
Advances in Neural Information Processing Systems, 2017.

T. Anthony, R. Nishihara, P. Moritz, T. Salimans, and J. Schulman. Policy gradient search: Online
planning and expert iteration without search trees. In arXiv preprint arXiv:1904.03646, 2019.

F. Bacchus, C. Boutilier, and A. Grove. Rewarding behaviors. In National Conference on Artificial
Intelligence, volume 2, pp. 11601167. AAAI Press, 1996.

F. Bacchus, C. Boutilier, and A. Grove. Structured solution methods for non-Markovian decision
processes. In National Conference on Artificial Intelligence, pp. 112117. AAAI Press, 1997.

B. Bakker. Reinforcement learning with long short-term memory. In Advances in Neural Information
Processing Systems, 2002.

J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelli-
gence Research, 15:319–350, 2001.

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, pp. 1471–1479, 2016.

J. Berg, S. Patil, and R. Alterovitz. Motion planning under uncertainty using iterative local opti-
mization in belief space. In International Journal of Robotics Research, pp. 1263–1278, 2012.

D. P. Bertsekas. Dynamic Programming and Optimal Control, Volumes 1 and 2. Athena Scientific,
1995.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

V. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University
Press, 2008.

R. I. Brafman and G. D. Giacomo. Regular decision processes: A model for non-Markovian domains.
In International Joint Conference on Artificial Intelligence, pp. 5516–5522, 2019.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale study of
curiosity-driven learning. In International Conference on Learning Representations, 2019.

M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. Chi. Top-k off-policy correction for
a reinforce recommender system. In International Conference on Web Search and Data Mining,
2019.

L. Choshen, L. Fox, Z. Aizenbud, and O. Abend. On the weaknesses of reinforcement learning for
neural machine translation. In International Conference on Learning Representations, 2020.

K. Ciosek and S. Whiteson. Expected policy gradients for reinforcement learning. Journal of Machine
Learning Research, 21:1–51, 2020.

A. M. Clarke, J. Friedrich, E. M. Tartaglia, S. Marchesotti, W. Senn, and M. H. Herzog. Human
and machine learning in non-Markovian decision making. PLOS One, 10(4):e0123105, 2015.

RLJ | RLC 2024

A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard. Continuous upper confidence
trees. In International Conference on Learning and Intelligent Optimization, pp. 433445, 2011.

R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In International
Conference on Computers and Games, pp. 72–83, 2006.

T. Dam, C. D’Eramo, Jan Peters, and J. Pajarinen. Convex regularization in Monte-Carlo tree
search. In International Conference on Machine Learning, pp. 2365–2375, 2021.

S. Dieb, Z. Song, W. J. Yin, and M. Ishii. Optimization of depth-graded multilayer structure for
X-ray optics using machine learning. Journal of Applied Physics, 128(7):074901, 2020.

F. Doshi-Velez, D. Pfau, F. Wood, and N. Roy. Bayesian nonparametric methods for partially-
observable reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 37(2):394–407, 2015.

Y. Efroni, G. Dalal, B. Scherrer, and S. Mannor. How to combine tree-search methods in reinforce-
ment learning. In AAAI Conference on Artificial Intelligence, pp. 3494–3501, 2019.

J. Friedrich, R. Urbanczik, and W. Senn. Spatio-temporal credit assignment in neuronal population
learning. PLOS Computational Biology, 7(6):e1002092, 2011.

J. B. Grill, F. Altché, Y. Tang, T. Hubert, M. Valko, I. Antonoglou, and R. Munos. Monte-Carlo
tree search as regularized policy optimization. In International Conference on Machine Learning,
pp. 3769–3778, 2020.

B. Grooten, J. Wemmenhove, M. Poot, and J. Portegies. Is vanilla policy gradient overlooked?
analyzing deep reinforcement learning for hanabi. In Adaptive and Learning Agents Workshop at
AAMAS, 2022.

V. Gullapalli. A stochastic reinforcement learning algorithm for learning real-valued functions.
Neural Networks, 3(6):671–692, 1990.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time atari game play
using offline Monte-Carlo tree search planning. In Advances in Neural Information Processing
Systems, 2014.

X. Guo, S. Singh, R. Lewis, and H. Lee. Deep learning for reward design to improve Monte Carlo
tree search in ATARI games. In International Joint Conference on Artificial Intelligence, 2016.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based
policies. In International Conference on Machine Learning, volume 70, pp. 1352–1361, 2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International Conference on Machine Learning,
pp. 1856–1865, 2018.

M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs. In AAAI
Conference on Artificial Intelligence, 2015.

N. Hernandez-Gardiol and S. Mahadevan. Hierarchical memory-based reinforcement learning. In
Advances in Neural Information Processing Systems, 2000.

