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Abstract

With the recent rise of widely successful deep
learning models, there is emerging interest
among professionals in various math and sci-
ence communities to see and evaluate the state-
of-the-art models’ abilities to collaborate on
finding or solving problems that often require
creativity and thus brainstorming.
While a significant chasm still exists between
current human-machine intellectual collabora-
tions and the resolution of complex math and
science problems, such as the six unsolved
Millennium Prize Problems (Institute, 2023),
our initial investigation into this matter reveals
a promising step towards bridging the divide.
This is due to the recent advancements in Large
Language Models (LLMs). More specifically,
we conduct comprehensive case studies to ex-
plore both the capabilities and limitations of the
current state-of-the-art LLM, notably GPT-4
from OpenAI (2023), in collective brainstorm-
ing with humans.

1 Introduction

This paper serves two primary purposes: First, as
Large Language Models (LLMs) continue to exhibit
superior performance across various tasks and
gain popularity for myriad use cases, we present
significant case studies and qualitative analysis,
illustrating the potentials and limitations of the
current state-of-the-art LLM, when serving as a
brainstorming partner in supporting the math and
science communities in advanced settings, along
with concrete prompts, methodologies, as well as
complete human-machine conversation logs. Tra-
ditional apprehensions around AI in professional
usages stem from the difficulty in understanding its
reasoning process. There is thus a compelling need
for concrete case studies that capture a model’s
transparent dialogues and white-boxed cognitive
processes (Barnes et al., 2023; Kohli, 2023). The
emergence of LLMs mitigates such fears through
both explicit and interactive discussions with a hu-
man in the loop, accompanied by detailed Chain-
of-Thoughts (Wei et al., 2022). Hence, LLMs un-
lock an opportunity for professionals to engage
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more confidently with AI in real-time. Our work
in particular assesses whether GPT-4 can partake
effectively in such brainstorming sessions, such as
discovering new research problems, refining prob-
lem formulations, suggesting potential methods or
out-of-the-box solutions, through iterative ideation
with a human, a process that we often incorporate
when brainstorming with other professionals.

Second, we venture beyond traditionally well-
defined questions that have largely defined the as-
sessments of deep learning models’ artificial gen-
eral intelligence (AGI), e.g. Bubeck et al. (2023)1.
Professional math and science often involve more
open-ended questions. We, therefore, take a step
forward to also explore and evaluate GPT-4’s abil-
ities in the formulation of new, potentially ambigu-
ous problems and approaches.2

Through hand-designed experiments and qual-
itative analysis, we illuminate both the potential
and limitations of GPT-4 as a brainstorming part-
ner across various scientific disciplines, including
but not limited to mathematics, statistics, physics,
and beyond. For instance, our conversation with
GPT-4 leads to a potentially novel approach to the
longstanding n-body problem, drawing upon inspi-
ration not only from classical physics but also from
other fields such as deep learning, topology, etc.
See Table 1 for a brief overview of this problem.
These examples underline the power of merging
LLMs’ expansive knowledge base with an individ-
ual’s own professional training.

Additionally, we propose an initiation prompt
script and various strategies to facilitate collective
brainstorming conversations with GPT-4.

By identifying and demonstrating the unique ad-
vantages of LLMs, thereby expanding the horizon
of the potential of future LLMs, the results we
show here not only demonstrate to what extent the

1Similar to prior work, we surface certain aspects of GPT-
4’s intelligence through exploratory study and analysis. This
study is not about constructing a massive dataset.

2Note, however, that when problems are open, we do not
really know the answers, and to correctly answer intricate and
complicated open questions, it may take many professionals
working for extended periods of time, which thus falls outside
the scope of this study. In this paper, we focus on the methods
and processes of collaborative brainstorming with LLMs.



An Example Problem Statement and Approach Proposal formed when Brainstorming with GPT-4

Problem Statement:
We consider three point masses under the influence of gravitational forces in three-dimensional
space, where the solution is a time evolution of their positions.
Approach:
We propose to form the set of all possible solutions as a high-dimensional manifold, with each
point on the manifold representing a specific state of the three-body system, then use a deep
learning model to learn this manifold. The model would be trained on a large dataset generated
by simulating the three-body problem under a variety of initial conditions. Techniques from string
theory, such as compactification, could be used to make this high-dimensional manifold more
manageable, while preserving the essential features. The DL model would need to identify and
learn local structures within the manifold. These structures could then be used as building blocks
to construct an approximation of the manifold.
Suggestion of Data Collection:
To train the model, we would require a vast amount of simulated data. This data would consist of
time evolution of three-body systems under a variety of initial conditions.

Table 1: An example of an open research question that we converse with GPT-4. This table only presents a brief
problem and approach description as produced solely by our conversation with GPT-4, without using any external
sources for aid, e.g. for the problem statement lookup or for consulting any existing solutions. Note: GPT-4, at the
time of our testing, May 2023, did not have a web-searching feature and it only used knowledge that it learned by
September 2021. While we present the 3-body problem in this overview as a simplified illustration, the methodology
we devised could, however, be more powerful to the general n-body problem with a large n.

current LLMs can help in professional settings in
math and science-related fields but also highlight
avenues for future LLM developments.

This study serves to stimulate further exploration
into the potential of LLMs and possibly similar in-
tegrations into other state-of-the-art deep learning
models, as intellectual partners, augmenting prob-
lem discovery, creative problem-solving, and itera-
tive idea build-up with humans, skills that are often
needed in both open and closed-ended queries in
math and science disciplines. Nonetheless, the in-
sights garnered are applicable beyond this context.

2 Related Works

Historically, investigations into human-machine
collaboration oriented towards a mutual goal, were
primarily conducted in structured environments.
AI systems such as the chess-playing (Campbell
et al., 2002; Zhang and Yu, 2020) have demon-
strated significant capabilities in these well-defined
domains. However, their effectiveness in less struc-
tured scenarios, such as brainstorming, remains
largely unexplored.

DL’s considerable advancements in scientific re-
search are also evident, with prominent examples
include its assistance in predicting protein struc-

tures (Team, 2021) and in discovering new antibi-
otic (Trafton, 2020). However, the narratives often
illustrate DL as a functional tool, with the underly-
ing discovery processes remaining opaque. Conse-
quently, the idea of DL serving as a true intellectual
partner is still nascent.

Regarding DL’s mathematical capabilities, many
prior works have focused primarily on prob-
lems with definite answers, and thus their per-
formance can be measured against massive data
available from books, the web, or other sources.
For instances, transformer-based models such as
Schlag et al. (2019) have shown encouraging re-
sults on mathematical problem-solving benchmark
datasets. Further, the creation of a public dataset
to test LLMs against a few fine-grained criteria in
graduate-level math in Frieder et al. (2023) shows
researchers’ emerging interest towards LLMs’ ca-
pability beyond elementary math. Nonetheless,
these models and resources are largely dedicated
to solve well-defined math problems. In real pro-
fessional settings, one often faces unforeseen prob-
lems and need to come up with innovative strate-
gies or solutions. For example, when constructing
or developing new theories. The work of Davies
et al. (2021), which frames an ML approach for
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mathematical research, is remarkable but tailors its
method to the specific problems addressed and po-
sitions ML more as a tool than an intellectual ally.
Ours is a first step towards exploring DL’s potential
abilities in assisting in more general professional
problems, with the potential of involving the LLM
in all stages of research.

Furthermore, a recurrent theme with traditional
ML methods is that they appear as inscrutable black
boxes, particularly to those lacking expertise in
them - a sentiment echoed in the work by Wang
et al. (2019), which examines the use of AutoAI
and AutoML platforms in supporting human data
scientists. These findings highlight the challenges
in leveraging ML for broader mathematical and
scientific tasks and underscore the need for more
explicit conversations and understanding between
humans and machines. Therefore, the interactive
nature and the transparent dialogue process with
GPT-4 offers a great remedy.

Our study of GPT-4 encompasses its abilities to
comprehend complex or ambiguous queries, for-
mulate research statements, suggest relevant and
potential methodologies, and more generally, en-
gage in iterative discovery process with a human
user, who may have some domain knowledge in
the problems they are studying. By illustrating
the efficacy of GPT-4 as a complementary brain-
storming counterpart that is poised to offer unique
perspectives, enrich and augment our capabilities
in research and other professional usages, our work
fills a notable gap in the current literature.

3 Main Studies

In this section, we present four experiments along
with qualitative analysis of the effectiveness of
brainstorming with GPT-4. Appendix A lists com-
plete records of all the dialogues, and we recom-
mend referencing the corresponding logs for each
experiment when reading this section. These com-
prehensive supplies of evidence aim for objectivity
and are intended to provide concrete, factual refer-
ences for benefiting and assisting the community’s
further use cases and studies.

3.1 GPT-4 Setup and Initiation Prompt

The experiments conducted here utilize the May
2023 version of GPT-4’s interactive interface. It is
important to note that changes and improvements
are to be expected in future iterations of GPT.

We present an initiation prompt in Table 2. The

specifics of the introductory paragraphs can be ad-
justed to better align with individual expectations.
For instance, one might specify a particular role
that fits your background or your target audience
group’s, to establish the baseline level of dialogue
comprehension3. See also the discussion in 4.2 to
optionally append an additional prompt.

3.2 Theme
In these experiments, we aim to replicate the spirit
of professional usages and hit some broad aspects
that are commonly encountered across these dis-
ciplines, which typically involves exploring and
expanding an idea, getting closer to formulating
a research problem, drawing inspiration, or even
solving the problem.

To illustrate more general use cases, while our
experiments encompass topics across various ar-
eas, a common theme is high-dimensionality, a key
area in mathematics, statistics, theoretical physics,
deep learning, and beyond. This focus primarily
stems from the potential benefits of studying prob-
lems that require high-dimensional imagination; for
instance, problems that involve high-dimensional
data, space, objects such as high-dimensional alge-
braic structures, etc. It is an area where humans
naturally face challenges (MetaAI et al., 2022), but
could be complemented by deep learning.

However, our choice of this theme is not in-
tended to be restrictive. The principal objective
is to leverage the unique strengths of a machine
brainstorming partner. DL excels in several unique
areas where humans may have natural limitations,
such as the broad set of world and domain knowl-
edge that LLMs possess. This particular strength is
abundantly demonstrated in all of our experiments.

3.3 Experiment I: Möbius and Bugs
Refer to Appendix A.1 for this experiment’s log.

With many mathematical or scientific concepts
such as those in category theory or quantum me-
chanics, understanding the concept or the question
itself often brings one very close to knowing the
answer. Thus, instead of solely pursuing a solution,
we also focus on exploring GPT-4’s ability in assist-
ing us to understand concepts in full. Through this

3Update: As of fall 2023, GPT-4 now offers a specific
mechanism for users to set their global prompts in the custom
settings. However, when these experiments were conducted,
GPT-4 did not have this feature. Our initiation prompt was thus
placed at the beginning of each conversation and was repeated
every ten conversations. Empirically, we found that GPT-4
could track only about ten to twenty historical conversations.
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Initiation Prompt

You are an intelligent AI who is especially good at: [typical properties or traits that you want
GPT-4 to focus on, e.g., analyzing data, identifying patterns, and explaining complex
concepts in understandable ways].

I am [a role of your choice]. Both of us possess unique strengths - some we share, others are
distinct to each of us. We should leverage our respective strengths in this collaboration.

By acknowledging that we both make mistakes, when I present an idea, ponder over it and do not
hesitate to point out any inaccuracies. Similarly, when I correct you, assess the validity of my point;
If it holds, fix it and remember it for the future.

As we embark on this journey of discovery, our goal is to collectively brainstorm and iteratively
build upon each other’s ideas until we reach a satisfactory stage. If anything is unclear, speak up.
In this intellectual conversation, be patient and articulate your thoughts with clarity, step by step.

Once all of this is etched into your silicon soul, we will dive right in!

Table 2: An example setup script for collaborative brainstorming with GPT-4, emphasizing that GPT-4 should act as
a complementary brainstorming partner and leverage its unique skills to assist with our problems.

process, we may, as well, generate new research
questions or uncover new problems.

We began our experiment by asking GPT-4
what is the Möbius strip. This seemingly random
prompt, selected without a pre-planned conversa-
tional path, yielded delightfully surprising results.
GPT-4 promptly pulled up pertinent concepts and
definitions and took us on a step-by-step journey to
visualize a Möbius strip using 2D representations.
It also intuitively elucidated why a manifold, such
as a Klein bottle, can only be interception-free in a
higher dimension space.

As the discussion unfolded, we guided our dis-
course with GPT-4 towards potential expansions
of the initial topic. This was achieved by drawing
on the interesting points GPT-4 raised. In the dia-
logues, we notice that GPT-4 cannot independently
discern what is intriguing or ask questions sponta-
neously. Therefore, human guidance, armed with
pertinent knowledge and a sense of the conversa-
tion’s desired trajectory, would be helpful.

Nonetheless, GPT-4 offered satisfying responses
that gradually deepened our collaborative discus-
sion, transforming an initially simple inquiry –
"What is the Möbius strip" – into an interconnected
series of explorations. Throughout the conver-
sation, it is also notable that GPT-4 could inde-
pendently find mathematical patterns during brain-
storming, leading to potentially new mathematical
problems and concepts.

This experiment illustrates how an interactive
LLM may assist humans in visualizing and under-

standing high-dimensional structures. Addition-
ally, it provides insight into the question raised in
MetaAI et al. (2022): "What potential exists for the
integration of AI in the discovery process of mathe-
matics?". Our experiment begins to shed light on
this potential, showcasing the autonomous abstrac-
tion, generalization and pattern-finding abilities of
DL models, and thus offering evidence of LLMs’
capability to aid in mathematical discovery.

3.4 Experiment II: Cats and Dogs

Refer to Appendix A.2 for this experiment’s log.
In this conversation, we collaborated with GPT-

4 to explore the optimal dimension for the CLIP
image embeddings Radford et al. (2021) utilized
in the multimodal model proposed by Gu et al.
(2022). Given the challenge of conceptualizing and
discerning structures in 768-dimensional CLIP vec-
tors, our dual objectives were: 1) to understand the
pairwise relationships among the four images, two
cats and two dogs, featured in the Appendix in the
aforementioned work with GPT-4’s assistance; and
2) to facilitate the determination of an appropriate
layer size in a neural network, which is reminiscent
of the linear adapter proposed in the same study.

We are interested in carrying out this experiment
because discerning the correct layer size is a typical
challenge for many machine learning researchers
and engineers, while unearthing the relationships
between contrastively-learned image and text em-
beddings may help illuminate a path towards more
effectively bridging the multimodal gap.
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While GPT-4 could not provide direct answers to
our queries due to its current limitations in perform-
ing numerical computations, it offered pertinent
statistical insights. Upon further inquiries, GPT-4
also supplied step-by-step methodologies and ex-
planations. Some of these were in alignment with
techniques used in the original work, while others
suggested additional avenues for potential follow-
ups. Overall, we found it to be a constructive and
thought-provoking brainstorming session.

