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Abstract

ADABOOST is a well-known algorithm in boosting. Schapire and Singer propose,
an extension of ADABOOST, named ADABOOST.MH, for multi-class classification
problems. Kégl shows empirically that ADABOOST.MH works better when the
classical one-against-all base classifiers are replaced by factorized base classifiers
containing a binary classifier and a vote (or code) vector. However, the factorization
makes it much more difficult to provide a convergence result for the factorized
version of ADABOOST.MH. Then, Kégl raises an open problem in COLT 2014 to
look for a convergence result for the factorized ADABOOST.MH. In this work, we
resolve this open problem by presenting a convergence result for ADABOOST.MH
with factorized multi-class classifiers.

1 Introduction

Boosting is an approach to machine learning based on the idea of creating a highly accurate prediction
rule by combining many relatively weak and inaccurate rules [19] and has inspired a lot on theoretical
analysis and algorithm design in supervised learning [11, 17]. The seminal algorithm in boosting,
ADABOOST [9], requires no knowledge of the upper bound of the edge, which makes it convenient
in practice.

In addition to to binary ADABOOST, [9] also proposes two multi-class extensions, named AD-
ABOOST.M1 and ADABOOST.M2. Then, Schapire and Singer’s seminal paper [20] proposes another
extension named ADABOOST.MH. The main idea of ADABOOST.MH is to use vector-valued base
classifiers to build a multi-class discriminant function of K outputs when there are K classes, and
then replace the weight vector in ADABOOST with a weight matrix over instances and labels.

The simplest implementation of the concept in ADABOOST.MH is to use K independent one-against-
all classifiers in which base classifiers are only loosely connected through the common normalization
of the weight matrix. However, [15] points out that such an implement is suboptimal in most of
the practical problems since it is limited to only decision stumps weak learners. To solve this
problem, [15] proposes another base learner named multi-class Hamming trees, which optimizes the
multi-class edge without reducing the problem to K binary classifications. The key idea in [15] is
to factorize general vector-valued classifiers h into an input-independent code vector of length K,
i.e., v ∈ {−1,+1}K , and label-independent scalar classifier φ. However, [15] gets in trouble when
proving the convergence rate of the proposed implement of ADABOOST.MH due to the factorization
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step. So [14] raises an open problem in COLT 2014, looking for a convergence rate of the factorized
ADABOOST.MH in [15], with limited dependence on the sample size n.

Our contributions can be concluded as follows:

1. We provide a convergence result (Theorem 3.3) of factorized ADABOOST.MH, where the
step T ∗ which guarantees the training error to be 0 is of order O

(
n2 lnn

)
.

2. According to the requirement of [14], we improve the dependence on n and resolve the
open problem by providing a convergence result (Theorem 3.4) where T ∗ is of order
O (K ln(nK)). This result greatly improves when n is much larger than K.

More related works are deferred to Appendix B.

2 Preliminaries

We consider a multi-class classification problem where the input space is X = Rd and L = [K]
is the label space, where K is the number of classes and [K] := {1, . . . ,K}. Assume we attain
the training data DL = {(x1, ℓ(x1)), . . . , (xn, ℓ(xn))}, where ℓ(xi) ∈ L is the label of xi. Since
we want to use vector-valued classifiers, it is convenient to use the one-hot labels yi ∈ {−1,+1}K
for xi, where yi(ℓ(xi)) = 1 and all the other elements are −1. We use the new dataset D =
{(x1,y1), . . . , (xn,yn)} as the input data of ADABOOST.MH and define an observation matrix
X := (x1, . . . ,xn)

T ∈ Rn×d, a label matrix Y := (y1, . . . ,yn)
T ∈ {−1,+1}n×K . We call y and

ℓ the label and the index of x respectively, as in [14].

[14] considers a special case of ADABOOST.MH, where each weak classifier has a specialized
structure. ADABOOST.MH returns a vector-valued discriminant function f : X → RK with a
combined predictor Ff : X → {−1,+1}K where Ff (x)l = sign(f(x)l) for l = 1, . . . ,K. Here and
in this paper, we define

sign(x) =

{
+1 x ≥ 0
−1 x < 0

.

