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ABSTRACT

Protein representation learning has achieved major advances using large sequence
and structure datasets, yet current models primarily operate at the level of individ-
ual residues or entire proteins. This overlooks a critical aspect of protein biology:
proteins are composed of recurrent, evolutionarily conserved substructures that
mediate core molecular functions. Despite decades of curated biological knowl-
edge, these substructures remain largely unexploited in modern protein models.
We introduce Magneton, an integrated environment for developing substructure-
aware protein models. Magneton provides (1) a large-scale dataset of 530,601 pro-
teins annotated with over 1.7 million substructures spanning 13,075 types, (2) a
training framework for incorporating substructures into existing models, and (3) a
benchmark suite of 13 tasks probing residue-, substructure-, and protein-level rep-
resentations. Using Magneton, we develop substructure-tuning, a supervised fine-
tuning method that distills substructural knowledge into pretrained protein models.
Across state-of-the-art sequence- and structure-based models, substructure-tuning
improves function-related tasks while revealing that substructural signals are com-
plementary to global structural information. The Magneton environment, datasets,
and substructure-tuned models are all openly available1.

1 INTRODUCTION

Protein representation learning has progressed from models trained on large sequence databases
(Rives et al., 2021; Elnaggar et al., 2022) to models incorporating experimentally determined or
predicted structures (Gligorijević et al., 2021; Zhang et al., 2022b), enabling advances in folding
(Lin et al., 2023), function prediction (Rao et al., 2019), and variant effect prediction (Meier et al.,
2021; Brandes et al., 2023). However, these models have largely ignored the recurrent and modular
composition of proteins, which introduces substantial technical challenges. Protein substructures
occur at multiple spatial and functional scales, from local motifs spanning only a handful of residues
to domains that cover large fractions of a protein. They are often non-contiguous in sequence space,
making them difficult to encode with standard sequential architectures. A single residue can belong
to several overlapping substructures, inducing hierarchical and context-dependent relationships that
are not naturally handled by flat representations. Finally, annotated substructures are distributed in a
long-tailed fashion, with abundant secondary structure elements but scarce examples of specialized
motifs, complicating the design of training objectives and evaluation protocols.

These challenges arise because proteins are not uniform chains but are organized into recurrent,
modular substructures that provide a natural multiscale vocabulary for representation. At the finest
level are amino acids, which assemble into secondary structure elements such as alpha helices and
beta sheets; these in turn combine into higher-order motifs and domains such as beta barrels and
zinc fingers (Figure 1A). These substructures are responsible for core molecular functions of pro-
teins, such as coordinating metal ions for reaction catalysis or binding to other proteins as parts
of cellular signaling networks, and their importance is underscored by their occurrence in proteins
sampled from across the tree of life. Decades of biological research has led to the categorization of
these recurrent substructures, resulting in large databases that exhaustively annotate these elements

1https://anonymous.4open.science/r/magneton-14F2/README.md
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across proteins (Sonnhammer et al., 1997; Paysan-Lafosse et al., 2025; Blum et al., 2025). However,
prevailing protein representation learning methods still rely on self-supervised objectives that oper-
ate at the scale of single amino acids, such as masked language modeling or structural denoising, or
occasionally operate on full proteins (Yu et al., 2023). This is despite abundant evidence that evolu-
tionarily conserved substructures are key components of protein function (Rossman & Liljas, 1974).
In this work, we ask, how should we systematically incorporate decades of biological knowledge
about protein substructures into protein encoding models?

Figure 1: Overview of protein structure and the Magneton environment. (A) Proteins are built from mod-
ular substructures that assemble into full structures. (B) Magneton leverages decades of substructure research
to provide an environment for developing and evaluating substructure-aware models.

While there exists a growing body of work exploring how to best integrate protein sequence and
structure into a single model, either via direct incorporation of structural tokens (Su et al., 2023;
Li et al., 2024; Hayes et al., 2025; Lu et al., 2025; Yuan et al., 2025) or finetuning of sequence
models to better align with structural representations (Zhang et al., 2024b; Ouyang-Zhang et al.,
2025), there are few examples of incorporating substructure information into protein encoding mod-
els. Models such as GearNet (Zhang et al., 2022b) use a multi-view contrastive objective and cite
recurrent substructures as motivation, but use multiple views of subsets of the same protein rather
than considering recurrent substrucutures across proteins. The Functional Community Invariance
approach (Wang et al., 2025b) employs secondary structure annotations to guide graph augmenta-
tions but ignores higher-order substructures. Other threads of work seek to construct hierarchical
representations of proteins, either by connecting residues to their exposed surface areas (Somnath
et al., 2022; Zhang et al., 2024c; Mallet et al., 2025), or in models such as ProNet (Wang et al.,
2023), by progressing from all-atom graphs to residue graphs, but these works pass over protein
substructure as a valuable part of the structural hierarchy.
Present work. To close this gap, we first create a new environment for developing substructure-
aware protein models, which we call Magneton. Magneton has three main components: (1) a dataset
of proteins with curated substructures in an ML-ready format; (2) a framework for using these
substructures to train or finetune protein encoding models; and (3) a benchmark of evaluation tasks
that probe the learned representations at the residue, substructure, and protein levels (Figure 1B).
By curating data from Pfam, InterPro, and DSSP, we create a dataset of 530,601 proteins with over
1.7 million substructural annotations (37 million when including secondary structure) across six
substructure classes with 13,075 distinct substructure types.

Using Magneton, we next explore substructure-tuning, a supervised fine-tuning strategy that explic-
itly distills substructural information into protein encoders. Concretely, we formulate substructure-
tuning as classification of evolutionarily conserved substructures, where residue-level embeddings
produced by a base encoder are pooled to construct substructure representations and optimized with
a cross-entropy loss. This objective is model-agnostic, requiring only residue-level embeddings,
and naturally extends to multiple structural scales through a multi-task formulation in which each
substructure class is assigned its own prediction head and the total loss is the sum across scales.
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We systematically vary the substructures used for tuning, exploring configurations ranging from
small, highly local elements (e.g., active sites spanning < 10 residues) to larger domains, as well as
joint training over multiple scales. Substructure-tuning is evaluated on 13 benchmarking tasks us-
ing 6 state-of-the-art base models, including both sequence-only and sequence–structure encoders.
Substructure-tuned representations yield consistent improvements of 5% on function-related predic-
tion tasks (e.g., EC and GO terms), while effects on localization and residue-level tasks are neutral or
negative. Improvements persist even when base models already incorporate global structural inputs,
underscoring that substructural signals are distinct and complementary to global protein structure.

Our key contributions are: 1⃝ We present Magneton, a benchmark that combines large-scale curated
substructural annotations with an associated Python library and a suite of 13 evaluation tasks span-
ning residue, substructure, protein, and interaction levels. This environment enables exploration of
how substructural priors can be integrated into protein models. 2⃝ We introduce substructure-tuning,
a supervised fine-tuning method for distilling substructural information into pretrained models. We
exhaustively evaluate its design space across six state-of-the-art encoders, covering both sequence-
only and sequence–structure models and ranging from 150M to 650M parameters. 3⃝ We show that
substructure-tuning improves models’ ability to represent protein function: for example, Enzyme
Commission (EC) prediction with ESM-C 300M improves from 0.688 to 0.815, and Gene Ontology
molecular function prediction increases from 0.429 to 0.525. These results demonstrate that sub-
structural information is complementary to global structure, yielding consistent gains in functional
prediction tasks across architectures. We envision that this work will catalyze closer integration
of machine learning and biology, motivating new approaches and inductive biases that incorporate
decades of knowledge about protein structure across scales.

