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ABSTRACT

In reinforcement learning, a generalizable world model to mimic the environment
is crucial for the assessment of various policy values in downstream tasks such
as offline policy optimization and off-policy evaluation. Recently, studies have
shown that learning a world model with sparse connections identified by causal
discovery techniques can improve generalizability. So far, these studies focus on
discovering a single and global causal structure. In this paper, we discuss a more
practical setting in which the agent is deployed in an environment mixed with dif-
ferent causal mechanisms, called superposed causal relationships in this article. In
this case, global causal discovery techniques will derive a degraded dense causal
relationship, which will fail to improve the generalizability of the learned model.
To solve the problem, we propose Superposed cAusal Model (SAM) learning.
SAM learning is an end-to-end framework that learns a transformer-based model
which can recognize the causal relationships that the agent is encountering on the
fly and then adapts its predictions. The experiments are conducted in two simu-
lated environments, where SAM shows powerful identify abilities in environments
with superposed causal relationships. Both the dynamics model and the policies
learned by the SAM generalize well to unseen states.

1 INTRODUCTION

Learning an accurate environment model that approximates state transitions is crucial in fields such
as offline reinforcement learning (offline RL) (Levine et al., 2020b). By utilizing world models,
costly real-world trial-and-error processes can be avoided. The primary role of these models is to
unbiasedly answer counterfactual queries; that is, given certain states, they can correctly predict what
might happen if we were to execute actions unseen in the training data. Previous studies have shown
that learning a causal world model—which identifies causal relationships and employs sparse con-
nections for environment model learning—can improve generalization ability (Wang et al., 2022).

In these studies, sparse connection patterns are identified using causal structure discovery tech-
niques (Ding et al., 2022). These patterns skip connections between the current state-action pair and
the next state when no causal relationship exists, enhancing model efficiency. Unfortunately, most
existing methods assume that a single causal model governs the entire dataset. However, in many
real-world decision-making tasks, data exhibit multimodal characteristics and substantial hetero-
geneity. For instance, in dynamic resource allocation tasks, the causal relationships between actions
and outcomes can differ across various contexts or states within the same environment, reflecting an
underlying multimodal causal structure. Similarly, the causal relationships between driving strate-
gies and environmental feedback can vary under different traffic conditions (such as rush hour vs.
non-rush hour, city streets vs. highways), highlighting the multimodal nature of causal structures
within the same environment.

In this paper, we aim to advance causal world model learning by transitioning from single causal
world model learning to superposed causal world model learning, indicating that the environments
we encounter encompass multiple causal relationships. Currently, the challenge of identifying mix-
tures of causal graphs from data has not been extensively explored in the literature. Most recent
works, such as (Varambally et al., 2024), have addressed the challenge of inferring causal models
from mixture distributions. However, these approaches do not tackle sequential decision-making
tasks.
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Figure 1: (a) Previous problems focus on causal discovery on trajectory set, where all the trajectories
share a common dense causal graph. (b) We focus on the causal discovery by each trajectory, where
each trajectory has different sparse causal graphs. In this setting, using global causal graph with
finding a over-dense graph.

Specifically, we consider environments for decision-making that include an unknown number of
causal relationships. Each time an episode is reset, a new causal relationship is generated, affecting
the transition process and the optimal action (see Figure 1 for detailed comparison). To this end,
we propose a causal world model learning algorithm, Superposed cAusal Model (SAM) learning.
SAM is a general end-to-end world model learning algorithm that identifies the causal relationships
of the current episode on the fly and predicts transitions based on the identified causal relationships.
SAM is built upon the Transformer architecture to infer causal relationships from past interaction
trajectories, with a unified training objective based on the evidence lower bound of the trajectory
generation likelihood in our setting. Thanks to the minimalist design of the implementation, SAM is
generally effective across different tasks and environments. We verify this through extensive exper-
iments.

2 RELATED WORK

2.1 CAUSAL WORLD MODEL IN REINFORCEMENT LEARNING

Model-based RL improves policy learning by constructing environment models, including dynamics
and reward predictors, through maximizing the likelihood of collected trajectories (Moerland et al.,
2023). In online RL, these models enhance sample efficiency by aiding planning (Buesing et al.,
2018; Hafner et al., 2019; Argenson & Dulac-Arnold, 2021), generating synthetic data (Janner et al.,
2019; Hafner et al., 2020; Kaiser et al., 2020), or refining Q-value estimates (Feinberg et al., 2018;
Amos et al., 2021). For offline RL (Levine et al., 2020a), the learned model facilitates effective
offline policy evaluation (Argenson & Dulac-Arnold, 2021) and policy optimization by generating
counterfactual trajectories (Yu et al., 2020; Kidambi et al., 2020).

Integrating causality into reinforcement learning (RL) has attracted substantial interest due to its
benefits in generalization and transferability, particularly in representation learning (Huang et al.,
2022; Liu et al., 2023), policy learning (Buesing et al., 2019; Mozifian et al., 2020), and dynam-
ics learning (Wang et al., 2022; Ding et al., 2022; Hwang et al., 2024; Zhu et al., 2022). Within
the realm of causal dynamics learning, Wang et al. (2022) explicitly learn causal dependencies by
regulating the number of variables used to predict each state variable. Ding et al. (2022) enhance
Goal-Conditioned RL with a causal graph to create generalizable models and interpretable policies.
Hwang et al. (2024) propose a dynamics model that infers fine-grained causal structures, using a
discrete latent variable to segment the state-action space to different fine-grained graph for model
prediction. Zhu et al. (2022) theoretically demonstrate that causal world-models outperform non-
causal models in offline RL by integrating causal structures into generalization error bounds. Unlike
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these approaches that discover a single, global causal structure, this paper addresses a more prac-
tical scenario where the agent operates in an environment with mixed causal mechanisms, termed
superposed causal relationships. To the best of our knowledge, we are the first to address super-
posed causal relationships in model-based RL, demonstrating that this approach not only identifies
ground-truth causal structures but also outperforms baselines in generalization.

