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Abstract

This paper proposes a method for investigating001
the syntactic structure of emergent languages002
using categorial grammar induction. Although003
the structural property of emergent languages004
is an important topic, little has been done on005
syntax and its relation to semantics. Inspired006
by previous work on CCG induction for natu-007
ral languages, we propose to induce categorial008
grammars from the sentence-meaning pairs of009
emergent languages. Since an emergent lan-010
guage born in a common environment called011
signaling game is represented as pairs of a mes-012
sage and a meaning, it is straightforward to013
extract sentence-meaning pairs to feed to cate-014
gorial grammar induction. We also propose two015
compositionality measures that are based on the016
information obtained from induced grammars.017
Our experimental results reveal that our mea-018
sures can recognize compositionality. While019
correlating with existing measure TopSim, our020
measures can gain more insights on the compo-021
sitional structure of emergent languages from022
induced grammars.023

1 Introduction024

Communication among artificial agents born in025

an environment is called emergent communication026

and its protocols are emergent languages (Lazari-027

dou and Baroni, 2020). Major motivations in this028

area are (1) to develop interactive AI (Foerster029

et al., 2016; Mordatch and Abbeel, 2018; Lazari-030

dou et al., 2020), (2) to study language evolution031

(Kirby, 2001; Graesser et al., 2019; Dagan et al.,032

2021), and (3) to understand emergent languages033

or compare them with humans’ (Kottur et al., 2017;034

Chaabouni et al., 2019a; Kharitonov et al., 2020).035

(1) and (2) are important from the engineering or036

scientific points of view. In fact, (3) is fundamen-037

tal since the first two are not achievable without038

recognizing and filling the gap between emergent039

and human languages. Despite its importance, few040

methods have been established to evaluate the struc-041

Figure 1: Illustration of a signaling game and categorial
grammar induction (CGI). We first generate message-
meaning pairs in the game, and then feed them to CGI.

ture of emergent languages with respect to syntax 042

and semantics. Previous work frequently employs a 043

signaling game (Lewis, 1969) or its variant, where 044

agents are either a function from a meaning space 045

to a message space or its inverse. The problem is 046

that little has been analyzed on how syntax com- 047

bines messages to yield semantics or meanings. 048

Such a structural property is known as composi- 049

tionality. 050

To analyze the syntax of emergent languages, 051

we focus on categorial grammar induction (CGI, 052

e.g., Zettlemoyer and Collins, 2005) and propose 053

to apply it to emergent languages. Figure 1 illus- 054

trates the relationship between a signaling game 055

and CGI. Since CGI derives an explicit lexicon and 056

a semantic parser given sentence-meaning pairs, it 057

is suitable for the syntactic analysis of a language 058

emerging as message-meaning pairs in a signaling 059

game. We also propose compositionality measures 060
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built on the F1-score for unseen data and the lexi-061

