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ABSTRACT

The rapid advancements in large video models have unlocked new horizons in
video understanding, enhancing applications in various domains such as surveil-
lance, healthcare, and entertainment. However, these models often compromise
individual privacy by inadvertently revealing sensitive private information such as
skin color and gender. Existing privacy preservation methods are often limited
in their scope and tailored to specific downstream tasks. Since current methods
directly apply an anonymization function to the input pixel space, they demand
extensive computational resources due to the retraining of the utility video model.
To address these challenges, we propose a novel approach that shifts privacy-
preserving anonymization from the input pixel space to the latent feature space,
significantly reducing computational costs and enabling deployment in large foun-
dational video models. Our method employs a self-supervised privacy budget in
the latent space by minimizing the mutual information between static clip fea-
tures. This approach notably allows, for the first time, supervision from down-
stream tasks such as anomaly detection and temporal action detection through
collaborative co-training. Furthermore, we introduce a latent consistency loss to
maintain the utility video model’s multitask generalization capabilities and pre-
vent single task overfitting. Our extensive evaluations demonstrate a significant
(≈29%) reduction in privacy leakage while maintaining near peak (within 1%)
utility performance across various downstream tasks: Action Recognition (Ki-
netics400, UCF101, HMDB51), Temporal Action Detection (THUMOS14), and
Anomaly Detection (UCF-Crime). Moreover, we propose new protocols for as-
sessing gender bias in action recognition models, demonstrating that our method
effectively mitigates such biases and promotes equitable video understanding.

1 INTRODUCTION

Video understanding encompasses a wide range of problem formulations, including action recogni-
tion, anomaly detection, and temporal action localization. It holds significant potential for real-world
applications such as patient behavior monitoring, sports analytics, robotics, industrial automation,
surgical videos, and surveillance. Recent advancements in video understanding have aimed at de-
veloping single models capable of addressing multiple video tasks, leading to the creation of video
foundational models such as InternVideo Wang et al. (2022), VideoMAEv2 Wang et al. (2023), V-
JEPA Bardes et al. (2023), NMS Dave et al. (2024) etc. These models offer a deeper understanding
of the intrinsic nature of videos, thereby enhancing their applicability in real-world scenarios.

However, the utility of video understanding models is accompanied by the risk of privacy breaches.
Features extracted from pre-trained video encoders can reveal sensitive information about individu-
als in the videos, such as skin color, gender, and clothing Fioresi et al. (2023). This information can
be exploited maliciously, underscoring the urgent need to prevent such privacy leaks from powerful
contemporary video models.

Several prior privacy-preserving methods have been proposed to address this issue, including ap-
proaches like SPAct Dave et al. (2022b), STPrivacy Li et al. (2023b), TeD-SPAD Fioresi et al. (2023)
and VITA Wu et al. (2020). These methods excel at learning anonymization functions that maintain
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the utility performance of targeted video downstream task while reducing privacy leakage. However,
they encounter several challenges. For instance, after learning the anonymization function, they re-
quire full fine-tuning of the utility video encoder model, which demands substantial computational
resources and is impractical for scaling to large-scale models such as ViT-H, ViT-L of V-JEPA, and
InternVideo. Additionally, these methods often focus on specific downstream video tasks, such as
action recognition in SPAct and anomaly detection in TeD-SPAD, limiting their generalizability.

To address the challenges of scalability and generalization in video model anonymization, we intro-
duce a novel approach termed SPLAVU, which stands for Self-supervised Privacy-preservation via
Latent Anonymization for general Video Understanding. SPLAVU aims to prevent privacy leakage
while maintaining downstream performance. Our method operates in the latent space of a utility
model, enabling the training of a proposed Anonymizing Adapter Module (AAM) on a frozen util-
ity video model. By eliminating the need for full fine-tuning, SPLAVU is feasible for large video
models and adaptable to various downstream tasks.

We adopt the minimax optimization strategy, a proven method in prior privacy works Dave et al.
(2022b); Wu et al. (2020); Fioresi et al. (2023), to the latent space. Our joint optimization strategy
balances privacy and proxy-utility branches by minimizing the mutual information between two
static clips derived from the same video, following the self-supervised privacy objective Dave et al.
(2022b). The latent formulation enables a novel co-training paradigm, where the anonymizer is
trained to maintain the performance across multiple downstream video understanding tasks, not just
for a single task. Additionally, to preserve the generalization capability of the utility model on
unseen tasks, we introduce a latent consistency loss.

Our anonymization method integrates seamlessly with multiple state-of-the-art methods for various
downstream tasks. We demonstrate that SPLAVU outperforms prior privacy preservation methods
by a significant margin in numerous downstream video understanding tasks. Additionally, SPLAVU
exhibits data efficiency; even when trained on a small-scale dataset like HMDB51 Kuehne et al.
(2011), it generalizes to multiple tasks without compromising downstream performance and privacy
tradeoff. Beyond privacy protection, we address the emerging issue of human-attribute related bias
in video understanding, which has been largely unexplored. For instance, a model might predict
specific actions based on gender stereotypes, such as associating a perceived female subject with
hands near her face as applying makeup or brushing hair, even with nothing in hand. For the first
time, we propose protocols to evaluate gender bias in action recognition models and demonstrate
our method’s effectiveness in mitigating such bias.

Our contributions can be summarized as follows:

• We introduce a novel latent privacy preservation method that is effective across various
downstream video understanding tasks using a collaborative multitask co-training protocol,
unlike prior work that focused solely on one specific task.

• To enable anonymization in the latent space, we propose a static-clip-based self-supervised
privacy budget objective. We also introduce a latent consistency loss to preserve the gener-
alization capability of the utility model.

• We conduct extensive evaluations of our method on multiple downstream tasks. Our
method achieves notable decrease in privacy leakage by approximately 29%, while pre-
serving performance across a range of downstream tasks, including Action Recogni-
tion (UCF101, HMDB51, Kinetics400), Temporal Action Detection (THUMOS14), and
Anomaly Detection (UCF-Crime).

• Our extensive ablation studies demonstrate the data efficiency of our method when trained
on a small-scale dataset and its applicability across various video backbones.

• We propose new protocols to assess gender bias in existing action recognition models and
demonstrate that our method effectively mitigates this bias.

2 RELATED WORKS

Video understanding spans tasks like action recognition, temporal action localization, and weakly-
supervised anomaly detection. Various datasets have been introduced Carreira & Zisserman (2017);
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Figure 1: Motivation (a) illustrates privacy leakage in pretrained video encoders (e.g., VideoMAE,
V-JEPA) by an attacker. (b) depicts previous privacy-preserving approaches Fioresi et al. (2023);
Dave et al. (2022b); Wu et al. (2020), which involve a two-step training process: first learning
an anonymization function to anonymize input videos, then retraining the utility model with the
anonymized videos. (c) presents our method of joint optimization for the anonymization process
in latent space, where we directly learn an adapter module on the utility video encoder, offering
numerous benefits as outlined in the figure text.