D. R. Jiang, E. Ekwedike, and H. Liu. Feedback-based tree search for reinforcement learning. In
International Joint Conference on Artificial Intelligence, pp. 2284–2293, 2018.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
AI Research, 4:237–285, 1996.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

RLJ | RLC 2024

S. M. Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2002.

H. Kamigaito, P. Zhang, H. Takamura, and M. Okumura. An empirical study of generating texts
for search engine advertising. In Conference of the North American Chapter of the Association
for Computational Linguistics: Industry Papers, pp. 255–262, 2021.

S. Kiegeland and J. Kreutzer. Revisiting the weaknesses of reinforcement learning for neural ma-
chine translation. In Annual Conference of the North American Chapter of the Association for
Computational Linguistics, 2021.

B. Kim, K. Lee, S. Lim, L. P. Kaelbling, and T. Lozano-Pérez. Monte Carlo tree search in continuous
spaces using Voronoi optimistic optimization with regret bounds. In AAAI Conference on Artificial
Intelligence, 2020.

H. Kimura, K. Miyazaki, and S. Kobayashi. Reinforcement learning in POMDPs with function
approximation. In International Conference on Machine Learning, 1997.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In European Conference on
Machine Learning, pp. 282–293, 2006.

L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms, 2nd Edition. John Wiley
and Sons, 2014.

T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl. Knows what it knows: A framework for
self-aware learning. Machine Learning, 82(3):399–443, 2011.

X. Liu, W. Lei, J. Lv, and J. Zhou. Abstract rule learning for paraphrase generation. In International
Joint Conference on Artificial Intelligence, 2022.

J. Loch and S. Singh. Using eligibility traces to find the best memoryless policy in partially observable
Markov decision processes. In International Conference on Machine Learning, 1998.

S. J. Majeed and M. Hutter. On Q-learning convergence for non-Markov decision processes. In
International Joint Conference on Artificial Intelligence, pp. 2546–2552, 2018.

C. Mansley, A. Weinstein, and M. Littman. Sample-based planning for continuous action markov
decision processes. In International Conference on Automated Planning and Scheduling, 2011.

W. Mao, K. Zhang, Q. Xie, and T. Başar. POLY-HOOT: Monte-Carlo planning in continuous space
mdps with non-asymptotic analysis. In Advances in Neural Information Processing Systems, 2020.

T. Morimura, T. Osogami, and T. Shirai. Mixing-time regularized policy gradient. In AAAI Con-
ference on Artificial Intelligence, 2014.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with human
feedback. In Advances in Neural Information Processing Systems, volume 35, pp. 27730–27744,
2022.

R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive summarization. In
International Conference on Learning Representations, 2018.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–697, 2008.

P. Poupart and N. Vlassis. Model-based Bayesian reinforcement learning in partially observable
domains. In International Symposium on Artificial Intelligence and Mathematics, 2008.

RLJ | RLC 2024

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, 1994.

A. Qin, F. Gao, Q. Li, S.-C. Zhu, and S. Xie. Learning non-markovian decision-making from state-
only sequences. In Advances in Neural Information Processing Systems, 2023.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for
image captioning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1179–1195, 2017.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering Atari, go, chess and shogi by
planning with a learned model. In Nature, volume 588, 2020.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
International Conference on Machine Learning, pp. 1889–1897, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. In arXiv preprint arXiv:1707.06347, 2017.

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information
Processing Systems, volume 23, pp. 2164–2172, 2010.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

D. Silver, T Hubert, J. Schrittwieser, I Antonoglou, M. Lai, A Guez, M. Lanctot, L Sifre, D. Ku-
maran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and shogi by
self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017a.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):354–359,
2017b.

S. Singh, M. James, and M. Rudary. Predictive state representations: A new theory for modeling
dynamical systems. In Conference on Uncertainty in Artificial Intelligence, 2012.

D. J. N. J. Soemers, É. Piette, M. Stephenson, and C. Browne. Learning policies from self-play with
policy gradients and MCTS value estimates. In IEEE Conference on Games, 2019.

E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford
University, 1971.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 2nd edition, 2018.

M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk. Monte carlo tree search: A review of
recent modifications and applications. In arXiv preprint arXiv:2103.04931, 2021.

H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y.Duan, J. Schulman, F. DeTurck, and
P. Abbeel. #Exploration: A study of count-based exploration for deep reinforcement learning. In
Advances in Neural Information Processing Systems, pp. 2750–2759, 2017.

S. Thiébaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza. Decision-theoretic planning with
non-markovian rewards. Journal of Articial Intelligence Research, 25:17–74, 2006.

T. Vodopivec, S. Samothrakis, and B. S̆ter. On monte carlo tree search and reinforcement learning.
Journal of Artificial Intelligence Research, 60:881–936, 2017.

RLJ | RLC 2024

X. Wang, Y. Du, S. Zhu, L. Ke, Z. Chen, J. Hao, and J. Wang. Ordering-based causal discovery
with reinforcement learning. In International Joint Conference on Artificial Intelligence, 2021.

