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Figure 1: We introduce PixelVLA, a vision–language–action (VLA) model designed for pixel-level
reasoning and multimodal prompting. Unlike prior VLA models (a), which primarily rely on image-
level understanding for manipulation and depend solely on textual instructions, PixelVLA (b) ad-
vances beyond these limitations by enabling fine-grained pixel-level comprehension and supporting
both textual and visual prompts. This paradigm effectively enhances spatial precision and expands
human–robot interaction, leading to superior performance (c) compared to baseline methods.

ABSTRACT

Vision-Language-Action models (VLAs) are emerging as powerful tools for learn-
ing generalizable visuomotor control policies. However, current VLAs are mostly
trained on large-scale image–text–action data and remain limited in two key ways:
(i) they struggle with pixel-level scene understanding, and (ii) they rely heavily on
textual prompts, which reduces their flexibility in real-world settings. To address
these challenges, we introduce PixelVLA, the first VLA model designed to sup-
port both pixel-level reasoning and multimodal prompting with text and visual
inputs. Our approach is built on a new visuomotor instruction tuning framework
that integrates a multiscale pixel-aware encoder with a visual prompt-aware en-
coder. To train PixelVLA effectively, we further propose a two-stage automated
annotation pipeline that generates Pixel-160K, a large-scale dataset with pixel-
level annotations derived from existing robot data. Experiments on three standard
VLA benchmarks and two VLA model variants show that PixelVLA improves
manipulation success rates by 10.1% ∼ 28.7% over OpenVLA, while requiring
only 1.5% of its pretraining cost. These results demonstrate that PixelVLA can
be integrated into existing VLAs to enable more accurate, efficient, and versatile
robot control in complex environments. The code will be released as open source.

1 INTRODUCTION

Traditional robotic policy learning methods (Brohan et al. (2022); Liang et al. (2024); Chi et al.
(2023)) rely heavily on task-specific demonstration datasets (James et al. (2020); Liu et al. (2023a)),
which limits their ability to generalize to out-of-distribution (OOD) tasks. In contrast, vision-
language-action models (VLAs) (Brohan et al. (2023); Kim et al. (2024); Black et al. (2024)) lever-
age large-scale robot datasets together with pre-trained vision-language models (VLMs), achieving
stronger generalization and instruction-following capabilities. For example, RT-2 (Brohan et al.
(2023)) integrates internet-scale VLMs with robotic control, enabling semantic reasoning and ma-
nipulation of novel objects. Similarly, OpenVLA (Kim et al. (2024)) leverages Prismatic VLM
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(Karamcheti et al. (2024)) as backbone to conduct large-scale training on the OXE dataset (O’Neill
et al. (2024)), leading to significant improvement in OOD generalization.

Despite recent progress, as shown in Fig. 1 (a), most VLAs (Kim et al. (2024); Yang et al. (2025);
Shi et al. (2025)) inherit from VLMs that process observations only at the image level, lacking
fine-grained pixel-level understanding. This gap limits spatial reasoning and weakens OOD gener-
alization. In contrast, pixel-level comprehension has already been successfully validated in VLMs
(Ren et al. (2024); Zhang et al. (2024b)) and enables precise object perception and richer spatial
awareness, which are key for robust manipulation in diverse environments. The second limitation
lies in prompting. Most VLAs depend solely on textual instructions, which overlook subtle visual
cues and constrain multimodal human–robot interaction (Jiang et al. (2023); Zheng et al. (2024)).
To explore visual prompting in VLAs, TraceVLA (Zheng et al. (2024)) improves spatial-temporal
awareness with visual traces, and LLaRA (Li et al. (2025a)) encodes object locations within textual
prompts to enhance region-level understanding. Nevertheless, these approaches still face challenges
in achieving fine-grained pixel-level understanding and effectively integrating diverse multimodal
prompts (e.g., points, lines, regions, masks) (Jiang et al. (2023); Wu et al. (2024b)).

Inspired by the successful visual instruction tuning in VLMs (Liu et al. (2023b); Karamcheti et al.
(2024)), we introduce a novel visuomotor instruction tuning framework to train our VLA models.
This framework is designed to significantly enhance the pixel-level understanding capabilities of
VLAs and empower them to effectively process multimodal visuomotor control prompts. However,
current robotic datasets (O’Neill et al. (2024); Khazatsky et al. (2024)) lack multimodal prompts and
pixel-level annotations. Meanwhile, directly employing existing VLMs and open-set segmentation
models (Karamcheti et al. (2024); Liu et al. (2024a)) to extract visual prompts and pixel-level anno-
tations proves to be ineffective. This is due to a significant domain gap between their pre-training
data and robotic data, as well as the cluttered and low-quality nature of robotic images.

To tackle the above challenges, as presented in Fig. 1 (b), we introduce PixelVLA in this paper, the
first vision-language-action model that achieves both pixel-level understanding and multimodal
prompting. The model architecture of PixelVLA comprises a pre-trained VLMs as backbone, a
visual prompt-aware encoder, a multiscale pixel-aware encoder and a continuous action decoder.
Specifically, in PixelVLA, we introduce a lightweight visual prompt-aware encoder to process the
diverse visual prompts (e.g., points, lines, regions, masks). Subsequently, a novel multiscale pixel-
aware encoder is designed to generate pixel-aware embeddings to inject pixel-level understanding
into VLAs. Furthermore, we develop a continuous action representation decoder that leverages
pixel-level understanding to capture fine-grained action details based on the hidden states of VLMs.