The goal of the ADABOOST.MH algorithm [20] is to return f such that the Hamming loss of Ff ,

R̂H(Ff ,W) :=

n∑
i=1

K∑
l=1

wi,lI{Ff (xi)l ̸= yi,l}, (1)

is as small as possible, where I(·) is the indicator function and W = [wi,l] ∈ [0, 1]n×K is a
distribution over the data points and the labels. W can be chosen as any distribution over [n]× [K]
and is different in different papers. In [20], the authors set wi,l =

1
nK for any i ∈ [n], l ∈ [K]. Here,

we follow [14] and set

wi,l =

{ 1
2n if yi,l = +1

1
2n(K−1) if yi,l = −1 . (2)

We define the weighted multi-class exponential margin-based error

R̂EXP(f ,W) :=

n∑
i=1

K∑
l=1

wi,l exp (−f(xi)l · yi,l) (3)

as a surrogate for R̂H(Ff ,W). Since I{Ff (xi)l ̸= yi,l} = I{f(xi)l ·yi,l ≤ 0} ≤ exp (−f(xi)l · yi,l),
we can get that R̂H(Ff ,W) ≤ R̂EXP(f ,W).

It’s well-known that ADABOOST directly minimizes the exponential loss [19, Chapter 7], then, we can
apply the ADABOOST algorithm to the extended binary training set ∪ni=1{(xi, yi,l)}Kl=1, yielding the
ADABOOST.MH algorithm, which directly minimizes R̂EXP(f ,W) and output the final discriminant
function f (T )(·), where f (T )(x) =

∑T
t=1 h

(T )(x) is a sum of T base classifiers h(t) : Rd → RK

returned by a base learner algorithm BASE(X,Y,W(t)) in each iteration t.

Define

Z(h,W) =

n∑
i=1

K∑
l=1

wi,l exp (−h(xi)l · yi,l) , (4)
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by a similar calculation in [19, Proof of Theorem 3.1], we can obtain that:

R̂EXP(f
(T ),W) =

T∏
t=1

Z(h(t),W(t)).

According to the above discussion, we know that to minimize R̂EXP(f
(T ),W), the base learner needs

to find a h(t) that minimizes Z(h(t),W(t)) at the t-th iteration. In the following, we introduce two
choices of h in [20] and [15], the corresponding convergence rate of R̂EXP(f

(T ),W), and problems
when trying to get a convergence rate of R̂EXP(f

(T ),W) for factorized ADABOOST.MH.

2.1 Unfactorized Choice

[20] considers using h with the form h(x) = αφ(x), where α ∈ R and φ : Rd → {−1,+1}K can
be seen as the vector consists of K binary classifiers φ1, . . . , φK .

We consider the t-th iteration, and to simplify the notations, we omit the superscript t and use
W,h,φ, α to represent W(t),h(t),φ(t), α(t) respectively. According to [20], if we define

r =

n∑
i=1

K∑
l=1

wi,l · yi,l ·φ(xi)l (5)

as the edge, then we have

Z(h,W) =

n∑
i=1

K∑
l=1

wi,l exp (−h(xi)l · yi,l) =
n∑

i=1

K∑
l=1

wi,l exp (−αφ(xi)l · yi,l)

=
∑

i,l:φ(xi)l·yi,l=1

wi,l · e−α +
∑

i,l:φ(xi)l·yi,l=−1

wi,l · eα.

Since
∑

i,l:φ(xi)l·yi,l=1 wi,l +
∑

i,l:φ(xi)l·yi,l=−1 wi,l = 1 and
∑

i,l:φ(xi)l·yi,l=1 wi,l −∑
i,l:φ(xi)l·yi,l=−1 wi,l = r, we can get that∑

i,l:φ(xi)l·yi,l=1

wi,l =
1 + r

2
,

∑
i,l:φ(xi)l·yi,l=−1

wi,l =
1− r

2
.

So we have:
Z(h,W) =

1 + r

2
· e−α +

1− r

2
· eα.

Fix φ first, minimizing Z(h,W) over α yields that:

α =
1

2
ln

(
1 + r

1− r

)
.

This gives
Z(h,W) =

√
1− r2.