S. D. Whitehead and L. J. Lin. Reinforcement learning of non-Markov decision processes. Artificial
Intelligence, 73(1-2):271–306, 1995.

D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal
of the IGPL, 18(5):620–634, 2010.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Y. Xia, J. Zhou, Z. Shi, C. Lu, and H. Huang. Generative adversarial regularized mutual information
policy gradient framework for automatic diagnosis. In AAAI Conference on Artificial Intelligence,
2020.

C. Xiao, R. Huang, J. Mei, D. Schuurmans, and M. Müller. Maximum entropy Monte-Carlo planning.
In Advances in Neural Information Processing Systems, 2019.

J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec. Graph convolutional policy network for goal-
directed molecular graph generation. In Advances in Neural Information Processing Systems,
2018.

S. Young, M. Gas̆ić, B. Thomson, and J. D. Williams. POMDP-based statistical spoken dialog
systems: A review. In Proceedings of the IEEE, volume 101, pp. 1160–1179. IEEE, 2013.

L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI Conference on Artificial Intelligence, 2017.

T. Yu, B. Zhou, K. W. Chan, L. Chen, and B. Yang. Stochastic optimal relaxed automatic generation
control in non-Markov environment based on multi-step Q(lambda) learning. IEEE Transactions
on Power Systems, 26(3):1272 – 1282, 2011.

J. Zhang, J. Kim, B. O’Donoghue, and S. Boyd. Sample efficient reinforcement learning with
reinforce. In AAAI Conference on Artificial Intelligence, 2021.

Z. Zheng, J. Oh, and Singh S. On learning intrinsic rewards for policy gradient methods. In Advances
in Neural Information Processing Systems, volume 31, 2018.

Y. Zhou, C. Xiong, R. Socher, and R. Socher. Improving end-to-end speech recognition with policy
learning. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2018.

A Proofs

A.1 Preliminaries

We first introduce the basic results of the ordinary differential equation (ODE) based approach for
the stochastic approximation (Borkar, 2008). We consider the following update rule of θ ∈ Rd with
an initial value θ0 ∈ Rd for all n ∈ [0, 1, . . .] = N≥0,

θn+1 = θn + αn[k(θn) + Mn+1 + ϵn]. (19)

To take the ODE approach, we extend the above discrete-time stochastic process of θn to a con-
tinuous, piecewise-linear counterpart θ̄ : R≥0 → Rd as follows: Define a time-instant function
t : N≥0 → R≥0 such as

t(n) ≜
{

0 if n = 0,∑n−1
m=0 αm otherwise,

RLJ | RLC 2024

and set θ̄(t(n)) := θn, ∀n ∈ N≥0. Then, for any n ∈ N≥0, we derive the following linear interpolation,

θ̄(τ) ≜ θn + (θn+1 − θn) τ − t(n)
t(n + 1) − t(n)

, τ ∈ In, (20)

where In ≜ [t(n), t(n+1)]. As we will show later, the key result of the ODE approach to the analysis
of Eq. (19) is that θ̄(τ) asymptotically almost surely approaches the solution set of the following
ODE,

θ̇(τ) = k(θ(τ)), τ ∈ R≥0. (21)

For this purpose, we need to make the following assumptions.
Assumption 6. The learning rates {αn} are positive scalars satisfying

lim
N→∞

N∑
n=0

αn = ∞, lim
N→∞

N∑
n=0

α2
n ≤ ∞. (22)

Assumption 7. The function k : Rd → Rd is a Lipschitz continuous map, i.e., for some constant
0 < L < ∞,

∥k(θ) − k(θ′)∥ ≤ L∥θ − θ′∥, ∀(θ, θ′) ∈ Rd × Rd.

Assumption 8. The stochastic series {Mn} is a martingale difference sequence with respect to the
increasing family of σ-fields

Fn ≜ σ(θi, Mi, ϵi, i ≤ n).

That is, the following holds,

E[Mn+1 | Fn] = 0 a.s., ∀n ≥ 0.

Furthermore, Mn is always square-integrable with

E[∥Mn+1∥2 | Fn] = K(1 + ∥θn∥2) a.s., ∀n ≥ 0, (23)

for some constant K ≥ 0.

Assumption 9. The series of bias {ϵn} is a deterministic or random bounded sequence which is o(1).

Assumption 10. The updates of Eq. (19) remain bounded almost surely, i.e.,

sup
n

∥θn∥ < ∞, a.s.

Lemma 1. Assume Assumptions 6–10 hold. Let θs(τ), τ ≥ s ≥ 0, denote the trajectory of Eq. (21)
starting at time s ∈ R≥0:

θ̇s(τ) = k(θs(τ)), ∀τ ∈ R≥s,

with θs(s) = θ̄(s). Then, for any ν > 0, the following holds almost surely,

lim
s→∞

sup
τ∈[s,s+ν]

∥θ̄(τ) − θs(τ)∥ = 0,

lim
s→∞

sup
τ∈[s−ν,s]

∥θ̄(τ) − θs(τ)∥ = 0.