To address the challenge of synthesizing high-quality multimodal prompts and pixel-level anno-
tations from cluttered, low-quality robot observations, we propose a two-stage automated annota-
tion pipeline to create a pixel-annotated visuomotor instruction tuning dataset, namely Pixel-160K.
Concretely, our two-stage automated annotation pipeline comprises a gripper-aware region proposal
stage followed by a multimodal object segmentation stage. In the first stage, a video segmenta-
tion model is employed to localize the robot gripper and generate preliminary region proposals
for target objects. Subsequently, the second stage leverages a large language model (LLM) and
an open-vocabulary segmentation model to predict pixel-level annotations and produce multimodal
prompts from these region proposals. Thereafter, we train PixelVLA using the proposed visuo-
motor instruction tuning framework, which incorporates a continuous action training stage and a
pixel-level understanding enhancement stage. To evaluate the effectiveness of PixelVLA, we inte-
grate its architecture and visuomotor instruction-tuning procedure into two widely adopted VLAs:
OpenVLA (O’Neill et al. (2024)) and π0 (Black et al. (2024)). Extensive evaluations on three VLA
benchmarks demonstrate that PixelVLA advances current VLAs to achieve superior performance in
zero-shot manipulation tasks and adaptation to new robot setups, while requiring only 1.5% of the
pretraining computation of OpenVLA.

The main contributions of this paper are listed below:

• We present PixelVLA, a novel vision-language-action model enabling pixel-level under-
standing while supporting both textual and visual prompts. In PixelVLA, we introduce a
lightweight visual prompt-aware encoder to process diverse visual prompts, a novel multi-
scale pixel-aware encoder for pixel-level understanding injection, and a continuous action
decoder to generate robotic action.
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• We design a novel two-stage automated annotation pipeline to effectively create a pixel-
level visuomotor instruction tuning dataset form the publicly available robot datasets, called
Pixel-160K, where the pipeline comprises the gripper-aware region proposal stage and the
multimodal object segmentation stage.

• We introduce a novel visuomotor instruction tuning framework for training PixelVLA,
comprising a continuous action training stage and a pixel-level understanding enhance-
ment stage. Extensive evaluations on three benchmarks and two VLA model variants show
that PixelVLA improves performance of current VLAs with relatively low training cost.

2 RELATED WORK

Vision-Language-Action Models. Vision-language-action models (VLAs) (Team et al. (2025);
Brohan et al. (2024); Black et al. (2024); Ding et al. (2024); Fan et al. (2025)) have propelled robotic
manipulation forward by endowing robots with the ability to understand and execute language-based
instructions in diverse visual environments. Trained on numerous robot episodes, OpenVLA (Kim
et al. (2024)) enables zero-shot control and adaptation for various robots. Building on the foun-
dational capabilities of OpenVLA, various approaches have been proposed to advance robotic ma-
nipulation, such as SpatialVLA (Qu et al. (2025)) and ECoT (Zawalski et al. (2024)). Most prior
VLAs focus on innovations in visual processing for robotic manipulation, such as introducing visual
chain-of-thought (CoT) reasoning mechanisms for visual planning (Zhao et al. (2025)). Neverthe-
less, they primarily process visual information at the image level, lacking the ability to perform
detailed pixel-level visual processing required for precise robotic manipulation.

Visual Prompting in VLMs. Visual prompting methods (Zhang et al. (2023); Ren et al. (2024); Wu
et al. (2024a); Zhang et al. (2024b)) have recently emerged as a complementary paradigm to textual
prompting, allowing models to accept more fine-grained supervision in the form of region-level and
even pixel-level instructions (Ma et al. (2024); Rasheed et al. (2024)) over multimodal inputs. Re-
gionGPT (Guo et al. (2024)) improves region-level understanding in VLMs by enhancing the spatial
awareness of visual encoders. Ferret (You et al. (2023)) enhances region-level grounding in MLLMs
through a hybrid region representation and a spatial-aware visual sampler that supports diverse re-
gion inputs, while Ferret-v2 (Zhang et al. (2024a)) further introduces any-resolution grounding and
multi-granularity visual encoding, leading to improved fine-grained visual understanding and lo-
calization over prior MLLMs. However, despite these advances, robust pixel-level understanding
in VLA frameworks remains challenging, especially when aligning fine-grained spatial cues with
continuous, high-precision action control.

Visual Instruction Tuning in VLAs. Visual Instruction Tuning (Zhu et al. (2023); Liu et al.
(2023b); Rasheed et al. (2024)) is generally divided into two steps, which are modality alignment
and instruction optimization, respectively. This strategy also serves as the core paradigm for re-
alizing multimodal capabilities in VLAs (Li et al. (2025a), Zheng et al. (2024); Zawalski et al.
(2024)). For example, TraceVLA (Zheng et al. (2024)) introduces visual trace prompting to en-
hance spatial-temporal awareness in VLAs. In contrast, LLaRA (Li et al. (2025a)) reformulates the
robot action policy as visuo-textual conversations through visuomotor instruction tuning and RoVI
(Li et al. (2025b)) develops an object-centric visual instruction paradigm with symbolic sketches.
However, to address various visuomotor control challenges, adapting visual instruction tuning for
VLAs remains a major constraint.