2.2 MULTIPLE CAUSAL STRUCTURED GRAPH DISCOVERY

Recently, researchers have begun exploring causal discovery in scenarios where causal relationships
between variables vary across domains. Non-deep learning methods, such as SSCM (Huang et al.,
2019), model both variability and consistency in causal relationships, leveraging commonalities to
achieve statistically reliable estimates while preserving individual causal characteristics. Markham
et al. (2022) proposed a kernel function based on distance covariance to measure causal structure
similarity, identifying homogeneous subgroups through clustering. However, these methods often
require manual design of scoring functions and can be computationally intensive, limiting scalabil-
ity to large datasets. On the other hand, neural network-based approaches (Löwe et al., 2022; Lorch
et al., 2022; Varambally et al., 2024) treat causal discovery as a black-box problem, assuming a
distribution in the data and using variational inference to uncover domain-specific inductive biases.
Our method is inspired by them but differs in that we consider environments for decision-making
that include an unknown number of causal relationships. Each time an episode is reset, a new causal
relationship is generated, affecting the transition process and the optimal action. However, these
methods often require manual scoring function design and can be computationally intensive, lim-
iting scalability to large datasets. In contrast, neural network-based approaches(Löwe et al., 2022;
Lorch et al., 2022; Varambally et al., 2024) treat causal discovery as a black-box problem, assuming
data distribution and using variational inference to uncover domain-specific biases. Our method is
inspired by these but differs by focusing on decision-making environments with an unknown number
of causal relationships. Each episode reset introduces a new causal relationship, affecting transitions
and optimal actions, creating a novel RL setting distinct from previous multiple causal structured
graph discovery literature.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESSES

We consider the environment within the framework of Markov Decision Process (MDP) setting with
full observation defined as M = (S,A,P), where S and A represent the state and action space, P
represents transition function. Following Seitzer et al. (2021), we assumed that the state space S can
be factorized into ds disjoint components {S1 × · · ·×Sd}, denoted as {Si}di=1. similarly, A can be
factorized into da disjoint components.

3.2 STRUCTURED CAUSAL MODELS

Considering d random variables X = (X1, . . . , Xd) and a Directed Acyclic Graph (DAG) G =
(V,E), where each node i ∈ V = {1, . . . , d} corresponds to a random variable Xi, a Structured
Causal Model (SCM)(Pearl (2009)) is defined by a probability distribution pX over X and the graph
G. In this context, each directed edge (i → j) ∈ E signifies that Xi is a direct cause of Xj . This
causal relationship implies that Xj is conditionally dependent on Xi during the data generation
process. Denoting the set of parent nodes of node i in the graph G as Pai, the joint distribution of
the random variables can be formulated as:

pX(x1, . . . , xd) =

d∏
i=1

pXi(xi|Pai), (1)

3
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4 SUPERPOSED CAUSAL ENVIRONMENT MODEL LEARNING

In this section, we introduce propose Superposed cAusal Model (SAM) learning. SAM identifies
corresponding causal relationships from trajectories and utilizes them to learn the transition model
in an end-to-end way. We begin by formalizing the problem, then we propose our approach to
learn the superposed causal structure that utilizes individual trajectory information as well as group
information.

4.1 PROBLEM FORMULATION

Different from standard SCMs discovery (Pearl, 2009), the Markov Decision Process under causal
relationships can be characterized by one-step transition dynamics f utilizing a causal mask
G of dimensions (ds + da) × ds. The nodes of this mask correspond to the set of random
variables V = {S1

t , . . . , S
ds

t , A1
t , . . . , A

da

t , S1
t+1, . . . , S

ds

t+1}. The subsequent state st+1 follows
p(st+1|st, at) =

∏d
i=1 p(s

i
t+1|st+1, at). The causal graph G here are mask matrices to repre-

sent the causal relationship between the two consecutive timesteps, each node represents a fac-
tor of the state, and each edge encapsulates a causal relationship. A factor of state sit+1 follows
p(sit+1|st+1, at) = p(sit+1|Pa(si)t,G), where Pa represents the set of parent nodes in G.

We consider the problem under the framework of Offline Reinforcement Learning (RL) using a
superposed causal dataset D = {{τi}Ni=1}. This superposed causal dataset is collected from C
environments that share the same decomposition but exhibit different causal relationships Gi for
each environment i; that is, D = {DGi}Ci=1. We note that C is an unknown in prior. Each trajectory
τi is collected from one environment that every step is consistent with causal relationship.

Superposed causal relationship of dataset complicates the identification of distinct causal masks
through time-series trajectories, which will introduce wrong or spurious causal relationship when
learning dynamics. Thus, we aim to learn dynamics model with decomposed causal graph, ulti-
mately enhancing the model’s generalizability.

4.2 END-TO-END SUPERPOSED CAUSAL WORLD MODEL LEARNING

In previous RL research, dynamics with causal relationships typically learn causal masks using
search-based methods. For example, CDL (Wang et al., 2022) utilizes conditional mutual infor-
mation and considers a value higher than a threshold as indicative of a causal relationship, while
GRADER (Ding et al., 2022) conducts statistical independence tests. Since search-based methods
have high computational cost, cannot scale to larger environments, and require carefully designed
search processes tailored to the task, this paper aims to propose a method that is scalable in terms of
data volume. Therefore, unlike previous work, we employ a score-based method to discover causal
masks from offline datasets, which models the entire causal graph discovery as a differentiable opti-
mization objective, enabling end-to-end graph discovery and prediction. We derive the optimization
objective of the superposed causal world model using a similar approach to Varambally et al. (2024):

min
ϕ,θ

−Eτ∼D
[
Eqϕ(G) [log pθ (τ | G)]

]
+ λ · ∥qϕ (G) ∥1,

where ϕ and θ are the parameters of the causal mask predictor and the dynamics model, respectively,
λ is a regularization coefficient, τ represents a trajectory sampled from dataset D, and G denotes the
causal graph. Different from Varambally et al. (2024), which can infer a causal graph from a single
sample (i.e., qϕ (G) := qϕ (G | X)), our focus is on the sequential decision problem where the causal
model is used to generate trajectories. To decompose superposed causal relationships in offline tra-
jectories, we use a trajectory-wise inference model for causal graph prediction qϕ (G) := qϕ (G | τ)
and a transition model for trajectory reconstruction pθ (τ | G) =

∏T
t=0 pθ(st+1 | st, at,G). Then

we have the following objective:

min
ϕ,θ

−Eτ∼D

[
Eqϕ(G|τ)

[
T∑

t=0

log pθ(st+1 | st, at,G)

]
+ λ · ∥G∥1

]
. (2)

To optimize Eq. 2, we design an simple yet efficient end-to-end architecture based on Transformers.
The network includes the following modules: (1) a causal mask predictor qϕ that utilizes a Trans-
former to take trajectories as input and outputs the distribution qϕ(G | τ); (2) a fully connected
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feature encoder fθ1 that encodes single time-step states and actions; and (3) a dynamics model fθ2
that predicts the next state.