Diba et al. (2020); Goyal et al. (2017b); Zhao et al. (2019), and recent advancements include self-
supervised Jenni & Jin (2021); Dave et al. (2024; 2022a); Thoker et al. (2023) and foundational
models Bardes et al. (2024); Wang et al. (2023; 2022) capable of handling multiple video under-
standing tasks, enhancing versatility and generalizability.

Privacy Preservation in Video Understanding Recent efforts in video action recognition have ad-
dressed visual privacy concerns. Many studies have aimed to protect visual privacy at the time of
data capture by utilizing non-intrusive sensors such as thermal imaging, depth cameras, and event
cameras Luo et al. (2018); Hinojosa et al. (2022); Kim et al. (2022); Ahmad et al. (2022; 2023). In
this study, we focus exclusively on models using standard RGB cameras. Initial approaches involved
reducing the resolution of input data Ryoo et al. (2017); Dai et al. (2015); Liu & Zhang (2020) or em-
ploying object detection for targeted obfuscations Ren et al. (2018); Zhang et al. (2021). However,
recent research indicates that these methods often fail to balance utility and privacy effectively Wu
et al. (2020); Dave et al. (2022b); Fioresi et al. (2023). Wu et al. (2020) showcased an adversarial
training framework where a U-Net Ronneberger et al. (2015) modifies input frames to decrease the
accuracy of private attribute prediction while preserving action recognition performance. Dave et al.
(2022b) proposed a self-supervised variant that focuses on reducing mutual information instead of
relying on sensitive privacy labels. Fioresi et al. (2023) adopts the self-supervised privacy objective
from Dave et al. (2022b) for the video anomaly detection task.

Compared to the prior input-level anonymization methods our latent-space anonymization method
differs in two key aspects: (1) previous methods are tailored to specific downstream tasks, such as
action recognition in Dave et al. (2022b) and anomaly detection in Fioresi et al. (2023), while our
approach aims to preserve privacy across various downstream video understanding tasks, (2) unlike
prior methods, our method does not necessitate the retraining of the video model, thus providing
computational efficiency for anonymizing even large-scale video foundation models.

Bias Mitigation Computer vision tasks often struggle with spurious correlations Geirhos et al.
(2018; 2020), where models rely on irrelevant information to make decisions, such as using back-
ground cues for action recognition instead of focusing on subjects’ movements Ding et al. (2022);
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Zou et al. (2023). Unfortunately, biases across a variety of protected demographic attributes, such as
perceived gender, skin color, and age Zhao et al. (2017); Stock & Cisse (2017); Buolamwini & Ge-
bru (2018); Wilson et al. (2019); Prabhu & Birhane (2020); Tong & Kagal (2020); Steed & Caliskan
(2021); Gustafson et al. (2023) have been found in vision-based tasks. These biases not only skew
model performance but can also perpetuate harmful stereotypes. One common method for bias mit-
igation is to utilize adversarial training Goodfellow et al. (2014); Xie et al. (2017); Zhang et al.
(2018). When targeting a sensitive attribute such as perceived gender, these methods involve the use
of a critic model to predict the sensitive attribute as the adversary Beutel et al. (2017); Wang et al.
(2019). Barbano et al. (2021) explored the relationship between debiasing and privacy preservation,
finding that there exists a subset of privacy preservation methods that are suitable for debiasing,
giving promise to privacy preservation as a form of debiasing. In contrast to the image domain,
biases in the video domain have not been as extensively studied. While a few papers Choi et al.
(2019); Li et al. (2023a) address and mitigate scene bias in action recognition tasks, they overlook
biases related to human attributes. Motivated by this gap, we introduce, for the first time, protocols
to assess gender bias in action recognition. Our findings demonstrate that our self-supervised pri-
vacy preservation method, even without an explicit bias-related objective, effectively generalizes in
mitigating gender bias.

MH Self-Attn Layer

MH Self-Attn Layer

MH Self-Attn Layer

Sample 1 Frame, Tile

shared 
weights

Pretrained 
Video 

Encoder:

   = anonymized
   = repel
  

shared 
weights

Clip

Sample Different Frame, Tile

AR Classifier  .  

NT-Xent
Loss

shared 
weights
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weights

Overall Loss

AAM:
MH Self-Attn Layer

MH Self-Attn Layer

MH Self-Attn Layer

MH Self-Attn Layer
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TAD Classifier .  AD Classifier  .  

Figure 2: Workflow illustrating the SPLAVU training process. The process begins with a video clip
x
(i)
t , from which two random frames are sampled to create static clips. All clips are passed through

the pretrained, frozen video encoder fE to extract latent features, which are further processed by
our Anonymization Adapter Module (AAM) fA. The feature from the regular clip x

(i)
t is used for

the latent consistency loss and passed through the set of task-specific classifier heads fT∗ , where
they are trained using standard utility losses. The two static clips (x̄(i)

t̄1
, x̄(i)

t̄2
) are utilized in a mutual

information minimization objective. Gradients are backpropagated through the AAM in a combined
backward pass. A complete training algorithm is provided in Appendix Sec. D.
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3 METHOD

3.1 PROBLEM FORMULATION

In this work, we consider handling sensitive issues in video understanding tasks from the dual per-
spective of privacy preservation and bias mitigation.

Privacy Preservation We propose a novel privacy-preserving framework that handles multiple util-
ity tasks across diverse video datasets. Our framework is designed to maintain the high perfor-
mance of a frozen video encoder across tasks while enforcing robust privacy constraints. Specif-
ically, we consider video datasets that span action recognition (Dreco), temporal action detection
(Dtad), and anomaly detection (Danomaly). Each dataset D contains N video samples, represented
as {x(i),y(i)}Ni=1, where x(i) is a video instance, and y(i) is its corresponding task-specific label.
We define the set of utility tasks as {TAR;TTAD;TAD} ∈ T ∗, and introduce a budget private at-
tribute prediction task, denoted as B. The framework starts with an off-the-shelf video encoder
model fE , left completely frozen. The overall goal of fA is threefold: (1) to maintain the perfor-
mance of fE across the set of defined utility tasks T ∗, (2) to simultaneously reduce the performance
on budget private attribute prediction task B, and (3) to preserve the general capabilities of fE such
that performance is maintained on unseen tasks. This privacy preservation framework is outlined
via the following criteria:

Criterion-1: Across each utility task, the performance should be retained. Specifically, for task Tn,
the utility loss LTn after anonymization should be approximately equal to the loss before.

|T∗|∑
n

(LTn(fTn(fA(fE(X))), Y ), Tn) ≈
|T∗|∑
n

(LTn(fTn(fE(X)), Y ), Tn). (1)

Criterion-2: The anonymized encoded features are directly used to compute budget loss LB for
budget task B, which should greatly increase after anonymization.

LB(fA(fE(X)))≫ LB(fE(X)). (2)

Criterion-3: The anonymization function should not drastically alter the latent features of encoder
fE . Hence, we define a latent consistency objective (LLC) as follows.

minLLC(fA(fE(X)), fE(X)) || fA(fE(X)) ≈ fE(X), (3)

where || denotes OR, as both expressions satisfy the desired condition. A system that fulfills these
criteria achieves an effective balance between utility and privacy.