3 PROBLEM DEFINITION: VISUOMOTOR INSTRUCTION TUNING

Inspired by the effectiveness of visual instruction tuning in VLMs (Liu et al. (2023b); Rasheed et al.
(2024); Wu et al. (2024a)), we aim to adapt a similar process for VLAs to tackle diverse visuo-
motor control challenges (e.g., various multimodal prompts) and achieve pixel-level understanding.
Similar to LLaRA (Li et al. (2025a)), we formalize this paradigm as Visuomotor Instruction Tun-
ing. Specifically, following OpenVLA (Kim et al. (2024)), given a series of image observations
X = {xt ∈ RH×W×3}Tt=1 and a language instruction L, the VLA model Fθ(·) can generate a
series of robotic actions A = {at ∈ R7}Tt=1, i.e., at = Fθ(x

t,L). For an episode of length T , the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

LLM (Llama 2 7B)

Dino V2 SigLiP

MLP Projector Multiscale

 Pixel-

aware 

Encoder

… …

Llama Tokenizer

…

Put This Eggplant  in 
Yellow Basket 

Visual 

Prompt-

aware

Encoder 

PixelVLA

Continuous Action Decoder

Robotic Observation Visual prompts

Language Instruction

LLM Hidden States

7D Robot Action

Linear

Projector
MLPMulti-level 

Features

Selected Features
Pixel-aware 

Embeddings

Prompt-aware 

Embeddings
(b) Visual Prompt-aware Encoder 

Linear

Projector
MLP

Linear

Projector
LN

(c) Continuous Action Decoder
LLM Hidden States 7D Robot Action

ResNet Blocks

Points Lines

Regions Masks

Pixel-level Masks

Visual prompts

Visual Prompting 

Encoder 

Prompting Features

MLP

Pixel-level Masks

(a) Multiscale Pixel-aware Encoder

Figure 2: Overview of the PixelVLA architecture. The model integrates three novel components: (1)
a visual prompt-aware encoder for processing input diverse visual prompts; (2) a multiscale pixel-
aware encoder that injects pixel-level information into token embeddings; and (3) a continuous
action decoder to predict 7D robot actions. PixelVLA enhances fine-grained pixel-level spatial
understanding and multimodal prompt responsiveness, enabling more precise manipulation policies
in visually complex scenarios.

likelihood of successfully completing the task through an action sequence A can be calculated as:

p(A|X,L) =

T∏
t=1

pθ(a
t|xt,L), (1)

where T denotes the length of timestep in an episode, θ represents the parameters of VLA model
Fθ(·) and pθ denotes the likelihood of generating action at by the VLA model Fθ(·). How-
ever, this robotic action generation process fails to accommodate various visual prompts and
achieve fine-grained pixel-level understanding. To address these challenges, we here introduce
a novel visuomotor instruction tuning framework that reformulates robotic action generation as
at = Fθ(x

t,pt,L,V) and reformulate the likelihood in Eq. (1) for an episode of length T as:

p(A|X,P,L,V) =

T∏
t=1

pθ(a
t|xt,pt,L,V), (2)

where P = {pt ∈ RH×W }Tt=1, pt represents the pixel-aware mask input, and V denotes the diverse
visual prompts (e.g., points, lines, regions, masks).

4 THE PROPOSED METHOD

As illustrated in Fig. 2, we present the architecture of the proposed PixelVLA to achieve pixel-
level understanding and accommodate both textual and visual prompts. Specifically, PixelVLA
integrates a novel multiscale pixel-aware encoder (Sec. 4.1) that infuses pixel-level understanding
into VLAs through tokenized representations, a visual prompt-aware encoder for handling diverse
visual prompts (Sec. 4.1), and a continuous action decoder (Sec. 4.1) for accurate robotic action
prediction. In addition, a automated annotation generation pipeline and a pixel-annotated visuomo-
tor instruction tuning dataset Pixel-160K are presented in Sec. 4.2. Subsequently, we introduce the
proposed visuomotor instruction tuning procedure for training PixelVLA in Sec. 4.3.

4.1 PIXELVLA ARCHITECTURE

Current VLAs (Black et al. (2024); Kim et al. (2024); Wen et al. (2025)) are typically pre-trained
on large-scale image-instruction-action robotic datasets (O’Neill et al. (2024); Wu et al. (2024c)).
Architecturally built upon VLMs, these models process single or multi-view images along with
textual instructions. However, this foundation inherently restricts their ability to achieve pixel-level
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understanding or respond to detailed visual prompts, resulting in constraining VLAs for spatial
comprehension and object perception.