To predict st+1 given the previous trajectory τ , we first use the Transformer-based causal mask
predictor qϕ(G | τ) to obtain the distribution of the causal mask G. We then sample G ∼ qϕ(G |
τ). After obtaining the causal mask, we predict st+1 based on st and at with the causal mask
by computing fθ2(st+1|fθ1(st, at) ◦ G, sg(G)), where fθ1(st, at) ◦ G represents masking unrelated
features using G and sg(G) is an appended input of causal mask which the gradient will be stopped
when optimized. In summary, we have qϕ (G | τ) := fθ2(st+1|fθ1(st, at) ◦ G, sg(G). To enable
sampling of discrete values {0, 1} through qϕ(G | τ) while keeping the entire process differentiable,
we utilize the Gumbel-Softmax trick (Maddison et al., 2017) to implement the distribution sampling
process G ∼ qϕ(G | τ). The network is trained end-to-end by Eq. 2 and we called the whole training
method Superposed cAusal Model (SAM) learning.

5 EXPERIMENTS

In our experiments, we build two new benchmarks for these settings, namely Mixed-Chemical and
Confusing-Minigrid, which are introduced in Section 5.1. We primarily investigate the following
research questions:

1. RQ1: Is SAM capable of inferring superposed causal relationships from offline sequential
decision-making data with multiple causal relationships (see Section 5.2)?

2. RQ2: Does superposed causal graph learning simplify the learning transition and enhance
generalizability compared to single-graph models or dense models (see Sections 5.3)?

3. RQ3: Can SAM identify causal relationships encountered by the agent in real time to
facilitate better decision-making (see Section 5.4)?

5.1 EXPERIMENT SETTINGS

Most reinforcement learning environments lack explicit causal graphs for generalization purposes.
To evaluate our methods, we constructed benchmarks based on the widely recognized Chemical
environment (Ke et al., 2021) and a custom-designed Minigrid environment Chevalier-Boisvert et al.
(2023) as shown in Figure 2. For each environment, we evaluate the model under two settings: the
target setting and the spurious setting. In the target setting, the policy aims to perform on one of the
latent causal tasks with the model trained on the superposed causal dataset. In the spurious setting,
the policy is tested in an environment with noise on spurious correlation, as shown in the following,
which is the key setting to demonstrate the generalization ability. We conducted experiments in the
offline setting, where each environment encompasses multiple settings of latent causal relationships.
Our dataset comprises 200,000 transition steps for each environment.

1. Mixed-Chemical: The Chemical environment (Ke et al., 2021) consists of 10 colored
nodes, where color changes are governed by an underlying causal graph. At each step, the
agent changes the color of one node, causing its descendant nodes in the causal graph to
change color sequentially. The goal is to change all node colors to a desired target color.
We modified the environment to include nine randomly generated, unknown causal graphs,
transforming it into a multi-causal graph reinforcement learning environment. Data col-
lection was performed using a random policy, generating datasets in the offline setting. In
the spurious setting, the agent receives noisy observations for certain nodes. By disentan-
gling the superposed causal graphs, the agent can ignore spurious correlations and improve
generalization.

2. Confusing-Minigrid: Minigrid Chevalier-Boisvert et al. (2023) is a grid-based environ-
ment where the agent aims to navigate around obstacles to reach a target grid in as few
steps as possible. We introduced multiple latent causal graphs that determine whether ob-
stacles can be moved or covered with the agent and other obstacles, resulting in diverse
environmental transitions. We name the tasks with the format of M{?} − C{?} to de-
note the properties of the obstacles. This transforms the environment into a multi-causal
graph reinforcement learning setting. Given the complexity of the state space, we utilized
an early-stopping Proximal Policy Optimization (PPO) algorithm for data collection. In
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(a) Chemical (b) Minigrid

Figure 2: Illustration of the Chemical and Minigrid Environments.

the spurious setting, obstacles that do not covered others are initialized in wider positions
compared to those in the training dataset. Accurately identifying the environmental causal
relationships is crucial for moving obstacles that block the path and helping the agent reach
the target via the shortest route.

Baselines To fairly compare our methods, We implement the following baselines: Modular (Ke
et al. (2021)): predicts each state variable with a separate network. GNN (Kipf et al. (2020)):
implements graph neural network that learns relational information. kmeans + CDL: CDL infers a
single causal structure for the entire dataset to learn dynamics. To learn superposed causal structure,
we cluster trajectories with time series cluster Tavenard et al. (2020) and train each group with
CDL (Wang et al., 2022). FCDL (Hwang et al. (2024)): quantizes the state-action spaces into
subgroups and learns fine-grained causal structure. However, we identify causal graphs through
transitions between states rather than single current state observations, making it more efficient for
unobserved variables. Oracle: Utilizes the same neural network architecture as ours but with the
ground truth causal graph, serving as an upper bound for SAM.

5.2 ACCURACY OF CAUSAL RELATIONSHIP DISCOVERY

Tables 1 and 2 present the Structural Hamming Distance (SHD) used to evaluate our causal discovery
methods. We compare our proposed method, SAM, specifically with KMeans+CDL and FCDL, as
other methods do not explicitly focus on causal graph discovery.

Table 1: Causal-relationship accuracy on Mixed-Chemical environment, where we bold the best
result performance for each task.

Method random0 random1 random2 random3 random4 random5 random6 random7 random8 Average

kmeans+CDL 27.35 29.35 39.87 40.73 28.52 35.88 35.57 32.42 30.30 33.33
FCDL 22.93 21.30 35.30 32.19 25.14 30.49 26.70 23.07 26.38 27.06
SAM 8.16 3.91 0.52 2.05 4.45 3.66 5.31 5.10 3.28 4.05

Table 2: Causal-relationship accuracy on Confusing-Maze environment, where we bold the best
result performance for each task.