2 RELATED WORK

Integrating structure- and function-based inductive biases into sequence-based protein mod-
els. A large body of work has explored distilling auxiliary modalities into sequence-based protein
models. Some methods incorporate free-text descriptions, such as Gene Ontology terms (Zhang
et al., 2022a) or SwissProt annotations (Xu et al., 2023). The majority, however, focus on structural
information. Explicit approaches integrate structure directly, either through structure graphs (?) or
structural tokenization (Su et al., 2023; Li et al., 2024). Structural distillation methods instead use
structure only at training time, preserving sequence-only inference. For example, Implicit Structure
Model (ISM) (Ouyang-Zhang et al., 2025) trains residue-level predictors on tokens from a struc-
tural autoencoder, while ESM-S (Zhang et al., 2024b) distills global structural information via fold
classification. S-PLM (Wang et al., 2025a) employs contrastive learning to align representations of
an ESM encoder with those of a contact-map encoder. Magneton differs by focusing on protein
substructures rather than only residue-level or global structural signals. It provides large-scale cu-
rated annotations of conserved substructures and a framework for supervised fine-tuning on these
elements to encode modular, recurrent units of protein organization. This is orthogonal to existing
sequence-structure integration and structural distillation approaches.
Substructure-aware training and hierarchical models. Protein substructure admits a hierarchical
view, but most hierarchical modeling approaches focus on geometric relations rather than functional
substructures. Some methods connect residues to exposed surface areas (Somnath et al., 2022;
Zhang et al., 2024c; Mallet et al., 2025), while others connect residues to constituent atoms (Wang
et al., 2023). Few approaches incorporate substructural information directly. GearNet (Zhang et al.,
2022b) uses a multiview contrastive objective that samples local regions within a protein, but su-
pervision is restricted to intra-protein partitions rather than conserved substructures across proteins.
SES-Adapter (Tan et al., 2024) augments sequence models with cross-attention to DSSP-derived
secondary structure tokens, but does not extend beyond this single level of annotation. Protein lan-
guage models such as xTrimoPGLM (Chen et al., 2025) use span-masking, but the masked spans
are random residue segments rather than biologically defined substructures. ESM3 (Hayes et al.,
2025) introduces multi-track tokenization, including secondary structure and function tracks, where
the function track is derived from ontology terms often correlated with substructural annotations.
However, the learning remains self-supervised and intra-protein, without supervision on conserved
substructures across proteins. Magneton differs by providing annotations of conserved substructures
across proteins and by defining supervised training objectives that operate directly on these anno-
tations. This design moves beyond local partitions, random spans, or ontology proxies, enabling
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systematic study of substructure-aware modeling across residue-, motif-, domain-, and protein-level
representations.
Geometric protein models. Geometric deep learning has been widely applied to proteins, with
models developed for folding (Jumper et al., 2021; Abramson et al., 2024), structure design (Pas-
saro et al., 2025; Watson et al., 2023; Huang et al., 2024), and representation learning (Jing et al.,
2020; Fang et al., 2025). These approaches operate at the atom scale (Qu et al., 2025; Widatalla
et al., 2025) and encode spatial coordinates of all atoms to model global protein geometry. Mag-
neton addresses a complementary problem: representing recurrent substructures that span residues,
motifs, and domains, and recur across proteins. Rather than optimizing directly on atomic coordi-
nates, Magneton introduces supervised objectives on conserved substructures, providing functional
supervision across structural scales. This supervision captures signals relevant to tasks such as
Enzyme Commission classification, Gene Ontology function prediction, and thermostability, where
global geometry alone is insufficient. Substructural objectives can also be integrated with atom-scale
geometric encoders to yield models that capture fine-grained geometry and functional modularity.

3 METHODS

Preliminaries. Two possible views of a protein P are the residue-level, P = (a1, . . . , al) where ai
is the i’th residue in the primary sequence, and the substructure-level, P = (s1, . . . , sn) where each
si represents a substructure contained within a protein. Other views are possible (e.g. atom-level),
but these two views are the most relevant for our work. In the substructure view, each substructure
is a subset of k residues, si = {aj}j=k

j=1 , where the residues aj may or may not be contiguous in the
primary sequence. Since substructures exist at multiple scales, a given residue may be a member
of multiple, possibly overlapping substructures, e.g. a residue may be part of a secondary structure
element, such as a beta strand, that is itself part of a larger fold, such as a beta barrel. It is also
possible for a given residue to not be included in any annotated substructure. While the substructure
view of a protein is common in the biological community, there is a lack of curated datasets for
exploring it in the context of protein modeling.

3.1 MAGNETON DEVELOPMENT ENVIRONMENT

Magneton is an environment for developing substructure-aware protein models, and consists of three
main parts: (1) a curated dataset of proteins with annotated substructures, (2) a framework for using
this dataset for substructure-aware training, and (3) an integrated benchmark of evaluation tasks that
probe a model’s learned representations at multiple structural scales.
Dataset. We use the 2024 06 release of UniProtKB/TrEMBL (The UniProt Consortium, 2025)
as our core protein dataset, containing roughly 254M proteins. We obtain annotations of 8-class
secondary structure from DSSP (Kabsch & Sander, 1983; Hekkelman et al., 2025) and annotations of
higher-order structures (Homologous superfamilies, domains, conserved sites, active sites, binding
sites) from the 103.0 release of InterPro (Blum et al., 2025). We process these raw releases into
Magneton’s core datatypes representing a protein and its associated substructures, and store these
as compressed, binary files which we shard to enable parallel processing and file-level shuffling for
large-scale training runs. Due to the scale of the dataset at this stage and the size of protein structure
data, we focus our further exploration on the manually curated SwissProt subset of UniProtKB, but
make the processed version of the full UniProtKB/TrEMBL dataset available to the community.
For each protein, we obtain amino acid sequences from UniProtKB and predicted structures from
AlphaFold DB (Varadi et al., 2022). To ensure consistent training and evaluation across sequence-
based and structure-based models, we subset the SwissProt dataset to only proteins with calculated
structures in the current (Nov 2022) release of AlphaFold DB, leaving 530,601 proteins. Additional
details on the dataset and processing can be found in Appendix A.1.1.

To focus learning efforts on substructures where sufficient data is present, we create a restricted
label set of more frequently occurring substructures. We restrict to substructures that occur at least
75 times in the SwissProt dataset, corresponding to to retaining only the top 10% most frequently
occurring domains. While this may seem stringent, we find that this retains the vast majority of
actual substructure occurrences across types, since many substructures have very few occurrences.
We additionally generate versions of our dataset using more permissive cutoffs (minimum counts of
25 or 10) (Appendix A.1.3). Moreover, our published datasets retain all substructure annotations,
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Substructure Unique Total Unique Total Median
class types occurrences types occurrences protein

(pre-filter) (pre-filter) (post-filter) (post-filter) span

Homologous
superfamily 2978 1.09M 1133 1.05M 50% (137 AA)

Domain 9133 389K 917 301K 34.8% (127 AA)

Conserved
site 739 175K 356 162K 5.18% (16 AA)

Binding
site 67 20.1K 48 19.0K 4.28% (16 AA)

Active
site 132 31.1K 82 29.2K 3.47% (12 AA)

Secondary
structure 8 35.2M 8 35.2M 0.94% (3.4 AA)

Total
w/o secondary structure

13075 1.71M 2542 1.56M —

Table 1: Summary of Magneton substructure dataset (SwissProt subset). Before and after refers to filtering
out rare substructures. Median protein span is the median length of a type of substructure, expressed as a
percentage of the protein and as absolute amino acid count.

to enable future research by the community. Table 1 summarizes the different classes of substruc-
tures, their counts, number of types, and typical span on the protein. As expected for substructural
elements, the majority of the substructures span less than 10% of the annotated protein, with the
scale varying by the class of substructure. We then split this dataset into training, validation, and
test sets using the AFDB50 sequence-based clusters (Barrio-Hernandez et al., 2023), ensuring that
sequences sharing more than 50% identity and 90% overlap are assigned to the same split.
Evaluation benchmark. To provide a holistic evaluation of substructure-focused protein modeling
within Magneton, we integrate numerous evaluation tasks from the community. These tasks probe
a model’s learned representations at multiple scales: individual residues, substructures, proteins,
and protein interactions (Table 2). At the residue-level, we include contact prediction (Rao et al.,
2019), zero-shot prediction of variant effects (Notin et al., 2023), and multiple types of functional
residue prediction tasks (Dallago et al., 2021; Yuan et al., 2025); at the substructure-level, we in-
clude multiclass substructure classification problems derived from the Magneton dataset itself; at
the protein-level, we include function prediction (GO and EC terms) (Gligorijević et al., 2021), sub-
cellular localization (Almagro Armenteros et al., 2017), and fitness prediction (Rao et al., 2019).
Finally, we include a human PPI prediction task (Pan et al., 2010; Xu et al., 2022). Full details of
evaluation datasets can be found in Appendix A.1.5.

Scale Task Task type Metric Data source

Interaction Human PPI prediction Binary Accuracy Pan et al.

Protein

Gene Ontology prediction Multilabel Fmax Gligorijević et al.Enzyme Commission prediction Multilabel Fmax

Subcellular localization Multiclass Accuracy Almagro Armenteros et al.Binary localization Binary Accuracy
Thermostability prediction Regression Spearman’s ρ Rao et al.

Substructure Substructure classification Multiclass Macro accuracy Ours

Residue

Contact prediction Binary Precision@L Rao et al.
Variant effect prediction Regression Spearman’s ρ Notin et al.
Binding residue categorization Multilabel Fmax Dallago et al.
Functional site prediction Binary AUROC Yuan et al.