To address these architectural constraints, as illustrated in Fig. 2, we present a novel VLA model,
namely PixelVLA. Specifically, PixelVLA integrates four main parts: (1) a vision encoder and
MLP projector for visual embedding extraction, (2) a visual prompt-aware encoder and a mul-
tiscale pixel-aware encoder for accommodating visual prompts and pixel-level understanding in-
jection, (3) a LLM backbone and (4) a continuous action decoder for non-discrete robot ac-
tion prediction. Following OpenVLA (Kim et al. (2024)), we preliminarily build our PixelVLA on
Prismatic-7B VLM (Karamcheti et al. (2024)), where a Llama 2-7B (Touvron et al. (2023)) is em-
ployed as LLM backbone. The vision encoder of PixelVLA consists of pre-trained DinoV2 (Oquab
et al. (2023)) and SigLIP (Zhai et al. (2023)) models, and a lightweight 2-layer MLP projector is
utilized to map the output features of the vision encoder into the input space of LLM.

Multiscale Pixel-aware Encoder. To extract pixel-level information from multiscale image features
and encode the spatial positional information of visual prompts, we propose a multiscale pixel-aware
encoder designed to generate both pixel-aware embeddings and prompt-aware embeddings. Specif-
ically, as described in Eq. (2), for each training sample {x0,p0,L0,V0} drawn from Pixel-160K,
PixelVLA first encodes the image observation x0 ∈ RH×W×3 with the SigLIP vision encoder to
obtain multi-level visual features F0

v = {f0,iv ∈ RHi×Wi×Di}Li=1, where L denotes the number of
selected feature levels. As illustrated in Fig. 2 (a), the multiscale pixel-aware encoder leverages
the features F0

v and a pixel-aware mask input p0 ∈ RH×W to compute the pixel-aware embed-
dings E0

p ∈ RNp×D. Here, Np is the length of pixel-aware embeddings and D denotes the feature
dimension of LLM. Specifically, the pixel-aware embeddings E0

p can be computed as follows:

E0
p = MLP(

L∑
i=1

Γi(f0,ip )), f0,ip =
p0 · f0,iv

|p0|
, (3)

where MLP(·) is a multilayer perceptron (MLP) layer and Γi(·) denotes the linear projection in
the i-th linear projector. Supervised by the action prediction loss, PixelVLA learns to associate the
pixel-level information encoded in these pixel-aware embeddings E0

p with action generation, thereby
enhancing the VLA backbone with pixel-level understanding.

Visual Prompt-aware Encoder. As shown in Fig. 2(b), we adopt a lightweight prompt encoder
similar to that in SAM (Kirillov et al. (2023)) and integrate it into PixelVLA as the visual prompting
encoder. Concretely, the user-provided prompts V0 ∈ RH×W are first converted into continuous po-
sitional embeddings based on their normalized image coordinates, and then combined with learned
prompt-type embeddings to produce prompt features F0

s ∈ RNs×Ds , where Ns is the embedding
length and Ds is the feature dimension. These features F0

s are further transformed by an MLP to
obtain the final prompt-aware embeddings E0

s ∈ RNs×D. Since each embedding is explicitly tied to
a specific location or region in the image via its coordinate-based positional embedding, the spatial
positional information of the visual prompts is preserved throughout the encoding process.

Continuous Action Decoder. Most existing VLA models (Kim et al. (2024); Zheng et al. (2024);
Li et al. (2024a)) adapt autoregressive generation to predict sequential action tokens based on the
pre-trained VLM backbone. In contrast, following π0 (Black et al. (2024)), we develop a contin-
uous action decoder that directly predicts continuous action representations, leveraging pixel-level
understanding to capture fine-grained action details. Specifically, as illustrated in Fig. 2 (b), the
hidden states Ft ∈ RNs×D from the last layer of LLM backbone are sequentially processed by a
linear projector, Nr ResNet blocks and a MLP projector to obtain the actions A ∈ RNc×7. Here,
Ns denotes the sequence length of the LLM backbone, while Nc represents the chunk size used in
action chunking (Zhao et al. (2023)). In this way, we can effectively preserves the pixel-level under-
standing learned by the pre-trained VLM backbone while enabling the continuous action decoder to
incorporate these features directly into the continuous action prediction. The resulting continuous
actions are then used to compute an L1 regression loss that supervises the training process.

4.2 VISUOMOTOR TUNING DATA GENERATION

In this section, we introduce Pixel-160K as shown in Fig. 3, a visuomotor instruction tuning dataset
comprising image-text-action triplets with visual prompts and mask annotations, containing approx-
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Figure 3: Overview of the Pixel-160K Dataset.

imately 160K manipulation episodes to encourage VLAs for fine-grained pixel-level understand-
ing. Specifically, to address the challenge of cluttered and low-quality robot observations in robot
datasets, we propose an automated annotation pipeline containing a gripper-aware region proposal
stage and a multimodal object segmentation stage. This pipeline enables the effective generation of
visual prompts and mask annotations for each episode using the publicly available Fractal dataset
(Brohan et al. (2022)) and Bridge v2 dataset (Walke et al. (2023)).