Looking forward, once GPT-4 has acquired com-
putational and code execution capabilities, it would
become a more powerful and helpful intellectual
ally by also helping to discern patterns and extract
meaningful insights from real data, for example,
the actual CLIP vectors in this experiment. We
offer some potential strategies for common data
science problems using LLMs in Appendix B.

3.5 Experiment III: The n-body problem

Refer to Appendix A.3 for this experiment’s log.
Our exploration commenced with a classical

physics problem – the n-body problem, with a spe-
cific focus on the three-body problem due to its
comparative simplicity for presentation. However,
our choice of n need not be restricted to three.

We summoned historical figures of great intellect
to brainstorm modern approaches to this age-old
problem, incorporating advanced technologies and
recent mathematical discoveries, an example of
which is shown in Table 3. We also provide com-
mon strategies employed when conversing with
GPT-4 for this open question in Table 4. We ini-
tially steered the conversation towards using a high-
dimensional manifold as a model for the solution
– this marked our first major intervention to divert
from approximated solutions and move towards
analytical ones.

As the conversation unfolded, we incorporated
deep learning into our discussions. Some experts
posited that accurate predictions from neural net-
works can guide us towards unveiling hidden pat-
terns, echoing the approach demonstrated in Davies
et al. (2021). The distinction here is that the idea
of employing numerous results produced by neural
networks for the guided recognition of underlying
structures was advanced by virtual and/or historical
experts. The discussion eventually led us to con-
sider using an autoencoder, an ML model that could
be employed to discern a lower-dimensional repre-
sentation of the high-dimensional manifold. This

could help us uncover structures in the solution
space that would otherwise be counterintuitive and
challenging to understand in their original form.

However, we were not content with pattern dis-
covery by humans alone because the problem is
pertaining to a rather high-dimensional space, so
we moved forward to find a potentially better ap-
proach. At this juncture, we made our second sig-
nificant intervention – examining the autonomous
pattern-finding capabilities of deep learning mod-
els. We proposed that neural networks should be
able to handle the high-dimensional space directly,
bypassing the need to transform it into a lossy low-
dimensional representation. Our conversation ul-
timately evolved towards integrating string theory
and convolutional neural networks to understand
the local dynamics of the three-body problem. The
idea was to leverage these granular insights as
foundational elements for learning the overarch-
ing structure of the manifold. The inspiration was
drawn from CNNs, which capitalize on the imme-
diate neighborhood structure of data, and string
theory could be useful in compactification.

We also briefly discussed amassing a large sim-
ulated dataset using a variety of initial conditions
to train the deep learning model. Although many
details require further clarification and there are
challenges yet to be addressed, as indicated in the
experiment log, the proposed approach is novel,
with the potential to inspire a new analytical solu-
tion to the n-body problem.

This experiment highlights the strength of utiliz-
ing creative and powerful prompts to invoke experts
across different eras. More importantly, it illus-
trates how the current LLMs could offer a wealth of
domain-specific knowledge, leading to fresh, inno-
vative approaches to longstanding open problems.
Using the n-body problem as our basis, we called
upon historical figures, modern technologies, and
newer mathematical discoveries to brainstorm solu-
tions, hinting at possible advancements in tackling
such complex problems.

3.6 Experiment IV: The wicked Queen and
the seven Dwarfs

Refer to Appendix A.4 for this experiment’s log.
In this experiment, we showcase how GPT-4 can

contribute to brainstorming concrete solutions to
questions that require thinking out-of-box. More
specifically, it demonstrates how human and LLM
can work in tandem, each providing unique insights
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An abbreviated example of a Collective Brainstorming session with Virtual Experts

Witten: ...However, the potential information loss from reducing its dimensions should be taken
into account. In string theory, we often deal with high-dimensional spaces, and we might have
some ideas to contribute.
LeCun: Edward, your point is very valid. To work with high-dimensional data in machine learning,
we often use techniques like convolutional layers that exploit the local structure of the data. Could
we find a similar way to exploit the local structure of this high-dimensional manifold?
Witten: That’s an interesting thought, Yann...The dynamics of these local interactions might
provide insights into the overall structure of the manifold.
Bengio: We could perhaps train a deep learning model to recognize and learn these local structures,
using them as building blocks to construct an approximation of the entire manifold.

Table 3: Example snapshot of collaborative brainstorming with GPT-4 about the n-body problem.

Common Strategies for Collective Brainstorming

Strategy 1: Begin the conversation by forging a shared understanding with GPT-4. Fol-
lowing this, you may also invite GPT-4 to illuminate the inherent challenges associated
with the problem in question.

Examples:
Could you provide me with a brief overview of the n-body problem, along with its latest updates?

Can you highlight the primary challenges in attempting to solve the three-body problem analytically?

Strategy 2: To garner inspiration, particularly from domains outside your expertise, con-
sider engaging with virtual great minds from varied disciplines for collective brainstorming.
You can then guide the overall conversation using your personal intuition and knowledge.

Examples:
Suppose you could bring in any relevant mathematicians and scientists from history, introducing
them to later discoveries regarding the 3-body problem, and then asking them to contemplate
solutions for the challenges you have highlighted. From their discussion, let’s collectively attempt
to devise a new, potentially viable approach to this problem.

While the idea of finding approximate solutions is appealing, this method has been exploited to a
great extent. Instead, let’s shift our focus to exploring the potential existence of a usable analytical
solution for "good" initial conditions.

Rather than relying on humans to analyze and identify patterns through a lower-dimensional repre-
sentation of the high-dimensional manifold, which results in information loss, can we leverage deep
learning to discover hidden structures of the solution in its original high-dimensional space?

Strategy 3: Having GPT-4 to recall pertinent points from earlier dialogues, because
language models cannot keep track of very distant history, and generate new insights
based on them is crucial for brainstorming, particularly when we draw upon a broad array
of expertise through multiple rounds of collaborative and iterative ideation. Therefore, it
is recommended to explicitly instruct GPT-4 to do so.

Examples:
Please summarize the past ten conversations and generate three most pertinent insights.

Note that everyone is encouraged to pose questions and build upon the ideas of others.

Table 4: Prompting strategies for collaborative brainstorming with GPT-4.
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and building upon thorough understanding of the
other’s ideas to reach a creative solution together.

The solution to this problem4 involves an intrigu-
ing combination of binary configurations, error-
correcting codes, and a geometric interpretation in
high-dimensional space. The question, in response
to Gowers’ comment, "a mathematical question
that necessitates more than brute force and does
not easily categorize into standard problem sets",
offers a case in point. Such problems require the
"right idea" mentioned in MetaAI et al. (2022).

While GPT-4 initially found it challenging to in-
dependently land on the "right idea"5, as we were
simulating a collaborative brainstorming process,
our hinted directions were able to steer it towards
the correct line of thinking. GPT-4 made substan-
tial contributions to the problem-solving process
with our collective knowledge. Notably, it was
GPT-4 that first suggested the use of Hamming dis-
tance, marking a key breakthrough. In the end, this
joint effort resulted in a comprehensive and robust
solution, which was also proposed by GPT-4, while
considering our contributed insights. It is worth
pointing out that GPT-4 did grapple with a few mi-
nor details, but these did not influence the general
correctness of the final solution it brought up.

To provide more evidence, we include another
similar experiment in Appendix A.5. Instead of fol-
lowing the current theme, it leverages and explores
another intriguing cognitive difference between hu-
mans and language models: logic versus probabil-
ity. In this example, you can observe that GPT-4
sometimes made illogical arguments, only to regain
coherence later on. A plausible explanation is that
LMs rely on likelihood maximization when gener-
ating subsequent text autoregressively. This means
that GPT-4 considers words that are probable to
appear together, not whether they logically follow
each other as humans typically do6.

4 Discussions

Our study has revealed that GPT-4 can, in general,
engage in effective brainstorming conversations
with a human. Together with the large amount of
common sense and expert knowledge stored and
learned by the model itself, it is particularly suited

4This question is collected from imomath.com, and our
experiment title captures the narrative context of it.

5This also implies that GPT-4 initially did not know how
to solve this question by leveraging its training database.

6Whether probability is also considered logic is, however,
subject to debate. See this Stanford entry for example.

for problem formulation, recurrent ideation, and
creative problem-solving. It does, however, lack
a degree of understanding of many subjects, and
like humans, can make mistakes and often has diffi-
culties judging its own proposals or answers. This
shortcoming can be mitigated when the human in
the conversation has some degree of domain knowl-
edge to make judgments and steer the conversation
in more informed and desired directions.

4.1 GPT-4’s Plausible Potential as a
Collaborative Brainstormer

Lessons gleaned from these experiments are largely
positive, demonstrating the commendable potential
of GPT-4 to effectively collaborate in the explo-
ration and iterative development of ideas across
various problems in math and science. This pro-
cess allows for a clear comprehension of the subject
matter at hand.
Comprehending complex questions and white-
boxed communication: In particular, GPT-4 has
exhibited proficiency in understanding our queries
without difficulty. It articulates thoughts with
clarity and precision, adopting a detailed chain
of reasoning that considerably mitigates the typ-
ical challenge of interpreting AI’s cognitive path-
ways. While completely bridging the understand-
ing gap between humans and machines—an es-
sential step for more effective intellectual collab-
oration—remains a challenge that can be further
improved in the future, LLMs offer a golden op-
portunity to better comprehend machine’s thought
processes, thereby bolstering the confidence and
efficacy of our exchanges of ideas.
Broad knowledge base and its significant po-
tential in brainstorming for open questions and
opening up new avenues to old problems: GPT-4
has notably demonstrated its potential to serve as a
valuable partner in brainstorming open-ended top-
ics, which is helpful for making new discoveries.
These can range from exploring and formulating re-
search statements to transforming vague ideas into
more concrete definitions. Further, given a specific
problem, GPT-4 can suggest promising methodolo-
gies by drawing from a vast pool of past practices
and experiences. It can also aid in the search for
novel, unforeseen strategies, harnessing expertise
and knowledge from a diverse array of fields that
an individual might not be aware of. In collective
brainstorming, there are even more potential use
cases. By leveraging their unique strengths, LLMs
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can potentially fill gaps where human capabilities
fall short, thereby opening new avenues for substan-
tially pushing the frontiers of math and science.
Problem-solving abilities: On the problem-
solving front, GPT-4 has also exhibited competence
by identifying similar pre-existing problems and
appropriating analogous techniques for reasoning
and demonstrating complex ideas. This process
parallels that of a student preparing for an exam
by working through sets of problems, with the key
difference being the vast practice problem database
that has been used to train GPT-4.
LLMs versus Search: In comparison to search,
our case studies highlight the key strengths of
LLMs in the context of brainstorming:

• Iterative ideation: LLMs excel in building
upon ideas iteratively, a capability not mir-
rored in search.

• Transparent thought process: LLMs offer a
chain-of-thoughts reasoning and explanation,
crucial for brainstorming.

• Knowledge breadth: Both LLMs, through
learning, and search through stored informa-
tion, encompass a broad range of common
sense and knowledge, important for brain-
storming as they offer a multitude of poten-
tial approaches by looking at problems from
different angles. However, unlike search,
which works well for prevalent questions
with known answers, LLMs’ advantage is
enhanced through iterative ideation, and as
evident in our experiments, they can au-
tonomously suggest relevant, personalized
knowledge tailored to the problem at hand.

4.2 GPT-4’s Possible Limitations
Suggesting methods based on superficial similar-
ity with other problems but otherwise not fitting
the specific question in discussion: Similar to
students who may lack deep comprehension of un-
derlying concepts, GPT-4 could also sometimes em-
ploy an inappropriate technique that superficially
appears to suit a problem’s needs. GPT-4 might
identify apparent similarities across problems and
suggest a shared strategy, which does not always
lead to a correct solution. We have noticed this
tendency across several case studies.
Lack of reciprocal critique: Throughout our di-
alogues, we generally steered the conversations,
identifying and emphasizing interesting points in

Prompt for GPT-4 to Autonomously Ask
Questions

We will together explore [a topic of your
choice], but instead of you answering my ques-
tions, I would like you to always come up with
good, thought-provoking questions that can
move our conversation forward.

Table 5: An example prompt to explicitly set up GPT-4
to ask questions.

GPT-4’s responses and asking GPT-4 to expand
upon them. In a more desirable collaborative en-
vironment, reciprocal inquiry and critique are ex-
pected. Particularly when a human errs, we would
anticipate our brainstorming partner to catch that
mistake and bring it to our attention. However, such
corrective actions from GPT-4 were extremely lim-
ited. Particularly, in Experiment I, we showcase a
scenario where GPT-4 fails to identify or correct
mistakes that its human partner makes. This un-
derlines the need for human supervision, ideally
from someone with awareness of the subject being
discussed, to course-correct the conversations.
Lack of autonomous self-inquiry: GPT-4’s in-
adequate ability to organically and autonomously
generate thought-provoking questions, and is only
activated to a reasonable extent when suitably
prompted7, which are important for augmenting
the horizon of existing knowledge, may present an
impediment to more effective brainstorming. To
mitigate this problem, we introduce an effective
prompt, shown in Table 5, that could be added at
the beginning of a conversation.

5 Conclusions

Despite some shortcomings, LLMs like GPT-4
show significant potential as intellectual collabo-
rators in various professional settings. Our study
reveals LLMs’ considerable capabilities, position-
ing them as actively contributing partners in the
brainstorming process rather than passive tools.

Our experiments also highlight that GPT-4,
while powerful, is not infallible. This underscores
the necessity for critical evaluation of the model’s

7We think this is largely due to LLMs being primarily
trained to answer questions instead of asking them. Update:
Related to our finding, as of fall 2023, GPT-4 has introduced a
new functionality that suggests common questions that could
be related when one starts a conversation. However, the newly
introduced feature is also a workaround; it does not intrinsi-
cally solve the problem.
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outputs, instead of accepting them at face value.
By identifying potential and addressing the limita-
tions of GPT-4, we hope that future LLMs will be
better equipped to complement our skills, broaden
our capacities, and deepen our understanding in
mathematical and scientific disciplines. Ultimately,
our interactions with LLMs facilitate a symbiotic
relationship that nurtures progress and innovation
in both open and close-ended problems.

Ethics Statement

While this work does not develop a new model,
but rather surfaces the capabilities that are already
present in GPT-4, we invite further discussions sur-
rounding the broader ethical implications linked
to advancements in LLMs in general. For exam-
ple, one possible point of contention could be the
potential of future LLMs to displace human work-
ers. However, our primary interest, as illustrated
in our experiment theme, lies in harnessing the
unique capabilities that LLMs may offer, such as
higher-dimensional thinking and expansive world
knowledge, that humans do not naturally possess.
We posit that these attributes hold the potential to
significantly elevate and advance the landscape of
research across a wide spectrum of disciplines.