Then choose φ to minimize
√
1− r2, i.e., maximize |r|. If we have r(t) ≥ δ > 0 for all t, then we

can get:

R̂EXP(f
(T ),W) =

T∏
t=1

√
1−

(
r(t)
)2 ≤ (√1− δ2

)T
≤ exp

(
−δ2

2
T

)
,

which means that the weighted exponential error goes to error exponentially fast. Let exp
(
− δ2

2 T
)
<

1
nK , we know that the weighted Hamming error becomes zero after

T ∗ =

⌈
2 ln(nK)

δ2

⌉
+ 1

iterations. The condition r(t) ≥ δ > 0 for all t is satisfied when the empirically weak learning
condition on the classifier φ holds for the extended binary training set ∪ni=1{(xi, yi,l)}Kl=1.
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Definition 2.1 (empirically δ-weak learning condition). For a given binary dataset
{(x1, y1), . . . , (xm, ym)} where yi ∈ {−1,+1}, we say that the empirically δ-weak learning condi-
tion holds for some δ > 0 if for any distribution w ∈ ∆m−1 over [m], we can always find a binary
classifier φ : X → {−1,+1} such that:

γ =

m∑
i=1

wi · yi · φ(xi) ≥ δ,

where

∆m−1 =

{
λ ∈ Rm

∣∣∣∣λi ≥ 0 ∀i ∈ [m],

m∑
i=1

λi = 1

}
is the (m− 1)-dimensional probability simplex.

2.2 Factorized Choice

The original ADABOOST.MH [20] reduces the multi-class problem into K binary one-against-all
classifications. [15] avoids such a reduction by factorizing the vector-valued classifier h into an
input-independent vector of length K and a label-independent scalar classifier. Formally, [15] sets

h(x) = αvφ(x),

where α ∈ R+ is a positive real-valued base coefficient, v ∈ {−1,+1}K is an input-independent
vote (or code) vector of length K, and φ : Rd → {−1,+1} is a label-independent binary classifier.
For more details about the factorized ADABOOST.MH, please refer to Algorithm 1 in Appendix A.

We consider the t-th iteration, and to simplify the notations, we omit the superscript t and use
W,h, φ, α,v to represent W(t),h(t), φ(t), α(t),v(t) respectively. [15] shows that

Z(h,W) =
eα + e−α

2
− eα − e−α

2
·

K∑
l=1

vl (µl+ − µl−) ,

where

µl− =

n∑
i=1

wi,lI{φ(xi) ̸= yi,l}

is the weighted per-class error rate and

µl+ =

n∑
i=1

wi,lI{φ(xi) = yi,l}

is the weighted per-class correct classification rate for each class l = 1, . . . ,K. Similar to Equa-
tion (5), we define the multi-class edge of the classifier h as

γ = γ(v, φ,W) =

K∑
l=1

γl =

K∑
l=1

vl (µl+ − µl−) =

n∑
i=1

φ(xi)

K∑
l=1

wi,l · vl · yi,l, (6)

where

γl = vl (µl+ − µl−) =

n∑
i=1

wi,l · vl · φ(xi) · yi,l

is the classwise edge of h. By a similar calculation as in Section 2.1, we know that Z(h,W) is
minimized when we set

α =
1

2
ln

(
1 + γ

1− γ

)
,

which gives
Z(h,W) =

√
1− γ2.

So in order to minimize Z(h,W), we need to choose v and φ to maximize |γ|. From the equation
γ(v, φ,W) =

∑K
l=1 vl (µl+ − µl−), we know that if γ(v, φ,W) ≤ 0, then γ(−v, φ,W) =
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−γ(v, φ,W) ≥ 0. So the problem reduces to finding v, φ that maximize γ. From Equation (6) we
know that for fixed φ, γ is maximized when we choose v as

vl =

{
+1 µl+ ≥ µl−
−1 µl+ < µl−

(7)

for all classes l = 1, . . . ,K.

Similar to Section 2.1, if there exists a number δ > 0 such that γ
(
v(t), φ(t),W(t)

)
≥ δ for all

t = 1, . . . , T , then we can get an upper bound for R̂EXP(f
(T ),W):

R̂EXP(f
(T ),W) =

T∏
t=1

√
1− γ

(
v(t), φ(t),W(t)

)2 ≤ (√1− δ2
)T
≤ exp

(
−δ2

2
T

)
,

which means that the weighted exponential error goes to error exponentially fast. Let exp
(
− δ2

2 T
)
<

1
2n(K−1) , we know that the weighted Hamming error becomes zero after

T ∗ =

⌈
2 ln(2n(K − 1))

δ2

⌉
+ 1

iterations. To get the exponential convergence rate, the question now is whether there exists a number
δ > 0 such that γ

(
v(t), φ(t),W(t)

)
≥ δ for all t = 1, . . . , T .