Table 2: Evaluation tasks contained within Magneton. Grouped by the scale of structural representation
they interrogate.
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3.2 SUBSTRUCTURE REPRESENTATION AND TUNING

Given the dataset in Magneton, we now have a large collection of proteins P , where each pro-
tein has curated substructural annotations, P = (s1, . . . , sk);P ∈ P . We first use this dataset to
assess whether existing protein models can generate meaningful representations of substructures.
Specifically, for a protein model f , we construct a representation of each substructure sj ∈ P by
calculating residue-level embeddings, f(P ) = (v1, . . . , vl), vl ∈ Rd where vi is the embedding of
residue ai. We then perform a substructure pooling operation over the constituent residues of s,
f(s) = pool({vi : ai ∈ s}, f(s) ∈ Rd, where pool can be any arbitrary pooling operation.
These substructure-level representations are then input to a classifier over the possible substructure
labels for the final substructure classification task. Since a substructure’s constituent residues are
given to the model, this is a diagnostic task meant to probe each model’s ability to represent sub-
structures, not a task meant to measure the ability to identify previously unannotated substructures.
For the purposes of this diagnostic assessment, we freeze the parameters of the underlying protein
model and train only the substructure classification head.

Figure 2: Overview of using Magneton for substructure-tuning. Given a pre-trained protein model,
substructure-tuning first pools residue-level embedding to create substructure representations, which are then
used for supervised finetuning via substructure type-specific classifier heads.

We next explore imbuing existing protein models with substructural information. In a process we
refer to as substructure-tuning, we again perform the substructure classification task outlined above,
but with finetuning of the original protein model’s parameters (Figure 2) to encourage the model to
distinguish between the many different types of biologically-relevant substructures in our dataset.
Although we use supervised finetuning, other losses, such as a contrastive objective (van den Oord
et al., 2019), could also be used. The substructure-tuning process is compatible with any finetun-
ing method, including parameter-efficient methods such as LoRA (Hu et al., 2021) for larger base
models. We perform substructure-tuning using the Magneton training set and explore tuning with
different substructure types as well as their combinations. When finetuning with multiple substruc-
ture classes, each class uses its own predictor module with the cross entropy loss across all types
summed to form the final substructure classification loss.

3.3 IMPLEMENTATION DETAILS

For our experiments, we select base protein models that represent state-of-the-art models across
a range of model sizes and modality inputs. For sequence-based models, we use ESM2-150M
and -650M (Lin et al., 2023) and ESM-C 300M and 600M (ESM Team, 2024). For models that
incorporate protein structure, we use SaProt (Su et al., 2023) and ProSST-2048 (Li et al., 2024),
both of which use both protein sequence and structure. We opt to exclude purely structural models
such as GearNet (Zhang et al., 2022b) as their performance is generally below that of the sequence-
structure models we’ve included.

For substructure classification and tuning, we use single-hidden layer MLPs where the hidden di-
mension size matches that of the base model as our prediction modules, mean pool for the sub-
structure pooling operation. For substructure-tuning, we perform full finetuning of the base model.
To regularize the substructure-tuning process and avoid catastrophic forgetting of the base model’s
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original objective, we use elastic weight consolidation (EWC) (Kirkpatrick et al., 2017). Detailed
training methodology is available in Appendix A.2.1.

For supervised downstream evaluations, we train head models on top of either the original base
model or the substructure-tuned base model. For these evaluations, we freeze the base model to
focus on evaluating the representations learned during substructure-tuning. Results across all tasks
and models were generated within the Magneton environment and use identical datasets and splits.
We unfortunately exclude ProSST from the functional site prediction and contact prediction tasks
due to it’s incompatibility with experimental structures from PDB. Full training details for all models
and tasks are available in Appendix A.2.2.

4 EXPERIMENTS

4.1 SUBSTRUCTURE REPRESENTATION ASSESSMENT

Table 3 shows that base models are readily able to produce effective representations of substructures
across scales, with structure-based models generally outperforming sequence-only models. We also
find that models are able to correctly classify substructures within proteins that contain multiple
substructures (e.g. accurately classifying all domains within a single protein containing multiple
domains), indicating that classification relies on local structural cues rather than global structural
similarity (Figure 3A). While performance degrades for some rarer substructures, we generally see
high accuracy even for rare substructures (Figure 3B).

Model Homologous
superfamily Domain Conserved

site
Binding

site
Active

site
Secondary
structure

ESM2-150M 0.899 0.969 0.988 1.000 0.995 0.827
+ST 0.925 0.983 0.991 0.999 0.994 0.916

ESM2-650M 0.926 0.982 0.986 1.000 0.995 0.892
+ST 0.902 0.967 0.986 1.000 0.996 0.938

ESM-C 300M 0.913 0.962 0.990 0.998 0.994 0.863
+ST 0.946 0.982 0.983 0.999 0.996 0.757

ESM-C 600M 0.919 0.975 0.992 0.977 0.994 0.891
+ST 0.907 0.966 0.993 0.997 0.996 0.927

ProSST-2048 0.888 0.945 0.995 0.996 0.993 0.927
+ST 0.879 0.976 0.991 0.991 0.995 0.961

SaProt 0.916 0.967 0.992 0.999 0.996 0.955
+ST 0.925 0.980 0.993 0.999 0.996 0.972

Table 3: Comparison of substructure classification performance. Model performance on the diagnostic
task of classifying substructures given their annotated residues. All values are macro-averaged accuracy.

4.2 SUBSTRUCTURE-TUNING

Substructure-tuning configurations. Table 4 shows the results of substructure-tuning with a range
of different substructure classes, both individually and their combinations, as measured by down-
stream evaluation tasks. Due to the large number of possible configurations, we restricted this initial
exploration to a single model (ESM-C 300M), a subset of evaluation tasks, and a selection of the
26 possible substructure class combinations aimed at exploring combinations of substructure classes
across scales.

Our exploration of substructure configurations revealed the following: 1) The effects of substructure-
tuning are largely consistent across the selected substructure types used, with large performance
boosts in tasks related to protein function (GO:MF, GO:BP, EC, Thermostability) and neutral to
negative effects on localization tasks (GO:CC, Binary localization, Subcellular localization) and
residue-level variant-effect prediction. 2) These effects are present even when tuning with very
small substructures, such as active sites, which typically consist of only 12 amino acids (median
protein span of 3.47%). Based on these results, we selected the combination of active site, binding
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Figure 3: (A) Domain classification uses local cues. Even within proteins containing multiple domains,
classification accuracy remains high for all contained domains. Labels within bars show the number of test set
proteins containing that number of domains. (B) Domain classification accuracy as a function of training
set representation. Results shown for ESM-C 300M.

Substructures
used

EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability
(Spearman’s ρ)

Zero-shot DMS
( Spearman’s ρ)Fmax Binary Subcellular

None 0.688 0.307 0.416 0.429 0.871 0.703 0.648 0.432
H 0.805 0.312 0.395 0.518 0.851 0.632 0.662 0.308
D 0.776 0.307 0.403 0.501 0.811 0.640 0.666 0.340
C 0.749 0.318 0.398 0.491 0.870 0.706 0.661 0.402
B 0.745 0.315 0.415 0.478 0.852 0.686 0.663 0.423
A 0.794 0.318 0.403 0.518 0.851 0.639 0.663 0.340
S 0.618 0.297 0.379 0.381 0.823 0.587 0.612 0.264

HD 0.774 0.316 0.388 0.500 0.847 0.606 0.639 0.302
H S 0.765 0.297 0.395 0.466 0.883 0.651 0.644 0.346
HD S 0.754 0.318 0.413 0.473 0.868 0.633 0.658 0.350
H CBA 0.800 0.322 0.389 0.515 0.857 0.611 0.663 0.340
D S 0.751 0.308 0.384 0.462 0.872 0.646 0.643 0.369
DCBA 0.815 0.329 0.395 0.525 0.851 0.662 0.659 0.369
CBA 0.761 0.325 0.403 0.488 0.879 0.681 0.660 0.410
BA 0.740 0.319 0.406 0.467 0.841 0.677 0.656 0.418
CBAS 0.719 0.313 0.393 0.453 0.839 0.666 0.636 0.379

HDCBAS 0.760 0.315 0.383 0.457 0.832 0.624 0.640 0.359

Table 4: Comparison of substructure-tuning configurations. Performance across tasks for ESM-C 300M
with a range of substructure-tuning configurations. For each configuration, the substructures used are indi-
cated by the presence of that substructure type’s single-letter code: H=Homologous superfamily, D=Domain,
C=Conserved site, B=Binding site, A=Active site, S=Secondary structure; an underscore ( ) means that sub-
structure type was not used.

site, and conserved site as the substructure-tuning configuration for use on the full set of models and
benchmarks, as this configuration represented a balance of positive gains on function-related tasks
and neutral effects on localization and residue-level variant-effect tasks.