Proof: This lemma is a simple extension of Lemma 1 in Section 2 of (Borkar, 2008) with a bias
term ϵn, and this proof mostly follows from it. We will only prove the first claim since the same
applies to the proof of the second claim.

RLJ | RLC 2024

For n ∈ N≥0 and m ∈ N≥1, by the construction, θ̄ can be written down as follows:

θ̄(t(n + m)) = θ̄(t(n)) +
m−1∑
i=0

αn+i k(θ̄(t(n + i))) + δn,n+m. (24)

where

δn,n+m ≜ ξn+m − ξn +
m−1∑
i=0

αn+i ϵn+i,

ξn ≜
{

0, if n = 0,∑n−1
i=0 αiMi+1, if n ∈ N≥1.

We will show supm≥0∥δn,n+m∥ = 0 as n → ∞. By Assumptions 8 and 10, the series {ξn} is a zero
mean, square-integrable martingale with respect to the σ-fields Fn. Furthermore, by Assumptions
6, 8, and 10, we have

∞∑
n=0

E[∥ξn+1 − ξn∥2 | Fn] =
∞∑

n=0
α2

n E[∥Mn+1∥2 | Fn] < ∞, a.s.

From the above and the martingale convergence theorem (Theorem 11 of Appendix in (Borkar,
2008)), it can be said that {ξn} converges. The third term of δn,n+m also converges to zero as
n → ∞ because {ϵn} is o(1) by Assumption 9. Thus, the following holds,

lim
n→∞

∥δn,n+m∥ = 0, a.s. (25)

Next, we will look into θs. It can be written down as follows:

θt(n)(t(n + m)) = θ̄(t(n)) +
∫ t(n+m)

t(n)
k(θt(n)(τ))dτ

= θ̄(t(n)) +
m−1∑
i=0

αn+i k(xt(n)(t(n + i))) +
∫ t(n+m)

τ=t(n)

(
k(θt(n)(τ)) − k(θt(n)(τ̃))

)
dτ,

(26)

where

τ̃ ≜ max{t(n) | t(n) ≤ τ, n ∈ N≥0}.

We investigate the integral on the right-hand side in Eq. (26). Let C0 ≜ supn∥θn∥. Note that
C0 < ∞ a.s. by Assumption 10. By Assumption 7, ∥k(θ) − k(0)∥ ≤ L∥θ∥, and so

∥k(θ)∥ ≤ ∥k(0)∥ + L∥θ∥. (27)

Therefore, the following holds, for τ ∈ [s, s + ν],

∥θs(τ)∥ ≤ ∥θ̄(s)∥ +
∫ τ

x=s

(
∥k(0)∥ + L∥θs(x)∥

)
dx

≤ C0 + ∥k(0)∥ν + L

∫ τ

x=s

∥θs(x)∥dx.

By Gronwall’s inequality (Lemma 6 of Appendix in (Borkar, 2008)), we obtain

∥θs(τ)∥ ≤
(
C0 + ∥k(0)∥ν) exp(Lν), ∀τ ∈ [s, s + ν]. (28)

RLJ | RLC 2024

Thus, from Eq. (27), we have the following bound,

Cν ≜ ∥k(0)∥ + L(C0 + ∥k(0)∥ν) exp(Lν) < ∞, a.s.

such that, for all τ ∈ [s, s + ν],

∥k(θs(τ))∥ ≤ Cν . (29)

Here we assume ν is larger than t(n + m) − t(n) without loss of generality. For i ∈ {0, . . . , m − 1}
and τ ∈ [t(n + i), t(n + i + 1)], the bound Ct gives

∥θt(n)(τ) − θt(n)(t(n + i))∥ ≤

∥∥∥∥∥
∫ τ

ι=t(n+i)
k(θt(n)(ι))dι

∥∥∥∥∥
≤ Cν(τ − t(n + i))
≤ Cναn+i.

The inequality gives the bound of the integral in Eq. (26) as follows: because∥∥∥∥∥
∫ t(n+m)

τ=t(n)

(
k(θt(n)(τ)) − k(θt(n)(τ̃))

)
dτ

∥∥∥∥∥ ≤
∫ t(n+m)

τ=t(n)
L∥θt(n)(τ) − θt(n)(τ̃)∥

= L

m−1∑
i=0

∫ t(n+i+1)

τ=t(n+i)
∥θt(n)(τ) − θt(n)(t(n + i))∥dτ

≤ CνL

m−1∑
i=0

α2
n+i

Thus, by Assumption 6, we have

lim
n→∞

∥∥∥∥∥
∫ t(n+m)

τ=t(n)

(
k(θt(n)(τ)) − k(θt(n)(τ̃))

)
dτ

∥∥∥∥∥ ≤ CνL

m−1∑
i=0

lim
n→∞

α2
n+i = 0, a.s. (30)

By subtracting Eq. (24) from Eq. (26) and taking a norm, we have

∥θ̄(t(n + m)) − θt(n)(t(n + m))∥ ≤ L

m−1∑
i=0

αn+i∥θ̄(t(n + i)) − θt(n)(t(n + i))∥ + Kn,ν ,

where

Kn,ν ≜ CνL

ḿn,ν −1∑
i≥0

α2
n+i + ∥δn,n+ḿn,ν

∥,

ḿn,ν ≜ max{m | t(n + m)−t(n)≤ν, m ∈ N≥0}.