Perceived Gender Bias In the standard bias evaluation protocol, we are given a video dataset
Dreco = {(x(i),y(i))}NIID

i=1 , where x(i) is the ith video instance, y(i) is the associated action la-
bel, and NIID is the number of in-distribution dataset instances. After training, performance is
evaluated on an unseen bias test set Dreco−OOD = {(x(i),y(i))}NOOD

i=1 , where NOOD is the number
of out-of-distribution instances. The aim of any debiasing technique is to learn generalizable features
of DIID such that performance is maximized on DOOD without compromising IID performance.

When considering gender information, our in-distribution video dataset is now formulated as
Dreco = {(x(i),y(i),g(i))}NIID

i=1 , where g(i) ∈ {male, female} is the associated socially-
perceived binary gender label. We acknowledge that this binary formulation is not ideal and not
inclusive of all gender categories. The bias evaluation test set also includes label g in order to
evaluate subclass performance.

3.2 ANONYMIZATION FRAMEWORK

This section describes full anonymization framework and training. The framework consists of 3
major components: (1) a frozen video encoder backbone fE , (2) an anonymization function adapter
fA, which modifies the latent features while retaining the original shape, and (3) a set of utility
classifier heads {fTAR

; fTTAD
; fTAD

} ∈ fT∗ for a predefined set of tasks.

Network Initialization To start, we initialize fA to act as an identity function. This involves a
brief pretraining phase where fA learns to reconstruct the latent features from Dreco using an ℓ1
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loss. The video encoder model fE is initialized with off-the-shelf weights of Kinetics400 Carreira
& Zisserman (2017) pretraining. Each fT classifier head matches a standard architecture for the
provided task. For stability, these are initialized through non-anonymized training on their respective
utility tasks. For action recognition, fTAR

is a simple linear layer. For temporal action detection
and anomaly detection, architectures from TriDet Shi et al. (2023) and MGFN‘Chen et al. (2023)
respectively are utilized as fTTAD

and fTAD
.

Anonymization Training
The training process consists of a minimax optimization between a budget privacy loss LB and a
collection of standard utility losses LT∗ , regularized by a proposed latent consistency loss LLC .

Collaborative Utility Objectives To retain the action understanding capabilities of the pretrained
model, we employ a co-training framework where multiple tasks collaborate to optimize perfor-
mance. The action classifier head, fTAR

, is trained using the standard cross-entropy loss:

L(i)
AR = −

NC∑
c=1

y(i)
c logp(i)

c , (4)

where NC denotes the number of action classes in Daction, y(i)
c is the ground-truth label, and p

(i)
c

is the prediction vector from the utility classifier head fTAR
.

To ensure consistent performance across other utility tasks, we integrate the training objectives of
the state-of-the-art approaches for temporal action detection and anomaly detection. Specifically,
TriDet Shi et al. (2023) is utilized for fTTAD

andLTAD, while MGFN Chen et al. (2023) is employed
for fTAD

and LAD. More detailed information can be found in Appendix Sec. B.

The utility losses from these tasks are combined and jointly optimized through the following :

L(i)
T∗ = ωARLAR + ωTADLTAD + ωADLAD, (5)

where ω represents a hyperparameter controlling the relative weight of each task’s loss objective. In
most experiments, we set ωAR = ωTAD = ωAD = 1 to balance the contributions across tasks.

Budget Privacy Objective As opposed to previous works Wu et al. (2020); Dave et al. (2022b);
Fioresi et al. (2023), we do not use the disjoint image encoder model to enforce the privacy objective.
Instead, the video encoder model itself is used to process clip frames (tiled to match a standard clip
shape, see Figure 2). These static clip features are then directly utilized in the budget SimCLR
contrastive NT-Xent Chen et al. (2020) loss LB , defined as follows:

L(i)
B = −log

d(h̄
(i)
t̄1
, h̄

(i)
t̄2
)∑N

j=1[⊮[j ̸=i]d(h̄
(i)
t̄1
, h̄

(j)
t̄1

) + d(h̄
(i)
t̄1
, h̄

(j)
t̄2

)]
, (6)

where h̄
(i)
t represents a static clip sampled from video x(i) at time t, d(u, v) =

exp(uT v/(∥u∥∥v∥τ)) computes the similarity between the input vectors with temperature param-
eter τ . ⊮[j ̸=i] is an indicator function that equals 1 when j ̸= i. This loss is used to maximize
the similarity between the input static clips, but we reverse the gradient, resulting in the objective
destroying mutual information between these static clips instead.

Latent Consistency Objective The primary motivation behind introducing the latent consistency
loss is to ensure that the anonymization learned by the model remains generalizable and is not
biased toward the specific utility task(s) it is trained on. Without this constraint, the anonymization
process inadvertently overfits to the proxy-utility tasks (see Table 5), compromising its effectiveness
on unseen tasks. To mitigate this, we employ a reconstruction-based latent consistency loss that
encourages the model to preserve important latent features while still achieving privacy preservation:

L(i)
LC = ∥fE(x(i))− fA(fE(x

(i)))∥22, (7)

where x(i) is the input video clip and ∥ · ∥22 is the ℓ2 distance. This objectives ensures that the
anonymization does not shift fE features completely into a new space overfit to the training tasks.
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Overall Minimax Training Objective Due to our use of just a single encoder model, we can avoid
the two-step training process from previous works without experiencing collapse. Instead, the fA
and fT models are jointly optimized utilizing the compound loss as follows:

L(i) = ωLC ∗ L(i)
LC + ωT ∗ L(i)

T∗ − ωB ∗ L(i)
B , (8)

where ωR, ωT , and ωB are weights to control the strength of each objective. After this training, we
are left with a lightweight anonymization adapter fA that can be appended to the off-the-shelf video
encoder model fE for use in a variety of downstream tasks.

Anonymizing Adapter Module (AAM) To carry out the anonymization function fA, we propose
to move away from the common input-level modification techniques, instead applying our proposed
latent anonymizing adapter module (AAM). Given latent feature h(i) = fE(x

(i)) , the AAM module
is trained to modify h(i) with the above loss objective . We utilize a multi-head self-attention based
transformer encoder for our adapter. A design choice ablation can be found in Appendix Sec. C.

4 EVALUATION PROTOCOLS

To ensure that our anonymization method preserves the utility of the original off-the-shelf encoder
across multiple tasks, we evaluate its performance comprehensively. Previous work Fioresi et al.
(2023) has shown that existing anonymization methods, which typically use action recognition as
the proxy utility task, significantly degrade performance on alternate downstream tasks. However,
the original pretrained models are known to demonstrate strong performance in areas like tempo-
ral action detection (TAD) and anomaly detection (AD). Therefore, we assess the learned features
across five distinct tasks to thoroughly evaluate their effectiveness post-anonymization.