Gripper-aware Region Proposal Stage. Given a sequence of observations {x1
η,x

2
η, . . . ,x

Nη
η }

from the η-th episode, the first gripper-close state in the episode as Gη ∈ {1, 2, . . . , Nη} and
the corresponding observation as x

Gη
η ∈ {x1

η,x
2
η, . . . ,x

Nη
η }. Here, Nη represents the length

of the η-th episode. Sequentially, we can select a series of gripper-close state observations
{xG1

1 ,xG2
2 , . . . ,x

GNe

Ne
} from the whole dataset, where Ne denotes the number of total episodes in the

dataset. Furthermore, we assume {xG1
1 ,xG2

2 , . . . ,x
GNe

Ne
} as a discrete video and apply SAM 2 (Ravi

et al. (2024)) to generate Ne gripper masks. Then, we compute the minimal axis-aligned bounding
boxes enclosing these masks, uniformly enlarge each by a fixed margin to capture local context and
reduce detection noise, and take the resulting boxes as the Ne region proposals {R1,R2, . . . ,RNe}.
Here, Rη ∈ R4 is the proposal for the η-th episode. In this way, the region proposals can be lever-
aged to accurately capture object from cluttered and low-quality robot observations.

Multimodal Object Segmentation Stage. Given a manipulation instruction such as “Put the Egg-
plant in Yellow Basket”, we employ Llama 2–7B to reason over the instruction and extract the textual
description of the target object to be manipulated, e.g., “Eggplant”. For the η-th episode, we then
provide the target object text along with the region proposal {Rη} into an open-vocabulary object
detector Grounding DINO (Liu et al. (2024a)) and SAM (Kirillov et al. (2023)). These models
detect all relevant object instances, generate their mask annotations, and associate them with the
corresponding language expressions from the target object text. We then filter the predictions based
on their confidence scores, retaining only the mask annotations within the bounding box that has the
highest box-confidence. Sequentially, we derive visual prompts from the object masks by randomly
sampling points within the mask, generating random lines inside the object region, and extracting
external bounding boxes through mask contour detection.

Finally, we apply the proposed two-stage automated annotation pipeline to the publicly available
Fractal dataset (Brohan et al. (2022)) and Bridge v2 dataset (Walke et al. (2023)). We first au-
tomatically discard samples with failed mask generation (e.g., empty or invalid masks) using a
simple script, and then the authors rapidly inspect the remaining samples to remove those with
clearly incorrect masks. In total, this process filters out approximately 19.2% of the generated
samples. The resulting dataset, Pixel-160K, contains 160K robot manipulation episodes and 6.5M
image–text–action triplets with visual prompts and mask annotations.

4.3 VISUOMOTOR INSTRUCTION TUNING PROCEDURE

To advance fine-grained pixel-level understanding in VLAs, we propose a novel visuomotor in-
struction tuning procedure, consisting of a continuous action training stage and a pixel-level under-
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Table 1: SimplerEnv (Li et al. (2024b)) simulation valuation results in terms of the average success
rate for the Google Robot setup. VM denotes Visual Matching and VA is Variant Aggregation. ■ and
■ denote tuning-based methods applied to the pretrained weights of OpenVLA and π0, respectively.

Methods Pick Coke Can Move Near Open/Close Drawer Average
VM VA VM VA VM VA VM VA

RT-1-X (O’Neill et al. (2024)) 56.7 49.0 31.7 32.3 59.7 29.4 49.4 36.9
Octo-Base (Team et al. (2024)) 17.0 0.6 4.2 3.1 22.7 1.1 14.6 1.6
HPT (Wang et al. (2024)) 56.0 – 60.0 – 24.0 – 46.7 –
RoboVLMs (Liu et al. (2025)) 72.7 68.3 66.3 56.0 26.8 8.5 56.3 46.3
Dita (Hou et al. (2025)) 83.7 85.5 76.0 73.0 46.3 37.5 68.7 65.3
SpatialVLA (Qu et al. (2025)) 81.0 89.5 69.6 71.7 59.3 36.2 71.9 68.8

OpenVLA (Kim et al. (2024)) 16.3 54.5 46.2 47.7 35.6 17.7 32.7 40.0
OpenVLA-SFT 17.5 51.9 44.6 42.3 32.8 16.8 31.6 38.6
TraceVLA (Zheng et al. (2024)) 28.0 60.0 53.7 56.4 57.0 31.0 46.2 49.1
PixelVLA 81.7 72.7 60.1 57.7 42.3 20.0 61.4 50.1

π0 (Black et al. (2024)) 72.7 75.2 65.3 63.7 38.3 25.6 58.8 54.8
π0-SFT 70.8 72.1 64.2 61.3 36.8 28.3 57.3 53.9
PixelVLA-π0 80.7 76.8 67.7 62.0 41.3 30.8 63.3 56.5

standing enhancement stage. Concretely, the first continuous action training stage enables the VLA
model to acquire robust continuous action representations from a large mixture of image–text–action
datasets. In the second stage, pixel-level understanding is explicitly enhanced by adapting the pre-
trained model on Pixel-160K dataset through LoRA adaptation (Hu et al. (2022)). The following
sections elaborate on the key designs of this two-stage training strategy.