Note that

lim
n→∞

Kn,ν = 0, a.s. (31)

holds by Eqs. (25) and (30). By applying the discrete Gronwall lemma (Lemma 8 of Appendix in
(Borkar, 2008)) to the above inequality, we have

sup
i∈{0,...,m}

∥θ̄(t(n + i)) − θt(n)(t(n + i))∥ ≤ Kn,ν exp(Lν), a.s. (32)

Let τ ∈ [t(n + i), t(n + i + 1)] for 0 ≤ i ≤ m − 1. Then we have

θ̄(τ) = λθ(t(n + i)) + (1 − λ)θ̄(t(n + i + 1))

RLJ | RLC 2024

for some λ ∈ [0, 1], and thus the following inequality is obtained,

∥θ̄(τ) − θt(n)(τ)∥ = ∥λ(θ̄(t(n + i)) − θt(n)(τ)) + (1 + λ)(θ̄(t(n + i + 1)) − θt(n)(τ))∥

≤ λ

∥∥∥∥∥θ̄(t(n + i)) − θt(n)(t(n + i)) −
∫ τ

ι=t(n+i)
k(θt(n))dι

∥∥∥∥∥
+ (1 − λ)

∥∥∥∥∥θ̄(t(n + i + 1)) − θt(n)(t(n + i + 1)) +
∫ t(n+i+1)

ι=τ

k(θt(n))dι

∥∥∥∥∥
≤ λ∥θ̄(t(n + i)) − θt(n)(t(n + i))∥ + (1 − λ)∥θ̄(t(n + i + 1)) − θt(n)(t(n + i + 1))∥

+
∫ t(n+i+1)

ι=t(n+i)
∥k(θt(n)(ι))∥dι

≤ Kn,ν exp(Lν) + Cναn+i, a.s.,

where the last inequality is derived by using Eqs. (32) and (29). The above inequality is easily
generalized to, with some constant C ≥ 0

sup
τ∈[s,s+ν]

∥θ̄(τ) − θt(n)(τ)∥ ≤ CKs̃,ν exp(Lν) + Cναs̃,

where s̃ ≜ max{t(n) | t(n) ≤ s, n ∈ N≥0}. As s → ∞, we have the first claim in this lemma.

By applying Lemma 1 to Theorem 2 of Section 2 and Theorem 2 of Section 6 in (Borkar, 2008), we
instantly obtain the following lemmas.
Lemma 2. Assume Assumptions 6–10 hold. Then, the sequence {θn} generated by Eq. (19) almost
surely converges to a (possibly sample path dependent) compact connected internally chain transitive
invariant set of Eq. (23).

Lemma 3. Let the sequence {(θn, ωn)} is generated by

θn+1 = θn + αn[k(θn, ωn) + M
(1)
n+1 + ϵ(1)

n], (6)

ωn+1 = ωn + ηn[l(θn, ωn) + M
(2)
n+1 + ϵ(2)

n], (7)

where k : Rd × Re → Rd and l : Rd × Re → Re are the expected update functions, M (1) ∈ Rd and
M (2) ∈ Re are noise terms, and ϵ(1) ∈ Rd and ϵ(2) ∈ Re are bias terms. Also, let the learning rates
αn and ηn of Eqs. (6) and (7) satisfying

lim
N→∞

N∑
n=0

αn = lim
N→∞

N∑
n=0

ηn = ∞,

lim
N→∞

N∑
n=0

(
α2

n + η2
n

)
< ∞,

lim
N→∞

αN

ηN
= 0.

Assume Assumptions Assumptions 1–5 hold. Then, the sequence {(θn, ωn)} almost surely converges
to a (possibly sample path dependent) compact connected internally chain transitive invariant set A
of the following ODEs

θ̇(τ) = k(θ(τ), ω(τ)), (8)
ω̇(τ) = l(θ(τ), ω(τ)). (9)

Any pair (θ, ω) ∈ A has the relation ω = φ(θ), where φ(θ) is defined in Assumption 4 and denotes
the globally asymptotically stable equilibrium of the ODE (9) of ω given θ.

RLJ | RLC 2024

A.2 Propositions 1 and 2

By applying Lemma 3 to the update rule of the proposed PG-MCTL algorithm (Eqs. (6) and (7)),
we immediately obtain Propositions 1 and 2.