Substructure-tuning across models. Tables 5 and 6 show how the selected substructure-tuning
configuration affects the downstream performance of the full set of base protein models across
protein-level and residue-level tasks, respectively. The full evaluation across models and bench-
marks led to the following conclusions: 1) Results across models are consistent with the initial
exploration: performance boosts in function-related tasks and neutral to negative effects on localiza-
tion and residue-level tasks. 2) Importantly, these results hold true for models that already incorpo-
rate protein structure as an input (ProSST-2048 and SaProt), suggesting complementarity between
structural and substructural information. Due to the close relationship between substructures and
protein function, we additionally verify that performance increases from substructure-tuning are not
trivially attributed to leakage between the Magneton substructure training set and the test sets of the
evaluation tasks (Appendix A.1.4). We also perform an ablation of EWC, finding that it moderates
the performance improvements of substructure-tuning, while reducing the amount of degradation in
tasks where substructure-tuning has negative effects (Appendix A.2.1).
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Model EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability
(Spearman’s ρ)

Human PPI
(AUROC)Fmax Binary Subcellular

ESM2-150M 0.727 0.316 0.416 0.441 0.869 0.694 0.627 0.933
+ST 0.742 0.324 0.415 0.473 0.866 0.679 0.582 0.919

ESM2-650M 0.755 0.319 0.431 0.486 0.876 0.710 0.643 0.939
+ST 0.745 0.321 0.440 0.534 0.895 0.749 0.655 0.935

ESM-C 300M 0.688 0.307 0.416 0.429 0.871 0.703 0.648 0.917
+ST 0.761 0.325 0.403 0.488 0.879 0.681 0.660 0.933

ESM-C 600M 0.701 0.312 0.403 0.436 0.863 0.713 0.668 0.927
+ST 0.780 0.319 0.385 0.527 0.872 0.635 0.667 0.902

SaProt (650M) 0.778 0.326 0.453 0.538 0.887 0.784 0.692 0.952
+ST 0.839 0.339 0.446 0.584 0.896 0.741 0.697 0.932

ProSST-2048 0.778 0.317 0.426 0.522 0.878 0.693 0.686 0.925
+ST 0.791 0.314 0.420 0.567 0.853 0.683 0.648 0.883

Table 5: Protein-level task performance for models with and without substructure-tuning.

Model
Binding
residue
(Fmax)

Functional site prediction Contact Prediction Variant Effect
(Spearman’s ρ)Binding Catalytic Short Medium Long

(AUROC) (Precision@L)

ESM2-150M 0.379 0.871 0.910 0.487 0.452 0.289 0.342
+ST 0.327 0.852 0.890 0.460 0.445 0.285 0.262

ESM2-650M 0.366 0.849 0.912 0.551 0.528 0.372 0.359
+ST 0.362 0.851 0.927 0.532 0.518 0.367 0.317

ESM-C 300M 0.367 0.851 0.923 0.339 0.364 0.174 0.432
+ST 0.411 0.866 0.910 0.350 0.374 0.180 0.410

ESM-C 600M 0.357 0.850 0.921 0.329 0.362 0.161 0.434
+ST 0.368 0.852 0.906 0.313 0.315 0.141 0.381

SaProt (650M) 0.423 0.891 0.923 0.788 0.747 0.697 0.457
+ST 0.400 0.871 0.924 0.765 0.726 0.647 0.405

ProSST-2048 0.375 N/A N/A N/A N/A N/A 0.507
+ST 0.342 N/A N/A N/A N/A N/A 0.356

Table 6: Residue-level task performance for models with and without substructure-tuning.

We additionally explored how substructure-tuning interacts with task-specific finetuning by repeat-
ing the evaluations above for a subset of models and tasks with full finetuning of the protein model
for each task (Appendix A.2.3). We found that task-specific finetuning results in similar performance
across models trained with and without substructure-tuning, indicating that aggressive task-specific
finetuning may dominate the substructural information imbued during the substructure-tuning pro-
cess.

Mechanistic exploration of substructure-tuning. We next investigated the effects of substructure-
tuning on the learned embeddings of the underlying protein models (Table 7, Appendix Figure
A.13). By comparing substructure embeddings before and after substructure-tuning, we found that
substructure-tuning improves a model’s ability to group substructures of the same type. Further-
more, by restricting our analysis to the rare substructure types that were excluded from the Magne-
ton training set, we find that substructure-tuning results in more consistent representations of even
substructure types that were never seen during training. This indicates that substructure-tuning en-
courages models to learn general features of functional substructures, rather than just signatures
of specific substructure types. These experiments focused on ESM-C and SaProt as representative
sequence-only and sequence-structure models.

To understand the task-specific effects of substructure-tuning, we performed a gradient conflict anal-
ysis, in which we compared the gradient updates for ESM-C 300M for the substructure classification
task and for a set of evaluation tasks, including protein-level function prediction and residue-level
classification tasks (Appendix A.3.2). We found that gradients for evaluation tasks were highly
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Model Homologous superfamily Domain Conserved site Binding site Active site

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

ESM-C 300M -0.183 0.180 -0.184 0.201 0.279 0.466 0.378 0.641 0.490 0.476
+ST 0.339 0.584 0.486 0.652 0.830 0.747 0.882 0.894 0.933 0.816

SaProt (650M) 0.079 0.301 0.122 0.412 0.534 0.623 0.613 0.796 0.714 0.701
+ST 0.478 0.684 0.554 0.717 0.796 0.764 0.843 0.938 0.912 0.866

Table 7: Silhouette scores for substructure types included (“seen”) and excluded (“unseen”) from train-
ing. Higher silhouette scores indicate tighter clustering of substructures within a type.

consistent across batches, gradients for substructure classification had lower, although still positive,
within-task similarity and were close to orthogonal to gradients for the evaluation tasks. While these
results do not fully explain the task-specific effects of substructure-tuning, they suggest that the
behavior is not due to a simple misalignment between the substructure objective and certain down-
stream tasks. Instead, we hypothesize that our current instantiation of substructure-tuning biases
the model against fine-grained residue-level distinctions, because it explicitly encourages residues
within the same substructure to share similar representations.

Finally, we performed an explainability analysis to understand if substructure-tuning increases a
model’s utilization of substructural information. For the subset of GO:MF terms that can be mapped
to domain annotations, we found that substructure-tuning resulted in increased attribution of pre-
dictions to residues within domains by an average of 17% over the untuned base model (Appendix
A.3.3).

5 CONCLUSION AND FUTURE WORK

Our study has several limitations and directions for future work. We focused on an intuitive
substructure-tuning approach applied to existing state-of-the-art models, which yielded mixed gains
across tasks and proved brittle under task-specific finetuning. These results suggest that exploring
alternate methods for incorporating substructural information may be fruitful. Modifications at the
architectural level, such as hierarchical or graph-based encoders, or training objectives that operate
across multiple scales simultaneously may provide a more stable integration strategy. Our current
exploration of substructure-tuning focused which substructure types to use for tuning, but their rep-
resentation varies greatly across the dataset (e.g. millions of secondary structures, tens of thousands
of active sites. Exploring how to best balance or weight these different types is another avenue of
future exploration. Finally, our experiments restricted to SwissProt proteins. Extending to the full
UniProtKB and incorporating the long tail of infrequent substructures could enable deeper insights
into poorly characterized aspects of protein modularity.

In this work, we’ve presented the open problem: how to best incorporate decades of research on
protein substructures into protein models? To this end, we introduced Magneton, an integrated
environment for developing substructure-aware protein models that provides (1) large-scale datasets
of proteins with curated substructure annotations, (2) a framework for using these processed datasets
for training and finetuning protein models using sequence, structure, and substructure inputs, and (3)
a suite of benchmarking tasks that evaluate models across a range of structural granularities. Using
Magneton, we explored both how well existing models are able to represent protein substructures
and whether a supervised finetuning paradigm can be used to effectively imbue those models with
substructural information. We found that while this direct, intuitive substructure-tuning approach
improves model performance on molecular function-related tasks, it has a neutral to negative effect
on others. Our work lays the foundation for development of substructure-aware protein models.

6 ETHICS STATEMENT

This work involves the analysis of publicly available protein sequence and structure data from es-
tablished databases (UniProtKB/SwissProt, AlphaFold DB, InterPro, and Pfam). All data used in
this study is derived from previously published sources and does not involve human subjects, an-
imal experiments, or the generation of new biological data requiring ethical oversight. Our work
improves computational methods for understanding protein function, which could contribute to ad-
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vances in drug discovery and biotechnology. We encourage responsible use of our methods and
datasets, which are publicly available to promote scientific reproducibility and advancement.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide the following:

1. All code for Magneton, including data processing pipelines, model training scripts, and
evaluation benchmarks, is available at https://anonymous.4open.science/r/
magneton-14F2/. The processed datasets will be made publicly available following the
anonymous review period.