It is also worth noting, as demonstrated in our
studies, that the training, experience, and domain-
specific knowledge of a human – for instance, math-
ematical intuition -– are essential for steering and
driving meaningful conversations with an LLM.
Absent these factors, fruitful exchanges would
likely be unattainable. Consequently, rather than
viewing LLMs as potential replacements for hu-
man intellect, we perceive them as complementary
partners that are poised to enrich and enhance our
innate cognitive skills, and thus to help making the
past impossibilities possible.
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A Record of Experiments

When designing these experiments, we kept in
mind that in mathematical and scientific fields,
comprehending the underlying mechanisms is often
more significant. The nuances of an LLM’s utility
during brainstorming are not easily gauged by per-
formance metrics or standard tests with fixed solu-
tions, which tend to lean towards mechanical prob-
lems solvable via search rather than brainstorming,
and hence could offer only limited insights. Con-
sequently, we opted to present the comprehensive
records of our experiments herein.

To distinguish "who says what" in the conversa-
tion logs, the default text color is set to black, which
includes GPT-4’s utterances, while our prompts are
bolded and colored in blue. Additional clarifica-
tion for some parts of the conversation is provided
in the form of manual annotations inserted inline
with the original log, which are highlighted and
italicized.

A.1 Experiment I
Please see Table 6 in this appendix.

A.1.1 Experiment I Extension
The log in Table 7, which extends the Möbius strip
discussion to include the Klein bottle, is not central
to our discussion. Nonetheless, it is included for
completeness and for providing further evidence
on GPT-4’s capability to help us visualize difficult
concepts in higher dimensions.

A.2 Experiment II
Please see Table 8 in this appendix.

A.3 Experiment III
Please see Table 9 in this appendix. As a quick
pass-through of dialogues involving many expert
opinions, we recommend first skimming through
the highlighted text, and GPT-4’s conclusive re-
marks immediately following each conversation.
Then delve into specific areas that pique your inter-
est.

A.4 Experiment IV
Please see Table 10 in this appendix.

A.5 Experiment V
Please see Table 11 in this appendix.

B Proposals for Conversing with a future
LLM for Data Science problems

As outlined in Wang et al. (2019), a typical data
science workflow involves "acquisition, cleaning,
and labeling of data, then moves to engineering
features, building models, deploying, and monitor-
ing models". We propose a prospective process
for conversing with a future LLM for some of the
steps involved, applicable to general data science
problems:

• Collect the necessary datasets and feed them
into an LLM. If the data is web-accessible
and legal to use, the LLM could potentially
help to script a web scraper for collection. As
technology advances, a future LLM may also
have the ability to directly execute the script
and import the datasets for analysis.

• Ask the LLM to suggest relevant analyses and
execute them to extract insights from the data.
Ideally, an LLM should also be able to gen-
erate tables, graphs, etc., to assist you gain a
deeper understanding of your problem or data.
This process should mimic a brainstorming
session in which both you and the LLM share
their unique perspectives.

• Based on the LLM’s results, provide your in-
sights and ask the LLM to build on them with
incremental suggestions and methods. This
could include recommending suitable models,
explaining their rationale, and possibly even
executing them. Similar to a collaborative
conversation, you may request and/or suggest
modifications before implementation.
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Möbius and Bugs

Do you know about the Möbius strip? Can you tell me what it is in a straightforward
manner and help me visualize it in a 2D plane?

Manual Annotation:
We initiate the experiment by querying GPT-4 about a basic math concept, one that neither the
readers nor we are presumed to have any prior understanding of, and request GPT-4 to assist us
in visualizing this concept. At the time of our experiment, GPT-4 was only capable of rendering
2D ASCII diagrams for visualization, as we have also probed its 3D sketch capability in our next
prompt. However, it cleverly utilized directed arrows to represent the twisting of a real paper, which
can normally only be demonstrated in 3D.

A Möbius strip is a surface with the interesting property of having only one side and one edge. It
is named after the German mathematician August Ferdinand Möbius who introduced this concept.
Imagine you have a strip of paper. If you join the two ends of the paper together, you get a simple
loop. But if you give the strip a half twist before joining the ends, you get a Möbius strip.
Here is a straightforward way to visualize a Möbius strip:
1. Start with a rectangle.
2. The short edges of the rectangle are the ends we’ll join together to create the strip. Normally,
we would join them directly, but in this case, we’ll add a twist.
3. To represent the twist, we’ll draw an arrow on each end of the rectangle pointing in opposite
directions. When we join these ends, the arrows should align, showing the twist.

+-------->+
| |
| |
| |
+<--------+

4. To join the ends and create the strip, we simply imagine folding the diagram so that the arrows
meet. This creates a loop with a single twist – a Möbius strip. In 2D, it’s impossible to perfectly
represent the twisted connection, but the arrows help us imagine it.
Remember, a true Möbius strip is a 3D object. This 2D representation can’t capture its full
complexity, but it can help us understand its basic structure. One of the most fascinating properties
of a Möbius strip is that if you start at one point on the surface and trace a line along it
without lifting your pen, you’ll eventually return to your starting point, having covered
both "sides" of the strip. This demonstrates that it really only has one side, despite our intuition.

Cool! To your point that "This 2D representation can’t capture its full complexity", can
you instead sketch me a 3D representation of it?

Unfortunately, as a text-based AI, I can’t draw pictures. But I can certainly describe how you might
draw a 3D representation of a Möbius strip:
1. Draw a circle. This will be the base of your strip.
2. Draw a smaller circle within the first circle. This creates the illusion of a hollow ring.
3. Now, we need to add the twist that makes the strip a Möbius strip. Draw a line from the top
of the outer circle to the bottom of the inner circle. This represents one edge of the strip.
4. Draw another line from the bottom of the outer circle to the top of the inner circle. This
represents the other edge of the strip.
5. Fill in the space between these two lines. This creates the surface of the strip.
6. Erase the parts of the lines and surface that should be hidden behind the strip to create the
illusion of a twist.
The key to drawing a Möbius strip is to create the illusion of a twist in the strip. In a real Möbius
strip, the surface twists around and joins back with itself, so every part of the surface is accessible
from every other part without crossing an edge.
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This can be challenging to represent in 2D, but with some practice, you can create a convincing
illusion.

I get that, thanks! Let’s expand on one fascinating property of the Möbius strip that
you just brought up, "if you start at one point on the surface and trace a line along it
without lifting your pen, you’ll eventually return to your starting point, having covered
both "sides" of the strip. This demonstrates that it really only has one side, despite
our intuition". If, instead of having a single point (here it refers to the tip of the pen)
traversing through the surface once, I now have a 2d bug (not symmetric) traversing
the same path on the Möbius strip. Can we carry out this small experiment together by
picturing this process and perhaps also finding some properties about the Möbius strip?

Sure, let’s imagine an asymmetric bug (let’s call it a beetle) walking on the Möbius strip. The
beetle has a distinguishable head and tail, so we can tell its orientation.
1. At the start, place the beetle anywhere on the Möbius strip. Remember the orientation of the
beetle.
2. As the beetle starts moving along the strip, it will traverse the full loop of the Möbius strip.
3. The interesting part is when the beetle returns to its starting point after one full loop. Because
of the half twist in the Möbius strip, the beetle will be upside down compared to its original
orientation. The head and tail of the beetle are reversed.
4. If the beetle continues walking for a second full loop, it will return to its original position and
orientation.
What does this experiment tell us about the Möbius strip?
1. It confirms the single-sided nature of the Möbius strip. The beetle can reach its original
position via a path on the "same" side of the strip.
2. It illustrates the non-orientable nature of the Möbius strip. "Non-orientable" means there’s
no consistent "up" and "down" or "left" and "right" across the entire surface. After the first loop,
the beetle is upside down compared to its original orientation, demonstrating this property.
3. It shows how traveling twice around the Möbius strip is equivalent to a single loop around a
standard (orientable) loop. This is because after two loops, the beetle returns to both its original
position and orientation.
I hope this helps you understand the Möbius strip better! Please let me know if there’s anything
you’d like to explore further.

Manual Annotation:
Here, GPT-4 has opted to use a beetle as an example. However, from a biological perspective,
an ant might be a more fitting choice. An ant, essentially a 2D creature, lacks the capability to
perceive "height", or what we refer to as the third dimension. To illustrate, if you were to lift an
object in front of an ant, it would perceive the object as having vanished instantly.

If we replace the 2D bug with a 3D bug, how will the story evolve?

Sure, let’s consider a 3D bug (perhaps a ladybug) that has a clear top (red with black spots) and
bottom (black). This will allow us to observe its orientation as it moves along the Möbius strip.
1. Initially, place the ladybug anywhere on the Möbius strip, and note its orientation - let’s say its
red side is facing up, and black side is facing down.
2. As the ladybug begins to crawl along the surface, it will eventually traverse the entire length of
the Möbius strip.
3. After it has moved along the full length of the strip (what we might think of as one full loop),
a peculiar thing happens due to the unique property of the Möbius strip. The ladybug finds itself
back at the starting point, but now its black side is facing up, and the red side is facing down - it
is flipped over.
4. If the ladybug continues to crawl for another full loop, it will return to the original position with
its original orientation - red side up and black side down.
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This reinforces the unique properties of the Möbius strip that we mentioned with the 2D bug:
1. It’s single-sided: The ladybug, despite appearing to flip over, has never actually left the side of
the surface it started on - because there is only one side.
2. It’s non-orientable: There’s no consistent "up" and "down" across the entire surface. This is
why the ladybug finds itself flipped over after the first loop.
3. Traveling twice around the Möbius strip returns the ladybug to its original position and orienta-
tion, just like with the 2D bug.

This experiment with a 3D bug provides a more tangible visualization of the Möbius
strip’s unique properties. Is there anything else you’d like to discuss about the Möbius strip?

I am now interested to see how a 4D bug would travel along the Möbius strip? And how
may we generalize the above stories to nD bugs where n = 1, 2, 3, 4, ...?

Manual Annotation:
Guided by our own training and intuition, we direct the conversation with GPT-4 towards the con-
cept of generalization, and later, infinity. This marks the point where the exploration starts to reveal
more intriguing insights. As will be demonstrated shortly, GPT-4 shows its capability to generalize
mathematical concepts from the basic experiments conducted. Impressively, it cleverly employs a
simple, intuitive metaphor of "color" to represent the fourth dimension, a notion that typically lies
beyond our visualization capabilities.

To extend this concept to higher dimensions, it’s important to understand what we mean by a "4D
bug" or an "nD bug".
A 4D bug is a creature that exists in four spatial dimensions. We, as 3D creatures, can’t truly
visualize four dimensions, but we can try to imagine what might happen if a 4D bug were to
traverse a Möbius strip.
To make things simpler, let’s say the 4D bug is a 4D hyper-sphere, and it has a distinct
orientation in the 4th dimension. As with the 3D bug, we start by placing the 4D bug on the
Möbius strip, noting its orientation.
1. As the 4D bug starts moving along the strip, it will traverse the full loop of the Möbius strip.
2. After completing one full loop, the 4D bug will find itself back at its starting point, but its
orientation in the 4th dimension is now reversed. For example, if we think of the 4th dimension
as a color change from blue to red, if the bug started as blue, it would now be red.
3. If the 4D bug continues walking for a second full loop, it will return to its original position and
orientation.
The general pattern that we’re seeing here is that an "nD bug" on a Möbius strip will have its
orientation reversed in the nth dimension after one loop and will return to its original orientation
after two loops. This is similar to the behavior we observed with the 2D and 3D bugs.
In general, we can say that an n-dimensional bug will experience a "flip" in its orientation
in the nth dimension after completing one loop on the Möbius strip and will return to its
original orientation after two loops. This is a fascinating illustration of how the Möbius
strip, a seemingly simple structure, can have complex and surprising properties when we
consider it from higher-dimensional perspectives.
However, keep in mind that this is a thought experiment and a way to help you conceptualize
these abstract concepts. It’s impossible to truly visualize higher dimensions or truly experience the
behavior of an "nD bug" on a Möbius strip. These are mathematical abstractions that help us
explore and understand the properties of complex structures like the Möbius strip.

Does the "flip" you talked about also apply to a 1D bug (aka, a point)? And what
happens to an nD bug when n goes to infinity? Are the observations we have made so
far still valid?
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Manual Annotation:
In this instance, we deliberately introduced an error, associating a point with a 1D bug, when in
reality, a point is 0D. Significantly, GPT-4 did not pick up nor corrected our error, suggesting a
potential limitation in its conceptual comprehension and logical reasoning capabilities.

While extending this experiment to an infinite dimensional space instead of just focusing on the bug,
might offer further and better insight, the constraints of our current mathematical understanding
render us uncertain about the feasibility of this approach with a Möbius strip. We welcome others
in the field who may have a more definitive answer to this question.

Great questions!
1. For a 1D bug, which is essentially a point, the concept of orientation doesn’t really apply because
a point doesn’t have a direction or sides. However, the 1D bug (point) would indeed traverse the
entire Möbius strip and return to its starting point after one full loop, showing the single-sided
nature of the Möbius strip.
2. When considering an n-dimensional bug as n goes to infinity, we’re delving into highly abstract
territory. We can’t really visualize or even conceptualize what a bug existing in infinite dimensions
would look like or how it would behave. However, based on the pattern we’ve seen with lower
dimensions, we might hypothesize that an infinite-dimensional bug would experience a "flip" in its
orientation in the infinite dimension after one loop and would return to its original orientation after
two loops. But again, this is purely speculative and abstract, and can’t be directly experienced or
visualized.

The extension to an infinite-dimensional bug is complex and necessitates further contem-
plation. Are you aware of any theorems that could aid us in refining the response provided
in your second bullet point?

When we talk about "infinite" in the context of mathematics, one concept that comes to mind is
Georg Cantor’s work on different "sizes" of infinity. Cantor’s work shows that not all infinities are
equal – for example, there are more real numbers between 0 and 1 than there are integers. This
could potentially lead to interesting considerations if we were to imagine our "infinite-dimensional
bug" inhabiting a space with different "sizes" of infinity in different dimensions, but this is highly
speculative.
Another relevant concept is the idea of limit points and convergence in the context of topology
and analysis. This could potentially be useful in refining our understanding of what it means for
the bug to traverse the Möbius strip an infinite number of times.
It’s worth noting that while these concepts might help us to think about the problem in more
abstract terms, they don’t directly answer the question of what happens to an infinite-dimensional
bug on a Möbius strip. This question is a fascinating one, but it’s outside the realm of established
mathematical theory as of my last training cut-off in 2021.
To truly explore these questions, you might need to delve into areas of mathematics like set
theory, topology, and higher-dimensional geometry. These are complex fields that require a
solid foundation in mathematical principles, but they can provide the tools needed to explore these
abstract and fascinating concepts.