2.3 Conditions for the Two Choices

For the condition in the unfactorized choice, if the empirically δ′-weak learning condition holds, then
for a fixed weight matrix W, let I = {l ∈ [K]

∣∣∑n
i=1 wi,l > 0}, then for all l ∈ I , there exists a

binary classifier φl such that

rl =

n∑
i=1

wi,l∑n
i=1 wi,l

φl(xi)yi,l ≥ δ′,

then we can find a φ such that φl = φl for l ∈ I so that

r =

n∑
i=1

K∑
l=1

wi,l ·φl(xi) · yi,l =
∑
l∈I

n∑
i=1

wi,l · φl(xi) · yi,l ≥
∑
l∈I

n∑
i=1

wi,l · δ′ = δ′.

So the empirically δ′-weak learning condition is sufficient for an exponential convergence rate for the
ADABOOST.MH algorithm in [20].

For the factorized choice proposed in [15], we can not use the above argument since h is factorized
and we need to find a binary classifier φ for all l = 1, . . . ,K, while for the unfactorized choice, we
can find K binary classifiers φ1, . . . , φK separately for each class. In [14], the author tries to solve
this problem by constructing pseudo-weights and pseudo-labels and then applying the empirically
δ′-weak learning condition to the constructed dataset {(x1, y

′
1), . . . , (xn, y

′
n)}.

[14] rewrites γ as

γ =

n∑
i=1

φ(xi)

K∑
l=1

wi,l · vl · yi,l =
n∑

i=1

φ(xi)

K∑
l=1

wi,l [I{vl · yi,l = +1} − I{vl · yi,l = −1}]

=

n∑
i=1

φ(xi)(w
+
i − w−

i ) =

n∑
i=1

φ(xi)sign(w
+
i − w−

i )|w
+
i − w−

i |,

where we define

w+
i =

K∑
l=1

wi,lI{vl · yi,l = +1}, w−
i =

K∑
l=1

wi,lI{vl · yi,l = −1}
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for simplicity. Then we define y′i = sign(w+
i − w−

i ) as the i-th pseudo-label and w′
i = |w

+
i − w−

i |
as the i-th pseudo-weight, then

γ =

n∑
i=1

w′
i · y′i · φ(xi).

However, since
∑n

i=1 w
′
i =

∑n
i=1 |w

+
i − w−

i | ≤
∑n

i=1(w
+
i + w−

i ) = 1, w′ = (w′
1, . . . , w

′
n) is not

necessarily a distribution on [n]. To make use of the empirically δ′-weak learning condition, we
define

w′
Σ :=

n∑
i=1

w′
i ≤ 1.

If we can get a lower bound ω > 0 such that w′
Σ ≥ ω, then we have:

γ =

n∑
i=1

w′
i · y′i · φ(xi) = w′

Σ

n∑
i=1

w′
i

w′
Σ

· y′i · φ(xi) ≥ w′
Σ · δ′ ≥ ω · δ′,

where the first inequality is from the empirically δ′-weak learning condition. Since the number of
examples n may be very large, we wish the lower bound ω to be independent of n, but it can depend
on the number of classes K.

Then [14] raises an open problem:

Whether there exists a setup (X,W,Y, and function class) in which all of the 2K

different vote vectors v ∈ {−1,+1}K lead to arbitrarily small (or zero) w′
Σ, or

we can find a constant (independent of n) lower bound ω such that with at least
one vote vector and classifier φ, w′

Σ ≥ ω holds?

We resolve this open problem by showing that:

There exists a constant ω = 1√
2K

such that: for any X,W,Y and func-
tion class, there always exists a vote vector v s.t. w′

Σ ≥ ω holds. With
this result, if the empirically δ′-weak learning condition holds, then for any
X,W,Y, there always exists a vote vector v and a binary classifier φ such
that γ =

∑n
i=1 φ(xi)

∑K
l=1 wi,l · vl · yi,l ≥ δ′√

2K
. So if we run the AD-

ABOOST.MH algorithm with factorized h, R̂EXP(f
(T ),W) becomes zero after

at most T ∗ =
⌈
4K ln(2n(K−1))

(δ′)2

⌉
+ 1 iterations.