Proposition 1. Assume Assumptions 1–5 hold. Let the mixing probability function λn : H → [0, 1]
be invariant to the number of episodes n and the learning rates αn and ηn satisfying

lim
N→∞

N∑
n=0

αn = lim
N→∞

N∑
n=0

ηn = ∞,

lim
N→∞

N∑
n=0

(
α2

n + η2
n

)
< ∞,

lim
N→∞

αN

ηN
= 0.

(13)

Then, almost surely, the sequence {(θn, ωn)} generated by Eqs. (6) and (7) converges to a compact
connected internally chain transitive invariant set of Eqs. (8) and (9).

Proposition 2. Let λn : H → [0, 1] be a function parameterized by a part of θ (and be a Lipschitz
continuous map with respect to its parameter). Assume that all the conditions of Proposition 1 are
satisfied expect for λn. Still, the consequence of Proposition 1 holds.

A.3 Proposition 3

Proposition 3. Assume Assumptions 1 and 2 only for i = 1 hold, k is Lipschitz continuous map,
and supn(∥θn∥) < ∞ holds. Let the mixing probability λn be o(1) and satisfy 0 ≤ λn ≤ 1 − ε for all
n and a constant ε > 0, and the learning rate of the PG policy satisfy

lim
N→∞

N∑
n=0

αn = ∞, lim
N→∞

N∑
n=0

α2
n < ∞.

Then, almost surely, the sequence {θn} generated by Eqs. (6) and (7) converges to a compact con-
nected internally chain transitive invariant set of the ODE, θ̇(τ) = ∇θΥ(πθ(τ)).

Proof: The update rule of θ (Eq. (6)) is rewritten as

θn+1 = θn + αn

T∑
t=0

∇θ log πθn,ωn(at|ht)(gt − b(ht))

= θn + αn

(
T∑

t=0
∇θ log πθn(at|ht)(gt − b(ht)) − λt

T∑
t=0

πωn(at|ht)∇θ log πθn(at|ht)(gt − b(ht))

)
(33)

By the definition of the PG-MCTL policy (Eq. (5))

πθn,ωn(a|h) ≜ (1 − λn)πθn(a|h) + λnπωn(a|h)

and the assumption of the proposition, 1 − λn ≥ ε, n ≥ 0, the expected value of the second terms
of the right side of Eq. (33) is

Eπθn,ωn

[
T∑

t=0
∇θ log πθn(At|Ht)(Gt − b(Ht)) − λt

T∑
t=0

πωn(At|Ht)∇θ log πθn(At|Ht)(Gt − b(Ht))

]

= εTEπθn

[
T∑

t=0
∇θ log πθ(At, Ht) (Gt − b(ht))

]
+ ϵ′

t,

RLJ | RLC 2024

where the sequence {ϵ′
n} is o(1). Thus, Eq. (33) can be rewritten as

θn+1 = θn + αn(k̃(θn) + M ′
n + ϵ′

n),

where k̃ : Rd → Rd is the expected update function

k̃(θ) ≜ εT

[
T∑

t=0
∇θ log πθ(At, Ht) (Gt − b(ht))

]
= εT ∇θΥ(πθ(τ)),

and {M ′
n} is a zero mean, square-integrable martingale difference sequence with respect to Fn.

From the above, we can apply Lemma 2 and so the claim follows.

A.4 Theorem 1

Theorem 1. Let the PG-MCTL update the parameterized policy πθ by Eq. (11) and the MCTL
policy πω by the rule in which κ in Eq. (14) is replaced by κ̄ of Eq. (16), and the learning rates satisfy
the conditions of Eq. (10). Also let πθ be defined on a compact parameter space and have always
bounded first and second partial derivatives, and πω be a softmax policy with hyper parameters β ≥ 0
and C ≥ 0 as

πω(a|h) ∝ exp

(
β

{
q(h, a) + C

√
u(h, a) log

(∑
b

1
u(h, b)

)})
. (17)

Then, limn→∞ ∇θΥ(πθn,ωn) = 0 holds.

Proof: The proof consists of two major steps. First, we will show that the parameter {(θn, ωn)}
converges to a compact connected internally chain transitive invariant set. Then we will prove that
any element in that set satisfies the properties claimed in the theorem.