con size of CGI parsers. It is based on the intuition062

that a compositional language is expected to be063

generalized and described by a minimal lexicon.064

Compositionality measures for emergent lan-065

guages have been proposed, such as topographic066

similarity (TopSim, Brighton and Kirby, 2006),067

tree reconstruction error (TRE, Andreas, 2019), po-068

sitional disentanglement (PosDis, Chaabouni et al.,069

2020), and bag-of-symbols disentanglement (Bos-070

Dis, Chaabouni et al., 2020). We choose TopSim071

and TRE to compare with ours, since TopSim is072

most popular (e.g., Lazaridou et al., 2018) and TRE073

is similar to ours in the sense that it assumes struc-074

tured meaning representations. Note that they do075

not consider the structure between a message and a076

meaning space, whereas our approach is aware of077

it with an explicit lexicon and a parser.078

Pioneering and suggestive work by van der Wal079

et al. (2020) on the syntax of emergent languages080

proposes to apply unsupervised grammar induction081

(UGI) originally developed for natural languages:082

CCL (Seginer, 2007) and DIORA (Drozdov et al.,083

2019). UGI is reasonable if neither gold derivations084

nor meanings are available1. Note that UGI esti-085

mates the structure of emergent languages given086

only messages, whereas ours is intended to derive087

not only the structure but also the systematic com-088

position of messages to meanings given message-089

meaning pairs.090

Our contributions are (1) to propose to apply091

categorial grammar induction (CGI) to emergent092

languages for understanding their structure, (2) to093

propose two CGI-based compositionality measures094

that are more syntax-aware than existing composi-095

tionality measures, and (3) to show they can indeed096

measure compositionality.097

2 Signaling Game in General098

Most studies on emergent communication employ099

Lewis signaling game (Lewis, 1969) or its vari-100

ant as an environment for agents to communicate.101

A signaling game contains a tuple (I,M, S, L),102

where I is an input space, M is a message space, a103

mapping S : I → M is a speaker, and a map-104

ping L : M → I is a listener. The goal is105

i = L(S(i)) for a sampled input i ∈ I . Agents106

S,L are trained to achieve the goal given I,M .107

On the other hand, in a variant called referential108

1For example, if agents describe image data (e.g., Lazari-
dou et al., 2018), the meaning representations are unclear.

game or discrimination game, a listener is defined 109

as L : M × P(I) → I , where P(I) is the power 110

set of I . The goal is to distinguish i from other dis- 111

tractors: i = L(S(i), C) for candidates C ∈ P(I) 112

s.t. i ∈ C. An input space is typically a set of 113

image data (Havrylov and Titov, 2017; Lazaridou 114

et al., 2018; Bouchacourt and Baroni, 2018), se- 115

quential data (Li et al., 2020; Słowik et al., 2021), 116

or attribute-value objects (Li and Bowling, 2019; 117

Chaabouni et al., 2020; Ren et al., 2020). Besides, 118

a message space is a set of discrete sequences in 119

most studies. 120

Agent Architecture Each agent is typically rep- 121

resented as a neural network, in particular, an 122

encoder-decoder model. The speaker decoder and 123

listener encoder are often recurrent neural networks. 124

The speaker encoder can be a convolutional neural 125

network, recurrent neural network, or perceptron, 126

according to I . The listener decoder can be ei- 127

ther the same as the speaker encoder or a classifier, 128

depending on the goal. 129

Optimization Methods The speaker-listener pair 130

is trained in an End-to-End manner, regarded as a 131

single neural network. Previous work uses REIN- 132

FORCE (Williams, 1992) and/or Gumbel-Softmax 133

trick (Jang et al., 2017; Maddison et al., 2017), 134

since the standard backpropagation is not applica- 135

ble to discrete messages. 136

2.1 Existing Compositionality Measures 137

Compositionality is popular among those who are 138

interested in the structural similarity between emer- 139

gent and human languages. In the experiments, 140

we compare our measures with TopSim (Brighton 141

and Kirby, 2006) and TRE (Andreas, 2019). Let 142

(I,M, S, L) be a signaling game defined above. 143

TopSim Let dI , dM be distance functions in I 144

and M . TopSim is defined as Spearman correla- 145

tion between dI(x, y) and dM (S(x), S(y)) for all 146

(x, y) ∈ I × I . This score requires only dI , dM as 147

structural information for I,M . 148

TRE The intuition of TRE is that if an emergent 149

language is compositional, it should be approxi- 150

mated by another explicitly compositional function 151

f : I →M . Note that each i ∈ I has to be a binary 152

tree t in which a node n is binary node denoted as 153

n = (n′, n′′), unary node denoted as n = (n′), or a 154

leaf node denoted as n = l. Besides, each m ∈M 155

has to be a sequence of a fixed length k over a fi- 156

nite alphabet A. The calculation of TRE involves 157
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a distance δ and a composition κη with a trainable158