3 Our Solution

In this section, we provide formal theorems for our above answer to the open problem and further
discussions.

Because the training set size n may be very large, [15] requires the lower bound to be independent
of the training set size n (but can be dependent on the number of classes K), which is much more
difficult than finding a lower bound depends on n. To consider this problem more holistically, we
provide two lower bounds, one depends on n and another depends on K.

To solve this problem, we first formulate the problem of “finding a constant ω such that for any
training set and weight matrix, there exists a code vector v such that w′

Σ ≥ ω (w′
Σ depends on the

training set, weight matrix, and the code vector)" into “finding the lower bound of a constrained
minimax problem". We then provide a n-dependent lower bound by the fact ∥x∥1 ≥ ∥x∥∞ and
the fact that the maximum is not smaller than the average, where ∥ · ∥p is the ℓp-norm of a vector.
For the n-independent lower bound, we choose to lower bound the expected value of w′

Σ when the
code vector v is drawn from some distribution D on {−1,+1}K . To eliminate the trouble caused
by the labels, we choose v to be a Rademacher random vector with independent elements, i.e.,
v = (ε1, . . . , εK) where P [εi = 1] = P [εi = −1] = 1

2 for i = 1, . . . ,K. We then provide the lower
bound with the help of Khintchine inequality [10].
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We define

W :=

{
W ∈ Rn×K

∣∣∣∣Wi,l ≥ 0 for all i ∈ [n], l ∈ [K];

n∑
i=1

K∑
l=1

Wi,l = 1

}
as the set of all possible W. Let e(·) : [K]→ {−1,+1}K be

e(l)i =

{
+1 i = l
−1 i ̸= l

,

we the define Y :=
{
(e(l1), . . . , e(ln))

T ∈ {−1,+1}n×K |l1, . . . , ln ∈ L = [K]
}

as the set of all
possible Y, and define V = {−1,+1}K as the set of all possible v. We then have:

w′
Σ(W,Y,v) =

n∑
i=1

|w+
i − w−

i |

=

n∑
i=1

∣∣∣∣∣
K∑
l=1

wi,l {I[vlyi,l = +1]− I[vlyi,l = −1]}

∣∣∣∣∣
=

n∑
i=1

∣∣∣∣∣
K∑
l=1

wi,l · vl · yi,l

∣∣∣∣∣
=

n∑
i=1

∣∣〈(W ⊙Y)Ti ,v
〉∣∣ = ∥(W ⊙Y) · v∥1,

where ⊙ is the Schur product and ∥x∥1 =
∑n

i=1 |xi| is the ℓ1-norm of the vector x.

The following two facts translate the problem that we are concerned with into a minimax problem.
Fact 3.1. The following two statements are equivalent:

(1) There exists a setup (X,W,Y) in which all of the 2K different vote vectors v ∈ V lead to
arbitrarily small (or zero) w′

Σ.

(2) min
W∈W,Y∈Y

max
v∈V
∥(W ⊙Y) · v∥1 is arbitrarily small (or zero).

Fact 3.2. The following two statements are equivalent:

(1) We can find a constant (independent of n) lower bound ω such that for any setup (X,W,Y),
there exists at least one vote vector and classifier φ such that w′

Σ ≥ ω holds.

(2) we can find a constant (independent of n) lower bound ω such that min
W∈W,Y∈Y

max
v∈V
∥(W ⊙Y) ·

v∥1 ≥ ω.

So, to find the lower bound ω, we need to prove that min
W∈W,Y∈Y

max
v∈V
∥(W ⊙Y) · v∥1 ≥ ω. Let’s

begin with a simple n-dependent lower bound.
Theorem 3.3 (An n-dependent lower bound). min

W∈W,Y∈Y
max
v∈V
∥(W ⊙Y) · v∥1 ≥ 1

n .