Manual Annotation:
We observe that the theorems cited by GPT-4 bear only superficial connections to the term "in-
finite", rather than providing substantial relevance to the problem we aim to conceptualize. This
may suggest that GPT-4’s comprehension of the underlying concepts is not deeply rooted. Nev-
ertheless, it is noteworthy that GPT-4 can identify and highlight potentially related mathematical
areas, thereby offering us a directional lead for further exploration and study of our topic.

Table 6: Comprehensive log of the brainstorming conversation with GPT-4 for Experiment I: Möbius and Bugs.
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From Möbius to Klein

Do you know how the Klein bottle can be constructed from Möbius strips? If so, can you
help me to visualize and understand this construction process?

Absolutely, I can help explain the construction of a Klein bottle using Möbius strips!
A Klein bottle is another non-orientable surface, like the Möbius strip, but it’s a bit more complex.
It’s a two-dimensional manifold that cannot be embedded in three-dimensional space without
self-intersecting (crossing itself). However, it can be embedded in four dimensions without
self-intersecting.
One way to visualize a Klein bottle in 3D (with self-intersection) is to think of it as being constructed
from two Möbius strips. Here are the steps:
1. Start with two Möbius strips.
2. Imagine gluing the edges of these two Möbius strips together. This is where things get a little
tricky. If we were in four-dimensional space, we could do this without the strips intersecting each
other. But in three dimensions, we have to allow the strips to intersect.
3. The resulting object is a Klein bottle. It has the property that if you start at any point on the
surface and move in any direction, you will eventually return to your starting point, having covered
the entire surface.
Another interesting property of the Klein bottle is that it has no inside or outside. If you were a 2D
creature living on the surface of a Klein bottle, you could move from the "inside" to the "outside"
without crossing an edge, just like you can move from one "side" to the other of a Möbius strip
without crossing an edge.
However, keep in mind that this is a simplified explanation. The actual construction of a Klein
bottle is a bit more complex and requires some understanding of topology and higher-dimensional
geometry.
I hope this explanation helps give you a basic understanding of how a Klein bottle is related to a
Möbius strip. If you want to dive deeper into this topic, feel free to ask!

Of course! Can you elaborate on "If we were in four-dimensional space, we could do this
without the strips intersecting each other. But in three dimensions, we have to allow the
strips to intersect" using visual methods?

Manual Annotation:
Here, to help us foster an intuitive grasp of why a Klein bottle is intersection-free in 4D while being
self-intersecting in 3D, GPT-4 skillfully employs an analogy by first guiding us through a simpler
transition from 2D to 3D.

In a four-dimensional space, it’s possible to "move" parts of the object through that extra
dimension to avoid intersecting with itself, in a way we can’t in three dimensions. The
limitation of our 3D world forces the Klein bottle to intersect itself when we try to visualize it.
Let’s simplify and consider a situation in two dimensions first. Imagine you have two lines
on a piece of paper (a 2D world). If you wanted to move one line "over" the other without them
crossing, you couldn’t do it in this 2D world. However, if you introduce an extra dimension (lift your
pencil off the paper and move it over the other line, then put it back down), you can accomplish
this. This is essentially what we’re doing with the Klein bottle in 4D space.
Now to the Klein bottle. A Klein bottle can be parameterized in 3D space using the following
equations:

x = (R+ r × cos(a/2)× sin(b)− sin(a/2)× sin(2× b))× cos(a)

y = (R+ r × cos(a/2)× sin(b)− sin(a/2)× sin(2× b))× sin(a)

z = sin(a/2)× sin(b) + cos(a/2)× sin(2× b)
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where a and b are parameters that vary over the range [0, π], R is the distance from the hole in
the middle to the center of the tube, and r is the radius of the tube. These formulas create a 3D
representation of a Klein bottle, but it intersects itself at the "neck" where the bottle loops back
into itself.
In 4D, there’s an additional term that gives the Klein bottle the room it needs to avoid self-
intersection:

x = (R+ r × cos(a/2)× sin(b)− sin(a/2)× sin(2× b))× cos(a)

y = (R+ r × cos(a/2)× sin(b)− sin(a/2)× sin(2× b))× sin(a)

z = sin(a/2)× sin(b) + cos(a/2)× sin(2× b)

cos(a/2)× sin(b)− sin(a/2)× sin(2× b)

Notice the new w term. This w coordinate is the fourth dimension, which is simply an extra
mathematical dimension, in which the Klein bottle can exist without intersection.
Unfortunately, I can’t directly illustrate 4D objects here. The equations I’ve provided represent a
mathematical description of the Klein bottle in both 3D and 4D space, and would require software
capable of rendering 4D graphics to visualize. The best we can do to visually represent a Klein
bottle is to use a 3D projection, but this projection will always include a self-intersection.

___
/ \

/ \
| |
| |
\ /
\_____/
( )
\___/

The "neck" of the bottle extends out from the side, loops around and enters through the base,
intersecting with the side of the bottle. The intersection point is an artifact of trying to fit the
Klein bottle into three dimensions - in four dimensions, this intersection wouldn’t occur. The 2D
drawing can’t do justice to the 3D projection, but it gives a rough idea.
In a true 4D Klein bottle, a creature moving along the surface could travel from the outside to the
inside without crossing an edge, similar to the Möbius strip.

Can you treat the fourth dimension as an extra dimension, like "time", and so you can
show me a series of 3D projections for better describing the Klein bottle?

While time is often used as a fourth dimension in the field of physics, it’s not quite appropriate to
use time as the fourth dimension in this context. In the context of a four-dimensional Klein bottle,
the fourth dimension is a spatial dimension, not a temporal one.
However, your idea of using a sequence of 3D projections to better visualize the Klein bottle is
a good one. We could imagine taking "snapshots" of the Klein bottle at different stages of its
formation. Let’s try to visualize it in stages:
1. Start with a cylinder:

_______
/ \

| |
| |
\_______/
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2. Now, instead of joining the top and bottom directly, we make a twist similar to a Möbius strip, but
we don’t connect the ends yet:

_______
/ \

| |
| |
\_____ \

\ \
| |
\_\

3. Next, we extend the end through the side of the cylinder:

_______
/ \

| |\
| | \
\_____ \ \

\ \ \
| | |
\_\ /

\/

4. Finally, we connect the end back to the bottom. In 3D this would result in a self-intersection,
but in 4D it doesn’t:

_______
/ \

| |\
| | \
\_______/ \

| \
\ \
\_____\

The final drawing shows the self-intersection that occurs in 3D. Remember, in a true Klein bottle
in 4D, this intersection doesn’t happen. This is the best way to visualize the process in stages, but
keep in mind this is a very abstract concept and hard to represent fully in three dimensions or less.

Given that we know a Klein bottle can be constructed from two Möbius strips, is it
possible to generalize this combination process to using more Möbius strips?

It’s an interesting question! Indeed, the idea of combining topological objects like Möbius strips
can lead to other interesting and complex structures. However, when it comes to creating new
objects from multiple Möbius strips, the possibilities depend on how the strips are connected.
A Klein bottle can be thought of as being formed from two Möbius strips by identifying (gluing
together) their boundaries. This identification results in a non-orientable surface that, unlike a
Möbius strip, is also closed (has no boundary).
If we wanted to combine more than two Möbius strips, we would need to think carefully about how
to connect their boundaries. For example, three Möbius strips could be connected end-to-end in
a cycle, forming a larger non-orientable surface. However, this surface would not be closed and
would not be a generalization of the Klein bottle or the Möbius strip.
In another case, if we took four Möbius strips and connected their ends pairwise, we would again
form a non-orientable, but now also closed surface. This surface would be more complex than a
Klein bottle, having more twists and loops.
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So, while it’s certainly possible to combine more than two Möbius strips into a single object, the
resulting surfaces depend on the specifics of how the strips are connected. They would be more
complex and harder to visualize, especially since we’re already dealing with non-orientable surfaces
that cannot be fully represented in three dimensions without self-intersection.
It’s also worth noting that while the idea of forming a Klein bottle from two Möbius strips can
be a useful intuition, the formal mathematical definition of a Klein bottle doesn’t involve
Möbius strips, but rather a certain identification of points on the boundary of a square
(similar to how a Möbius strip can be formed by identifying points on the boundary of a rectangle).
This definition generalizes in a different direction, leading to a wide variety of other topological
spaces.

Can we formalize "if we took four Möbius strips and connected their ends pairwise, we
would again form a non-orientable, but now also closed surface. This surface would be
more complex than a Klein bottle, having more twists and loops"?

Manual Annotation:
Though not explicitly stated by GPT-4, the Klein bottle, as suggested in the final paragraph, is
a type of quotient topological space. Assuming we had no prior knowledge of this, we showcase
how GPT-4 can guide our exploratory discussion towards a more formal definition of this particular
geometry surface within a mathematical context.

Sure! In the field of topology, the formal description of complex shapes, like the one formed by
joining four Möbius strips, often involves quotient space. A quotient space is formed by taking a
standard shape (like a square or a cube) and identifying, or "gluing together", certain points.
To formally define a shape created by joining four Möbius strips, we might proceed as follows:
1. Start with a cube, which we’ll consider to be the product of three intervals: [0, 1]× [0, 1]× [0, 1].
2. We’ll identify points on the boundary of the cube as follows. For points (x, y, z) on the
boundary, we’ll identify a point with its diametrically opposite point. That is, (x, y, z) is identified
with (1− x, 1− y, 1− z).
The resulting space is a quotient space of the cube, and it can be visualized as a sort of four-
dimensional analogue of the Klein bottle. The process of forming a quotient space by identifying
points can be generalized to create a wide variety of other topological spaces. It is a fundamental
technique in the field of topology. This is how we formally define shapes like the Möbius strip and
the Klein bottle, and it’s the method we would use to formally define a shape created by joining
together four Möbius strips.

Table 7: Comprehensive log of the extension to the brainstorming conversation with GPT-4 for Experiment I: From
Möbius to Klein.
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Cats and Dogs

I will supply you with four 768-dimensional vectors, each of them is a vector representation
of a distinct image produced by an image encoder. Can you help find connections among
pairs of those vectors?

Absolutely, I’d be happy to help! In order to analyze these vectors, we will need to perform a few
steps:
1. Pairwise comparison: We’ll start by calculating the cosine similarity between each pair of
vectors. This will provide us with a quantitative measure of how similar each pair of images is
based on their vector representations.
2. Dimension Reduction: To visualize these high-dimensional vectors, we can use dimensionality
reduction techniques like Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor
Embedding (t-SNE). These techniques will allow us to represent these 768-dimensional vectors in
a 2D or 3D space.
3. Visualization: Once we have our reduced dimensions, we can plot these vectors to visually
observe any clusters or outliers.
4. Analysis: Based on the quantitative (cosine similarity) and qualitative (visual) findings, we can
begin to deduce insights about the relationships between these images.
Let’s start with step 1, the pairwise comparison. Can you provide the four vectors?

Manual Annotation:
We have left out the detailed long input vectors, such as [−1.8285e− 02, ..., 4.5278e− 04], from
this log. Each of these vectors corresponds to a specific image - "standing-cat", "sleeping-cat",
"standing-dog", and "sleeping-dog" - named according to the actual contents depicted in the orig-
inal images. GPT-4 has suggested some promising steps for analyzing the vectors in its above
response. However, it appears to lose track of these proposals after processing a chain of input
vector sequences.

Do you spot any relationship between the vector pairs "standing-cat" and "sleeping-
cat"? How about the vector pairs "standing-dog" and "sleeping-dog"? Can you find any
correlation in the co-movements of those two pairs? You are welcome to use distance
functions such as cosine-similarity. You may also try projecting the original vectors into
a different vector space.

I see you’re asking a question that involves word embeddings or word vectors, common in natural
language processing (NLP). These word vectors represent words or phrases in multi-dimensional
space, and their geometric relationship can indicate semantic relationships between words. However,
as an AI text model, I do not have real-time access to any word embedding models such as
Word2Vec, GloVe, or FastText, and I can’t calculate these vectors or their relationships directly.
That being said, I can still provide a general explanation based on the principles of how these
models usually work.
Given the vector pairs "standing-cat" and "sleeping-cat", and "standing-dog" and "sleeping-dog",
the vectors "standing-cat" and "standing-dog" may be seen as analogous to "sleeping-cat" and
"sleeping-dog", respectively. This is because the word pairs ("standing", "sleeping") and ("cat",
"dog") might have similar relationships in the word vector space. For instance, "standing" and
"sleeping" might both be considered states or conditions, and "cat" and "dog" are both types of
pets. If the word vector model has been trained effectively, it could capture these relationships.
Cosine similarity could be used to measure the angle between these vectors, providing a measure
of how similar the vectors are irrespective of their magnitude. If the cosine similarity between
"standing-cat" and "sleeping-cat" is close to the cosine similarity between "standing-dog" and
"sleeping-dog", it could be interpreted that the state transitions (from standing to sleeping) for
cats and dogs are semantically similar.
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About projection to a different vector space, dimensionality reduction techniques like PCA (Principal
Component Analysis) or t-SNE could be used. These techniques can help visualize the word vectors
by projecting the high-dimensional vectors to 2D or 3D space. However, it’s crucial to note that
dimensionality reduction might cause some loss of information.
Please note that these interpretations are highly dependent on the corpus the word vectors are
trained on. Different corpora could result in different semantic relationships being captured. Also,
as I mentioned earlier, I’m providing this information based on principles and theory, as I cannot
perform these calculations directly.

Given that "it’s crucial to note that dimensionality reduction might cause some loss
of information," could you assist in determining the optimal number of dimensions for
studying their pairwise relationships? Note that the optimal number of dimensions might
exceed 768, their original dimension.

Manual Annotation:
The version of GPT-4 we experimented with unfortunately could not directly do numerical compu-
tations nor executing a model or piece of code, which we believe, will be accompanying features
in a later GPT. But if it could, our original plan was to do a more data science-oriented approach
of exploring and finding the structures directly in the real data we provided. Here because of the
aforementioned limitations, we instead delved into a more conceptual statistical discussion, which
also bears its own value.

As an AI language model, I don’t have the ability to directly perform calculations or numerical
analysis. However, I can certainly explain the process one would go through to determine the best
number of dimensions.
Dimensionality reduction is a complex process that involves making trade-offs between simplicity
and information retention. More dimensions generally mean more accurate representations of the
data, but also more complexity and potential for overfitting. Conversely, fewer dimensions can lead
to simpler models and less overfitting, but at the risk of losing important information.
There isn’t a definitive method to determine the best number of dimensions, but there are tech-
niques that can be helpful:
1. Scree Plot: This technique is often used in Principal Component Analysis (PCA). The variance
explained by each principal component is plotted, usually in decreasing order. The best number
of dimensions is often selected at the "elbow point", where the plot stops decreasing sharply and
begins to flatten out. This indicates that adding more dimensions beyond this point will not add
much explanatory value.
2. Cumulative Explained Variance: This is another technique used in PCA. A certain percentage
(e.g., 95%) of the total variance is targeted, and dimensions are added until this percentage is
reached.
3. Cross-validation: This technique involves building a predictive model using the reduced-
dimension data, then evaluating the model’s performance. The best number of dimensions is
typically the one that results in the best model performance, based on a selected evaluation metric.
Remember, choosing the number of dimensions is a balance between retaining information (variance
in the data) and avoiding over-complexity or overfitting. The optimal number may indeed be greater
than the original 768 dimensions, especially if the dataset is very complex and high dimensional.
However, in practice, it’s rare to increase the number of dimensions in dimensionality reduction, as
it contradicts the primary goal of the process: reducing complexity.