Method M-C012 M01-C0 M01-C2 M012-C012 M012-C M02-C1 Average

kmeans+CDL 3.54 9.88 9.83 0.53 15.95 9.90 8.27
FCDL 25.00 15.00 15.00 22.00 7.00 15.00 16.50
SAM 0.00 7.11 5.24 3.28 9.74 8.28 5.61

Our method, SAM, demonstrates superior performance across all datasets. In the Mixed-
Chemical environment (Table 1), SAM achieves an average SHD of 4.05, significantly lower than
KMeans+CDL and FCDL, which have average SHDs of 33.33 and 27.06, respectively. Notably,
SAM consistently attains the lowest SHD in all nine random graphs, with SHD values ranging from
0.52 to 8.16, indicating its high accuracy in reconstructing the underlying causal graphs. In the
Confusing-Minigrid environment (Table 2), SAM also outperforms the other methods, achieving an
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average SHD of 5.61 compared to 8.27 for KMeans+CDL and 16.50 for FCDL. SAM attains the
lowest SHD in five out of six settings, demonstrating its robustness and effectiveness in more com-
plex environments. For instance, in the M-C012 setting, SAM achieves an SHD of 0.00, perfectly
recovering the causal graph, whereas KMeans+CDL and FCDL obtain SHDs of 3.54 and 25.00,
respectively.

The poor performance of KMeans+CDL can be attributed to its inability to effectively cluster data
points that share the same causal relationships in high-dimensional spaces, leading to inaccurate
causal graph estimations. Although FCDL yields better results than KMeans+CDL, it struggles to
distinguish superposed causal graphs from time-series data, limiting its ability to accurately infer
the underlying causal structures.

In contrast, SAM excels at disentangling superposed causal graphs and accurately inferring causal
relationships from sequential decision-making data. Its superior performance is evident across dif-
ferent environments and settings, highlighting its advantage in handling multiple latent causal rela-
tionships. This leads to more precise causal discovery and enhances the generalization capabilities
of the agent in diverse and complex environments.

5.3 PREDICTION ERROR OF THE LEARNED WORLD MODELS

target p=0.1 p=0.3 p=0.60.0

0.2
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Modular GNN FCDL kmeans+CDL SAM Oracle

Figure 3: Chemical prediction accuracy with different noise under target setting and spurious setting.
The variable p on the axis represents the probability of adding noise to a node in spurious setting.
Accuracy represents the correctness of color prediction on clean nodes.

To demonstrate that learning multiple causal graphs improves generalization, we evaluate the pre-
diction accuracy on the Mixed-Chemical environment under both target and spurious settings. In
the spurious setting, noise is introduced to the nodes with probabilities of 0.1, 0.3, and 0.6. The
results are shown in Figure 3. We do not include the results of Confusing-Minigrid environment to
this section of analyzing because of the scale of each dimension in state space are different, which
is meaningless by demonstrating their average performance.

In the target setting, all methods perform well, as expected given the simplicity of the environment.
However, in the spurious settings, where noise is added, we observe substantial performance degra-
dation, particularly for models without explicit causal mechanisms. The single causal-relationship
world methods (such as Modular and GNN) shows the most significant drop, confirming its limited
ability to handle noisy and complex causal structures.

Among the methods incorporating causal learning, SAM clearly outperforms the baselines across all
spurious settings. For instance, at noise probability p = 0.3, SAM achieves substantially higher pre-
diction accuracy than KMeans+CDL and FCDL. While the Modular and GNN approaches capture
some relational information, their generalization capabilities diminish as noise increases, highlight-
ing their limitations in disentangling superposed causal structures. At p = 0.6, SAM maintains
robust performance, significantly narrowing the gap with the Oracle, which represents the upper
bound using the true causal graph. This result emphasizes the strength of SAM in leveraging latent
causal graphs to generalize effectively, even under high levels of noise. SAM’s close performance
to the Oracle, particularly at higher noise levels, demonstrates its efficacy in handling both observed
and unobserved variables within complex, noisy environments.
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Overall, the results in Figure 3 strongly support the effectiveness of SAM. By accurately identify-
ing and disentangling superposed causal graphs, SAM achieves superior generalization performance
compared to all other methods, including state-of-the-art baselines such as GNN and FCDL. This
underscores SAM’s significant advantage in environments with complex, overlapping causal struc-
tures and noisy observations. The detailed results of each task are shown in Appendix B.

5.4 PERFORMANCE OF MODEL PREDICTIVE CONTROLS

target p=0.1 p=0.3 p=0.60.0

0.2

0.4
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ep
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 re

wa
rd

Chemical
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0.25

0.00

0.25

0.50

Minigrid

Modular GNN FCDL kmeans+CDL SAM Oracle

Figure 4: Left: Performance of model predictive controls in the chemical environment under target and
spurious settings (probability of noise: 0.1, 0.3, 0.6). Right: Performance of model predictive controls in the
Minigrid environment under target and spurious settings.

We evaluate the testing rewards of all methods across various tasks, with the summarized results
presented in Figure 4. Detailed results for each individual task can be found in Appendix B.

In the target setting of the Mixed-Chemical environment (left plot of Figure 4), the task’s simplicity
allows all methods to achieve high performance, as expected. However, the true challenge arises
in the spurious settings, where noise is introduced. At noise levels of p = 0.1, p = 0.3, and
p = 0.6, our method, SAM, consistently outperforms the baseline methods, demonstrating signifi-
cantly higher episode rewards. Notably, at the highest noise level p = 0.6, SAM maintains robust
performance, whereas other methods, particularly the single causal-relationship world models like
Modular and GNN, experience substantial performance degradation.

In the Confusing-Minigrid environment (right plot of Figure 4), the increased complexity, caused
by compounded causal effects, makes learning more challenging for all models. Despite this, SAM
again outperforms all other methods in both target and spurious settings. The performance drop of
the baselines in the spurious setting is evident, as they fail to effectively discard spurious correlations
introduced by noise. SAM, however, mitigates these challenges, leveraging its causal graph learning
capabilities to better generalize across tasks. In the target setting, SAM performs comparably to the
Oracle, indicating its ability to approximate the true causal structure even in complex environments.