Proof of Theorem 3.3.

min
W∈W,Y∈Y

max
v∈V
∥(W ⊙Y) · v∥1

a
≥ min

W∈W,Y∈Y
max
v∈V
∥(W ⊙Y) · v∥∞

= min
W∈W,Y∈Y

max
v∈V,i∈[n]

∣∣∣∣∣
K∑
l=1

wi,l · yi,l · vl

∣∣∣∣∣
b
≥ min

W∈W
max
i∈[n]

K∑
l=1

wi,l
c
=

1

n
,

where a is from the fact that ∥x∥1 ≥ ∥x∥∞ where ∥x∥∞ = max
1≤i≤n

|xi| is the ℓ∞-norm of x; b comes

from choosing vl = yi,l for l = 1, . . . ,K when i is fixed; c is from the fact that max
i∈[n]

∑K
l=1 wi,l ≥

1
n

∑n
i=1

∑K
l=1 wi,l =

1
n and the equation can be attained.
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Remark 1. The lower bound in Theorem 3.3 depends on n, and if we use 1
n as the lower bound

of w′
Σ, then we need at most T ∗ =

⌈
2n2 ln(2n(K−1))

(δ′)2

⌉
+ 1 iterations to make the exponential error

become zero, which quadratically increases as n. When the training set is large, T ∗ becomes very
large, which is one of the reasons that [14] wants to get a lower bound independent of n.

Next, we introduce how we solve the open problem to get a lower bound independent of n.
Theorem 3.4 (An n-independent lower bound). min

W∈W,Y∈Y
max
v∈V
∥(W ⊙Y) · v∥1 ≥ 1√

2K
.

Remark 2. Theorem 3.4 shows that there is a constant ω = 1√
2K

such that for any setup W,Y,
there always exists a code vector v such that w′

Σ ≥ ω. This solves the open problem proposed by

[14]. So we need at most T ∗ =
⌈
4K ln(2n(K−1))

(δ′)2

⌉
+ 1 iterations (see Corollary 3.6) to make the

exponential error become zero.

To prove Theorem 3.4, we use the well-known Khintchine inequality [10] Lemma 3.5.
Lemma 3.5 (10, Khintchine inequality). Let {εn}Nn=1 be i.i.d. random variables with P(εn =
±1) = 1

2 for n = 1, . . . , N , i.e., a sequence with Rademacher distribution. Let 0 < p <∞ and let
x1, . . . , xn ∈ C. Then

Ap

(
N∑

n=1

|xn|2
)1/2

≤

(
E

ε1,...,εN

∣∣∣∣∣
N∑

n=1

εnxn

∣∣∣∣∣
)1/p

≤ Bp

(
N∑

n=1

|xn|2
)1/2

for some constants Ap, Bp > 0 depending only on p, where

Ap =

 21/2−1/p 0 < p ≤ p0
21/2(Γ((p+ 1)/2)/

√
π)1/p p0 < p < 2

1 2 ≤ p <∞
and

Bp =

{
1 0 < p ≤ 2
21/2(Γ((p+ 1)/2)/

√
π)1/p 2 < p <∞ ,

where p0 ≈ 1.847 and Γ is the Gamma function.

Proof of Theorem 3.4. The basic idea of our proof is to consider the average performance of different
code vectors for fixed choices of W,Y, i.e., use the fact that the maximum is not less than the
average, which gives:

min
W∈W,Y∈Y

max
v∈V
∥(W ⊙Y) · v∥1 ≥ min

W∈W,Y∈Y
E

v∼D
∥(W ⊙Y) · v∥1

= min
W∈W,Y∈Y

E
v∼D

[
n∑

i=1

∣∣∣∣∣
K∑
l=1

wi,l · vl · yi,l

∣∣∣∣∣
]

for any distribution D on V .

We take v1, . . . , vK be independent Rademacher random variables and then get:

min
W∈W,Y∈Y

E
v∼D

[
n∑

i=1

∣∣∣∣∣
K∑
l=1

wi,l · vl · yi,l

∣∣∣∣∣
]
= min

W∈W,Y∈Y
E

ε1,...,εK

[
n∑

i=1

∣∣∣∣∣
K∑
l=1

wi,l · εl · yi,l

∣∣∣∣∣
]

a
≥ A1 min

W∈W

n∑
i=1

(
K∑
l=1

w2
i,l

)1/2

b
=

√
K

2
min
W∈W

n∑
i=1

(
1

K

K∑
l=1

w2
i,l

)1/2

c
≥
√

K

2
min
W∈W

1

K

n∑
i=1

K∑
l=1

wi,l

=
1√
2K

,
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where a applies Lemma 3.5 with p = 1 and the fact that y2i,l = 1 for all i, l; b puts in the value of A1;
c uses the concavity of

√
· and Jensen’s inequality.