Continuous Action Training Stage. Before training, we initialize the vision encoder, the MLP pro-
jector, and the LLM backbone in PixelVLA with the pretrained weights of VLAs (Kim et al. (2024);
Black et al. (2024)), which has been trained on the large-scale mixture dataset OXE (O’Neill et al.
(2024)). In addition, during this stage, the visual prompt-aware encoder and the multiscale pixel-
aware encoder of PixelVLA are removed, while all other modules except the continuous action
decoder are frozen to preserve the general manipulation knowledge learned in the pretrained VLAs.
To directly map the final hidden states of the last layer of LLM to continuous action values, we
follow (Zhao et al. (2023); Kim et al. (2025)) to implement L1 regression to align predicted actions
generated by the proposed continuous action decoder with the ground-truth actions. Unlike Open-
VLA, which represents actions as discrete tokens by normalizing each action dimension to [−1,+1]
and uniformly discretizing it into 256 bins, PixelVLA directly predicts continuous action values,
thereby avoiding the loss of fine-grained action details introduced by discretization. Furthermore,
during this stage, we train PixelVLA on a mixture of Fractal dataset and Bridge v2 dataset.

Pixel-level Understanding Enhancement Stage. Originally, most existing visuomotor instruction
tuning methods (Li et al. (2025a); Kim et al. (2025); Yang et al. (2025)) focus on image-level under-
standing. In contrast, at this stage, to enhance pixel-level understanding of PixelVLA, we employ
LoRA adaptation to efficiently fine-tune PixelVLA’s LLM backbone on Pixel-160K dataset, while
jointly training the visual prompt-aware encoder along with the multiscale pixel-aware encoder.
Meanwhile, the continuous action decoder is optimized while the remaining PixelVLA modules
remain frozen. Furthermore, we adopt the same L1 regression loss and continuous action represen-
tation strategy as those employed in the continuous action training stage. At each training step, given
a mini-batch {xi,pi,ai,Li,Vi}Bi=1 sampled from the Pixel-160K dataset, the forward process at a
single timestep of this stage can then be formulated as follows:

LPixelV LA =

B∑
i=1

∥ai − C(H(Ei
v,E

i
l,E

i
p,E

i
s))∥1, (4)

where C(·) refers to the continuous action decoder and H represents the LLM backbone of Pix-
elVLA. In addition, B denotes the mini-batch size and ∥ · ∥1 is the L1 norm used for regression.
Notably, Ei

v,E
i
l,E

i
o,E

i
s correspond to the visual embeddings produced by the vision encoder and

the MLP projector, the language embeddings from the LLM tokenizer, the pixel-aware embeddings
and the prompt-aware embeddings, respectively.
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Table 2: Evaluation results from the SimplerEnv simulation for the WidowX robot. Gra. denotes
the average grasp success rate, and Suc. is the overall task completion success rate.

Methods Put Spoon Put Carrot Stack Blocks Put Eggplant Average
Gra. Suc. Gra. Suc. Gra. Suc. Gra. Suc. Gra. Suc.

RT-1-X (O’Neill et al. (2024)) 16.7 0.0 20.8 4.2 8.3 0.0 0.0 0.0 11.5 1.1
Octo-Base (Team et al. (2024)) 34.7 12.5 52.8 8.3 31.9 0.0 66.7 43.1 46.5 16.0
Octo-Small (Team et al. (2024)) 77.8 47.2 27.8 9.7 40.3 4.2 87.5 56.9 58.4 29.5
RoboVLMs (Liu et al. (2025)) 37.5 20.8 33.3 25.0 8.3 8.3 0.0 0.0 19.8 13.5
SpatialVLA (Qu et al. (2025)) 25.0 20.8 41.7 20.8 58.3 25.0 79.2 70.8 51.1 34.4

OpenVLA (Kim et al. (2024)) 4.1 0.0 33.3 0.0 12.5 0.0 8.3 4.1 14.6 1.0
OpenVLA-SFT 8.4 0.0 35.1 12.8 10.5 0.0 16.5 8.4 17.6 5.3
PixelVLA 20.8 4.2 37.5 20.8 16.6 0.0 79.2 41.7 38.5 16.7

π0 (Black et al. (2024)) 45.8 29.1 25.0 0.0 50.0 16.6 91.6 62.5 53.1 27.1
π0-SFT 45.3 26.8 28.6 4.2 52.3 18.6 88.5 59.6 53.7 27.3
PixelVLA-π0 51.7 32.4 28.7 16.7 56.8 21.7 83.3 61.7 55.1 33.8

5 EXPERIMENTS

We conduct experiments to investigate how PixelVLA leverages pixel-level understanding and mul-
timodal prompts to enhance the performance of current VLAs in both in-domain and out-of-domain
adaptation. To achieve this objective, we develop three experimental paradigms: (1) zero-shot object
manipulation comparisons for out-of-domain generalization (Sec. 5.2), (2) adaptation to new robot
setups to evaluate in-domain robustness (Sec. 5.3), and (3) a series of ablation studies to quantify
the contribution of each individual module within PixelVLA (Sec. 5.4).

5.1 EXPERIMENTAL SETUP

Evaluation tasks. We conduct all experiments on three simulation benchmarks, i.e., SimplerEnv-
Google Robot (Li et al. (2024b)), SimplerEnv-WidowX (Li et al. (2024b)) and LIBERO (Liu et al.
(2023a)). SimplerEnv (Li et al. (2024b)) is an open-source simulation suite that facilitates repro-
ducible and scalable evaluation of robot manipulation policies by explicitly addressing visual and
dynamic gaps between simulation and real hardware. In light of this, we conduct zero-shot object
manipulation comparisons on SimplerEnv. In addition, following OpenVLA (Kim et al. (2024)),
we evaluate performance of new robot adaptation across four task suites within LIBERO (Liu et al.
(2023a)), i.e., LIBERO-Spatial, LIBERO-Object, LIBERO-Goal and LIBERO-Long.