In the spurious setting, baseline methods show significant performance degradation, particularly
those relying on single causal-relationship world relational learning (e.g., GNN and Modular), as
they are more susceptible to overfitting to spurious correlations. Causal models such as FCDL per-
form better than single-causal-relationship discovery methods, but still suffer from reduced gener-
alization due to their inability to effectively handle overlapping causal structures. In contrast, SAM
excels in this environment, as it successfully disentangles superposed causal graphs, allowing it to
ignore irrelevant correlations and maintain stable performance across tasks.

Overall, the results in Figure 4 highlight the advantages of SAM, particularly its ability to generalize
in noisy and complex environments. By leveraging causal discovery and focusing on relevant causal
structures, SAM consistently outperforms baseline methods and approaches the performance of the
Oracle, even in the most challenging settings.
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5.5 ABLATION STUDIES

To demonstrate that the superior generalization of our method is not solely due to temporal properties
utilized by the network structure but rather due to the accurate identification of causal graphs, we
conduct an ablation study comparing our method (SAM) with the RNN baseline (Figure 5).

target p=0.1 p=0.3 p=0.60.0

0.2

0.4

0.6

0.8

1.0

ep
iso

de
 re

wa
rd

Chemical

target spurious

0.50

0.25

0.00

0.25

0.50

Minigrid

RNN SAM Oracle

Figure 5: Left: Performance of model predictive controls in the chemical environment under target and
spurious settings (probability of noise: 0.1, 0.3, 0.6). Right: Performance of model predictive controls in the
Minigrid environment under target and spurious settings.

In the target setting, RNN performs similarly to or even slightly better than SAM due to the sim-
plicity of the task. However, in the spurious setting, where noise is introduced, SAM significantly
outperforms RNN. As noise increases (p = 0.1, p = 0.3, and p = 0.6), RNN’s performance drops
sharply, while SAM maintains high rewards. This demonstrates that RNN struggles to handle noise
due to its reliance on temporal patterns, which are disrupted by spurious correlations.

In contrast, SAM’s robustness in noisy environments shows that its generalization ability is due to
accurate causal graph identification, not temporal dependencies. In the Confusing-Minigrid environ-
ment, we see a similar trend, with SAM consistently outperforming RNN, especially in the spurious
setting.

Overall, the results clearly show that SAM’s strength lies in its ability to disentangle causal struc-
tures, leading to superior performance in complex and noisy environments.

5.6 VISUALIZATION OF ON-THE-FLY CAUSAL-RELATIONSHIP DISCOVERY IN SAM

(a) Mixed-Chemical (b) Confusing-Minigrid

Figure 6: Structural Hamming Distance (SHD) over time steps in (a) the Mixed-Chemical envi-
ronment and (b) the Confusing-Minigrid environment, demonstrating SAM’s adaptation to the true
causal graph.

We demonstrate that SAM can dynamically adapt to the true causal relationships over time steps. To
illustrate this capability, we conducted experiments where each target task runs for 50 episodes, and

9
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timestep 1 timestep 5 timestep 15 ground truth

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Figure 7: Illustration of Causal Graph Adaptation Over Time. The inferred causal graph gradually
aligns with the ground truth as time progresses.

we report the average Structural Hamming Distance (SHD) at each time step (Figure 6). As shown
in Figure 6, the SHD decreases over time in both the Mixed-Chemical and Confusing-Mi’ni’gri’d
environments, indicating that the inferred causal graph progressively aligns with the ground truth.
In the Mixed-Chemical environment (Figure 6a), SAM quickly adapts, with SHD values stabilizing
after approximately 10 steps. This rapid convergence demonstrates the method’s efficiency in learn-
ing the underlying causal structure even when faced with complex, superposed causal graphs. In the
Confusing-Minigrid environment (Figure 6b), SAM continues to reduce SHD over time, though at
a slightly slower rate due to the higher complexity of the causal relationships in this environment.
Despite this complexity, SAM steadily improves, further proving its robustness in diverse settings.
Importantly, in both environments, SAM consistently outperforms competing methods in terms of
how quickly and accurately it can discover the true causal relationships.

Additionally, Figure 7 provides a visual example of how SAM’s inferred causal graph evolves over
time. At earlier timesteps (e.g., timestep 1), the inferred graph is far from the ground truth, but by
timestep 15, it closely aligns with the true causal structure, demonstrating SAM’s ability to refine its
understanding of the causal relationships through sequential data. By timestep 50, SAM’s inferred
graph is nearly identical to the ground truth, showing its capability for accurate and adaptive causal
discovery.

These results confirm that SAM can efficiently and accurately discover and adapt causal relation-
ships in real-time, making it a highly effective approach in complex, dynamic environments where
causal structures evolve over time.

6 CONCLUSION AND DISCUSSION

In this paper, we introduced Superposed cAusal Model (SAM), a novel approach for learning su-
perposed causal world models that can handle multiple, dynamic causal relationships in sequential
decision-making environments. SAM addresses the limitations of existing causal world models,
which assume a single causal structure governs the entire dataset. By allowing for the identification
of distinct causal relationships across different episodes, SAM significantly improves generalization,
especially in heterogeneous environments where causal dynamics vary across contexts. Through ex-
tensive experiments in environments like Mixed-Chemical and Confusing-Maze, we demonstrated
that SAM effectively learns and adapts causal relationships in real-time. Our results show that SAM
outperforms existing baselines, particularly in challenging spurious settings where noise and multi-
modal causal structures obscure traditional models’ performance. Unlike dense models that strug-
gle with redundant relationships and causal models that cannot handle mixtures of causal graphs,
SAM robustly disentangles overlapping causal structures, leading to superior prediction accuracy
and decision-making performance across various tasks.