2. We provide comprehensive implementation details including model architectures and hy-
perparameters, training procedures, optimization details, and data splitting procedures
(Methods 3.3).

3. We specify all experimental details including dataset statistics and preprocessing steps such
as substructure filtering criteria and thresholds (Table 1, Appendix ??), as well as evaluation
metrics and protocols for all benchmark tasks (Table 2).

4. All experiments can be reproduced using 1-4 NVIDIA A100 GPUs.

The modular design of Magneton facilitates easy plug-and-play usability of our benchmark suite,
supporting not only reproducibility but also future research in this area.
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Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature Biotechnology, 35(11):1026–1028, 2017. ISSN
1546-1696. doi: 10.1038/nbt.3988.

Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. SaProt: Protein
Language Modeling with Structure-aware Vocabulary, 2023.

Yang Tan, Mingchen Li, Bingxin Zhou, Bozitao Zhong, Lirong Zheng, Pan Tan, Ziyi Zhou, Huiqun
Yu, Guisheng Fan, and Liang Hong. Simple, Efficient, and Scalable Structure-Aware Adapter
Boosts Protein Language Models. Journal of Chemical Information and Modeling, 64(16):6338–
6349, 2024. ISSN 1549-9596. doi: 10.1021/acs.jcim.4c00689.

The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2025. Nucleic Acids
Research, 53(D1):D609–D617, 2025. ISSN 1362-4962. doi: 10.1093/nar/gkae1010.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Contrastive Pre-
dictive Coding, 2019.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Žı́dek, Tim Green,
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A APPENDIX

A.1 DATASETS

A.1.1 MAGNETON SUBSTRUCTURE DATASET

Here we provide additional details on the curated protein substructure dataset that makes up a core
part of the Magneton environment.

Dataset processing. Below we outline the steps to create the protein substructure dataset:

• We start from the full XML file of all InterPro annotations (match complete.xml.gz)
for the 103.0 release, downloaded from the InterPro FTP server 1.

• We parse each XML entry, which each correspond to a single protein, by extracting all
<match> elements that contain at least one <ipr> element. The presence of the <ipr>
element indicates that the annotation is integrated into InterPro and has been assigned a
unique InterPro accession ID. No additional filtering is performed at this stage.

• At this point, the dataset covers all of the approximately 254 million proteins in the
2024 06 release of UniProtKB/TrEMBL. To subset to the SwissProt set, we obtain
the set of all SwissProt proteins (UniProt IDs and amino acid sequences) from the
uniprot sprot-only2024 06.tar.gz file on the UniProt FTP server 2.

• To ensure consistency between models trained using only sequence data and models trained
using sequence and structure data, we further subset the SwissProt set to only proteins
contained within the v4 release of AlphaFold DB (swissprot cif v4.tar)3.

• We use the CIF files from AlphaFold DB to source secondary structure annotations as
calculated using DSSP.

• To select for a non-redundant set of substructural annotations, we select only annotations
marked as “representative” within InterPro, when such annotations are available (as of the
103.0 release, these were only available for the “Repeat”, “Family”, and “Domain” types)
4.

The full set of scripts used for the above steps alongside a detailed README file are available in our
GitHub repository in the scripts/dataset processing directory.

Substructure type descriptions. Here we provide additional information about the various types
of substructures contained within the Magneton dataset.

• Homologous superfamily - a group of proteins that share a common evolutionary ori-
gin, reflected by similarity in their structure, even if sequence similarity is low. Examples
include alpha-helical portion of some viral capsid proteins (IPR008935) and a group of
single-stranded DNA-binding transcriptional regulator proteins (IPR009044).

• Domain - distinct functional, structural, or sequence units that may exist in a variety
of biological contexts. Examples include zinc finger binding domains which serve as
binding sites for various types of ligands (one example type is IPR000058) and various
types of phosphatase domains which enable regulation of protein phosphorylation (such as
IPR000242).

• Conserved site - a short sequence that contains one or more conserved residues. Examples
include the helix-turn-helix motif found in all known DNA binding proteins that regulate
gene expression (IPR000047) and the helix-hairpin-helix motif found in proteins that ex-
hibit non-specific DNA binding activity (IPR000445).

• Binding site - a short sequence that contains one or more conserved residues, which form
a protein interaction site. Examples include sites for binding copper in various enzymes
(IPR001505) and sites for binding proteins with other well-characterized motifs (for exam-
ple, the IQ motif which binds the EF-hand domain, IPR000048).

1https://ftp.ebi.ac.uk/pub/databases/interpro/releases/103.0/
2https://ftp.uniprot.org/pub/databases/uniprot/previous releases/release-2024 06/knowledgebase/
3https://ftp.ebi.ac.uk/pub/databases/alphafold/v4/
4https://interpro-documentation.readthedocs.io/en/latest/represent dom.html
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• Active site - a short sequence that contains one or more conserved residues, which allow
the protein to bind a ligand. Examples include active sites for catalyzing hydrolysis of DNA
and RNA (IPR002071) and active sites for catalyzing the breakdown of lipids (IPR008265).

• Secondary structure - conserved local spatial arrangements of a span of amino acids in
a protein. Canonical examples are alpha helices and beta sheets. For our work, we use
8-class secondary structure definitions from DSSP 5.

Example dataset entry. For illustrative purposes, here we provide an abbreviated example of a
single entry in the Magneton dataset in JSONL format:

{
"uniprot_id": "A0A009IHW8",
"name": "ABTIR_ACIB9",
"length": 269,
"entries": [
{

"id": "IPR035897",
"element_type": "Homologous_superfamily",
"match_id": "G3DSA:3.40.50.10140",
"element_name": "Toll/interleukin-1 receptor homology (TIR) domain superfamily",
"representative": false,
"positions": [

[
80,
266

]
]

},
{
"id": "IPR000157",
"element_type": "Domain",
"match_id": "PF13676",
"element_name": "Toll/interleukin-1 receptor homology (TIR) domain",
"representative": false,
"positions": [

[
138,
231

]
]

},
{
"id": "IPR000157",
"element_type": "Domain",
"match_id": "PS50104",
"element_name": "Toll/interleukin-1 receptor homology (TIR) domain",
"representative": true,
"positions": [

[
133,
266

]
]

},
...

],
"secondary_structs": [
{
"dssp_type": "Alphahelix",
"start": 3,
"end": 21

},
{
"dssp_type": "Turn",
"start": 21,
"end": 22

},
{
"dssp_type": "Turn",
"start": 24,
"end": 26

},
...

]
}

5https://pdb-redo.eu/dssp/about
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A.1.2 SUBSTRUCTURE COMPOSITION ANALYSIS

Here we provide exploratory plots to give a sense of the overall size and composition of the different
types of substructures contained within the Magneton dataset. These plots show data collected from
the SwissProt dataset prior to filtering.

As shown in Table 1, we find that the typical length of a substructure varies widely, with domains
spanning hundreds of residues and various functional sites spanning tens of residues (Appendix Fig-
ures A.1, A.2). We also find some binding site outliers in terms of length, which may be indicative
of annotation artifacts. Despite the wide variance in length for substructures, we find that the amount
of the protein they cover is relatively consistent for domains and functional sites (Appendix Figure
A.4). We additionally inspect the amino acid composition of the various substructure types, both
at the individual amino acid level (Appendix Figures A.5, A.5), and with amino acids grouped by
chemical characteristics of their sidechains (Appendix Figure A.7).

Figure A.1: Distribution of substructure lengths by type. Here, length is defined as the total number of residues
contained within the substructure, regardless of whether they are contiguous within the sequence.
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Figure A.2: Distribution of substructure lengths by type. Same as Figure A.1, but filtered to remove outliers
(greater than 99th percentile of length within that type).

Figure A.3: Distribution of number of contiguous segments per substructure, by type.
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Figure A.4: Distribution of protein coverage per substructure. Protein coverage is defined as the total number
of residues contained within the substructure divided by the length of the protein.

Figure A.5: Amino acid composition of substructure types. Each row shows the amino acid composition of
that substructure type. Rows sum to 1.