parameter η = (V,W, {El}l). δ is defined as L1159

distance between k × |A| matrices. κη is defined160

as a mapping from a binary tree t ∈ I to a k × |A|161

matrix:162

κη(l) = El163

κη((n)) = κη(n)164

κη((n, n
′)) = V κη(n) +Wκη(n

′)165

where El is a k × |A| matrix for each leaf node l,166

and V,W are k × k matrices. Define one_hot(m)167

as a k × |A| matrix, the r-th row of which is the168

one-hot vector of the r-th symbol inm ∈M . Then,169

TRE is computed with stochastic gradient descent170

as follows:171

TRE = min
η

1

|I|
∑
i∈I

δ(κη(i), one_hot(S(i)))172

Note that the lower TRE is, the higher composition-173

ality is judged. TRE is similar to ours in the sense174

that inputs are assumed to be tree-structured.175

3 Categorial Grammar Induction176

In this section, we introduce categorial grammar177

(CG) and review its induction (CGI) for natural178

languages. CGI is also eligible for the analysis of179

emergent languages in signaling games, as it de-180

rives a lexicon and a parser from message-meaning181

pairs. Although previous work is on combinatory182

categorial grammar (CCG), we restrict it to CG2.183

3.1 Categorial Grammar184

The formalism for our semantic parsing is cat-185

egorial grammar (CG, Steedman, 1996, 2000).186

Context-free grammars are described largely with187

rules, whereas CGs are described largely with lex-188

ical entries and their rules are simple. A lexical189

entry w ⊢X:ψ is a triple of a word w, a category190

X (defined below), and a logical form ψ. Consider191

the following example pair of a message and its192

logical form:193

“look left 1”194

iter(and(lturn, look), 1)195

2One might wonder why we do not use CCG. This is
because the input spaces for our signaling games are described
by context-free grammars, whose expressive power is known
to be equal to that of CG. Nevertheless, it is interesting to
speculate whether emergent languages can have complex rules
like composition or type-raising. It is left for future work.

Their lexical entries can be described as follows: 196

look ⊢ V : look 197

left ⊢ S\V : λx.and(lturn, x) 198

1 ⊢ S\S : λx.iter(x, 1) 199

Symbols like V, S\V, and S\S represent syntactic 200

types or categories. A category is either an atomic 201

category of the form N, V, or S, or a complex cat- 202

egory of the form X/Y or X\Y where X,Y are 203

categories. The atomic categories N, V, and S stand 204

for the linguistic notions of noun, intransitive verb, 205

and sentence respectively3. 206

In addition, CGs have application rules to 207

describe the way to combine adjacent categories. 208

209

Application rules (with semantics): 210

X/Y : f Y : a ⇒ X : f(a) (>) 211

Y : a X\Y : f ⇒ X : f(a) (<) 212

where X,Y are categories. The first rule named 213

“>” is called the forward application rule, while 214

the second rule named “<” is called the backward 215

application rule. Rule > (resp. <) means that a 216

predicate f of category X/Y (resp. X\Y ) can 217

take an argument a of category Y to yield f(a) of 218

category X . 219

With the lexical entries and the application rules, 220

we can construct a derivation tree of “look left 1” 221

as follows: 222

look left 1
V S\V S\S

: look : λx.and(lturn, x) : λx.iter(x, 1)
<

S : and(lturn, look)
<

S : iter(and(lturn, look), 1)

223

3.2 Log-linear Probabilistic CGs 224

Given a lexicon Λ, a set of lexical entries, there 225

might be multiple derivations for each message. 226

Following previous work on CG induction (e.g., 227

Zettlemoyer and Collins, 2005), we choose the 228

most likely derivation by using a log-linear model, 229

which contains a feature vector ϕ and a parameter 230

vector θ. Given a message m, the joint probability 231

of a logical form ψ and a derivation τ is defined as: 232

P (τ, ψ | m; θ,Λ) =
eθ·ϕ(m,τ,ψ)∑

(τ ′,ψ′) e
θ·ϕ(m,τ ′,ψ′)

. 233

3The category of intransitive verbs is usually S/N (S/NP)
or S\N (S\NP), but we regard V as a atomic category. This
is because the languages and logical forms we define in Sec-
tion 5.1 take an imperative form without any subject.
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Then, the parsing problem is to find the most likely234

logical form ψ̂ given m:235

ψ̂ =arg max
ψ

p(ψ | m; θ,Λ)236

=arg max
ψ

∑
τ

P (τ, ψ | m; θ,Λ).237

3.3 CG Induction Algorithm238

Algorithm 1 Common Structure of CG Induction

Input: A dataset E =
{
(mj , ψj)

}N

j=1
of message-meaning

pairs, a seed lexicon Λseed, the number of iterations T ,
and a learning rate γ.