SAM’s ability to generalize across complex and evolving environments suggests its potential for
real-world applications in areas like dynamic resource allocation and autonomous systems. Despite
its promising results, SAM has some limitations, especially that SAM’s computational cost increases
with the complexity of the environment due to the use of a Transformer-based architecture. Future
work could explore scaling SAM to larger datasets, further improving its efficiency, and investigating
its applicability in broader decision-making contexts where causal structures are even more diverse
and challenging.
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A DERIVATION OF ELBO

For offline dataset D = {τi}Ni=1 and causal graphs G1:C = (G1, ...,GC), following Varambally et al.
(2024), log-likelihood can be written as follow:

log pθ(τ) = log[
∑
G1:C

pθ(τ |G1:C)p(G1:C)×
qϕ(G1:C)

qϕ(G1:C)
]

= logEqϕ(G1:C)

[
pθ (τ | G1:C) p (G1:C)

qϕ (G1:C)

]
≥ Eqϕ(G1:C)

[
log

pθ (τ | G1:C) p (G1:C)

qϕ (G1:C)

]
(using Jensen’s inequality)

= Eqϕ(G1:C) [log pθ (τ | G1:C)]−DKL(qϕ (G1:C) ∥ p (G1:C))

Given that each trajectory is conditionally independent under the causal models, we can express this
as:

Eτ∼D[log pθ(τ)] ≥ Eτ∼D[Eqϕ(G1:C) [log pθ (τ | G1:C)]−DKL(qϕ (G1:C) ∥ p (G1:C))]

KL divergence between log p (Gi), log qϕ (Gi) can formulate as sparsity regularization based on the
following proposition.
Proposition 1 (KL Divergence as Sparsity Regularization). With entry-wise independent Bernoulli
prior p(G) and point mass variational distribution q(G | τ) of DAGs,DKL [qϕ∥p] is equivalent to
an ℓ1 sparsity regularization for the discovered causal graph. Ding et al. (2022)

Applying sparsity regularization, we have the loss function

min
ϕ,θ

−Eτ∼D[Eqϕ(G1:C) [log pθ (τ | G1:C)] + λ · ∥qϕ (G1:C) ∥1 (3)

B DETAIL RESULT OF ENVIRONMENTS

Table 3: Detailed results of “target” setting reward for each task in Mixed-Chemical environment,
where “()” denote the standard deviation among three seeds.

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.99(0.03) 0.99(0.04) 0.99(0.05) 0.99(0.04) 0.98(0.05) 0.99(0.03) 0.99(0.03)
Chemical-random1 0.99(0.03) 0.99(0.02) 0.99(0.04) 0.99(0.03) 0.97(0.07) 0.99(0.03) 1.00(0.02)
Chemical-random2 0.98(0.06) 0.99(0.02) 0.99(0.03) 0.98(0.07) 0.98(0.07) 0.98(0.04) 0.99(0.03)
Chemical-random3 0.99(0.03) 0.99(0.03) 0.99(0.03) 0.99(0.04) 0.98(0.05) 0.99(0.03) 1.00(0.01)
Chemical-random4 0.99(0.04) 0.98(0.04) 0.97(0.08) 0.99(0.04) 0.98(0.06) 0.99(0.05) 0.99(0.04)
Chemical-random5 0.99(0.03) 0.99(0.04) 0.99(0.04) 0.99(0.03) 0.99(0.06) 1.00(0.02) 0.99(0.04)
Chemical-random6 0.99(0.03) 0.99(0.03) 0.99(0.04) 0.98(0.05) 0.99(0.03) 0.98(0.06) 0.98(0.05)
Chemical-random7 0.97(0.09) 0.98(0.03) 0.98(0.06) 0.98(0.06) 0.98(0.07) 0.98(0.05) 0.98(0.06)
Chemical-random8 1.00(0.02) 1.00(0.02) 0.99(0.04) 0.98(0.05) 0.98(0.06) 0.99(0.03) 0.99(0.03)

Table 4: Detailed results of “target” setting reward for each task in Confusing-Minigrid environment,
where “()” denote the standard deviation among three seeds.

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Minigrid-M-C012 0.46(0.44) 0.52(0.27) 0.76(0.09) -0.14(0.26) 0.00(0.18) 0.75(0.11) 0.57(0.28)
Minigrid-M01-C0 -0.48(0.47) -0.35(0.55) -0.01(0.55) -0.57(0.25) -0.55(0.31) 0.09(0.55) -0.23(0.44)
Minigrid-M01-C2 -0.44(0.48) -0.44(0.50) 0.12(0.49) -0.49(0.29) -0.55(0.29) 0.21(0.54) -0.14(0.45)
Minigrid-M012-C012 0.68(0.24) 0.69(0.12) 0.76(0.05) -0.06(0.26) 0.00(0.14) 0.70(0.23) 0.60(0.24)
Minigrid-M012-C -0.63(0.37) -0.62(0.37) -0.10(0.45) -0.63(0.25) -0.68(0.25) -0.19(0.44) -0.32(0.37)
Minigrid-M02-C1 -0.41(0.55) -0.25(0.60) 0.08(0.51) -0.54(0.31) -0.51(0.34) 0.10(0.53) 0.02(0.51)
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Table 5: Detailed results of “prob-0.1” setting reward for each task in Mixed-Chemical environment,
where “()” denote the standard deviation among three seeds.

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.94(0.14) 0.90(0.18) 0.89(0.20) 0.99(0.06) 0.94(0.13) 0.99(0.04) 0.99(0.06)
Chemical-random1 0.93(0.15) 0.87(0.21) 0.88(0.21) 0.99(0.06) 0.95(0.11) 1.00(0.01) 1.00(0.04)
Chemical-random2 0.91(0.18) 0.88(0.21) 0.83(0.26) 0.99(0.05) 0.96(0.11) 0.98(0.06) 0.98(0.08)
Chemical-random3 0.91(0.17) 0.86(0.21) 0.83(0.25) 1.00(0.00) 0.94(0.11) 0.99(0.03) 0.98(0.07)
Chemical-random4 0.91(0.18) 0.86(0.23) 0.82(0.25) 1.00(0.02) 0.96(0.11) 0.97(0.09) 0.99(0.04)
Chemical-random5 0.94(0.15) 0.85(0.22) 0.86(0.22) 0.99(0.04) 0.94(0.13) 0.98(0.06) 0.98(0.08)
Chemical-random6 0.93(0.16) 0.87(0.21) 0.88(0.21) 0.99(0.04) 0.98(0.06) 0.98(0.08) 0.97(0.10)
Chemical-random7 0.91(0.18) 0.89(0.22) 0.87(0.22) 0.97(0.12) 0.99(0.04) 0.98(0.05) 0.98(0.08)
Chemical-random8 0.92(0.17) 0.89(0.21) 0.87(0.21) 0.99(0.05) 0.97(0.09) 0.99(0.04) 0.99(0.07)

Table 6: Detailed results of “prob-0.3” setting reward for each task in Mixed-Chemical environment,
where “()” denote the standard deviation among three seeds.