Implementation Details. To evaluate the effectiveness of PixelVLA, we apply its architecture and
the proposed visuomotor instruction-tuning procedure to two widely-used VLAs, OpenVLA (Kim
et al. (2024)) and π0 (Black et al. (2024)). Regarding the training data, PixelVLA is trained in
two stages: the first stage utilizes real-robot demonstrations from the Fractal dataset (Brohan et al.
(2022)) and Bridge v2 dataset (Walke et al. (2023)), while the second stage employs 160K real-
robot demonstrations from the proposed Pixel-160K dataset. For input robot observations across
all datasets, PixelVLA is conditioned solely on a single third-person camera view and processes
images at a resolution of 224×224 pixels. In all training stages, we set action chunk size to 8 for
the continuous action decoder, i.e., the predicted action at ∈ R8×7. The first training stage involves
training PixelVLA for 100k steps with a batch size of 32 and a learning rate of 5 × 10−4. Notably,
in light of the effectiveness action expert in π0, we omit the first training stage when adapting
PixelVLA on π0. During the second training stage, we fine-tune the LLM backbone of PixelVLA
using LoRA adaptation with a rank r = 32. This stage is trained for 200k steps with a batch size of
32 and a learning rate of 1× 10−3. In addition, to adapt PixelVLA to the LIBERO benchmark (Liu
et al. (2023a)), we fine-tune the pre-trained model for 150K steps on each task suite using LoRA
adaptation with rank r = 32, a batch size of 32, and a learning rate of 5 × 10−4. In addition to
the two baseline VLAs, OpenVLA (Kim et al. (2024)) and π0 (Black et al. (2024)), we compare the
performance of PixelVLA against other state-of-the-art VLAs, such as RT-1 (Brohan et al. (2022)),
HPT (Wang et al. (2024)), Octo (Team et al. (2024)), TraceVLA (Zheng et al. (2024)), RoboVLMs
(Liu et al. (2025)), Dita (Hou et al. (2025)) and SpatialVLA (Qu et al. (2025)). To further ensure
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Table 3: LIBERO Simulation Benchmark Results. We report the success rates of each method across
four task suites. Models including Octo, OpenVLA, TraceVLA, Dita, SpatialVLA and PixelVLA
are adapted through fine-tuning. R. represents the success rate ranking in each task suite.

Methods Spatial Object Goal Long Average
Suc.(↑) R.(↓) Suc.(↑) R.(↓) Suc.(↑) R.(↓) Suc.(↑) R.(↓)

Diffusion Policy (Chi et al. (2023)) 78.3 8 92.5 2 68.3 7 50.5 7 72.4
Octo (Team et al. (2024)) 78.9 7 85.7 7 84.6 4 51.1 6 75.1
CoT-VLA (Zhao et al. (2025)) 87.5 3 91.6 3 87.6 1 69.0 2 81.1
Dita (Hou et al. (2025)) 84.2 6 96.3 1 85.4 3 63.8 3 82.4
SpatialVLA (Qu et al. (2025)) 88.2 2 89.9 5 78.6 6 55.5 4 78.1

OpenVLA (Kim et al. (2024)) 84.7 4 88.4 6 79.2 5 53.7 5 76.5
TraceVLA (Zheng et al. (2024)) 84.6 5 89.9 5 78.6 6 55.5 4 78.1
PixelVLA 88.5 1 90.0 4 85.8 2 82.6 1 86.7

fairness, we additionally fine-tune π0 and OpenVLA on the Fractal and Bridge datasets, obtaining
baselines denoted as π0-SFT and OpenVLA-SFT.

5.2 ZERO-SHOT OBJECT MANIPULATION COMPARISONS

Base Setup

(a) Camera 

Orientations

(b) Lighting

Change

(c) Background

Change

(d) Distractor (e) Table Texture

Initial States 

Figure 4: Performance comparison of OpenVLA,
TraceVLA and PixelVLA performance across vari-
ous environmental variations on SimplerEnv-Google
Robot setup: camera orientations, lighting, back-
ground, distractors, and table texture.

This subsection evaluates the zero-shot
manipulation performance of our model
against baseline VLAs across multiple
task categories and robot platforms. As
shown in Tab. 1, on the Google Robot
setup PixelVLA achieves an average VM
score of 61.4 and VA score of 50.1,
surpassing OpenVLA by 28.7/10.1 and
OpenVLA-SFT by 29.8/11.5 in VM/VA,
respectively. These results indicate a
strong capability in both pixel-level un-
derstanding and adaptation to textual and
visual prompts in out-of-domain adapta-
tion. Notably, as shown in Fig. 4, Pix-
elVLA outperforms TraceVLA and Open-
VLA across various environmental varia-
tions, highlighting the effectiveness of the proposed visuomotor instruction tuning procedure in
addressing out-of-domain generalization.