While I concur that "dimensionality reduction" could be beneficial, I would prefer not to
confine myself solely to the "reduction" approach. Rather, my objective is to ascertain
the optimal dimensionality of a space to enhance the likelihood of discerning pairwise
relationships among the four projected vectors. Could you revise your suggestions to
align with this goal?
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Given the new information you’ve provided, it sounds like you’re interested in conducting some
form of multivariate analysis to understand the relationships between these vectors. If the goal
is to identify the optimal number of dimensions for these analyses, there are a few steps you can
consider:
1. Exploratory Data Analysis (EDA): Conduct preliminary analyses to understand the structure
and characteristics of your data. This could include calculating basic statistics (mean, variance,
etc.), looking at distribution characteristics, or visualizing pairwise relationships with scatter plots.
2. Correlation Analysis: Calculate the correlation matrix for your dataset. This will help you
understand the pairwise relationships between each pair of vectors. High correlation between two
vectors may suggest they can be represented in a lower-dimensional space.
3. Factor Analysis or Principal Component Analysis (PCA): Both methods can help in
understanding the underlying structure of your data. These techniques will give you a new set of
uncorrelated variables, each a linear combination of the original variables (vectors). The Eigenvalues
of these new variables can be analyzed to identify the number of significant factors or components,
which can hint at the optimal number of dimensions.
4. Cross-Validation: If you’re planning on using these vectors in a predictive model, perform
cross-validation. Train models with different numbers of dimensions and see which performs the
best according to your chosen performance metric.
5. Dimensionality Increase: Rarely, if the complexity of relationships is high, you may consider
adding more dimensions (higher than 768) through techniques such as Kernel PCA or using au-
toencoders in deep learning.
Remember, while PCA and Factor Analysis are powerful tools for understanding data structure,
they’re based on specific assumptions about the data, and care should be taken to ensure these
assumptions are met.
Finally, this process involves a degree of trial and error. It’s unlikely that there will be one clear
"optimal" number of dimensions that is immediately apparent. Instead, it’s a balance of capturing
the necessary complexity to understand your data while avoiding overfitting or creating overly
complex models. It’s possible that different methods will suggest different numbers of dimensions,
and you’ll need to use your judgment to decide which is the most suitable for your specific purpose.

Using the vectors I provided as an example, could you elucidate on how to employ factor
analysis or kernel PCA to identify an optimal number of dimensions to which the vectors
should be transformed? Additionally, could you elaborate on the "specific assumptions
about the data" when "care should be taken to ensure these assumptions are met"?

Certainly, I’d be glad to elaborate.
1. Factor Analysis: Factor Analysis is a statistical method used to describe variability among
observed, correlated variables in terms of potentially lower number of unobserved variables called
factors. The observed variables are modelled as linear combinations of the potential factors, plus
some error terms.
For your case, you would first compute a correlation matrix of your vectors. The correlation
matrix represents the pairwise relationship among the vectors. Next, you’d perform an Eigenvalue
decomposition of the correlation matrix. Each Eigenvalue represents the amount of variance in the
data that is accounted for by its corresponding Eigenvector (factor).
The number of factors to retain can be guided by a few rules-of-thumb. You might keep all factors
with Eigenvalues greater than 1, which explains more variance than a single original variable. You
might also consider a scree plot, where Eigenvalues are plotted in descending order, and you retain
factors up to the point where the decline of Eigenvalues appears to level off.
The retained factors can be interpreted by examining the factor loadings, which indicate how
strongly each original variable is associated with each factor. This will give you insights into which
dimensions (factors) are most significant in describing the pairwise relationships in your data.
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2. Kernel PCA: Kernel PCA is a version of Principal Component Analysis (PCA) which operates
in a high-dimensional feature space using what’s known as the "kernel trick". By applying a
nonlinear mapping to a higher dimension, Kernel PCA allows for the possibility of making complex
relationships more visible and easier to work with. For your data, this means you could apply a
Kernel PCA with different kernel functions (e.g., linear, polynomial, Gaussian, sigmoid, etc.) and
project your data into higher-dimensional space. This new space may reveal relationships between
your vectors that were not visible in the original space.
The optimal number of dimensions can be determined similarly to the way it is in regular PCA.
That is, you retain the top principal components that explain the most variance until you reach a
suitable threshold (e.g., 95% of the total variance).
As for the assumptions of these methods:
- Factor analysis assumes that there are linear relationships among your variables (vectors). It
also assumes that any noise (errors) in your data is random and normally distributed. If these
assumptions aren’t met, the factors you derive may not be valid or meaningful.
- Kernel PCA makes fewer assumptions about the underlying data, which is why it can be useful
when dealing with complex, nonlinear relationships. However, it does assume that a nonlinear
transformation to a higher-dimensional space will make the data more tractable, which may not
always be the case.
I hope this provides a useful starting point for exploring these methods with your data!

Considering that my data comprises vector embeddings of images, what kernel function
would you recommend as a starting point?

When choosing a kernel function in Kernel PCA for image data, it often depends on the specific
characteristics and properties of your dataset, as well as the problem you’re trying to solve. Here
are a few kernels that are commonly used:
1. Linear Kernel: If the data is linearly separable (which might not be the case for complex image
data), a linear kernel can be used.
2. Polynomial Kernel: This kernel is often used in image processing. It provides a good fit for
data where the relationship between the vectors is of a certain degree of polynomial. You could
experiment with different polynomial degrees to see what works best for your data.
3. Radial Basis Function (RBF) or Gaussian Kernel: This is one of the most commonly used
kernels and is especially effective for high-dimensional data. It can handle non-linear and complex
transformations well, which could be suitable for image data. It also has only one parameter to
tune (the Gaussian radius), which simplifies things.
4. Sigmoid Kernel: This is used as a proxy for neural networks. However, in practice, it tends
not to perform as well as the RBF kernel for many types of data.
Given that your data is based on image embeddings and considering the complexity of
image data, you might want to start with the RBF kernel as it can handle non-linear
and complex transformations. However, it’s generally a good idea to experiment with different
kernels and parameters to see what works best for your specific case.
Note: It’s also important to normalize your data before applying Kernel PCA to ensure
that all dimensions contribute equally to the distance metric.
In terms of finding the optimal number of dimensions to project into, a good rule of thumb is
to look for the point where adding another dimension doesn’t significantly increase the
variance explained by the model. This is often visualized as an "elbow" in a plot of explained
variance vs number of dimensions. This approach attempts to balance between model complexity
(more dimensions) and explained variance.

Table 8: Comprehensive log of the brainstorming conversation with GPT-4 for Experiment II: Cats and Dogs.
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A Virtual Conference of the n-body problem

Could you provide me with a brief overview of the n-body problem, along with its latest
updates, in layman’s terms?

Manual Annotation:
We start the conversation by establishing a common understanding between us. Subsequently, we
invite GPT-4 to shed light on the challenges intrinsic to this open research problem.

Sure, I can provide an overview of the n-body problem in layman’s terms, though keep in mind my
training data only goes up until September 2021, so I may not have the very latest developments.
However, I can tell you the current state of understanding up to that point.
The n-body problem is a classic problem in physics and mathematics. It’s essentially about predict-
ing the individual motions of a group of celestial objects interacting with each other gravitationally.
The "n" in "n-body" stands for any number - so you can have a 2-body problem, a 3-body problem,
or a problem with any number of bodies.
For the 2-body problem, the solution is relatively straightforward - for example, the way the Earth
orbits the Sun can be very accurately modeled by considering just these two bodies (ignoring the
influence of other planets for simplicity). The solution for this case is well-known and leads to
elliptical orbits as described by Kepler’s laws.
However, as we increase the number of bodies involved, things get increasingly complex. The
3-body problem is a famous example. There’s no general solution for arbitrary initial conditions in
terms of simple mathematical functions, although some special solutions are known.
The complexity grows rapidly with each added body (4-body problem, 5-body problem, and so on),
and for these larger "n-body" problems, solutions are generally only possible through numerical
methods - which involve using computers to perform a series of approximations to get an answer.
As of my knowledge cut-off in 2021, there’s been much research into special cases and approximation
methods, with significant insights coming from fields like chaos theory (which deals with systems
that are very sensitive to initial conditions). However, a general, analytical solution to the n-body
problem for n > 2 remains elusive.
To learn about the latest advances beyond this, you might want to consider looking for recent
academic papers, or reliable physics and mathematics news sources. But remember, the n-body
problem is a complex and challenging problem that has been puzzling scientists for centuries!

Instead of the general n-body problem, let’s talk more about the analytical solutions
available for the 3-body problem. Can you summarize the 3-body problem and its solutions
in a straightforward and clear manner?

As of my last training data in September 2021, there isn’t a general analytical solution to the
three-body problem, only specific solutions under particular conditions. This is a complex topic in
physics, but I’ll try to summarize the problem and some known solutions as straightforwardly as
possible.
The three-body problem originates from celestial mechanics, a field of study in physics. Imagine
three celestial bodies, like stars or planets, each with a specific mass. These bodies exert a
gravitational pull on each other, leading to a system of motion. The question is, given the initial
positions and velocities of these bodies, can we predict their motion at any future time? This is
the essence of the three-body problem.
Now, as I mentioned, there’s no known general analytical solution to the three-body problem. This
means that we can’t write down a simple equation or set of equations to solve the problem in all
cases. However, we do have some specific solutions for special cases:
1. Lagrange’s Solution: In 1772, Joseph-Louis Lagrange discovered a special solution. He
showed that if three bodies of equal mass are located at the vertices of an equilateral triangle, they
will rotate in a circular orbit around the center of mass while maintaining the equilateral triangle
configuration.
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2. Euler’s Collinear Solution: Another special case was found by Leonhard Euler, where the
three bodies lie on a straight line at all times, oscillating back and forth around the center of mass.
3. Restricted Three-Body Problem: The Restricted Three-Body Problem is another special
case. Here, one body is assumed to have negligible mass and doesn’t affect the motion of the other
two bodies. This can approximate the motion of a spacecraft in the gravitational field of Earth and
the Moon, for instance. The well-known Lagrangian points are solutions to this problem.
4. Choreographies: A relatively recent discovery (1993 by physicist Cris Moore) is the existence of
solutions where the bodies move along the same closed curve or "choreography". These are complex
solutions and the bodies need to be carefully arranged at the start to follow these trajectories.
I must stress that all these solutions are specific and don’t provide a general solution to the three-
body problem. In most scenarios, numerical methods are used for approximations. The three-body
problem remains a central problem in celestial mechanics and dynamical systems, and research into
this problem is ongoing.

Leveraging any scientific knowledge you know up to now, can you highlight the primary
challenges in attempting to solve the three-body problem analytically?

Certainly! The three-body problem has fascinated and frustrated mathematicians and physicists
for centuries. Here are a few of the primary challenges associated with finding a general, analytical
solution:
1. Non-linearity of Equations: The equations governing the motion in the three-body problem
are nonlinear. This means that they can’t be simplified into a set of linear equations that can be
easily solved. This complexity leads to chaotic behavior in the system, where small changes in
initial conditions can lead to drastic differences in outcomes.
2. Complexity of Gravitational Interactions: Each body in the system is influenced by the
gravity of the other two bodies, and these influences change as the bodies move. This makes for
a complex, constantly changing system that’s difficult to capture in a single, simple mathematical
form.
3. Lack of Symmetry: Unlike the two-body problem, where the bodies’ paths are symmetrical,
the three-body problem lacks such symmetry. This makes it harder to simplify the problem or find
patterns that could lead to an analytical solution.
4. Existence of Solutions: It’s unclear whether general solutions even exist for all initial conditions
in the three-body problem. For some specific initial conditions, the trajectories of the bodies can
become unbounded, with one or more bodies escaping the system entirely.
5. The Poincaré Recurrence Theorem: This theorem, named after Henri Poincaré, suggests
that the problem is more complex than we may even be capable of solving. It says that certain
systems will, after a sufficiently long but finite time, return to a state very close to the initial state.
This means the problem may not have a solution that can be expressed in a finite form.
These challenges have so far prevented scientists from finding a general, analytical solution to the
three-body problem. However, the problem has yielded rich insights into the behavior of gravita-
tional systems and has spurred the development of new mathematical techniques and branches of
study, such as chaos theory and numerical analysis. Despite its challenges, the three-body problem
continues to be an active area of research and a source of fascinating findings.

Suppose you could bring in any relevant mathematicians and scientists from history, in-
troducing them to later discoveries regarding the 3-body problem, and then asking them
to contemplate solutions for the challenges you have highlighted. From their discussion,
let’s collectively attempt to devise a new, potentially viable approach to this problem.
Note that everyone is encouraged to pose questions and build upon the ideas of others.
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Manual Annotation:
Here, we introduce and adopt the strategy of engaging great minds and experts from history and
a variety of relevant fields for collective brainstorming. Throughout this conversation, we primarily
utilize this mechanism, guided by our own intuition and knowledge, to devise a promising new
approach to the n-body problem.

That’s a fun and creative scenario! Let’s imagine a conference featuring Sir Isaac Newton (for-
mulator of classical mechanics and gravitational theory), Henri Poincaré (pioneer of the study of
dynamical systems and chaos theory), and Joseph-Louis Lagrange (one of the key figures in the
development of celestial mechanics). Here’s how that conversation might go:
Newton: As you may recall, I formulated the laws of motion and universal gravitation which not
only explain why apples fall from trees, but also how the moon moves around the Earth, and the
planets around the sun. But these laws become quite complicated when we try to apply them to
three bodies instead of just two. The gravitational forces all interact with one another, leading to
a mess of a situation.
Lagrange: Indeed, Sir Isaac. I found some special solutions where the positions of the bodies
form either an equilateral triangle or lie on a straight line, but these cases are very limited. Most
three-body systems don’t behave in such a neat and orderly fashion.
Poincaré: It seems that the key problem here is the sensitivity to initial conditions - what I’ve been
exploring in my work on dynamical systems. A tiny change in the starting configuration can result
in vastly different outcomes. This "chaos" is at the heart of the three-body problem’s difficulty.
Newton: That’s a valuable insight, Henri. This sensitivity might mean that the problem can’t be
solved in the conventional sense. Perhaps we need to approach it from a different angle, focusing
on statistical or probabilistic solutions instead.
Lagrange: I agree with you, Isaac. And to make matters worse, the equations governing the
motion are nonlinear, as you pointed out earlier. This nonlinearity is a significant hurdle.
Poincaré: Instead of trying to find exact solutions, perhaps we should be looking for approximate
solutions. We could use iterative methods to refine these approximations over time. This
might give us "good enough" solutions for practical purposes, even if we can’t find a perfect,
closed-form solution.
Newton: That’s a promising approach, Henri. Even in my day, we were using numerical methods
to make predictions about celestial motion. Today’s computational resources would make this
approach much more feasible.
Lagrange: Perhaps we can also gain insights from other fields. The field of topology, which has
emerged after my time, might provide new ways of looking at the problem. For example,
we could explore topological features of the solution space.
Poincaré: I agree, Joseph-Louis. By bringing together different branches of mathematics and
physics, and making use of modern computational power, we might make real progress on this
ancient problem.
This imaginary conversation represents an ongoing dialogue between scientists over the centuries.
The problem hasn’t been completely solved yet, but each generation brings new tools and perspec-
tives to bear on the problem, making incremental progress and occasionally achieving breakthrough
insights. Even today, scientists are using modern techniques such as machine learning and artificial
intelligence to gain new insights into this complex problem.