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.44(0.23) 0.40(0.21) 0.39(0.20) 0.80(0.23) 0.78(0.25) 0.94(0.12) 0.95(0.14)
Chemical-random1 0.45(0.25) 0.37(0.25) 0.39(0.19) 0.84(0.20) 0.80(0.26) 0.97(0.10) 0.91(0.18)
Chemical-random2 0.56(0.31) 0.47(0.28) 0.47(0.29) 0.76(0.26) 0.83(0.23) 0.98(0.08) 0.88(0.20)
Chemical-random3 0.54(0.24) 0.40(0.22) 0.39(0.21) 0.80(0.23) 0.81(0.23) 0.99(0.05) 0.91(0.17)
Chemical-random4 0.50(0.26) 0.35(0.23) 0.38(0.25) 0.77(0.25) 0.81(0.25) 0.94(0.14) 0.94(0.13)
Chemical-random5 0.51(0.23) 0.39(0.22) 0.37(0.24) 0.80(0.22) 0.81(0.21) 0.98(0.06) 0.90(0.16)
Chemical-random6 0.59(0.27) 0.47(0.26) 0.46(0.26) 0.83(0.21) 0.86(0.21) 0.95(0.14) 0.89(0.19)
Chemical-random7 0.58(0.31) 0.49(0.28) 0.51(0.32) 0.78(0.26) 0.91(0.18) 0.93(0.14) 0.86(0.24)
Chemical-random8 0.48(0.24) 0.39(0.25) 0.40(0.25) 0.78(0.25) 0.82(0.24) 0.95(0.12) 0.91(0.17)

Table 7: Detailed results of “prob-0.6” setting reward for each task in Mixed-Chemical environment,
where “()” denote the standard deviation among three seeds.

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.32(0.20) 0.28(0.19) 0.28(0.18) 0.51(0.26) 0.62(0.24) 0.85(0.20) 0.82(0.23)
Chemical-random1 0.31(0.19) 0.29(0.17) 0.27(0.19) 0.58(0.25) 0.59(0.25) 0.77(0.23) 0.77(0.23)
Chemical-random2 0.38(0.22) 0.38(0.29) 0.33(0.24) 0.59(0.29) 0.64(0.30) 0.83(0.22) 0.69(0.28)
Chemical-random3 0.36(0.19) 0.33(0.20) 0.29(0.17) 0.48(0.21) 0.57(0.24) 0.87(0.19) 0.74(0.24)
Chemical-random4 0.31(0.20) 0.32(0.23) 0.31(0.23) 0.51(0.29) 0.59(0.27) 0.80(0.24) 0.80(0.24)
Chemical-random5 0.35(0.21) 0.29(0.17) 0.29(0.16) 0.49(0.23) 0.55(0.24) 0.86(0.20) 0.83(0.22)
Chemical-random6 0.37(0.24) 0.35(0.21) 0.33(0.19) 0.56(0.26) 0.67(0.26) 0.80(0.21) 0.69(0.25)
Chemical-random7 0.40(0.29) 0.38(0.25) 0.38(0.25) 0.63(0.27) 0.70(0.29) 0.75(0.27) 0.69(0.29)
Chemical-random8 0.31(0.17) 0.30(0.20) 0.29(0.17) 0.53(0.27) 0.58(0.28) 0.80(0.24) 0.76(0.23)

Table 8: Detailed results of “spurious” setting reward for each task in Confusing-Minigrid environ-
ment, where “()” denote the standard deviation among three seeds.

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Minigrid-M-C012 -0.42(0.18) 0.30(0.47) -0.61(0.27) -0.51(0.24) -0.03(0.01) 0.75(0.11) 0.70(0.14)
Minigrid-M01-C0 -0.45(0.46) -0.39(0.54) -0.46(0.45) -0.54(0.32) -0.58(0.31) -0.03(0.51) -0.38(0.33)
Minigrid-M01-C2 -0.79(0.19) -0.39(0.49) -0.49(0.41) -0.62(0.18) -0.53(0.29) 0.11(0.52) -0.08(0.49)
Minigrid-M012-C012 -0.43(0.24) 0.23(0.38) -0.67(0.21) -0.12(0.39) 0.01(0.10) 0.68(0.23) 0.62(0.28)
Minigrid-M012-C -0.63(0.37) -0.62(0.37) -0.10(0.45) -0.63(0.25) -0.68(0.25) -0.19(0.44) -0.32(0.37)
Minigrid-M02-C1 -0.54(0.34) -0.23(0.53) -0.47(0.40) -0.69(0.20) -0.50(0.32) 0.11(0.51) -0.11(0.47)

C EXPERIMENTAL DETAILS

C.1 ENVIRONMENT DETAILS

In a two-dimensional grid world environment, there is an agent, a target, and multiple colored obsta-
cles. Obstacles of the same color possess identical mobility and obstructive properties, which reflect
the causality of the environment. For instance, if an obstacle does not impede other obstacles from
the perspective of the agent, then the position of that obstacle is causally unrelated to the positions of
other obstacles. Conversely, if an obstacle can be moved, then there is a causal relationship between
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Table 9: ood policy mpe for each env

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.95(0.22) 0.95(0.21) 0.88(0.32) 0.93(0.25) 0.84(0.37) 1.00(0.05) 0.99(0.11)
Chemical-random1 0.95(0.22) 0.95(0.21) 0.89(0.31) 0.95(0.23) 0.84(0.37) 1.00(0.05) 0.99(0.09)
Chemical-random2 0.96(0.20) 0.96(0.20) 0.92(0.28) 0.95(0.21) 0.91(0.28) 1.00(0.00) 0.99(0.09)
Chemical-random3 0.96(0.20) 0.96(0.20) 0.90(0.30) 0.95(0.22) 0.87(0.34) 1.00(0.01) 0.99(0.09)
Chemical-random4 0.96(0.21) 0.95(0.21) 0.89(0.31) 0.94(0.23) 0.85(0.36) 1.00(0.03) 0.99(0.08)
Chemical-random5 0.95(0.21) 0.96(0.21) 0.91(0.29) 0.94(0.23) 0.85(0.35) 1.00(0.04) 0.99(0.08)
Chemical-random6 0.96(0.19) 0.96(0.19) 0.92(0.27) 0.96(0.20) 0.87(0.34) 1.00(0.02) 1.00(0.07)
Chemical-random7 0.96(0.20) 0.96(0.20) 0.91(0.29) 0.95(0.22) 0.90(0.30) 1.00(0.03) 0.99(0.08)
Chemical-random8 0.96(0.20) 0.96(0.20) 0.90(0.30) 0.95(0.22) 0.84(0.37) 1.00(0.02) 1.00(0.06)