Figure A.6: Amino acid composition of granular secondary structure types. Each row shows the amino acid
composition of that secondary substructure type. Rows sum to 1.
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Figure A.7: Amino acid composition of substructure types, with amino acids grouped by side chain chemical
properties. Each row shows the amino acid composition of that substructure type. Rows sum to 1.
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A.1.3 SUBSTRUCTURE DATASET FILTERING
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Figure A.8: Inverse CDF of unique types retained at a given count threshold. The x-axis specifies the mini-
mum count for a substructure type to be retained, the left y-axis shows the fraction of all unique types retained at
the given threshold, and the right y-axis shows the absolute count of unique types retained. Facets show differ-
ent classes of substructural elements. The vertical dashed red lines show the threshold selected for downstream
substructure-tuning.
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Figure A.9: Inverse CDF of total occurrences retained at a given count cutoff. This is analogous to Figure A.8
above, but showing total occurrences of substructures rather than unique types, demonstrating that for classes
like domains, the majority of annotations come from a small number of domain types.
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Model EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability
(Spearman’s ρ)

Human PPI
(AUROC)Fmax Binary Subcellular

ESM-C 300M 0.688 0.307 0.416 0.429 0.871 0.703 0.648 0.917
+ST (original, ≥ 75) 0.761 0.325 0.403 0.488 0.879 0.681 0.660 0.933

+ST (≥ 25) 0.802 0.32 0.399 0.526 0.851 0.693 0.64 0.917

+ST (≥ 10) 0.792 0.327 0.401 0.514 0.89 0.728 0.64 0.852

Table A.1: Effect of substructure frequency cutoff on protein-level task performance. The performance
of substructure-tuning is robust to the presence of rare substructures.

Substructure type Full SwissProt set Count ≥ 75 Count ≥ 25 Count ≥ 10

Homologous superfamily 3511 1133 1685 2159
Domain 15868 917 1964 3506
Conserved site 748 356 573 691
Binding site 76 48 72 74
Active site 133 82 114 127

Table A.2: Number of substructure types included in the dataset at different count cutoffs. Reducing the
cutoff down to 10 greatly expands the number of substructure types included in the dataset.
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Model
EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability

(Spearman’s
ρ)

Human
PPI

(AUROC)

FLIP bind
(Fmax)

Biolip
binding

(AUROC)

Biolip
catalytic

(AUROC)
Fmax Binary Subcellular

ESM-C 300M 0.688 0.307 0.416 0.429 0.871 0.703 0.648 0.917 0.367 0.851 0.923
+ST (original) 0.761 0.325 0.403 0.488 0.879 0.681 0.660 0.933 0.411 0.866 0.910
+ST (exact match) 0.789 0.317 0.403 0.5 0.88 0.687 0.647 0.892 0.372 0.847 0.879
+ST (similar seq) 0.777 0.317 0.385 0.507 0.83 0.686 0.645 0.889 0.375 0.849 0.912

Table A.3: Effect of stringent data split on substructure-tuning performance.

A.1.4 DATASET LEAKAGE ANALYSES

It’s generally standard practice when training protein models to consider the dataset used for self-
supervised learning as distinct from the downstream evaluation sets, presumably this is because the
sequence or structure data is considered sufficiently far removed from the labels used in downstream
evaluations (e.g. GO terms, experimental fitness values, etc.). However, substructural annotations
are different from sequence or global structure in that they can be more directly tied to protein
function. For this reason, we performed a series of analyses to understand whether any of the effects
of substructure-tuning could be attributed to data leakage between the substructure-tuning training
set and the test sets of any of the evaluation benchmarks.

First, we performed a direct experiment by constructing two versions of more stringent dataset splits:

• “Exact match”: To construct this split, we identified all proteins in the Magneton train set
that were also contained in the test split of any evaluation benchmark, based on UniProt ID.
We then removed all such proteins and all of their corresponding AFDB50 clusters from the
Magneton train set. This removed 31,191 of the 423,885 proteins in the Magneton training
split.

• “Similar seq”: To construct an even more stringent split, we collected the amino acid se-
quences of all proteins in the test split of any evaluation benchmark, and aligned these
sequences to the proteins in the Magneton train set. We then removed from the Magne-
ton train set any protein with greater than 30% sequence similarity and 80% overlap with
any evaluation test set protein. Alignments were performed using MMseqs2 (Steinegger &
Söding, 2017; Kallenborn et al., 2025) with sequence similarity defined using the fident
output (command: mmseqs easy-search eval seqs.fa train seqsDB tmp
output.tsv --cov-mode 1 -c 0.8 --alignment-mode 3). By construct-
ing the dataset split in this manner, we ensure that no protein contained in the Magneton
train set has more than 30% sequence similarity to any protein in any of the evaluation
benchmark test sets (Figure A.10). This process removed 131,440 of the 423,885 proteins
in the Magneton training split.

We then performed substructure-tuning of ESM-C 300M using active, binding, and conserved site
annotations with each of these stringent training splits and evaluated the resulting models on our
evaluation suite (Table A.3). We found that benchmark performance was largely similar to that
achieved with the original training, providing evidence that data leakage does not drive any of the
effects of substructure-tuning.

As a further step, we leveraged mappings from Gene Ontology terms to InterPro entries 6 to check
whether substructure-tuning’s improvement on GO MF prediction could be attributed to this map-
ping. In particular, we checked if the improvement in predicting a GO MF term after substructure-
tuning correlated with the representation of its corresponding domains in the Magneton train set.
We found that the performance improvement for predicting a given GO MF does not depend on its
corresponding domain’s representation in the Magneton train set, again supporting the lack of data
leakage (Figure A.11, Table A.4).

6 https://www.ebi.ac.uk/GOA/InterPro2GO
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(a) Sequence similarities before filtering. (b) Sequence similarities after filtering

Figure A.10: Distribution of sequence similarities (fident from MMseqs2) between proteins in the test set of
any evaluation benchmark and proteins in the Magneton training set. Plotted values are the maximum similarity
to any Magneton training set protein.

(a) Performance improvement split by inclusion only. (b) Performance by number of occurrences in Magneton train set.

Figure A.11: GO:MF prediction improvement by representation of associated domain in the Magneton train
set.
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% Fmax improvement after substructure-tuning

Mean 25th percentile Median 75th percentile

Domains in train set +17.82% -2.36% +5.11% +18.66%
Domains not in train set +16.84% -3.40% +4.88% +23.35%

Table A.4: GO:MF prediction improvement by domain presence in training set. Improvement in pre-
dicting a GO:MF term after substructure-tuning does not correlate with the representation of its corresponding
domains in the train set.
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A.1.5 MAGNETON EVALUATION DATASETS

Magneton contains eleven different benchmarking datasets, comprising 14 evaluation tasks. These
evaluation tasks represent years of work from the scientific community, both in their original gener-
ation and later processing that we build upon, and we acknowledge and thank all of those involved.
The included tasks are:

• Human PPI prediction. The goal of this task is to predict whether or not two proteins
form an interacting pair. This is a binary classification task where the input is two proteins
and the output is a binary label indicating interaction or no interaction. The evaluation
metric is accuracy. The original dataset is sourced from Pan et al. (2010). We build off of
processed data files from Su et al. (2023).

• Gene Ontology and Enzyme Commission prediction. The goal of these tasks are to
predict the Gene Ontology (GO) or Enzyme Commission (EC) annotations for a protein.
There are three categories of GO annotations: Molecular Function (MF), Cellular Compo-
nent (CC), and Biological Process (BP), each of which captures a different aspect of protein
biology and is treated as a separate benchmarking task, giving a total of four tasks. These
are multilabel classification tasks where a protein can have multiple annotations. The eval-
uation metric is Fmax, the maximum F1 score over possible thresholds. We source original
data from Gligorijević et al. (2021).

• Subcellular and binary localization. The goal of these tasks is to predict a protein’s local-
ization either within multiple cellular compartments (subcellular localization) or whether
the protein is membrane-bound or soluble (binary localization). The input is a single pro-
tein and this is either a multiclass or binary classification task. The evaluation metric is
accuracy. The original dataset is sourced from Almagro Armenteros et al. (2017). We build
off of processed data files from Su et al. (2023).

• Thermostability. The goal of this task is to predict the stability of a protein under extreme
temperatures. The output is a continuous value indicating the thermostability, and the goal
is to rank-order proteins according to their experimental values. The evaluation metric is
Spearman rank correlation (Spearman’s ρ) calculated against the experimental values. The
original dataset is sourced from Rao et al. (2019).

• Binding residue categorization. The goal of this task is to predict whether a given residue
binds three different types of ligands: metal ions, small molecules, or nucleic acids. This is
a residue-level multilabel classification task. The evaluation metric is Fmax. The original
dataset is sourced from Dallago et al. (2021).

• Binding and catalytic site prediction. The goal of these tasks are to predict whether a
given residue is part of an annotated binding or catalytic site. This is a residue-level binary
classification task. The evaluation metric is AUROC. The original datasets are sourced
from experimentally determined structures curated by Zhang et al. (2024a). We build off
of processed data files from Yuan et al. (2025).