With the lower bound of w′
Σ, we can now provide a lower bound of the edge γ and convergence

guarantee for the version of ADABOOST.MH proposed by [15] conditioned on the empirically
δ′-weak learning condition.
Corollary 3.6 (Lower bound for γ). If the empirically δ′-weak learning condition holds, then for any
X,W ∈ W,Y ∈ Y , there always exists a binary classifier φ∗ and code vector vmax such that

γ(vmax, φ∗,W) ≥ δ′√
2K

.

If we run ADABOOST.MH with factorized h, then we have

R̂EXP(f
(T ),W) ≤ exp

(
− δ′

4K
T

)
and we need at most

T ∗ =

⌈
4K ln(2n(K − 1))

(δ′)2

⌉
+ 1

to make the exponential error R̂EXP(f
(T ),W) become zero.

Proof of Corollary 3.6. For any W,X,Y, let vmax = argmax
v∈V

∥(W ⊙Y) · v∥1. Let w′
i, y

′
i, w

′
Σ be

defined as before, where we replace v there by vmax. By Theorem 3.4, w′
Σ ≥ 1√

2K
> 0.

By the empirically δ′-weak learning condition, there exists a binary classifier φ∗ such that
n∑

i=1

w′
i

w′
Σ

· y′i · φ∗(xi) ≥ δ′,

which means that

γ(vmax, φ∗,W) ≥ w′
Σδ

′ ≥ δ′√
2K

.

For fixed W,X,Y, let v∗(φ) be the code vector depending on φ that is defined in Equation (7).
Since the choice v∗(φ) maximizes γ when φ is fixed, we have that:

γ(v∗(φ∗), φ∗,W) ≥ γ(vmax, φ∗,W) ≥ δ′√
2K

.

Combining the arguments in Sections 2.1 and 2.2 shows R̂EXP(f
(T ),W) ≤ exp

(
− δ′

4KT
)

and that
when we run ADABOOST.MH with factorized h, which returns φ∗,v∗(φ∗) at each iteration,

R̂EXP(f
(T ),W) <

1

2n(K − 1)
, i.e. R̂H(Ff (T ) ,W) = 0

after at most

T ∗ =

⌈
4K ln(2n(K − 1))

(δ′)2

⌉
+ 1

iterations.

The previous discussions are based on fixing the training set size n and the number of classes K.
Here we consider the case when they can tend to infinity. We think the reason [14] looks for a lower
bound of w′

Σ that is independent of n is that the author thinks the number of examples n can be
arbitrarily large in some cases, which may make the lower bound of w′

Σ arbitrarily small.

Combine our two lower bounds in Theorems 3.3 and 3.4, for any X,W,Y, we can always find a
v ∈ {−1,+1}K such that:

w′
Σ ≥ max

{
1

n
,

1√
2K

}
,

so the lower bound can become arbitrarily small only when n and K tend to infinity together.
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4 Discussion

In this section, we discuss the importance of solving this problem.

In statistical learning theory, algorithms can be divided into proper and improper learning algorithms.
For proper learning, the most famous algorithms are ERM [22] and its variants [26, 16, 24]. For
improper learning, boosting algorithms are usually used to construct improper algorithms [2, 3, 17, 23].
Furthermore, the convergence rate of the boosting algorithm usually affects the sample complexity of
the constructed algorithm, i.e., the sample complexity of the constructed algorithms usually depends
on the value T ∗ where the training error becomes zero. So boosting algorithms are basic but important
tools in statistical learning theory.