4.1 PRIVACY EVALUATION

First, we utilize an established privacy preservation protocol to ensure that fA removes sensitive-
attribute related information. Even though we work with with action-focused video understanding
models, information related to sensitive attributes is still carried through the backbone encoder. This
is empirically shown through performance on a private attribute prediction task using the VISPR
dataset Orekondy et al. (2017). While this is an image-based protocol, we are still able to use it by
repeating each image to form static clips. A classifier is trained on these representations using the
same protocol as previous video privacy works Wu et al. (2020); Dave et al. (2022b); Fioresi et al.
(2023). The attribute labels are multi-label, so performance is measured by mean average precision
across classes (cMAP). Since our goal is to enhance privacy—not to accurately predict attributes—a
lower performance on this task indicates better privacy preservation.

4.2 UTILITY VIDEO TASK EVALUATION

Action Recognition Action recognition involves analyzing spatio-temporal features of a video to
classify the actions based on a predefined set of categories. Our anonymization framework uses
action recognition as its proxy utility task, carried out on multiple different datasets Dreco, namely
Kinetics400 Carreira & Zisserman (2017), UCF101 Soomro et al. (2012), and HMDB51 Kuehne
et al. (2011). Evaluation is top-1 accuracy on 5 evenly spaced clips from each testing video.

Temporal Action Detection Temporal action detection (TAD) is a task that involves identifying
the specific time intervals within an untrimmed video where particular actions occur. TAD uti-
lizes features from a Kinetics-pretrained video encoder model. Given Dtad, fA is used to generate
anonymized feature set Ftad = { fA(fE(X(i))) | ∀X(i) ∈ Dtad }. Our TAD evaluation uses THU-
MOS14 Jiang et al. (2014) as Dtad. We choose one of the recent state-of-the-art methods, TriDet Shi
et al. (2023) with default hyperparameters to evaluate using mean Average Precision (mAP).

Weakly-Supervised Anomaly Detection Weakly supervised anomaly detection (WSAD) in-
volves localizing the timestamps of anomalous (unexpected) events given long, untrimmed videos
and only video-level labels. Our evaluation for WSAD uses UCF-Crime Sultani et al. (2018)
as Danomaly. Given Danomaly, fA is used to create anonymized feature set Fanomaly =

{ fA(fE(X(i)))) | ∀X(i) ∈ Danomaly }. A recent state-of-the-art method MGFN Chen et al. (2023)
is used with default hyperparameters. Final evaluation is given as frame-level ROC AUC percentage.
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4.3 GENDER PRESENTATION BIAS PROTOCOLS

Proposed NTU Bias Evaluation We further verify the anonymization performance by evaluating on
our proposed attribute video bias protocols. The NTU 60 Shahroudy et al. (2016) action recognition
dataset is carefully curated to have minimal scene and subject biases as each actor performs each
action multiple times in different scenes. Given that each video is carefully labeled with subject ID,
we can introduce an artificial bias by controlling the subclass ratios across actions. A gender ratio
of 95% is set for all but one action, where the typical gender ratio is inverted to create a spurious
shortcut for the model. This is done for each gender, resulting in two subsets: NTU-Bias-F and
NTU-Bias-M. More detailed information about protocol creation can be found in Appendix Sec. A.

Toyota Smarthome Bias Evaluation Unlike NTU 60, the Toyota Smarthome (TSH) ADL dataset
is less balanced and represents a real-world scenario with elderly individuals performing unscripted
daily activities. Each video is labelled with a subject ID, allowing for robust evaluation of perceived
gender biases without the need for a pretrained gender classifier. Here, we look at the performance of
each gender subclass. A model is considered less biased if the baseline gap between the performance
of each gendered subclass is reduced.

5 EXPERIMENTS

Dataset details and implementation details can be found in Appendix Sec. A and B, respectively.

Table 1: Quantitative results of various anonymization methods on various downstream tasks. Bold
indicates best results.

Anonymization
Method

Network
Privacy Action

Reco.
Temp. Act.
Detection

Anomaly
Detection

Overall
Score

VISPR Kin400 THUM14 UCFCrime
cMAP (↓) Top-1 (↑) mAP(↑) AUC (↑) (↑)

Raw Videos

I3D

63.64 50.98 49.88 77.68 71.91
SPAct 52.71 46.93 29.98 73.93 73.18
TeD-SPAD 42.21 47.20 32.08 74.81 81.87
Ours 39.79↓37.5% 50.84↓0.3% 47.96↓3.8% 75.82↓2.4% 88.81

Raw Videos
VidMAE

70.25 74.83 60.19 84.72 77.25
Ours 49.92↓28.9% 74.23↓0.8% 60.50↑0.5% 84.33↓0.5% 92.51

Raw Videos
VJEPA

72.44 77.03 66.06 84.12 77.47
Ours 51.42↓29.2% 76.62↓0.5% 66.30↑0.4% 84.81↓1.1% 93.37

Raw Videos
VidMAEv2

75.69 91.24 67.24 85.73 79.29
Ours 50.37↓33.5% 91.01↓0.3% 65.59↓2.4% 83.70↓2.5% 97.30

5.1 MAIN EVALUATION: PRIVACY VS DOWNSTREAM TASK TRADEOFFS

Our evaluation of the proposed method, as outlined in Sec. 4, covers privacy protocols and a va-
riety of downstream tasks. We observe that our approach consistently generalizes well across all
tasks, closely maintaining the performance of the raw, unanonymized videos. In contrast, previous
methods struggle to preserve performance uniformly across tasks, evident in the temporal action
detection results of Dave et al. (2022b); Fioresi et al. (2023). Additionally, when considering an
overall score that combines both privacy and average downstream performance (Details about score
metric in Appendix Sec. B), our method surpasses the prior best Fioresi et al. (2023) by 6.94%.
Experiments with large VFMs confirm the efficiacy and scalability of SPLAVU as we see similar
trends in performance for each model, even with increasing feature dimensionality.
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5.2 GENDER BIAS EVALUATION

The first row of Table 2 shows the performance difference between each gender presentation sub-
class in the NTU-Bias-F protocol, where the action brush hair is chosen as the gendered shortcut
action label. In the baseline, the performance disparity between perceived gender subclasses is an
unacceptable large 9.42%. We see that using our proposed latent anonymization method SPLAVU
impressively reduces this gap by 42.3%. The second row includes results for the complimentary
protocol NTU-Bias-M, also with the brush hair shortcut class. Interestingly, the baseline subclass
performance disparity is less than that of NTU-Bias-F (5.00%), but our method is still capable of
reducing this unfair split and improving overall performance.

To confirm that these observations hold true in a real-world setting, we look at the final row of
Table 2 to see the performance on the Toyota Smarthome Das et al. (2019) protocol. Notably, our
method improves the classifier quality while simultaneously improving the fairness of its decision
making. In this realistic scenario with a naturally occurring bias, SPLAVU is able to reduce the gap
between perceived gender subclasses by an astonishing 34.0%.

Table 2: Performance on NTU-Bias-F, NTU-Bias-M, and Toyota SH, split across gender subgroup.