• Contact prediction. The goal of this task is to predict whether two residues within the
same protein are ”in contact” with each other, which is defined as having alpha-carbon
atoms within 8 angstroms of each other in the tertiary structure. The input is a single
protein of length L and the output is a L×L contact map, where element i, j of the contact
map is the predicted probability that residues i and j are in contact. The evaluation metric is
Precision@L, which calculates precision over the top L most confident contact predictions
where L is the protein length. This metric is further stratified into short, medium, and long-
range contacts in which the possible residue pairs considered are those whose pairwise
separation along the primary sequence is either in [6, 10], [12, 22], or [24, L], respectively.
The underlying data are experimentally determined structures from PDB, originally curated
by Rao et al. (2019).

• Zero-shot DMS variant effect prediction. The goal of this task is to predict the effect of
a single or multiple amino acid mutations on a protein’s function. The input is the mutated
sequence and the output is a continuous value representing fitness. The evaluation metric
is Spearman’s ρ against the experimentally-determined fitness values from deep mutational
scans (DMS) experiments. These tasks are zero-shot in that no supervised training for
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variant effect prediction is performed. For each model, we use the author’s recommended
methods for VEP. The data is sourced from Notin et al. (2023).

For all datasets, protein structures are sourced from AlphaFold DB (Varadi et al., 2022) unless
otherwise specified. Accounting of samples per split in each dataset are available in Table A.5.

Task Train Validation Test Number of classes Task type
EC 14,466 1,599 1,715 538 Multilabel
GO:BP 21,470 2,393 3,394 1,943 Multilabel
GO:CC 9,793 1,118 3,394 320 Multilabel
GO:MF 22,621 2,495 3,394 489 Multilabel
Subcellular localization 8,741 2,190 2,744 10 Multiclass
Binary localization 5,473 1,335 1,728 2 Binary
Thermostability 5,020 636 1,329 N/A Regression
Binding residue categorization 890 102 286 3 Multilabel
Binding site prediction 8,231 2,389 5,182 2 Binary
Catalytic site prediction 2,856 603 1,165 2 Binary
Contact prediction 20,653 209 40 2 Binary
Variant effect prediction1 N/A N/A 217 N/A Regression
Human PPI prediction2 26,313 234 180 2 Binary

Table A.5: Dataset sizes (in proteins) and number of classes for each benchmarking task.
1 This is a zero-shot task, hence the lack of training and validation data. Samples correspond to

assays, covering 2.3M mutations.
2 Samples correspond to pairs of proteins rather than individual proteins.

A.2 TRAINING DETAILS

A.2.1 SUBSTRUCTURE CLASSIFICATION AND TUNING

For our substructure prediction modules, we use single hidden-layer MLPs where the dimensionality
of the hidden layer matches that of the underlying base model. We extract residue-level embeddings
from the final hidden layer of the base model, and use mean pooling across a substructure’s con-
stituent residues to construct a single embedding per substructure. When training with multiple
categories of substructures, we use a separate prediction module for each category. The training loss
is the sum of the classification losses across all categories.

We train using AdamW (Loshchilov & Hutter, 2019) (β1 = 0.9, β2 = 0.999), learning rates of 10−3

and dropout rate of 0.1 for the prediction heads, learning rate of 10−5 for the base model, and EWC
weight of 400 (as used by original authors). Training proceeded until convergence of validation loss.
All runs used batches of 32 proteins with a variable number of substructures per protein. All training
was performed using bfloat16 on one to four NVIDIA A100 GPUs.
Elastic weight consolidation. Briefly, EWC uses the diagonal of the Fisher information matrix F
as weights on a loss that regularizes towards the original model parameters, θ0:

L = Lc(θ) +
∑
i

λ

2
Fi (θi − θ0i)

2

where Lc is the substructure classification loss. F can be estimated at the beginning of training as
the squared gradients of the original loss with respect to the model parameters using the training
set. In our case, the original loss corresponds to the training objective of the underlying model
(e.g. masked amino acid prediction for ESM models, masked amino acid prediction in presence
of structure tokens for ProSST or SaProt). In practice, the F is estimated by making a single pass
over the training set, running backwards passes using the original loss, and averaging the squared
gradients over minibatches.

While similar to a L2 loss, EWC has two advantages over a simple L2 or weight decay regular-
ization: (1) weights are decayed towards the original weights of the base model, (2) per-parameter
weights are applied which correspond to the importance of that parameter for the original task. We
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Frozen base model Full finetuning EWC finetuning

Validation MLM loss 1.24 2.30 1.75

Table A.6: Masked language modeling loss under different finetuning strategies.

Model
Substructures

used for
tuning

EC GO:BP GO:CC GO:MF

Zero-shot
DMS

(Spearman’s
ρ)

Binary
Localization
(Accuracy)

Subcellular
Localization
(Accuracy)

Fmax

ESM-C (300M) N/A 0.688 0.307 0.416 0.429 0.432 0.871 0.703
EWC Domain 0.776 0.307 0.403 0.501 0.340 0.811 0.640
No EWC Domain 0.831 0.311 0.386 0.531 TBD 0.802 0.643

Table A.7: Effect of EWC on substructure-tuning performance. Training with EWC offers a good balance
of maintaining improvement on function-related tasks while mitigating performance decreases on other tasks.

selected EWC due to its simplicity and ease of use, as the estimate of F can be calculated a single
time and used for the remainder of training or for other training runs using the same base model, as
opposed to alternate methods like replay buffers. For more details, please refer to Kirkpatrick et al.
(2017).

Empirically, use of EWC is motivated by an increase in the masked language modeling loss and
validation perplexity when performing substructure-tuning as shown in Table A.6 and Figure A.12.
We additionally observe that EWC offers a good balance of maintaining improvement on function-
related tasks while mitigating performance decreases on other tasks (Table A.7).

Figure A.12: Validation perplexity for finetuning ESM-C 300M on domain annotations with and without
EWC.

A.2.2 DOWNSTREAM TASK TRAINING DETAILS

We use different head models for different scales of supervised downstream tasks:

• Protein-level. For protein-level tasks such as GO term prediction, we construct a protein-
level representation for each protein following author’s recommendations. For ESM-2,
we use the final embedding of the CLS token as the protein-level embedding. For all
other models, we mean pool the final hidden layer representations of all residue tokens
(i.e. excluding CLS, EOS , and PAD tokens). Prediction heads are then single hidden-layer
MLPs with hidden dimensionality matching the hidden dimension of the underlying model.

• Residue-level. For residue-level tasks such as binding site prediction, we use a head model
consisting of a single 1-dimensional convolutional layer with zero-padding and filter width
5, followed by a nonlinearity and linear layer to the final output.

• Protein-protein interaction. For protein-protein interaction prediction, we extract protein-
level embeddings as above, concatenate the embeddings for the two input proteins, and pass
into a single hidden-layer MLP.
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• Contact prediction. For contact prediction, we use the
EsmContactPredictionHead from the transformers Python package, which
trains a linear regression on top of attention weights from all attention heads in the
underlying model.

To train the models, we used AdamW (β1 = 0.9, β2 = 0.999) with a learning rate of 10−2, weight
decay of 10−2, dropout rate of 0.1, and a batch size of 32. Training proceeded for a maximum of
20 epochs, selecting the best model based on validation set performance. When performing full
task-specific finetuning, we use a learning rate of 2× 10−5 for the base model and scale the number
of GPUs and gradient accumulation steps accordingly to maintain a batch size of 32. All training
was performed using bfloat16 on one to four NVIDIA A100 GPUs.
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A.2.3 TASK-SPECIFIC FINETUNING

Model EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability
(Spearman’s ρ)Fmax Binary Subcellular

ESM2-150M 0.911 0.352 0.451 0.658 0.928 0.810 0.694
+ST 0.910 0.349 0.444 0.658 0.936 0.791 0.702

ESM2-650M 0.910 0.356 0.446 0.662 0.933 0.824 0.703
+ST 0.914 0.360 0.457 0.665 0.930 0.793 0.703

ESM-C 300M 0.916 0.368 0.470 0.667 0.932 0.806 0.693
+ST 0.920 0.355 0.454 0.669 0.941 0.804 0.693

ESM-C 600M 0.920 0.374 0.469 0.669 0.917 0.812 0.705
+ST 0.924 0.372 0.468 0.667 0.931 0.828 0.699

ProSST-2048 0.911 0.319 0.439 0.631 0.912 0.760 0.673
+ST 0.901 0.336 0.427 0.638 0.923 0.744 0.670

Table A.8: Evaluation task performance for models with and without substructure-tuning, and full finetuning
for the downstream task. In this regime, we find that task-specific finetuning largely results in similar models,
showing that imbuing substructural information via supervised finetuning may be brittle in the face of aggres-
sive task-specific finetuning.