Similar trends are observed on the WidowX robot setup in Tab 2, where PixelVLA-π0 achieves an
average grasp score of 55.1 and success score of 16.7, outperforming the baseline π0 by 2.0 and
6.7, respectively, and surpassing RoboVLM by 35.3 and 18.2. The results strongly affirm that Pix-
elVLA’s architectural innovations including its multiscale pixel-aware encoder and integration of
visual prompts, significantly enhance its zero-shot perceptual and operational capabilities. Further-
more, the significant improvements of PixelVLA and PixelVLA-π0 over the baselines OpenVLA
and π0 demonstrate that incorporating the finer-grained pixel-level spatial comprehension into ex-
isting VLAs enables more effective adaptation to unseen objects.

5.3 NEW ROBOT SETUPS ADAPTATION COMPARISONS

To evaluate the adaptability of PixelVLA to novel robotic setups and task configurations, we employ
the proposed automated annotation pipeline to process the LIBERO benchmark training data (Liu
et al. (2023a)), yielding the LIBERO-Pixel dataset. Subsequently, as summarized in Tab. 3, Pix-
elVLA achieves state-of-the-art performance with an average success rate of 86.7 across all tasks,
significantly surpassing strong baselines. In addition, As shown in Tab. 3, PixelVLA outperforms
OpenVLA across all four LIBERO task suites, with particularly large gains on LIBERO-Long. We
attribute this to the Continuous Action Decoder: action chunking helps the policy capture longer-
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range temporal dependencies (Liu et al. (2024b)), while continuous action prediction mitigates com-
pounding discretization errors (Black et al. (2024)) over long-horizon manipulation. These superior
results demonstrate the enhanced adaptability of PixelVLA to new robotic setups, highlighting the
effectiveness of pixel-level visual understanding and continuous action representation in PixelVLA.
Notably, PixelVLA achieves significant performance in the LIBERO-Long setup, demonstrating its
effectiveness in long-range manipulation.

5.4 ABLATION STUDIES Table 4: Quantitative ablation studies on Variant Ag-
gregation for the Google Robot setup, evaluated in the
SimplerEnv simulation environment (Li et al. (2024b)).

Methods Pick Move Open/Close Average
Coke Can Near Drawer

Baseline 54.5 47.7 17.7 40.0
+FT 51.9 42.3 16.8 37.0
+FT+CAT 61.3 52.3 17.7 43.8
+FT+PUE 71.1 54.7 21.3 48.0

PixelVLA 72.7 57.7 20.0 50.1

This subsection evaluates the effectiveness
of individual components in PixelVLA
on SimplerEnv-Google Robot in terms of
Variant Aggregation. As shown in Tab. 4,
we use OpenVLA as the baseline model.
Here, Baseline+FT refers to fine-tuning
OpenVLA directly on a mixture of Frac-
tal dataset and Bridge v2 dataset. In ad-
dition, Baseline+FT+CAT indicates train-
ing OpenVLA with the proposed contin-
uous action training stage using a contin-
uous action decoder, while Baseline+FT+PUE denotes fine-tuning OpenVLA with the proposed
pixel-level understanding enhancement stage on the Pixel-160 dataset.

As presented in Tab. 4, incorporating the continuous action training stage (Baseline+FT+CAT)
improves the average score of 3.8% compared to Baseline, highlighting the benefits of the pro-
posed continuous action decoder. Further enhancement with pixel-level understanding (Base-
line+FT+PUE) yields a more substantial gain of 8.0%. Compared to the single-stage Base-
line+FT+PUE, PixelVLA adds a first-stage continuous action training, and this two-stage scheme
leads to a slight drop on Open/Close Drawer, due to the trade-offs inherent in joint two-stage opti-
mization and the high difficulty and sensitivity of this task. Ultimately, PixelVLA outperforms Base-
line+FT+CAT by 6.3%. This progressive improvement validates the effectiveness of both pixel-level
understanding and multimodal prompts in advancing visuomotor control capabilities.

6 CONCLUSION

This paper proposes PixelVLA, a vision-language-action (VLA) model, to address the limitations of
existing VLAs, such as insufficient pixel-level understanding and over-reliance on textual prompts.
PixelVLA integrates a multiscale pixel-aware encoder to inject pixel-level understanding, a contin-
uous action decoder for generating accurate robotic actions, and a lightweight visual prompt-aware
encoder to support both textual and visual prompts. In addition, a two-stage automated annotation
pipeline is designed to construct the Pixel-160K dataset containing 160K manipulation episodes.
To advance fine-grained pixel-level understanding in VLAs, we propose a novel two-stage visuo-
motor instruction tuning framework to train PixelVLA, requiring only 1.5% of the pretraining cost
of OpenVLA. Expensive evaluations on three VLA benchmarks show that PixelVLA can be inte-
grated into existing VLAs to achieve a 10.1% ∼ 28.7% improvement in manipulation success rate,
effectively enhancing the spatial comprehension and complex environment adaptability of VLAs.

Limitations. Although PixelVLA substantially improves VLA performance through pixel-level un-
derstanding and tailored visual prompts, it remains limited in handling richer input modalities (e.g.,
3D perception) and more advanced forms of visual prompting, such as precise trajectory guidance,
reference-image prompts, pose-conditioned prompts, or compositional prompt sequences. In addi-
tion, while PixelVLA is extensively validated across three simulated benchmarks, we expect that
real-world robot experiments would further strengthen its contributions. We regard these extensions
as important directions for future work.
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