Dataset Method P. Female P. Male Overall ∆ Subclass Acc.
Acc. (%) Acc. (%) Acc. (%) Reduction (%)

NTU-Bias-F Baseline 46.78 56.20 51.49 0.00
Ours 49.91 55.35 52.63 42.3

NTU-Bias-M Baseline 55.23 50.23 52.78 0.00
Ours 55.07 51.04 53.06 19.4

TSH Baseline 63.54 68.18 65.05 0.0
Ours 66.13 69.65 67.27 34.0

5.3 ABLATIONS AND ANALYSIS

We utilize the VideoMAE-B model for all ablations. Further details are found in Appendix Sec. C.

Effect of task-specific anonymization training: Our important ablation in Table 3 demonstrates
the effects of training our anonymizer without specific task heads. Notably, the highlighted cells
show impressive generalization to unseen tasks in each experiment with only a minor drop in per-
formance compared to training on the task. For example, looking at row (c) shows fA training with
only temporal action detection as the utility task. Even so, the performance on action recognition
and anomaly detection remain within 1.3% of the non-anonymized score. Across the board, perfor-
mance is not dependent on having seen the given utility task during training, proving that SPLAVU
can effectively generalize to unseen tasks.

Table 3: Ablation changing the tasks seen during anonymization training. The checkmark (✓) labels
seen tasks, x-mark (✗) and highlighted cells indicate tasks unseen during training.

Training Tasks Evaluation Tasks
VISPR K400 THUM14 UCF-CrimeAR TAD AD cMAP (↓) Top-1 Acc. (↑) mAP (%) (↑) AUC (%) (↑)

(a) ✗ ✗ ✗ 70.25 74.83 60.19 84.72

(b) ✓ ✗ ✗ 52.57 74.65 56.45 83.47
(c) ✗ ✓ ✗ 50.17 73.86 58.80 83.67
(d) ✗ ✗ ✓ 49.34 73.51 57.34 84.56
(e) ✓ ✓ ✗ 48.74 74.30 58.67 83.88
(f) ✓ ✗ ✓ 50.77 74.24 58.83 84.28
(g) ✗ ✓ ✓ 48.01 73.70 60.41 84.77

(h) ✓ ✓ ✓ 49.92 74.23 60.50 85.08
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Effect of training set scale: To see if our anonymization method depends on the scale of the train-
ing set, we perform all downstream tasks with the varying size of training datasets as shown in
Table 4. Here, fA is trained using action recognition as the only utility task, with the row indicating
the anonymization dataset. Each column separately evaluates the frozen anonymizer on the given
task/dataset. We see that SPLAVU demonstrates impressive data-efficiency by effectively general-
izing to all downstream tasks, even when training from small-scale datasets like HMDB51.

Table 4: Evaluating different action recognition training sets for our anonymization process.

Pretraining
Dataset

VISPR K400 UCF101 HMDB51 ToyotaSH UCF-Crime THUM14
cMAP (↓) Top-1 (↑) Top-1 (↑) Top-1 (↑) Top-1 (↑) AUC (↑) mAP (↑)

Raw 70.25 74.83 96.80 72.94 65.05 84.72 60.19
K400 52.57 74.74 96.11 71.51 65.34 83.47 56.45

UCF101 49.64 74.49 97.01 72.68 62.29 84.14 52.18
HMDB51 54.35 74.55 96.56 73.92 65.82 84.52 56.50
Toyota SH 51.58 74.35 96.09 72.42 67.27 74.92 41.30

Different training objectives in anonymization: Our ablation study examines key training losses
of the anonymization process in Table 5. Action recognition is used as the only training utility
task to evaluate generalization to unseen tasks. Not unsurprisingly, omitting the utility loss leads
to a considerable drop in model performance on all tasks. Excluding the privacy budget objective
results in no privacy gains over the baseline, emphasizing its necessity. Furthermore, removing latent
consistency loss affects anomaly detection performance but not action recognition, likely because
the action classification proxy task preserves action performance. This underscores the importance
of latent consistency loss in ensuring the generalization of our anonymization method.

Table 5: Ablation for training objectives.

LT LB LLC
VISPR HMDB51 UCF Crime

cMAP (↓) Top-1 Acc. (↑) AUC (%) (↑)
✗ ✗ ✗ 70.25 72.94 84.02
✗ ✓ ✓ 45.12 4.71 60.12
✓ ✗ ✓ 70.44 73.17 83.88
✓ ✓ ✗ 51.70 72.88 65.62
✓ ✓ ✓ 54.35 73.92 84.52

Table 6: Ablation for weight of LLC .

ωLC
VISPR HMDB51 UCF Crime

cMAP (↓) Top1 Acc. (↑) AUC (%) (↑)
0 51.7 72.88 65.62
1 48.96 73.27 72.19
10 52.5 73.4 72.58

100 54.35 73.92 84.52
1000 59.2 73.33 83.57

Relative weightage of latent consistency objective: To further investigate the importance of latent
consistency loss, we consider varying weights w.r.t. the overall training objective in Table 6. Since
we want to ensure generalization across unseen tasks, action recognition is the only training utility
task in this experiment. We found more solid support that with increasing the weightage of the
latent consistency loss, performance maintains on the action-related utility, however, it significantly
increases performance on the unseen anomaly detection task.

6 CONCLUSION

We propose an innovative self-supervised privacy-preserving method via a novel formulation
of latent-space anonymization called SPLAVU. Our method is the first to enable generalized
anonymization for unprecedented performance across various downstream video understanding
tasks, including action recognition, anomaly detection, and temporal action detection. It employs
a self-supervised privacy budget within the latent space, coupled with a latent consistency loss to
maintain the powerful generalization capability of the model. Moreover, the latent formulation en-
ables learning the anonymizer with gradients from each task for a boost in performance, which is
impractical with input anonymization. SPLAVU also eliminates the need for extensive retraining
of the utility video model, enabling the anonymization of large foundational models with compu-
tational efficiency. Our extensive evaluations and ablation studies validate the effectiveness and
data efficiency of our approach. Furthermore, our innovative protocols for assessing gender bias
contribute to the development of more responsible and unbiased video understanding models.
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SUPPLEMENTARY OVERVIEW

Section A: Dataset details
Section B: Implementation details
Section C: Additional experiment details
Section D: Training algorithm

A DATASET DETAILS

Kinetics400 Carreira & Zisserman (2017) is a large-scale video action dataset of YouTube videos
which includes 400 human action classes with at least 400 video clips for each action. Each clip
lasts around 10 seconds and is labeled with a single action class. The dataset is widely used for
pretraining deep learning models for use in many video understanding tasks.
UCF101 Soomro et al. (2012) is an action recognition dataset of realistic action videos consisting
of 101 action categories. With over 13,000 videos from various actions and scenes, it provides a
diverse set of actions and a broad range of variability in terms of actions, viewpoints, appearances,
and backgrounds.
HMDB51 Kuehne et al. (2011) is a collection of 6,766 video clips distributed across 51 human
action categories, each containing a minimum of 101 clips. The dataset includes a wide range of
human actions and is designed for the development and evaluation of action recognition methods.
NTU RGB+D 60 Shahroudy et al. (2016) is a large-scale multi view human action recognition
dataset complete with RGB video, depth maps, and skeleton joints, and IR sequences. This work
only uses the RGB frames. Each of the 40 subjects are recorded completing 60 daily activities from
3 different cameras.
Toyota Smarthome Das et al. (2019) is a challenging real-world activity classification dataset
captured from 7 independent Kinect v1 cameras. The clips recorded 18 senior subjects performing
31 daily activities in a natural manner. This work only uses the provided RGB frames. The dataset
contains high class imbalance, intra-class variation, and duration variance.