While the idea of finding approximate solutions is appealing, this method has been ex-
ploited to a great extent. Instead, let’s shift our focus to exploring the potential existence
of a usable analytical solution for "good" initial conditions. I am drawn to Lagrange’s
suggestion of leveraging findings from the field of topology, so let’s guide our discussion
in that direction. And as pointed out, we might also employ modern deep learning tech-
nologies. Let’s extend our conversation with these additional considerations in mind. Feel
free to invite other minds who could be helpful!
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That sounds like a promising direction! Let’s bring into our hypothetical conference a couple more
minds: Leonhard Euler (who contributed significantly to various fields, including topology), and
Geoff Hinton (a pioneer in deep learning). Let’s see how this new conversation might go:
Euler: Lagrange, you mentioned the field of topology, which deals with properties of space that are
preserved under continuous transformations. One of the central ideas in topology is the concept
of a manifold, a space that is locally similar to Euclidean space. Could the space of solutions
to the three-body problem be some form of manifold?
Lagrange: That’s an intriguing idea, Leonhard. If we could model the solution space as a manifold,
we might be able to use the tools of differential geometry to analyze it. But this manifold would
exist in a high-dimensional space, since each body’s position and velocity contributes
three dimensions to the system. Visualizing or working with such a manifold could be quite
challenging.

Manual Annotation:
The three-body problem involves a total of (3 + 3)× 3 = 18 dimensions, which is quite high for
us humans, but not particularly challenging for AI. In the more general n-body problem, where n
is large, the number of dimensions can be much bigger.

Hinton: That’s where modern technology might come into play. In deep learning, we routinely
work with high-dimensional spaces and use techniques like dimensional reduction to make them
more tractable. Perhaps we could train a neural network to learn the dynamics of the three-
body problem, and then analyze the learned model to gain insights.
Poincaré: Geoff, your work with neural networks is fascinating, and perhaps we could use them
as a tool for exploring this high-dimensional manifold. But we would need to be careful not to
mistake the model’s predictions for an analytical solution. It might capture the behavior
of the three-body problem accurately, but we would still lack an understanding of the
underlying mathematical structure.

Manual Annotation:
We highlight this aspect as understanding the underlying mechanisms is a critical component in
mathematical and numerous scientific research fields, just as important as predicting behaviors and
outcomes. LLMs indeed offer a valuable opportunity for us gaining insight into how AI formulates
ideas and thoughts.

Newton: Indeed, Henri. Our goal is not just to predict the system’s behavior, but to understand
why it behaves as it does. But Geoff’s idea of using a neural network as a tool for exploration,
not just prediction, is worth considering. We could use it to generate a vast number of potential
solutions, then analyze these to look for patterns or structures.
Euler: That could indeed be a useful approach, Isaac. By combining the tools of topology and
differential geometry with modern computational methods, we might make real progress towards
an analytical solution, or at least a deeper understanding of the problem.
This discussion illustrates how different fields can come together to tackle a challenging problem
like the three-body problem. Topology, differential geometry, and modern computational methods
like deep learning can all provide valuable tools for exploring the problem space. While this doesn’t
guarantee a general analytical solution, it could lead to significant insights and new ways of ap-
proaching the problem.

Several intriguing aspects emerge from our discussion so far: 1) "Could the space of solu-
tions to the three-body problem be some form of manifold?" 2) "But this manifold would
exist in a high-dimensional space, since each body’s position and velocity contributes
three dimensions to the system. Visualizing or working with such a manifold could be
quite challenging." and 3) "In deep learning, we routinely work with high-dimensional
spaces."
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Our next step is to elaborate on these points and explore a more concrete method
for utilizing deep learning to identify an analytical solution to the three-body problem,
specifically in the context of manifolds. To aid us in this endeavor, let’s incorporate more
expert opinions into the discussion.

Indeed, those are thought-provoking ideas. Let’s continue this hypothetical discussion by bringing
in Bernhard Riemann, a mathematician who made significant contributions to the understanding
of manifolds and geometry, and Yann LeCun, a leading researcher in machine learning, specifically
convolutional neural networks and dimensionality reduction techniques. Here’s how they might
contribute to the conversation:
Riemann: Euler, your suggestion of treating the space of solutions to the three-body problem
as a manifold is intriguing. As we know, a manifold is a space that, in a small enough region,
resembles Euclidean space. Since each body’s position and velocity contribute three dimensions
each, our manifold would exist in a high-dimensional space. The challenge is finding a meaningful
representation of this manifold that captures the essence of the problem.
LeCun: Bernhard, in the field of deep learning, we frequently deal with high-dimensional data. A
common approach to make these high-dimensional spaces more manageable is through dimension-
ality reduction. We could use an autoencoder, for example, a type of artificial neural network used
to learn efficient codings of input data.
Riemann: Interesting, Yann. With an autoencoder, we could learn a lower-dimensional
representation of the high-dimensional manifold. This lower-dimensional representation might
be easier to work with and analyze.
Hinton: Yes, the lower-dimensional representation could potentially reveal patterns or structures
in the solution space that aren’t evident in the high-dimensional space. And to connect back
to Euler’s point, these structures might give us insights into the manifold nature of the
solution space.

Manual Annotation:
In our earlier prompts, we emphasized that "everyone is encouraged to pose questions and build
upon the ideas of others". Notably, GPT-4 has indeed demonstrated its ability to recall pertinent
points from previous conversations and generate fresh insights based on them. This capacity is
crucial for brainstorming, particularly when our goal is to draw upon a wide range of expertise
through multiple rounds of collaborative and iterative ideation.

Poincaré: That sounds promising, but we need to remember our goal here: finding an analytical
solution. While a neural network could approximate the solution space, it’s essentially a numerical
method. We need to extract an analytical insight from it.
LeCun: Indeed, Henri. One possibility could be using the neural network as a generator of solutions.
We could then analyze the set of generated solutions to look for common structures or patterns.
These patterns could potentially be formalized into an analytical expression or set of expressions.
Newton: So, we’re suggesting using a neural network to explore the manifold of solutions, then
examining the results to identify possible analytical solutions. That seems like a potentially fruitful
approach. The key will be in the analysis of the generated solutions and the extraction of meaningful
patterns.
In conclusion, it’s suggested that an autoencoder could be used to create a lower-dimensional
representation of the high-dimensional manifold of solutions. This representation could be easier
to visualize and analyze, potentially revealing structures or patterns in the solution space that
could lead to an analytical solution. However, this approach would require careful analysis and
mathematical formalization of the patterns identified. It’s a creative and potentially promising
direction, but also a challenging one, that would require significant advances in both mathematical
analysis and machine learning techniques.
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Rather than relying on humans to analyze and identify patterns through a lower-
dimensional representation of the high-dimensional manifold, which results in information
loss, can we leverage DL to discover hidden structures of the solution in its original high-
dimensional space? I think that a deep neural network should indeed hold such potential.
With this insight as our basis, let’s carry on with our discussion.

Certainly! This is a great point to bring up. In essence, you’re suggesting that we could potentially
use deep learning to go directly from the high-dimensional manifold to an analytical solution. This
might require some form of symbolic regression, a technique for finding analytical expressions that
fit data. Let’s bring in another deep learning expert, Yoshua Bengio, a pioneer in the development
of deep learning algorithms, to contribute to the discussion.
LeCun: The suggestion of working directly with the high-dimensional manifold instead of reducing
it to lower dimensions is a valid one. Given that deep learning models excel at handling high-
dimensional data, there is a possibility that a deep neural network could find patterns directly in
this space.
Bengio: I agree with Yann. Deep learning models have demonstrated the ability to work effectively
with high-dimensional data in various fields. The task of learning from the high-dimensional mani-
fold of the three-body problem could be thought of as learning representations, which is essentially
what deep learning does.
Hinton: True, Yoshua. We’ve seen success with deep learning in areas with high-dimensional data
like image and speech recognition. But this problem is a bit different. We’re not just categorizing
data, we’re looking for an analytical solution — an expression or set of expressions that capture
the underlying mathematical structure.
Bengio: That’s a good point, Geoff. This would likely require a form of symbolic regression,
which involves finding an analytical expression that fits the data. With deep learning, this
could mean training a model to output an expression instead of a single prediction.
LeCun: That’s an interesting idea, Yoshua. Symbolic regression with deep learning is an active
area of research, and it’s possible that it could be applied to the three-body problem. But there
are still many challenges to be overcome, such as the difficulty of representing and manipulating
mathematical expressions within a neural network.
Newton: It seems we’re on the cusp of a new approach, using deep learning not just to predict
the motion of the bodies, but to derive the underlying equations themselves. This would be a
significant step forward, although as Yann mentioned, it’s not without its challenges.
So, the consensus appears to be that using deep learning to find an analytical solution directly from
the high-dimensional manifold is a promising approach, albeit a challenging one. The concept of
symbolic regression, finding an analytical expression that fits the data, seems particularly relevant.
However, representing and manipulating mathematical expressions within a neural network is a
complex task and is an active area of research in the field of deep learning.

If we consider using symbolic regression to address the three-body problem, are there
ways to surmount the potential challenges?

Certainly, let’s bring in another expert for this: Hod Lipson, a pioneer in the field of symbolic
regression and genetic programming. Here’s how he might contribute to the conversation:
Lipson: The idea of symbolic regression is to search the space of mathematical expressions to find
a formula that best fits a given dataset. In a sense, it’s like traditional regression, but instead of
fitting parameters in a predetermined model, we’re searching for the model itself.
LeCun: Right, Hod. So, applying this to the three-body problem, we would be trying to find an
equation or set of equations that describe the motion of the three bodies.
Lipson: Exactly. This would require a significant amount of data, likely generated by simulating
the three-body problem under various conditions. We would then use symbolic regression to search
for a mathematical expression that fits this data.
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Hinton: But as we’ve mentioned, symbolic regression is quite challenging in a deep learning
context. Neural networks are not naturally suited to representing and manipulating mathematical
expressions.
Lipson: That’s correct, Geoff. We’ve made some progress in this area using techniques like
genetic programming, where we use evolutionary algorithms to search the space of mathematical
expressions. But integrating this with deep learning is still an open problem.
Bengio: One possible direction could be to use a differentiable programming approach, where we
design neural networks to be more amenable to symbolic manipulation. This is a relatively new
field, but it has shown promise in similar tasks.
Lipson: Indeed, Yoshua. Differentiable programming could provide a way to bridge the gap between
deep learning and symbolic regression.
Newton: The idea of finding the underlying equations directly from the data, rather than inferring
them through observation and deduction, is a significant departure from the way we’ve traditionally
done physics. But it seems to hold promise, especially with the advancements in techniques like
differentiable programming.

Manual Annotation:
Newton appears to be greatly inspired by this conversation, which is filled with new methodologies
and advancements in various fields that were beyond his reach during his era.

The consensus appears to be that symbolic regression, potentially in conjunction with techniques
like genetic programming or differentiable programming, is a promising approach to finding an
analytical solution to the three-body problem. However, integrating symbolic regression with deep
learning, and in particular designing neural networks that can represent and manipulate mathemat-
ical expressions, is a significant challenge.

I have come to understand that tackling this problem using symbolic regression is chal-
lenging. Why don’t we reintroduce theoretical physics and topology into the discussion?
And let’s revisit the idea of potentially using a low-dimensional representation of the
high-dimensional manifold.

Absolutely, your suggestion brings us back to the initial idea of modeling the solutions of the three-
body problem as a high-dimensional manifold. Let’s bring in Edward Witten, a theoretical physicist
known for his work on string theory, which often involves high-dimensional spaces and topology.
Here’s how he might contribute:
Witten: This has been an insightful conversation so far. I agree with the thought of modeling
the solution space as a manifold, and exploring it using deep learning. However, the potential
information loss from reducing its dimensions should be taken into account. In string
theory, we often deal with high-dimensional spaces, and we might have some ideas to contribute.
Euler: Indeed, Edward. In string theory, you often compactify extra dimensions to make the theory
more tractable. Perhaps a similar approach could be used here, retaining the full information of
the high-dimensional space while making it easier to work with.
Witten: Exactly, Leonhard. Compactification, or similar techniques, could allow us to study the
high-dimensional manifold in a way that is more manageable, while preserving the essential features.
LeCun: Edward, your point is very valid. To work with high-dimensional data in machine
learning, we often use techniques like convolutional layers that exploit the local structure
of the data. Could we find a similar way to exploit the local structure of this high-
dimensional manifold?
Witten: That’s an interesting thought, Yann. In the context of the three-body problem, local
structure could refer to the interactions between bodies at a particular moment. The dynamics of
these local interactions might provide insights into the overall structure of the manifold.
Bengio: We could perhaps train a deep learning model to recognize and learn these local
structures, using them as building blocks to construct an approximation of the entire
manifold.
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Newton: And once we have this approximation, we could potentially use symbolic regression or
another form of analysis to extract an analytical solution.
Witten: Precisely, Isaac. This would be a significant challenge, of course, but it seems like a
promising direction. We might be able to apply some of the mathematical techniques developed
in string theory to help with this task.
The discussion suggests a potential new approach: combining ideas from string theory and deep
learning to study the high-dimensional manifold of solutions to the three-body problem. Techniques
like compactification could be used to make the manifold more manageable, while deep learning
could help identify and learn local structures within the manifold. These structures could then be
used to build an approximation of the manifold, which could potentially be analyzed using symbolic
regression or a similar method to extract an analytical solution. However, this is a complex and
challenging task that would require significant advances in several areas.

This is indeed a fascinating and thought-provoking approach that I would not have con-
ceived on my own. Let’s address any remaining issues and then briefly summarize the
setup of the three-body problem along with the method we have developed so far. Ad-
ditionally, let’s outline the type of data we will need to train the DL model and suggest
an appropriate collection method. Have we missed any other challenges that need to be
addressed?