Output: Lexicon Λ and parameter vector θ
1: Λ0 ← INITLEX(E ,Λseed)
2: θ0 ← INITPARAM(E ,Λseed)

▷ Step 0: Initialize lexicon and parameter
3: for t ∈ {1, . . . , T} do
4: Λ+

t ← UPDATELEX(E , θt−1,Λt−1,Λ0)
▷ Step 1: Update Lexicon

5: θt ← UPDATEPARAM(E , θt−1,Λ
+
t , γ)

▷ Step 2: Update Parameter
6: Λt ← PRUNELEX(E , θt−1,Λ

+
t )

▷ Step 3: Prune Lexicon (optional)
7: end for
8: return ΛT and θT

Several CG induction (CGI) algorithms have239

been proposed. Algorithm 1 shows their common240

structure as a pseudo code. Generally, the inputs241

to CGI are a training data E = {(mj , ψj)}Nj=1242

of message-meaning pairs, a seed lexicon Λseed,243

the number of iterations T , and a learning rate γ,244

while the outputs are a lexicon Λ and a parameter θ.245

CGI involves four procedures: (1) lexicon and pa-246

rameter initialization (INITLEX, INITPARAM) that247

helps learning in early iterations, (2) lexicon update248

(UPDATELEX) that introduces a new potential lexi-249

con, (3) parameter update (UPDATEPARAM) with250

gradient descent, and optionally (4) lexicon pruning251

(PRUNELEX) that discards a lexicon no longer in252

use. ZC05 (Zettlemoyer and Collins, 2005) is the253

first paper formalizing CGI. ZC07 (Zettlemoyer254

and Collins, 2007) is its improved version. In255

ZC05/07, INITLEX is simply Λ0 = Λseed and UP-256

DATELEX relies on hand-crafted templates to add257

a new lexicon. KZGS10/11 (Kwiatkowski et al.,258

2010, 2011) modified UPDATELEX so that it can259

create a new lexicon by automatically merging and260

splitting the existing entries in use. In KZGS10/11,261

INITLEX returns E themselves with category S in262

addition to Λseed:263

Λ0 ← Λseed ∪ {mj ⊢ S : ψj | j = 1, . . . , N}264

Then, the lexical entries are split or merged during 265

the iteration, seeking an appropriate segmentation. 266

A problem in KZGS10/11 is that the lexicon size 267

increases monotonically over iterations. ADP14 268

(Artzi et al., 2014) addressed this issue by adding 269

a lexicon pruning process (PRUNELEX), which 270

discards the lexical entries no longer in use4. 271

4 CGI as a Compositionality Measure 272

We propose two compositionality measures CGF 273

and CGL, which are based on an induced categorial 274

grammar. Let Etrain, Etest be a training and test data 275

for CGI. We train a log-linear model with Etrain to 276

derive a lexicon Λ and a parameter θ and test it 277

with Etest to calculate the F1-score for semantic 278

parsing: 279

F1-score = 2× precision× recall
precision + recall

280

precision =
# correctly parsed

# parsed
281

recall =
# correctly parsed

|Etest|
282

following previous work (Zettlemoyer and Collins, 283

2005) 5. Then, CGF and CGL are defined as: 284

CGF = F1-score, CGL = |Λ| 285

Note that the higher CGF (resp. lower CGL) is, the 286

more compositional a language is judged, since a 287

compositional language should be generalized and 288

described by a minimal lexicon. 289

4.1 Difference from Existing Measures 290

Although existing compositionality measures such 291

as TopSim and TRE are also mappings from 292

message-meaning pairs to a real number, neither 293

they clarify the structure of a message space M nor 294

they derive any compositional function from M to 295

an input space I . 296

Remember that TopSim only involves distance 297

functions dI , dM , the choice of which is left to 298

humans, and it does not clarify the structure of M . 299

On the other hand, our approach can derive the 300

structure of M by deriving a lexicon. TRE induces 301

a composition κη : I →M , but not the inverse. As 302

Andreas (2019) is aware, it causes a language with 303

identical messages for all meanings to be judged 304

4ADP14 also has improvements in UPDATELEX, but we
do not go into them in this paper.