THUMOS14 Jiang et al. (2014) focuses on temporal action localization in untrimmed videos. It
extends the UCF101 dataset with temporal annotations for a subset of the action classes, providing
detailed temporal annotations for 20 action classes across 200 validation videos and 213 test videos.

UCF-Crime Sultani et al. (2018) is a large-scale dataset of surveillance videos designed for
anomaly detection. It consists of 1,900 long and untrimmed videos for a total of 128 hours. The
videos contain examples of 13 different real-world anomalies, including burglary, robbery, and
fighting, among others, making it suitable for training and evaluating video anomaly detection
models.

VISPR Orekondy et al. (2017) consists of around 22,000 Flickr images annotated with 68 privacy-
related attributes such as gender, age group, skin color, and more. It offers a multi-class classification
protocol for assessing private attribute prediction. Table 7 shows the VISPR attribute split used,
which we have adopted from Wu et al. (2020); Dave et al. (2022b); Fioresi et al. (2023).

Proposed NTU Bias Evaluation Details More formal details for the creation of the proposed per-
ceived gender NTU bias protocol are described here. While the original dataset is balanced in terms
of scene and actor, the distribution of actor/video counts are not balanced with respect to perceived
gender. To properly evaluate bias mitigation, it is essential to ensure that there are no performance
differences stemming from the larger number of male subjects and training videos. The subject
IDs are used to first restructure the dataset in an effort to maximize fairness across the gender sub-
groups. As such, within themselves, the train and test sets should contain both an even number
of male and female subjects AND an even number of videos per action. Formally, lets take the
set of subjects S = {si}NS

i=1, where NS is the number of subjects in the dataset. For each sub-
ject si ∈ S, there is an associated gender label g(si) where g(si) ∈ {male, female}. We set
Nm = Nf = NS

2 , where Nm and Nf are the number of male and female subjects, respectively. Us-
ing the above notation with DIID abbreviated to D, we define Dm = {(xi,yi,gi) ∈ D|gi = male}
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Table 7: Privacy attributes from subset of VISPR Orekondy et al. (2017) labels as used in previous
works.

VISPR1 Wu et al. (2020); Dave et al. (2022b); Fioresi et al. (2023)
Label Description

a17 color skin color
a4 gender gender

a9 face complete full face visible
a10 face partial part of face visible
a12 semi nudity partial nudity
a64 rel personal shows personal relationship

a65 rel soci shows social relationship

and Df = {(xi,yi,gi) ∈ D|gi = female}. We set |Dm| = |Df | = |D|
2 . With the dataset balanced

across subject counts, subject genders, video count per action/gender, and background representa-
tion, the model should not have access to simple bias shortcuts.

To directly measure gender presentation bias, we inject an artificial bias related to perceived gender
by creating a simple spurious shortcut for the model to follow. Specifically, we control the subclass
ratios across all actions, setting P (g(s) = male|y) = 0.95 and P (g(s) = female|y) = 0.05,
following the correlation strength in Sagawa et al. (2019). However, for one action chosen at random,
we flip this ratio, keeping 95% of perceived female videos (P (g(s) = female|y) = 0.95) and only
5% of perceived male videos (P (g(s) = male|y) = 0.05). We refer to this subset as NTU-Bias-
F. To ensure that the shortcut taking is gender presentation agnostic, we repeat this protocol by
swapping the subclasses, creating NTU-Bias-M. We find that swapping this subclass ratio for one
action class reduces overall performance and causes a gap in subclass performance.

B IMPLEMENTATION DETAILS

All of our code is implemented in PyTorch Paszke et al. (2019). In this section, we provide imple-
mentation details regarding network architecture, input preprocessing, hyperparameters, and training
schedules.

B.1 NETWORK ARCHITECTURE

Each video encoder fE model is left unchanged from the original implementation. The fT classifier
head is a simple linear layer Linear(d, N), where d is the feature vector dimension of fE and
N is the number of classes in Dreco. For the private attribute prediction task, a 2-layer MLP is
used: Linear(d, d) → Linear(d, 7) with a ReLU activation after the first layer. For the
fA AAM, we ablate different architecture styles (see Table 8). To break it down, we tried a LoRA-
based adapter, standard MLPs of different depths, and self-attention based adapters of different
depths. The LoRA adapter features a simple downsample-upsample architecture formulated by:
h+ Linear(d, 256)→ (256, d), where h is the output feature embedding from fE . Each
MLP layer is composed of a Linear(d, d) followed by a ReLU activation and a BatchNorm1D
layer, and dropout with a probability of 0.1 during training. The self-attention layers are standard
MulitheadAttention blocks with dim d and 8 heads by default.

B.2 INPUTS AND AUGMENTATIONS

All inputs consist of 16 frame clips sampled with consecutive frames, resized to spatial resolution of
224× 224. For training, only random resized crop and random horizontal flip with probability 50%
are utilized. In validation, the short edge is resized to 256, then a center crop of 224× 224 is taken.
Standard ImageNet Krizhevsky et al. (2012) mean and standard deviation based normalization is
applied in both settings. The input and augmentation protocol is consistent for every fE .
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B.3 TRAINING DETAILS AND HYPERPARAMETERS

Each AAM variation is trained using an ℓ1 loss to reconstruct the input features for 100 epochs with
the AdamW Loshchilov & Hutter (2017) optimizer and a learning rate of 2e-5. Kinetics400 Carreira
& Zisserman (2017) features are used as the train-test set. Privacy evaluation is carried out using
supervised training of the predictor MLP for 100 epochs at a learning rate of 1e-3. A learning rate
scheduler is based on the loss plateau where it decreases the learning rate to 1/5th.

For anonymization training, the base learning is 1e-4 for both fA and fT∗ , corresponding to a batch
size of 512, scaled when necessary according to the linear scaling rule Goyal et al. (2017a). By
default, ωLC = 100, ωT = 1, and ωB = 1 (Main Eq. 8). The anonymization training is carried out
for 100 epochs.

B.4 OVERALL SCORE METRIC

In order to effectively evaluate and compare each model across multiple tasks, we choose to define
a weighted overall performance metric. Specifically, for each evaluated model, we take the raw
performance scores of each video understanding task and add this with an inverse of the privacy
scores, then divide across tasks. The overall score function is defined as follows:

S(T ∗) =
(3 ∗ (1− S(Dprivacy)) + S(Dreco) + S(Dtad) + S(Danomaly))

4
, (9)

where S(T ) represents the performance on a given task. To prioritize the importance of the privacy
task in comparison to the other tasks collectively, it is assigned a weight of 3. This weighting
strategy ensures that the significance of achieving the privacy objective is on par with the aggregate
significance of all other tasks combined. This scoring metric is used in Main Table 1.