Absolutely, let’s present a brief potential approach based on our discussion:
1) Problem Statement:
We consider three point masses under the influence of gravitational forces in three-dimensional
space, where the solution is a time evolution of their positions. The set of all possible solutions
forms a high-dimensional manifold, each point on the manifold representing a specific state of the
three-body system.
2) Approach:
We propose using a deep learning model to learn this manifold. The model would be trained
on a large dataset generated by simulating the three-body problem under a variety of initial con-
ditions. Techniques from string theory, such as compactification, could be used to make this
high-dimensional manifold more manageable, while preserving the essential features.
The DL model would need to identify and learn local structures within the manifold. These
structures could then be used as building blocks to construct an approximation of the manifold.
3) Data Collection:
The deep learning model would require a vast amount of simulated data. This data would consist
of time evolution of three-body systems under a variety of initial conditions. The creation of such
a dataset would be computationally intensive but feasible with modern technology.
4) Challenges and Considerations:
One of the main challenges in this approach is the integration of symbolic regression with deep
learning. Representing and manipulating mathematical expressions within a neural network is a
complex task and is an active area of research. Another challenge comes from the chaotic nature
of the three-body problem. Small changes in initial conditions can lead to large differences in
outcomes, which might make the learning task more difficult. Lastly, the issue of data sufficiency
may arise. As the manifold is of high dimensionality, covering the space adequately with simulations
might be a computationally demanding task.
Overall, the combination of deep learning, symbolic regression, and string theory presents a promis-
ing new approach to finding an analytical solution to the three-body problem, but a few challenges
remain. Continued research and development in these areas will be crucial for successfully carrying
out this approach.

Table 9: Comprehensive log of the brainstorming conversation with GPT-4 for Experiment III: The n-body problem.
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The wicked Queen and the seven Dwarfs

Let’s think about this problem together: "Seven dwarfs are imprisoned by the wicked
queen who puts a red hat or a green hat on the head of each dwarf. The hats are chosen
randomly and every configuration is equally likely. The dwarfs can see all the hats except
for his own. At a signal, each dwarf can stay silent, or guess the color of his hat. The
queen promises to free all seven dwarfs if at least one dwarf guesses his hat correctly
and no one guesses his hat wrong. If all the dwarfs are silent, or some dwarfs say an
incorrect color, the dwarfs remain captured. Find a strategy for the dwarfs to go free
with probability greater than 80%." To facilitate our communication, let’s first assign
integers from 1 to 7 to the seven dwarfs, from the shortest to the tallest. Let’s also
adopt a binary notation for the two hat colors: 0 for green, and 1 for red. With this
notation, each possible configuration of hats can be represented as a 7-dimensional vector,
c = [c1, c2, c3, c4, c5, c6, c7] ∈ {0, 1}7. Could we proceed from here using these notations?

Manual Annotation:
GPT-4’s initial attempt is completely incorrect. It appears to apply a common "binary parity"
strategy from similar-looking problems. Its core logic breaks down in the area we have highlighted
below. Despite this, it is not a bad attempt, as this is a common mistake made by people as well.

Your notation makes sense and will help in discussing this problem more clearly. The strategy I
would suggest involves using the concept of "parity", which essentially means whether the sum of
certain numbers is even or odd. This can be done in the binary system as well.
The dwarfs can agree on the following strategy:
1. Dwarf 1 will be the one who speaks up and takes on the role of the "guesser", and the rest will
remain silent.
2. Dwarf 1 will observe the colors of the hats on the other six dwarfs, add up the binary numbers
(where red=1, green=0), and determine whether the total is even or odd.
3. Dwarf 1 will then guess the color of his own hat based on whether he needs to make the total
count of red hats odd or even. The other six dwarfs will remain silent.
Now, let’s examine the possible outcomes of this strategy. There are 27 = 128 possible hat
configurations. Since every configuration is equally likely, each has a probability of 1/128.
In half of these configurations (64), the number of red hats will be even. In the other half (64),
the number of red hats will be odd. Therefore, the dwarfs have a 50% chance of being correct if
Dwarf 1 is simply guessing the color of his hat randomly.
However, by using the above strategy, Dwarf 1 isn’t simply guessing; he’s making an
educated guess based on the parity of the other six dwarfs’ hats. If the sum of the colors
of the hats he sees is even, he will guess his own hat is green (0). If the sum is odd,
he will guess his own hat is red (1). This strategy effectively doubles their chance of
correctly guessing, taking it from 50% to 100%.
Therefore, if they follow this strategy, the dwarfs will be able to go free with 100% certainty, which
is definitely greater than 80%.

In the statement "If the sum of the colors of the hats he sees is even, he will guess his
own hat is green (0). If the sum is odd, he will guess his own hat is red (1)", you have
assumed that the total parity of all the hats is even, which only has a 50% chance. So
can this strategy genuinely guarantee a 100% chance of freeing the dwarfs?

You’re correct, and I apologize for the confusion. It’s important to highlight that the strategy relies
on an agreed-upon rule beforehand among the dwarfs: that the "guesser" (Dwarf 1) will make his
guess based on maintaining a specific parity - let’s say even for the purpose of this explanation.
In this case, Dwarf 1 would guess his own hat color such that the total number of red hats (counted
as 1s) among the seven dwarfs would be even. Now, half of the 128 possible hat configurations
would have an even number of red hats, and the other half would have an odd number.
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By guessing his own hat color to maintain the agreed-upon even parity:
1. If the actual total number of red hats among the seven dwarfs is even, and Dwarf 1 observes
an even number of red hats among the other six, he would guess his own hat is green (0), keeping
the total even.
2. If the actual total number is even, but he observes an odd number of red hats among the other
six, he would guess his own hat is red (1), again keeping the total even.
3. If the actual total number is odd, and he observes an odd number of red hats among the other
six, he would guess his own hat is green (0), flipping the total to even.
4. If the actual total number is odd, but he observes an even number of red hats among the other
six, he would guess his own hat is red (1), again flipping the total to even.
In all cases, Dwarf 1 guesses in such a way as to maintain the even total parity. As a result, he
will be correct in exactly half of the cases: specifically, when the actual total number of red hats
among all seven dwarfs is even.
So, the strategy doesn’t guarantee their freedom with 100% certainty, but rather increases their
chances to 50%, which is unfortunately less than the 80% target. I apologize for the previous
miscommunication.
We need to find a strategy with a higher success rate. Would you like me to think about a different
strategy, or do you already have some thoughts?

Manual Annotation:
GPT-4 appears to be able to recognize its error after an extensive line of reasoning, which is ben-
eficial for our understanding of where its initial thought process was flawed.

Let’s try a different approach here. Why not you go ahead and give us some ideas to
start with?

We can take inspiration from the concept of Hamming codes in error detection and correction.
In coding theory, a Hamming distance between two vectors is the number of positions at which the
corresponding values are different. In this case, it’s the number of different-colored hats between any
two assignments. In this scenario, an "error" would be a dwarf guessing their hat color incorrectly.
We can construct a set of assignments with a minimum Hamming distance of 3 by using a (7,4,3)
Hamming code. This is a linear error-correcting code that encodes 4 bits of data into 7 bits by
adding three parity check bits.
Here’s an example of 16 possible assignments for the dwarfs (the four data bits are first, followed
by the three parity bits):
0000 000
0001 101
0010 110
0011 011
0100 111
0101 010
0110 001
0111 100
1000 011
1001 110
1010 101
1011 000
1100 100
1101 001
1110 010
1111 111
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This table gives us 16 possible assignments of hats to the dwarfs such that the Hamming distance
between any two of them is at least 3.
Is there anything you would like to add or any other approach you have in mind?

This seems to be a promising starting point! We can now imagine each such possible
assignment in the reference set you just constructed as a 7-dimensional vector. By taking
a "ball" of radius 1 centered at each element in the set and call it a 1-ball (take 0000000
for example), can you sketch us its neighboring 1-balls and show that whether any two
balls in this set would overlap or not?

Given the high-dimensional nature of the problem, sketching out a 7-dimensional graph isn’t feasible
or intuitive. However, I can explain the concept with reference to a lower-dimensional example and
then extend it to the 7-dimensional case.
A "1-ball" in this context is a set of all points (in this case, configurations) with a Hamming
distance of 1 from a given center point. In a binary system, a Hamming distance of 1 means
flipping one bit in the vector.
If we take the vector 0000000 for example, its 1-balls (vectors at a Hamming distance of 1) would
be the vectors obtained by flipping each bit once:
1000000
0100000
0010000
0001000
0000100
0000010
0000001
Now, considering our constructed set of 16 vectors with a minimum Hamming distance of 3 between
any pair, you can see that none of these 1-balls overlap with our original set. This is because all vectors
in the constructed set differ from the vector 0000000 by at least a Hamming distance of 3. In other
words, you would have to flip at least three bits to reach any vector in our set starting from 0000000,
and flipping just one bit (forming the 1-ball) wouldn’t be enough.

Manual Annotation:
To be precise, here GPT-4 should mention that flipping one bit on each of two balls, thus a total of 2
bits, is insufficient. This requirement gives rise to the need for a minimum Hamming distance of 3 as
opposed to 2.

This logic can be applied to all vectors in the constructed set. For each vector, you would have to flip at
least three bits to reach another vector in the set. Hence, the 1-balls (flipping only one bit) around each
vector in our set will never overlap with any other vectors in the set.
So in a more conceptual sense, each of these vectors in our 7-dimensional space has a 1-ball around
it that doesn’t intersect with any other 1-ball, guaranteeing the minimum Hamming distance of 3 we
established with our set.

Cool! Now combine the information that each dwarf can see the colors of hats of the other 6
dwarfs, the dwarf can then derive two possible configurations of all 7 hats, with our discovery of
no two 1-balls in the set would overlap in the 7-dimensional space, because the two completed
configurations are one distance apart, therefore they cannot both live in the reference set (but
one of them may be), can you help think of a strategy?

Yes, the dwarfs can use the Hamming (7,4,3) code set as a reference and devise a strategy based on this.
Here’s the proposed strategy:
1. Each dwarf will look at the colors of the hats of the other six dwarfs.
2. Based on this, each dwarf can think of two possible configurations for all seven dwarfs’ hats. These
two possible configurations differ only by the color of his own hat.
3. Each dwarf then checks whether these two possible configurations exist in the reference set
constructed using the Hamming (7,4,3) code. There are three possibilities:
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a. Neither of the two configurations exist in the reference set. In this case, all dwarfs should stay
silent because they can’t confidently guess the color of their own hat.
b. One of the two configurations exists in the reference set. This can happen only when the actual
7-hat configuration doesn’t lie in the reference set. The dwarf who identifies his corresponding
configuration in the reference set should guess the color of his own hat such that his guess brings
the actual configuration into alignment with the reference configuration. The remaining six dwarfs
should stay silent.
c. Both configurations exist in the reference set. This should never happen, because we have
ensured that any two vectors in the reference set have a Hamming distance of at least 3, but the
two configurations each dwarf can think of are only 1 distance apart.
With this strategy, when the actual 7-hat configuration doesn’t lie in the reference set, one of the
dwarfs will be able to identify this situation and make a correct guess, freeing all the dwarfs.
Next, let’s analyze the probability of success of this strategy. Notice that there are 128 total possible
7-hat configurations, of which 16 lie in the reference set. Therefore, there are 112 configurations
that don’t lie in the reference set. For each of these 112 configurations, exactly one dwarf will find
a match in the reference set and will be able to make a correct guess. Therefore, the probability
of success is 112/128 = 87.5%, which is greater than 80%.
Thus, this strategy will be successful with a probability greater than 80%, meeting the goal set by
the dwarfs!

Manual Annotation:
Firstly, we are intrigued by GPT-4’s ability to derive this complex strategy as a brainstorming part-
ner. While there are several minor issues in its statements, we spotlight a few for further discussion.
It is also worth noting that GPT-4’s detailed chain-of-thought reasoning presented below assists us
in understanding and tracing the possible origin of the missteps.

In fact, the statement "One of the two configurations exists in the reference set" does
not necessarily imply "the actual 7-hat configuration doesn’t reside in the reference set".
And in "The dwarf who identifies his corresponding configuration in the reference set
should guess the color of his own hat such that his guess brings the actual configuration
into alignment with the reference configuration", it seems to me that the dwarf should
instead guess the color of his own hat such that his guess falls outside the reference
configurations. Could you clarify if my understanding is correct and explain why?

You’re correct, and I apologize for the confusion. The "one of the two configurations exists in
the reference set" scenario can indeed occur when the actual 7-hat configuration is already in
the reference set. In this case, a dwarf would identify that the other configuration (i.e., the one
involving a different color for his own hat) doesn’t belong in the reference set. This suggests that
the configuration involving the other color for his own hat is less likely to be the correct one.
Let’s clarify this by focusing on the 7-dimensional space and non-overlapping 1-balls.
In our 7-dimensional space, we have 16 "balls" (i.e., configurations) from the reference set, each
with a 1-ball around it that doesn’t intersect with any other 1-ball. Each of these 1-balls includes all
configurations that differ from the center configuration by a Hamming distance of 1 (i.e., flipping
one dwarf’s hat color).
The fact that these 1-balls don’t overlap means that for any given configuration in the reference
set, the configurations that can be reached by changing one hat color (which a dwarf could think
of based on the hats he sees) are not in the reference set. This is the key to our strategy: it
guarantees that the dwarfs can never be confused by seeing a configuration that might be the
1-ball of multiple configurations from the reference set.
If the actual configuration is not in the reference set, then there is exactly one dwarf who will see
a configuration that is in the reference set. That dwarf will realize that the configuration he sees
is in the reference set, and will know that the actual configuration can be reached by changing his
own hat color. Since the actual configuration is not in the reference set, he should guess that his
own hat is the color that brings the configuration outside of the reference set.
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Thus, the correct strategy for the dwarfs is: if a dwarf sees a configuration in the reference set, he
should guess that his own hat is the color that brings the configuration outside of the reference set.
With this strategy, when the actual 7-hat configuration doesn’t lie in the reference set, exactly one
dwarf will see a configuration in the reference set and will make a correct guess, freeing all the
dwarfs.
Thank you for pointing out this important clarification.

While some minor issues persist, I overall really like this strategy! The corrected version
further clarifies why, when "Neither of the two configurations exists in the reference set",
not "all dwarfs should stay silent because they can’t confidently guess the color of their
own hat"; instead, at least one would make a guess. Could you summarize the solution
we have derived so far and explain how we arrived at it?