To apply Lemma 3, we will investigate whether the conditions of Lemma 3 are satisfied. By the
construction of the sequence {ωn} of the parameter of the MCTL policy,

sup
n

∥ωn∥ < ∞

holds. It means that Assumption 5 holds, taking into account the condition supn∥θn∥ < ∞, and also
ensures that πω always has bounded first and second derivatives, as well as πθ. In order to check
Lipschitz continuity of the expected update functions k(θ, ω) and l(θ, ω) (Assumption 3), we define
them as

k(θ, ω) ≜ Eπθ,ω

[
T∑

t=0
∇θ log πθ,ω(At|Ht)(Gt − b(Ht))

]
= ∇θΥ(πθ,ω), (34)

and
[l(θ, ω)]u(ht,a) ≜ −dθ,ω(ht, a) κ̄ω(ht, a)u(ht, a)

u(ht, a) + 1
, ∀(ht, a) ∈ Ht × A, ∀t ∈ {0, . . . , T},

[l(θ, ω)]q(ht,a) ≜ dθ,ω(ht, a)κ̄ω(ht, a)
(
Eπθ,ω

[Gt | Ht =ht, At =a] − q(ht, a)
)
,

∀(ht, a) ∈ Ht × A, ∀t ∈ {0, . . . , T},

(35)

where [l(θ, ω)]x denotes the output corresponding to the parameter x in ω, the function dθ,ω(ht, a)
is the experiencing probability of (ht, a) under πθ,ω,

dθ,ω(ht, a) ≜ Pr(Ht =ht, At =a | HDP, πθ,ω),

and κ̄ω is the counterpart to κ̄n,t defined in Eq. (16). Thus, with the above properties and the
boundedness of the reward function, we can see that k and l are Lipschitz continuous maps, i.e.,

RLJ | RLC 2024

Assumption 3 holds. The above observations also indicate that Assumptions 1 and 2 hold. Further-
more, since the second term in the MCTL policy (Eq. (17)) is asymptotically negligible, our task
is episodic, and θ is basically updated with a naive Monte Carlo method, the ODE corresponding
to l has a globally asymptotically stable equilibrium φ(θ), which will depend on θ, i.e., Assumption
4 holds. From the above results, Lemma 3 can be applied to this setup. Thus, it is proven that
{(θn, ωn)} converges to a compact connected internally chain transitive invariant set S of the ODEs
corresponding to Eqs. (34) and (35), and ω = φ(θ) holds for all (θ, ω) ∈ S.

With the above observations, we can instantly prove limn→∞ ∇θΥ(πθn,ωn) = 0 by contradiction.
(This is because θn converges to a compact connected internally chain transitive invariant set of the
ODE ∇θΥ(πθ,ω) and Υ(πθ,ω) is bounded by the HDP definition.)

A.5 Equivalence of the standard MCTS update and Eq. (14)

By construction of u(h, a) in Eq. (14), the initial value u is 1 for all (h, a). If u is updated once or
more than once at (h, a), u(h, a) is equal to or less than 0.5. Thus, by the definition of the tree-
inclusion probability pn,t in Eq. (15), if u(ht−1, at−1) has been updated even once in past episodes,
the tree-inclusion probability pn,t(ht, at) is one, otherwise it is zero. It indicates that in addition to
the case t = 0, as long as a node corresponding to (ht−1, at−1), t ∈ N≥1, would be included in a tree
if the standard MCTS update were used, the tree-inclusion probability pn,t(ht, at) is 1, and thus u
and q of (ht, at) will be updated with probability 1. Otherwise, Eq. (14) will not change u and q of
(ht, at) at all. The above is the same as the standard MCTS update.

All that remains is to show that the update rule in Eq. (14) can be derived from the standard MCTS
update rule in Eq.(4) when pn,t = 1. Because of ηn ≜ 1/n and κn,t ≜ pn,tun(ht, at)/ηn = nun(ht, at),
the update of m in Eq. (4) can be transformed as

mn+1(ht, at) = mn(ht, at) + 1

⇔ 1
un+1(ht, at)

= 1
un(ht, at)

+ 1

⇔ un+1(ht, at) = un(ht, at)
1 + un(ht, at)

= un(ht, at)(1 + un(ht, at)) − un(ht, at)2

1 + un(ht, at)

= un(ht, at) − un(ht, at)2

1 + un(ht, at)

= un(ht, at) − 1
n

nun(ht, at)
un(ht, at)

1 + un(ht, at)

= un(ht, at) + ηnκn,t
−un(ht, at)

1 + un(ht, at)
.

The update of q in Eq. (4) can also be transformed into

qn+1(ht, at) = qn(ht, at) + 1
mn(ht, at)

(gt − qn(ht, at)),

= qn(ht, at) + un(ht, at)(gt − qn(ht, at)),

= qn(ht, at) + 1
n

nun(ht, at)(gt − qn(ht, at)),

= qn(ht, at) + ηnκn,t(gt − qn(ht, at)).

Eq. (14) is derived.