A.3 MECHANISTIC ANALYSES

A.3.1 EMBEDDING ANALYSES

To explore cross-scale consistency of different substructure classes and directly assess the utility of
a shared bottleneck, we performed substructure-tuning ESM-C 300M using a single classification
head operating over all of the active, binding, and conserved site substructure types. We found that
using a single shared head is consistent with using separate heads in terms of performance boosts in
function-centric tasks over the base model, but with varying effects on other tasks (Table A.9).

A.3.2 GRADIENT CONFLICT ANALYSIS

The gradient conflict analysis was performed as follows:

• Begin with a base ESM-C 300M model (i.e. no substructure-tuning)
• For each evaluation dataset listed in Table A.10, compute the gradient for the associated

loss function for 1000 batches of batch size 32.
• For substructure-tuning with active, binding, and conserved-site annotations, compute the

gradient for the substructure classification objective for 1000 batches of batch size 32
(where batch size refers to the number of proteins per batch, each of which must contain at
least one substructure).

• Compute pairwise similarities between all gradient vectors.

The final results of this analysis are shown for comparison of gradient vectors derived from batches
from the same task (Table A.10a) and from batches from different tasks (Table A.10b).

A.3.3 SUBSTRUCTURE ATTRIBUTION ANALYSIS

To understand correlation of substructure-tuned embeddings with known functional motifs, we per-
formed an explainability analysis by first identifying all proteins in the GO:MF test set whose
GO:MF annotations could be attributed to a specific domain (accomplished via InterPro2GO map-
pings), yielding 81 (protein, domain, GO:MF) triplets. For each protein, we computed a saliency
map to calculate residue contributions to the prediction of the associated GO:MF term. We then
calculated the total contribution of residues contained within the associated domain and normal-
ized this by the total contribution across all residues in the protein. For ESM-C 300M before and
after substructure-tuning, we find that attributions to domain residues increased by an average of
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(a) Average silhouette scores before and after substructure-tuning for ESM-C 300M

(b) Average silhouette scores before and after substructure-tuning for SaProt 650M

Figure A.13: Average silhouette scores of each substructure type class, before and after substructure-
tuning, for both seen and unseen classes. Despite never training on any examples of the unseen substructure
types, substructure-tuning results in more consistent representations of these substructures.

Model EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability
(Spearman’s

ρ)

Human
PPI

(AUROC)

FLIP bind
(Fmax)

Biolip
binding

(AUROC)

Biolip
catalytic

(AUROC)Fmax Binary Subcellular

ESM-C 300M 0.688 0.307 0.416 0.429 0.871 0.703 0.648 0.917 0.367 0.851 0.923
+ST (original, separate heads) 0.761 0.325 0.403 0.488 0.879 0.681 0.660 0.933 0.411 0.866 0.910
+ST (single head) 0.777 0.304 0.392 0.513 0.872 0.704 0.666 0.887 0.39 0.85 0.888

Table A.9: Effect of using a single shared classification head for substructure-tuning. The effect of using
a single shared head is consistent with using separate heads in terms of performance boosts in function-centric
tasks over the base model, but with varying effects on other tasks.

17%, indicating increased usage of substructures for function prediction after substructure-tuning
(Appendix Figure A.15).

As a concrete example, we provide a saliency map for the protein Q15436 and the prediction of its
annotated GO:0008270 term. The GO:0008270 GO term can be directly mapped to the InterPro
domain IPR006895 contained at positions 58 to 98 in the protein. We can observe that the untuned
model exhibits less attribution to the relevant domain (Appendix Figure A.16) than the substructure-
tuned model (Appendix Figure A.17).
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Figure A.14: Average accuracy of kNN-based classification of each substructure class using embeddings,
before and after substructure-tuning, for both seen and unseen classes.

Task GO:MF EC Binding residue
Functional

site prediction
(binding)

Functional
site prediction

(catalytic)

Substructure
classification

Gradient cosine similarity 0.957 ± 0.004 0.956 ± 0.004 0.961 ± 0.007 0.964 ± 0.004 0.973 ± 0.022 0.095 ± 0.077

(a) Within task gradient similarity (mean ± std deviation)

Task GO:MF EC Binding residue
Functional

site prediction
(binding)

Functional
site prediction

(catalytic)
Gradient cosine similarity -0.006 ± 0.047 0.003 ± 0.027 0.022 ± 0.056 0.002 ± 0.055 -0.005 ± 0.038

(b) Task gradient similarity with substructure classification gradient (mean ± std deviation)

Table A.10: Gradient conflict analysis for substructure-tuning. These results suggest that the task-specific
effects of substructure-tuning is not due to a simple global misalignment between the substructure objective
and certain downstream tasks.

A.4 ABLATIONS

A.4.1 ALTERNATE POOLING TECHNIQUES

We initially developed our approach using mean pooling to construct substructure representations
due to its simplicity, but also explore additional aggregation techniques to help expand the com-
pleteness of our work. We note that the choice of a simple pooling over a learnable aggregation was
intentional: since the goal of substructure-tuning is to use the supervised substructure classification
problem to tune the parameters of the underlying protein model, we wanted to encourage learning
to occur within the base model rather than in a parameterized pooling module.

To investigate this, we performed substructure-tuning using max pooling and a learnable attention
pooling. Both of these experiments performed substructure-tuning on ESM-C 300M using active,
binding, and conserved site annotations. We find that substructure-tuning is robust to the exact
method used for pooling residue-level embeddings to substructural embeddings (Appendix Table
A.11).

A.4.2 ADDITIONAL MODELS

We additionally conducted a direct comparison of substructure-tuning to methods that use global
structure to tune sequence models would help contextualize our work. To ensure a fair comparison,
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Figure A.15: Saliency map indicating attributions to domain residues during GO:MF predictions before
and after domain-tuning.

Figure A.16: Example saliency map before substructure-tuning.[DOM START] and [DOM END] denote
the beginning and end of the domain within the sequence respectively.

we have integrated ESM-S into Magneton and evaluated it on our benchmark suite (Appendix Table
A.12).

We find that substructure-tuning compares favorably to ESM-S, with generally larger improve-
ments on function-related tasks and smaller performance drop-offs in other tasks. We also note that
substructure-tuning is also useful for models that already incorporate global structure information,
something which has not been shown for ESM-S’s methodology.
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Figure A.17: Example saliency map after substructure-tuning.[DOM START] and [DOM END] denote the
beginning and end of the domain within the sequence respectively.

Model EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability
(Spearman’s ρ)

Human PPI
(AUROC)Fmax Binary Subcellular

ESM-C 300M 0.688 0.307 0.416 0.429 0.871 0.703 0.648 0.917
+ST (original, mean) 0.761 0.325 0.403 0.488 0.879 0.681 0.660 0.933
+ST (max) 0.777 0.304 0.392 0.513 0.872 0.704 0.666 0.887
+ST (attention) 0.778 0.317 0.392 0.505 0.815 0.675 0.643 0.89

Table A.11: Effect of pooling method on substructure-tuning performance. Substructure-tuning is robust
to the exact method used for pooling residue-level embeddings to substructural embeddings.

Model
EC GO:BP GO:CC GO:MF Localization (Accuracy) Thermostability

(Spearman’s
ρ)

Human
PPI

(AUROC)

Binding
residue
(Fmax)

Functional site prediction

Fmax Binary Subcellular Binding Catalytic
(AUROC)

ESM2-150M 0.727 0.316 0.416 0.441 0.869 0.694 0.627 0.933 0.379 0.871 0.910
+ST 0.742 0.324 0.415 0.473 0.866 0.679 0.582 0.919 0.327 0.852 0.890

ESM-S 150M 0.760 0.315 0.373 0.460 0.866 0.677 0.631 0.917 0.352 0.871 0.885

ESM2-650M 0.755 0.319 0.431 0.486 0.876 0.710 0.643 0.939 0.366 0.849 0.912
+ST 0.745 0.321 0.440 0.534 0.895 0.749 0.655 0.935 0.362 0.851 0.927

ESM-S 650M 0.794 0.327 0.422 0.497 0.896 0.679 0.653 0.912 0.363 0.876 0.902

S-PLM (650M) 0.566 0.284 0.375 0.482 0.910 0.622 0.682 0.911 0.358 0.500 0.500

Table A.12: Comparison of substructure-tuning with global structure tuning methods. Substructure-
tuning compares favorably to ESM-S and S-PLM, with generally larger improvements on function-related
tasks and larger performance drop-offs in other tasks.
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