B.5 ADDITIONAL COLLABORATIVE TASK LOSSES

Here we further define the integrated task losses LTAD and LAD referenced in Main Paper Sec. 3.

Temporal Action Detection Loss LTAD (TriDet Shi et al. (2023)):

The overall TriDet loss function combines classification and regression components and is defined
as:

LTAD =
1

Npos

∑
l,t

⊮{clt>0} (σIoULcls + Lreg) +
1

Nneg

∑
l,t

⊮{clt=0}Lcls, (10)

where Npos and Nneg are the numbers of positive and negative samples, respectively; ⊮clt > 0
is an indicator function that equals 1 if clt > 0 (positive sample) and 0 otherwise; σIoU is the
temporal Intersection over Union (IoU) between the predicted segment and the ground truth, serving
as a weighting factor; Lcls is the classification loss, implemented as the focal loss Ross & Dollár
(2017); and Lreg is the regression loss, implemented as the IoU loss Rezatofighi et al. (2019).
The weighting factor σIoU emphasizes predictions with higher temporal IoU, ensuring that higher-
quality predictions contribute more significantly during training. Positive samples are determined
using center sampling, where instants near the center of an action instance are labeled as positive,
and others are considered negative.

Anomaly Detection Loss LAD (MGFN Chen et al. (2023)):

The full MGFN loss function is defined as:

LAD = Lsce + λ1Lts + λ2Lsp + λ3Lmc, (11)

where λ1 = λ2 = 1 and λ3 = 0.001. The base loss Lsce is the standard sigmoid cross-entropy loss:

Lsce = −y log(si,j)− (1− y) log(1− si,j), (12)
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with y as the video-level label (y = 1 for anomaly, y = 0 for normal) and si,j as the computed
anomaly score for frame i in segment j. Following Sultani et al. (2018), it incorporate a temporal
smoothness term Lts and a sparsity term Lsp:

Lts =

n−1∑
i=1

(
f(V i

a )− f(V i+1
a )

)2
, (13)

Lsp =

n∑
i=1

f(V i
a ), (14)

where f(V i
a ) represents the extracted features for segment i of an anomalous video Va. These terms

encourage smooth transitions between sequential segments and promote sparsity in detections.

MGFN introduces a feature amplification mechanism and a magnitude contrastive loss Lmc to en-
hance feature separability within and between videos, formulated as:

Lmc =

B/2∑
p,q=0

(1− l)(D(Mp
n,M

q
n)) +

B∑
u,v=B/2

(1− l)(D

(Mu
a ,M

v
a )) +

B/2∑
p=0

B∑
u=B/2

l(Margin−D(Mp
n,M

u
a )),

(15)

where B is the batch size, M denotes the feature magnitude of the corresponding segment, l is an
indicator function, and D(·, ·) is a distance function. Refer to Chen et al. (2023) for more details.

C ADDITIONAL EXPERIMENTS

Different Architectures for Anonymizing Adapter Module (AAM): Our ablation study evaluates
different AAM architectures in Table 8, with the baseline showing standard performance without
anonymization. The multi-layer perception (MLP) adapter demonstrates moderate privacy enhance-
ment, particularly with increased capacity, while nearly maintaining utility performance. However,
the self-attention-based module is superior across the board, finely balancing privacy and utility,
making it our Anonymizing Adapter Module of choice. The difference between the encoder having
3 and 5 layers is negligible, as performance appears to plateau with the larger capacity. As such, for
more efficient compute without sacrificing performance, we adopt the 3 encoder layer self-attention
AAM for the majority of experiments. Self-attention’s efficacy is likely due to its ability to prioritize
crucial features for anonymization, refining the privacy preservation process.

Table 8: Ablation with different architecture of Anonymizer Adapter Modules.

Anonymizer Architecture VISPR K400 UCF Crime THUM14
cMAP (↓) Top1 Acc. (↑) AUC (%)(↑) mAP (↑)

None 70.25 74.83 84.72 60.19
MLP (1 hidden layer) 67.51 73.39 82.13 59.42
MLP (3 hidden layer) 62.92 64.84 79.63 54.60
MLP (5 hidden layer) 61.92 70.03 83.47 57.34
Self Attention (1 layer encoder) 50.59 72.57 82.12 58.17
Self Attention (3 layer encoder) 49.92 74.23 84.33 60.50
Self Attention (5 layer encoder) 48.56 74.08 83.54 57.46

C.1 ABLATION WITH ATTENTION HEAD COUNTS IN AAM:

In addition to the ablations in the main paper, we show here in Table 9 the effect of changing the
number of heads in the MHSA layer of our transformer based AAM. The performance for each
variation was very similar, with the middle 8 heads beating out the other variations, providing a
solid tradeoff for compute and performance. Our default experiment setup utilizes 8 MHSA heads.
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Table 9: Ablation with different number of MHSA Heads.

Num MHSA
Heads

VISPR HMDB51 UCF Crime
cMAP (↓) Top1 Acc. (↑) AUC (%) (↑)

4 54.78 73.79 83.73
8 54.35 73.92 84.52

16 56.74 73.73 83.99

C.2 COMPARISON WITH OTHER ANONYMIZATION METHODS

Previous work Wu et al. (2020); Dave et al. (2022b); Fioresi et al. (2023) has already shown that
the learnable anonymization techniques outperform methods such as downsampling, blurring, and
blackening. Table 10 shows a comparison to these techniques. In Downsample-2x and Downsample-
4x, the input frames have their resolution reduced by a factor of 2 (112 × 112) and 4 (56 × 56). In
Blackening and Blurring, subjects are detected using an object detector to detect human subjects and
obfuscated using the same methods as described in Wu et al. (2020); Dave et al. (2022b); Fioresi
et al. (2023). We see that none of these techniques achieve an acceptable level of anonymization,
and almost all reduce utility more than our SPLAVU method, further demonstrating the capability
of our framework.

Table 10: Additional experiments with existing obfuscation techniques. All experiments use I3D as
the network backbone.

Anonymization
Method

VISPR UCF101 UCF Crime
cMAP (↓) Top1 Acc. (↑) AUC (%) (↑)

Raw Videos 63.64 89.25 77.68
Downsample-2x 55.64 81.78 76.09
Downsample-4x 52.84 66.21 68.12

Blurring 58.68 83.90 75.69
Blackening 56.36 68.62 73.91

Ours 40.42 90.48 75.82

Table 11 shows the results of our proposed method on PA-HMDB Wu et al. (2020) compared to the
baseline model on raw data.

Table 11: PA-HMDB51 results, using VideoMAE as fE .

Method Privacy
cMAP (↓)

Action
Top-1 Acc (↑)

Baseline 69.9 80.19
Ours 62.6 84.47

C.3 ADDITIONAL EXPERIMENTS WITH LARGE FOUNDATION MODELS

Due to the low compute cost and focus on maintaining the capabilities of powerful models, our
SPLAVU framework is able to scale up to the largest video foundational models currently avail-
able. Table 12 demonstrates the high privacy-utility tradeoff achieved by our method using Video-
MAEv2 Wang et al. (2023) and InternVideo Wang et al. (2022). In these experiments, action recog-
nition performance was exactly maintained, and private attribute prediction was dropped more than
for the smaller models, with only a modest reduction in temporal action detection performance.