RLJ | RLC 2024

B Experimental setup

B.1 Randomly synthesized task

The first test problem is a non-Markovian task that is a simple but illustrative HDP. It is randomly
synthesized to be analogous to a generation task such as text generation and compound synthesis.
There are 5 observations and 10 actions, i.e., |O| = 5 and |A| = 10. The observation probability
function po, which corresponds to the history transition probability ph, was synthesized to depend
on the time-step, observation, and action. Specifically, a probability vector for the observation was
generated by the Dirichlet distribution Dir(α = [0.2, . . . , 0.2]) independently for each (t, o, a). The
reward function fr was synthesized to have the following structure:

fr(ht, at) =

{
1
T x(ot, at) if t < T,

y(ht) + 10z(o0, o1, . . . , ot) otherwise,

where x and y are the per-step reward function and the history-based reward function, respectively.
Each value of those functions was initialized independently by the normal distribution N (µ=0, σ2 =
1). The values of the function z were set by using a Gaussian process so that the more similar
the observation series (o0, . . . , oT) and (o′

0, . . . , o′
T) were, the closer z(o0, . . . , oT) and z(o′

0, . . . , o′
T)

tended to be. Its covariance function was defined with Hamming distance, and the variance was
equal to 1.

This reward function fr can be interpreted in the context of text generation as follows. The function
z, which is a dominant part in fr, represents the quality of the generated text, x represents the
quality of local word connections, and y is like noise.

The policy πθ was a softmax and parameterized to have the same structure as the reward function.
It will correspond to using domain knowledge and will be a usual setting since the reward function
is often predefined by the user. Specifically, πθ had a parameter for each (ot, at), (o0, o1, .., ot, at),
and (ht, at)), though it was a redundant parameterization. The hyper-parameters of the applied
algorithms are shown in Table 1. As described in Section 5, for fair evaluation, we rst tuned the
hyper-parameters of the REINFORCE and MCTL algorithms and then used them for the PG-
MCTL and the naive mixture algorithms. The hyper-parameters of the lazy AlphaZero were tuned
independently.

It should be noted that the experiments here were conducted on an ordinary Laptop, and the
computation time was only a few days.

Table 1: Hyper-parameters used in the randomly synthesized task.

Algorithm α C λ β M

REINFORCE 0.01 - - - -
Naive mixture 0.01 5 0.2 - -
MCTL - 5 - - -
Lazy AlphaZero 0.0067 15 - - -
PG-MCTL 0.01 5 0.2 100 50000
PG-MCTL-adpt 0.01 5 100 50000

B.2 T-maze task

There are four possible actions: moving north, east, south, or west. At the initial time step t = 0,
the agent starts at position S and perceives a signal X ∈ {1000, 0100}, indicating whether the goal
position G is situated on either the north or south side of the T-junction. At each subsequent time
step t ∈ {1, 2, . . . }, the agent observes its current location type. In the corridor, the observation is

RLJ | RLC 2024

Table 2: Hyper-parameters used in the T-maze task.

L = 30, s0 = 0 L = 100, s0 = 50
Algorithm α C λ β M epoch clip α C λ β M epoch clip
REINFORCE 0.2 - - - - - - 0.1 - - - - - -
PPO 0.06 - - - - 3 0.2 0.03 - - - - 3 0.2
MCTL - 0.3 - - - - - - 0.3 - - - - -
Lazy AlphaZero 0.02 1 - - - - - 0.01 1 - - - - -
PG-MCTL 0.2 0.1 0.2 100 3000 - - 0.1 0.1 0.2 100 5000 - -
PG-MCTL-adpt 0.2 0.1 - 100 3000 - - 0.1 0.1 - 100 5000 - -

0010. At the T-junction, the observation is 0001, lacking any information about the goal’s position.
Therefore, the agent must memorize the initial observation to navigate effectively.

The reward settings are as follows. If the correct action is chosen at the T-junction, e.g., move north
if X is 1000 and south if 0100, the agent receives a reward of 4.0, otherwise a reward of −0.1. In
both cases, the episode ends. When it is in the corridor and chooses to move north or south, it stays
there and receives a reward of −0.1. Otherwise, the reward will be zero.

The settings for our model are as follows: The LSTM network, following standard architectures used
in reinforcement learning (Bakker, 2002; Wierstra et al., 2010), takes four input units corresponding
to the observation dimensions and processes them through a hidden layer with eight memory cells.
The LSTM’s output is concatenated with the original observation, to form a feature vector. This
feature vector is subsequently utilized in linear layers to compute the action values q and the baseline
b. This design aims to capture temporal dependencies and learn effective representations for HDPs.

The hyper-parameters of the applied algorithms are listed in Table 2. The discount rate for cumula-
tive rewards was set to γ = 0.98. The means of selecting the hyper-parameters is the same as for the
randomly synthesized task (see B.1). However, while it was necessary to reduce the hyper-parameter
C to 0.1 for MCTL to obtain the optimal policy, this setting required a large number of episodes.
We therefore set C to a slightly larger value of 0.3 to balance the learning accuracy and speed. On
the other hand, for both PG-MCTL and PG-MCTL-adpt, the hyper-parameter C remained at 0.1,
as these methods did not necessitate an excessive number of episodes with this configuration.

It is noteworthy that these experiments were conducted on a public cloud, utilizing a single NVIDIA
Tesla T4 GPU, with the total computation time being approximately one week.