In binary classification, ADABOOST [9] is one of the most famous and influential algorithms among
all the binary boosting algorithms. Since the proposal of ADABOOST, many works have tried to
extend the boosting framework to multi-class classification problems. Most multi-class boosting
algorithms have been restricted to reducing the multi-class classification problem to multiple two-class
problems, among which the most famous and influential one is ADABOOST.MH [20]. Moreover,
ADABOOST.MH has inspired the proposal of many other multi-class boosting algorithms. For
example, inspired by the characteristics of ADABOOST.MH that reduces the multi-class classification
problem to multiple two-class problems, [13] chooses another line of thought to develop an algorithm
that directly extends the ADABOOST.MH algorithm to the multi-class case without reducing it to
multiple two-class problems; [1] demonstrates how to improve the efficiency and effectiveness of
ADABOOST.MH and proposes the algorithm LDA-ADABOOST.MH; [18] proposes an efficient
multi-class fault diagnosis approach based on the ADABOOST.MH algorithm; [7] proposes a method
for ranking based on ADABOOST.MH. There are also many other works based on ADABOOST.MH
[21, 12, 8]. Furthermore, many works (for example, [13, 8, 25, 27]) use ADABOOST.MH as the
baseline, which further shows the importance of ADABOOST.MH. For example, the only baseline
used in [13] is ADABOOST.MH. In summary, ADABOOST.MH serves as a link between binary
classification boosting algorithms and multi-class classication boosting algorithms, the cornerstone of
multi-class boosting, and has a big influence on the multi-class boosting field. Our work is important
because it shows that Kégl’s work [15], which solves the computational problem (at the level of the
strong learner at least) of ADABOOST.MH, does indeed work in theory and works essentially as fast
as binary ADABOOST.

5 Conclusion

In this paper, we resolve the open problem raised by [14] by presenting a n-independent lower bound
for w′

Σ. In addition to that, we also provide a n-dependent lower bound for w′
Σ to show that w′

Σ
may be arbitrarily small only when n and K tend to infinity together. Based on the lower bounds
for w′

Σ and the empirically δ′-weak learning condition, we provide an upper bound for the weighted
exponential error and a number T ∗ where the weighted exponential error becomes zero after at most
T ∗ iterations.
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A The pseudocode of the factorized ADABOOST.MH

In this section, we adapt the pseudocode of the factorized ADABOOST.MH from [14]. X is the n× d
observation matrix, Y is the n × d label matrix, W is the user-defined weight matrix used in the
definition of the weighted Hamming error (1). Let BASE(·, ·, ·) be the base learner algorithm, and T
be the number of iterations. Let α(t) be the base coefficient v(t) be the vote vector, φ(t)(·) be the
scalar base (weak) classifier, h(t)(·) be the vector-based classifier, and f (t)(·) be the final (strong)
discriminant function.

Algorithm 1: The factorized ADABOOST.MH
Input :X,Y,W, BASE(·, ·, ·), T ;

1 W(1) = 1
nW;

2 for t← 1 to T do
3

(
α(t),v(t), ϕ(t)

)
← BASE(X,Y,W(t));

4 h(t)(·)← α(t)v(t)φ(t)(·);
5 for i← 1 to n do
6 for l← 1 to K do

7 w
(t+1)
i,l ← w

(t)
i,l ·

exp
(
−h

(t)
l (xi)yi,l

)
∑n

i′=1

∑K
l′=1

w
(t)

i′,l′ exp
(
−h

(t)

l′ (xi′ )yi′,l′
) ;

8 end
9 end

10 end
Output :f (T )(·) =

∑T
t=1 h

(t)(·);

B Related Works

In addition to ADABOOST.M1, ADABOOST.M2, ADABOOST.MH, and factorized ADABOOST.MH,
there are also some works on multi-class boosting.

To circumvent the hardness result for a large class of natural boosting, [5] utilizes the technique of list
learning and proposes an efficient improper multi-class boosting algorithm with sample and oracle
complexity bounds that are entirely independent of the number of classes.

[6] studies the resources required for boosting, especially how they depend on the number of classes
K. [6] presents results on the sample complexity, oracle complexity, and finds a trade-off between
number of oracle calls and the resources required of the weak learner.

[4] proposes an efficient multi-class boosting algorithm with the help of list learning, the success of
the proposed algorithm is guaranteed by the relaxed γ-BRG condition.

In this paper, we solve the open problem proposed in [14] and provide a bound for the oracle
complexity of the factorized ADABOOST.MH algorithm. The algorithm that we consider is different
from those in [5, 6, 4], and the conditions are also different. We find a missing convergence result for
factorized ADABOOST.MH, so we think our work is a complementary of the related works [5, 6, 4].
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paper’s contributions and scope?
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by their proofs.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper is purely theoretical, with no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]

Justification: This paper is about a theoretical result for a multi-class boosting algorithm, it
clearly conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is purely theoretical, and has no societal impact.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments, so it clearly poses no
such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments, which needs no assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments, and we do not release
new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments, so it does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper is purely theoretical, with no experiments, so it does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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