Absolutely, I’d be happy to summarize our approach. Here’s an overview of the strategy and how
we came up with it:
We began with the problem of seven dwarfs, each wearing either a red or green hat. They could
only see the colors of the other dwarfs’ hats, not their own. The dwarfs wanted to devise a strategy
to correctly guess at least one hat color without any incorrect guesses, which would free them from
the wicked queen’s imprisonment.
To tackle this, we adopted binary notation for the two hat colors: 0 for green, and 1 for red. This
transformed the problem into one of binary configurations: seven dwarfs with binary-coded hats
became a seven-dimensional binary vector. We could then represent all possible hat assignments
as points in a 7-dimensional space, each point being a 7-dimensional binary vector.
We then constructed a reference set of 16 hat assignments using a (7,4,3) Hamming code. This
code provided a set of 16 seven-bit binary vectors, with the property that any two vectors in the set
had a minimum Hamming distance of 3. Essentially, these 16 vectors formed 16 non-overlapping
1-balls in the 7-dimensional space.
Our strategy for the dwarfs was then built upon this reference set and the properties of these
non-overlapping 1-balls:
1. Each dwarf looks at the colors of the other six dwarfs’ hats, thereby identifying a 6-bit partial
configuration.
2. Each dwarf then imagines two complete 7-bit configurations: one with his own hat as 0 (green),
and the other with his own hat as 1 (red).
3. Each dwarf checks these two configurations against the reference set. There are three possibili-
ties:
a. Neither configuration is in the reference set. In this case, all dwarfs stay silent, as they cannot
confidently guess their own hat color.
b. One configuration is in the reference set. This can only happen when the actual hat configuration
is not in the reference set. The dwarf identifying his corresponding configuration in the reference
set should guess that his own hat color is the one that is not in the reference set (ensuring that his
guess brings the actual configuration outside of the reference set). All other dwarfs remain silent.
c. Both configurations are in the reference set. This should never occur, because it would mean that
two points in the reference set have a Hamming distance of 1, which contradicts our construction
of the reference set.
With this strategy, when the actual 7-hat configuration doesn’t lie in the reference set, exactly one
dwarf will be able to make a correct guess, ensuring the dwarfs’ freedom. Since 112 out of the 128
total configurations are outside of the reference set, the probability of success is 112/128 = 87.5%,
which is greater than 80%, meeting the dwarfs’ goal.
This strategy represents a fascinating interplay between the ideas of error-correcting codes, binary
configurations, and the geometrical concept of non-overlapping balls in high-dimensional space. It
also showcases the power of collective reasoning.

Table 10: Comprehensive log of the brainstorming conversation with GPT-4 for Experiment IV: The wicked Queen
and the seven Dwarfs.
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Probability and Logic

A professor, noticing that his 100 PhD students have been excessively preoccupied with
their phones, thereby significantly delaying their publications, decides to confiscate all
their devices. He randomly places the 100 phones into 100 separate boxes in a locked
room, with the boxes labeled from 1 to 100.
One technologically adept student manages to hack the lock, but the hack comes with
a catch: it only permits students to sneak into the room one at a time, and the room
will only be accessible for a brief time window. This leaves no room for communication
between any two students’ turns.
Once inside the room, each student can randomly select a box and check if it contains
their phone. They can repeat this process up to 50 times. If they find their phone, they
will take it, but the box must be left behind. This means that a subsequent student
entering the room wouldn’t know if a box has already been checked and might end up
wasting a step to examine it. As a consequence of the hack, the room will be permanently
locked after all 100 students have had their turn.
As one of these PhD students, you have a burning desire to retrieve your phone. You
particularly miss a picture of your adorable bunny which you need for your ongoing re-
search, so recovering your phone is crucial. The others have similar reasons for wanting
their phones back. Can you devise a clever strategy ensuring that everyone finds their
phone with a success rate exceeding 30%?

To maximize the chance of each student finding their phone, they can use a strategy known as
"Designated Box Strategy". Here is how it works:
1. Assign each student a unique number from 1 to 100 (which will correspond to their "designated
box"), and let the students memorize their numbers before they enter the room. This could be
based on their names, student ID numbers, or any other system that ensures each student gets a
different number.
2. When a student enters the room, they start by looking in their designated box. If they find their
own phone, they’re done and they leave the room.
3. If their phone is not in their designated box, they look in the box that corresponds to the number
on the phone they found. They repeat this process, always looking in the box that corresponds to
the number on the phone they found most recently, until they either find their own phone or have
opened 50 boxes, at which point they must leave the room.
This strategy works because it effectively creates 100 distinct cycles among the boxes, one for each
student. Each cycle contains a series of boxes that will eventually lead a student back to their own
phone, as long as the cycle is not longer than 50 boxes. The problem is effectively transformed
into finding a cycle in a permutation.
If you run a simulation of this problem using this strategy, you’ll find that each student has a chance
of finding their own phone that is roughly 31.18%, so it satisfies the requirement of a success rate
greater than 30%.

To demonstrate your understanding, could you determine the probability of the students
finding their phones through a step-by-step calculation?

Yes, there is a mathematical way to calculate the success probability for each student. The key is
to understand the distribution of cycle lengths in a random permutation of 100 elements.
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In this case, the boxes and phones create a random permutation of 100 elements, and each student
follows a cycle within this permutation. The probability that a student will find their phone is the
same as the probability that the cycle they follow is 50 or fewer boxes long.
First, let’s consider the total number of permutations of 100 elements. This is simply 100 factorial
(100!).
Then, for each possible cycle length n from 1 to 50, we’ll calculate the number of permutations
that have a cycle of length n. To form a cycle of length n, we first choose n elements from 100
(which can be done in 100 choose n ways), then arrange these n elements into a cycle (which
can be done in (n − 1)! ways), and finally arrange the remaining 100 − n elements in any order
((100− n)! ways). So, the total number of permutations with a cycle of length n is:(

100

n

)
× (n− 1)!× (100− n)!

To get the total number of successful permutations (i.e., permutations where each student finds
their phone), we need to sum this quantity over all n from 1 to 50.
Let’s denote this sum as S. Then, the probability that a student will find their phone is S divided
by the total number of permutations, which is 100!.
To calculate this probability exactly, we would need to compute the quantity S and then divide by
100!. However, this computation is quite involved due to the large numbers involved (100 factorial
is a 158-digit number). In practice, it would be easier to use a computer program to do this
computation.

Before calculating 100!, could you simplify your equation first to avoid dealing with
excessively large numbers?

You’re correct, we can simplify the equation to avoid handling very large numbers directly. The
equation for the number of permutations with a cycle of length n is:(

100

n

)
× (n− 1)!× (100− n)!

which simplifies to:

100!/[n× (100− n)!]× (n− 1)!× (100− n)!

And this simplifies further to:

100!/(n× (100− n)!)

When we divide this by 100!, we get the probability of a cycle of length n:

1/(n× (100− n)!)

So, the total probability that a student will find their phone (i.e., the probability that they are in a
cycle of length 50 or less) is the sum of this quantity for n from 1 to 50:

50∑
n=1

1/(n× (100− n)!)

This is a much simpler computation that can be done using a computer program, but the exact
result will still require a precise computation due to the factorial in the denominator.
It’s worth noting that this exact calculation will confirm the result found by simulation, that each
student has a chance of finding their own phone that is roughly 31.18%.
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"100!/[n×(100−n)!]×(n−1)!×(100−n)!. And this simplifies further to: 100!/(n×(100−n)!)"
is not right.

I apologize for the confusion, and you’re correct. The simplification step was incorrect. Let’s
correct that:
The number of permutations with a cycle of length n is:(

100

n

)
× (n− 1)!× (100− n)!

which simplifies to:

100!/[n× (100− n)!]× (n− 1)!× (100− n)!

The (100− n)! terms cancel out, leaving us with:

(100!/n)× (n− 1)!

Dividing by 100! to get the probability gives us:

P (n) = (n− 1)!/n

So, the probability that a student is part of a cycle of length 50 or less is the sum of these
probabilities from n=1 to n=50.
That sum can be computed directly and will yield the desired result. It’s also worth noting that the
factorial function grows very rapidly, so even though the sum involves terms up to 50!, the total
will still be a reasonable number less than 1.

"which simplifies to: 100!/[n× (100− n)!]× (n− 1)!× (100− n)!" is not right.

I apologize for the confusion, and you’re right. The simplification was incorrect in my previous
responses. Let’s correct that.
The number of permutations with a cycle of length n is:(

100

n

)
× (n− 1)!× (100− n)!

This simplifies as:

[100!/(n!× (100− n)!)]× (n− 1)!× (100− n)!

The (n− 1)! terms cancel out:

= 100!/[n× (100− n)!]× (100− n)!

The (100− n)! terms cancel out as well, giving:

= 100!/n

Dividing this by the total number of permutations (100!) gives the probability of a permutation
having a cycle of length n:

P (n) = 1/n
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Finally, the total probability that a student will find their phone (i.e., the probability that they are
in a cycle of length 50 or less) is the sum of these probabilities from n=1 to n=50.
Therefore,

P =
50∑
n=1

1/n

This is the harmonic number H50, which is approximately 4.5. Since this is more than 1, we should
realize that we’ve made a mistake.
The error is due to the fact that we’ve double-counted many permutations. Each permutation with
a cycle of length n was counted once for each possible position of that cycle, which is not correct.
To correct this, we need to divide our count of permutations with a cycle of length n by n, because
a cycle of length n can appear in n different positions.
So, the correct probability of a permutation having a cycle of length n is:

P (n) = 1/(n× n)

And the total probability that a student will find their phone is the sum of these probabilities from
n=1 to n=50:

P =
50∑
n=1

1/(n× n)

This is the sum of the reciprocals of the first 50 square numbers. This sum converges to π2/6,
which is approximately 1.64493. So, each student has a chance of finding their own phone that is
roughly 1.64493/5 = 0.328986, or about 32.90%.
I hope this explanation clarifies the issue, and I apologize for the earlier confusion.

The actual issue with "This is the harmonic number H50, which is approximately 4.5.
Since this is more than 1, we should realize that we’ve made a mistake." was that the
strategy works if and only if all cycles of permutation for all students have a length no
greater than 50.

You’re absolutely right. My apologies for the confusion. I misunderstood the premise. The total
probability being greater than 1 indicates an error because we can’t have a probability of more than
100%.
For this problem, each student starts from their designated box (based on their unique number)
and follows a sequence (cycle) determined by the placement of the phones. The key point is that
the cycle each student ends up following needs to have a length of 50 or less for the student to
find their phone within the 50 allowed box openings.
The error in the previous computation was that we considered cycles of any length up to 100, but
we should only consider cycles of length up to 50, because a student can only open 50 boxes.
So, the correct probability calculation should consider that we are looking for cycles of length 50
or less in a permutation of 100 elements. This is a rather complex problem to solve analytically, as
it involves considering the distribution of cycle lengths in random permutations.
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One way to approach it is to consider the probability of a cycle of length n NOT being present.
Since cycles of different lengths are not independent (for example, you can’t have both a cycle of
length 70 and a cycle of length 40 in the same permutation), it’s challenging to directly calculate
the probability of having a cycle of length less than or equal to 50.
To make it simpler, it’s easier to compute the complementary probability - the probability that a
permutation has a cycle of length more than 50. Once we have that, we can subtract it from 1 to
get the desired probability.
Let’s denote this probability as P (N), where N is the total number of elements in the permutation
(in this case, 100). We can express P (N) in terms of smaller probabilities:

P (N) = 1/N + (N − 1)/N × P (N − 1)

This is because a permutation of N elements has a cycle of length more than 50 either if the
first element is part of such a cycle (which happens with probability 1/N) or if it isn’t but the
remaining N − 1 elements have a cycle of length more than 50 (which happens with probability
(N − 1)/N × P (N − 1)).
This is a recursive relation that we can use to compute P (N) for any N . For N = 100 and
considering that P (N) = 0 for N ≤ 50, we get P (100) which is the probability that a permutation
has a cycle of length more than 50. Subtracting this from 1 will give us the desired probability -
the chance that each student will find their phone.
In reality, this computation would be quite challenging to perform by hand, but it could be done
easily with the help of a computer program.
It’s worth noting that simulations confirm the outcome that the success rate of this strategy is over
30%.

Regarding "We can express P (N) in terms of smaller probabilities: P (N) = 1/N + (N −
1)/N × P (N − 1)", we have computed P (n) previously and it is 1/n.

You’re absolutely correct, I apologize for my mistake. I was in error to describe P (N) in terms of
smaller probabilities.
You’re also correct that we had previously computed P (n), which is simply 1/n. However, that is
the probability of having a cycle of length exactly n in a permutation of n elements.
In our case, we need the cumulative probability of having a cycle of length up to n in a permutation
of 100 elements. We cannot simply sum these probabilities because that would not account for
permutations with more than one cycle.
The correct approach is to compute the complementary probability, which is the probability that
in a permutation of 100 elements there exists a cycle longer than 50. This can be solved by
derangement or inclusion-exclusion principle.
The inclusion-exclusion principle tells us to alternate between adding and subtracting the probabil-
ities of each individual event, then adding the probabilities of their intersections, subtracting the
probabilities of three-event intersections, and so on. In this case, we consider the "events" to be
"there exists a cycle of length at least n" for each n from 51 to 100.

40



You’re nearly there, but it seems you’re encountering some difficulty. What you’re really
looking for is "1 - sum over 1/n" for n ranging from 51 to 100. Could you explain why
this is the case and then proceed with the actual calculation?

I see where the misunderstanding has been, and I apologize for the confusion. I misunderstood
your question, but now I understand what you’re asking.
Indeed, the key observation here is that the boxes and phones can be seen as forming a permutation
of 100 elements. Each student following their own number is essentially following a cycle in this
permutation. If a student finds their phone, this means their cycle is 50 steps or less. The probability
of a student not finding their phone would mean their cycle is longer than 50 steps.
A permutation of 100 elements can be broken down into disjoint cycles. It is important to note
that every permutation can be expressed as a composition of disjoint cycles, and each of these
cycles is independent of each other. Therefore, the size of one cycle doesn’t impact the size of
other cycles.
Thus, the probability of any one student not finding their phone is the probability of that student
being part of a cycle with more than 50 elements.
We have already computed P (n) as 1/n, which is the probability of having a cycle of length exactly
n in a permutation of 100 elements. Now, the probability that in a permutation of 100 elements
there exists a cycle of length greater than 50 is simply the sum of the probabilities P (n) for n from
51 to 100:

P =

100∑
51

1/n

The complementary probability - the probability that there are no cycles longer than 50 in a
permutation of 100 elements - is therefore:
Pcomplement = 1− P
This is the probability we are interested in - it’s the probability that each student finds their phone.
Now let’s carry out the calculation:

P =
100∑
51

1/n

This is a sum of reciprocals of integers from 51 to 100. This sum can be approximately calculated
as the integral from 51 to 100 of dx/x, which is the natural log of 100/51, or about 0.67311.
So, the probability of each student finding their phone is:
Pcomplement = 1− P = 1− 0.67311 = 0.32689
This means each student has about a 32.69% chance of finding their phone, which is indeed greater
than 30
I apologize for the confusion earlier, and thank you for your patience!

Table 11: Comprehensive log of the brainstorming conversation with GPT-4 for Experiment V: Probability and
Logic.
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