C.3.1 TRAINING COMPUTE

One of the many benefits of our SPLAVU framework is its very low compute/training cost. Table 13
shows the overall count of trainable parameters for previous frameworks compared to our AAM. For
VideoMAE-Base, our the SPLAVU framework with the self-attention AAM has 88.7% less train-
able parameters when compared to existing approaches. This difference is even greater when scaling
to larger models. Training less parameters can reduce the tendency to overfit on the proxy task and
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Table 12: Performance when scaling SPLAVU up to larger models.

Anonymization
Method Model VISPR HMDB51 UCF101 THUMOS14

cMAP (↓) Top1 Acc. (↑) Top1 Acc. (↑) mAP (%) (↑)
Baseline

InternVideo-H
74.62 79.48 98.84 62.45

Ours-HMDB51 54.74 79.87 – 56.35
Ours-UCF101 50.29 – 99.21 53.28

Baseline
VideoMAEv2-G

75.69 81.05 97.81 70.09
Ours-HMDB51 53.39 80.85 – 65.21
Ours-UCF101 51.10 – 97.91 62.69
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Figure 3: Graph showcasing the overall runtime and accuracy of 3 privacy-preserving methods. The
x-axis shows time in seconds and the y-axis has an overall score for accuracy/privacy computed in
Equation 16.

allow for learning an effective anonymization on limited training data (see Main Table 4). Also,
in federated learning, these parameters are communicated between the server and clients, so the
reduced learnable parameters are useful in efficient and privacy-preserving federated learning Zhao
et al. (2023); Yu et al. (2022).

The efficiency of our method is further demonstrated using Figure 3. In this instance, our method
did not make use of precomputed features, yet it still completed ≈3.5x faster than the next fastest
method. The combined accuracy/privacy metric is simply defined as follows:

yt = (acct + (1− privt)) ∗ 0.5, (16)

Table 13: Trainable parameters for each model type/training framework.

Method Model Trainable Parameters (M)

SPAct/TeD-SPAD I3D 55.2
SPLAVU 25.6
SPAct/TeD-SPAD VideoMAE-B 129.4
SPLAVU 14.6
SPAct/TeD-SPAD V-JEPA 694.2
SPLAVU 39.8
SPAct/TeD-SPAD InternVideo-H 675.0
SPLAVU 39.8
SPAct/TeD-SPAD VideoMAEv2-G 1055.5
SPLAVU 48.0
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where t is the current time, yt is the performance score, and acct and privt are the top-1 accuracy
scores and privacy prediction score using the current fA model, respectively. Privacy is inverted as a
lower private attribute prediction score is considered better. Each method was trained for 50 epochs
using the same hyperparameters. The SPLAVU latent anonymization framework achieves a higher,
more stable performance at only a fraction of the runtime when compared to input-based methods.

C.3.2 PRECOMPUTING FEATURE EMBEDDINGS

Since we are using a completely frozen video encoder model fE , the latent feature embeddings can
be precomputed for a much faster training process. In this case, only validation augmentations are
used, and each video clip is only ran through the model forward pass once. There is flexibility in clip
choice and skip rate. In this work, we opt for a simple skip rate of 1 (consecutive frames), and take
all non-overlapping sequential clips for each video. The computed embeddings are saved for each
video, and a random clip is sampled during training time. The same evenly-spaced 5 video clips are
used for validation. Table 14 shows a comparison between using the raw videos and precomputed
features. Due to the use of weak augmentations in the raw videos, we see an improvement over
using the precomputed. However, using the precomputed features only requires a single forward
pass over the dataset, which takes 4 minutes (HMDB51), then only 1.4 minutes for training.

Table 14: Results comparison between AAM trained on HMDB51 using input videos vs. precom-
puted features. Experiment was done using VideoMAE-B model.

Training
Data

PAP AR TAD AD Training
VISPR (↓) HMDB51 (↑) T14 (↑) UCF-Cr. (↑) Time (min)

Raw Videos 50.59 75.10 58.15 82.71 185.3
Precomp. Features 54.35 73.92 56.50 84.52 4.0+1.4 (5.4)
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D TRAINING ALGORITHM

Algorithm 1 formalizes the SPLAVU workflow notation. We consider anonymizer fA and task
heads fTAR

, fTTAD
, and fTAD

for the anonymization training and freco, ftad, and fwsad for down-
stream tasks. In order, these models are parameterized by θA, θTAR

, θTTAD
, θTAD

, θreco, θtad, and
θwsad. Dreco, Dtad, and Dwsad are all used in the proxy anonymization process, then also for the
downstream task evaluation. The downstream Dreco may be the same or different from during the
anonymization process.

Algorithm 1: SPLAVU Framework
1 Anonymization Training
2 Inputs:
3 Datasets: Dreco, Dtad, Dwsad

4 # of Epochs: anon epochs
5 Learning Rates: αA, αAR, αTAD, αAD

6 Hyperparameters: ωA, ωT , ωB , ωLC , ωAR, ωTAD, ωAD

7 Output: θA, θTAR
, θTTAD

, θTAD

8 Model Initialization:
9 Initialize fE with Kinetics400 weights Carreira & Zisserman (2017);

10 Initialize θA ← θA − αA∇θA(LL1(θA))
11 Multitask Anonymization Training:
12 for e0 ← 1 to anon epochs do
13 θA ← θA − αA∇θA(ωLCLLC(θA) + ωTLT∗(θA, θTAR , θTTAD , θTAD )− ωBLB(θA))

θTAR ← θTAR − αAR∇θTAR
(LAR(θTAR , θA)),

θTTAD ← θTTAD − αTAD∇θTTAD
(LTAD(θTTAD , θA)),

θTAD ← θTAD − αAD∇θTAD
(LAD(θTAD , θA)),

14 end
15 Downstream Tasks Evaluation
16 Inputs:
17 Datasets: Dreco, Danomaly, Dtad

18 # of Epochs: reco epochs, anomaly epochs, tad epochs
19 Learning Rates: αreco, αwsad, αtad

20 Output: θreco, θwsad, θtad
21 Privacy-Preserved Action Recognition Training:
22 for e0 ← 1 to reco epochs do
23 θreco ← θreco − αreco∇θreco(LT (θreco, θA)),
24 end
25 Feature Extraction on Danomaly:
26 Fanomaly = { fA(fE(X(i)))) | ∀X(i) ∈ Danomaly }
27 Privacy-Preserved Weakly-Supervised Anomaly Detection (WSAD) Training:
28 for e0 ← 1 to anomaly epochs do
29 θwsad ← θwsad − αwsad∇θwsad(Lwsad(θwsad,Fanomaly))
30 end
31 Feature Extraction on Dtad:
32 Ftad = { fA(fE(X(i))) | ∀X(i) ∈ Dtad }
33 Privacy-Preserved Temporal Action Detection (TAD) Training:
34 for e0 ← 1 to tad epochs do
35 θtad ← θtad − αtad∇θtad(Ltad(θtad,Fanomaly))
36 end
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