Table 10: ood noise prob0.1 mpe for each env

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.58(0.49) 0.56(0.50) 0.55(0.50) 0.79(0.41) 0.75(0.44) 0.87(0.34) 0.84(0.37)
Chemical-random1 0.58(0.49) 0.58(0.49) 0.56(0.50) 0.81(0.40) 0.75(0.43) 0.88(0.33) 0.86(0.35)
Chemical-random2 0.60(0.49) 0.57(0.50) 0.55(0.50) 0.79(0.41) 0.81(0.39) 0.94(0.24) 0.82(0.38)
Chemical-random3 0.61(0.49) 0.57(0.50) 0.54(0.50) 0.79(0.41) 0.77(0.42) 0.95(0.22) 0.85(0.36)
Chemical-random4 0.61(0.49) 0.57(0.50) 0.52(0.50) 0.80(0.40) 0.76(0.43) 0.88(0.32) 0.85(0.36)
Chemical-random5 0.61(0.49) 0.55(0.50) 0.54(0.50) 0.79(0.41) 0.76(0.43) 0.92(0.27) 0.84(0.36)
Chemical-random6 0.59(0.49) 0.57(0.50) 0.59(0.49) 0.81(0.39) 0.78(0.42) 0.89(0.31) 0.83(0.38)
Chemical-random7 0.61(0.49) 0.58(0.49) 0.54(0.50) 0.80(0.40) 0.81(0.40) 0.90(0.30) 0.82(0.39)
Chemical-random8 0.60(0.49) 0.57(0.50) 0.54(0.50) 0.80(0.40) 0.75(0.43) 0.88(0.32) 0.84(0.37)

Table 11: ood noise prob0.3 mpe for each env

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.34(0.48) 0.32(0.47) 0.34(0.47) 0.61(0.49) 0.63(0.49) 0.78(0.42) 0.72(0.45)
Chemical-random1 0.36(0.48) 0.34(0.48) 0.33(0.47) 0.63(0.48) 0.64(0.48) 0.78(0.42) 0.76(0.43)
Chemical-random2 0.36(0.48) 0.35(0.48) 0.32(0.47) 0.60(0.49) 0.68(0.47) 0.87(0.34) 0.70(0.46)
Chemical-random3 0.38(0.49) 0.36(0.48) 0.33(0.47) 0.60(0.49) 0.64(0.48) 0.90(0.30) 0.75(0.44)
Chemical-random4 0.35(0.48) 0.33(0.47) 0.31(0.46) 0.62(0.49) 0.65(0.48) 0.78(0.41) 0.75(0.43)
Chemical-random5 0.37(0.48) 0.32(0.47) 0.32(0.47) 0.60(0.49) 0.63(0.48) 0.88(0.32) 0.76(0.43)
Chemical-random6 0.35(0.48) 0.33(0.47) 0.35(0.48) 0.64(0.48) 0.65(0.48) 0.81(0.39) 0.72(0.45)
Chemical-random7 0.38(0.49) 0.34(0.48) 0.31(0.47) 0.63(0.48) 0.69(0.46) 0.81(0.40) 0.71(0.46)
Chemical-random8 0.36(0.48) 0.31(0.47) 0.33(0.47) 0.62(0.49) 0.63(0.48) 0.76(0.43) 0.73(0.44)

Table 12: ood noise prob0.6 mpe for each env

Environment Modular GNN RNN FCDL kmeans+CDL Oracle SAM

Chemical-random0 0.30(0.46) 0.28(0.45) 0.31(0.46) 0.48(0.50) 0.54(0.50) 0.76(0.43) 0.70(0.46)
Chemical-random1 0.31(0.47) 0.31(0.46) 0.29(0.46) 0.50(0.50) 0.56(0.50) 0.73(0.45) 0.73(0.45)
Chemical-random2 0.31(0.47) 0.31(0.47) 0.29(0.45) 0.46(0.50) 0.59(0.49) 0.82(0.39) 0.66(0.48)
Chemical-random3 0.33(0.47) 0.33(0.47) 0.30(0.46) 0.46(0.50) 0.55(0.50) 0.88(0.32) 0.74(0.44)
Chemical-random4 0.30(0.46) 0.30(0.46) 0.28(0.45) 0.48(0.50) 0.56(0.50) 0.75(0.44) 0.73(0.45)
Chemical-random5 0.32(0.47) 0.30(0.46) 0.29(0.46) 0.47(0.50) 0.55(0.50) 0.85(0.36) 0.75(0.43)
Chemical-random6 0.32(0.47) 0.29(0.46) 0.31(0.46) 0.53(0.50) 0.57(0.50) 0.75(0.43) 0.69(0.46)
Chemical-random7 0.34(0.48) 0.31(0.46) 0.29(0.45) 0.52(0.50) 0.61(0.49) 0.78(0.42) 0.67(0.47)
Chemical-random8 0.31(0.47) 0.27(0.45) 0.30(0.46) 0.49(0.50) 0.54(0.50) 0.70(0.46) 0.69(0.46)

actions and the position of the obstacle. Under different conditions, the same obstacle may exhibit
variations in mobility and obstructive properties, resulting in different causal graphs.

C.2 GROUND TRUTH CAUSAL MASK
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(a) random0 (b) random1 (c) random2

(d) random3 (e) random4 (f) random5

(g) random6 (h) random7 (i) random8

(a) M012-C (b) M01-C0 (c) M01-C2

(d) M02-C1 (e) M012-C (f) M012-C012
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