5If Λ does not have sufficient lexical entries, the model
fails to parse messages regardless of correctness.
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compositional, contrary to our intuition. Again,305

ours would not regard it as compositional since a306

CGI parser is a function M → I .307

Therefore, what differentiates us from the exist-308

ing measures is that our approach can derive an309

explicit lexicon and a semantic parser, whereas the310

existing measures cannot 6.311

5 Experimental Setup312

This section introduces a signaling game, optimiza-313

tion method, CGI algorithm, and evaluation metrics314

specific to our experiments. The overall experimen-315

tal procedure is as follows:316

1. Split an input space I in half: Dtrain,Dtest.317

2. Train a speaker S and a listener L with Dtrain.318

Validate and test them with Dtest.319

3. Given trained S, make datasets for CGI by320

pairing each message with its logical form:321

Ex = {(S(i), ⟨i⟩) | i ∈ Dx}322

where x ∈ {train, test} and ⟨i⟩ is the logical323

form of i, to which CGI is applicable.324

4. Train a CG parser with Etrain, test it with Etest,325

and calculate CGF with Etest and CGF with a326

derived lexicon Λ.327

5. Calculate TopSim and TRE with Dtrain.328

5.1 Input Space for Signaling Game329

We define two input spaces for our signaling game:330

Lang-attval and Lang-conj 7. Lang-attval is the331

same as attribute-value inputs in previous work332

(e.g., Kottur et al., 2017), while Lang-conj is more333

complex. Moreover, we define logical forms for334

each input.335

Lang-attval Lang-attval is defined as the set of336

sequences derived from the following context-free337

grammar with a start symbol S:338

S → V′ R339

V′ → V D340

V → look | jump | walk | run341

D → left | right | up | down342

R → 1 | 2 | 3 | 4343

6TopSim and TRE are still reasonable if our purpose is
to distinguish partially (but insufficiently) compositional lan-
guages from the ones not compositional at all.

7They are inspired by the commands of Chaabouni et al.
(2019b) or SCAN (Lake and Baroni, 2018).

Lang-attval is regarded as attribute-value objects 344

(Kottur et al., 2017; Andreas, 2019; Li and Bowling, 345

2019; Ren et al., 2020). In our case, attributes are 346

verb, direction, and repetition, each of which has 4 347

values (e.g., look, jump, walk, and run for verb). 348

Lang-conj Let S′′ be a start symbol. Then, 349

Lang-conj is the set of sequences derived from the 350

above context-free grammar in addition to the fol- 351

lowing rules: 352

S′′ → S | S S′ 353

S′ → and S 354

Each element in Lang-conj is either an element in 355

Lang-attval or a conjunction of two elements in 356

Lang-attval. 357

Logical Form We define the logical form of 358

each element in Lang-attval/conj, to which CGI 359

is simply applicable. We temporarily denote el- 360

ements parenthetically to clarify their derivation 361

trees (e.g., “S(V′(V(jump),D(left)),R(2))” for 362

“jump left 2”). Then, the logical form ⟨i⟩ of a 363

derivation i is defined inductively as follows: 364

⟨S′′(S(x))⟩ = ⟨S(x)⟩ 365

⟨S′′(S(x),S′(y))⟩ = and(⟨S(x)⟩, ⟨S′(y)⟩) 366

⟨S′(and,S(x))⟩ = ⟨S(x)⟩ 367

⟨S(V′(x),R(y))⟩ = iter(⟨V′(x)⟩, ⟨R(y)⟩) 368

⟨V′(V(x),D(y))⟩ = and(⟨D(y)⟩, ⟨V(x)⟩) 369

⟨X(x)⟩ = ⟨x⟩ (X ∈ {V,D,R}), 370

and for terminal symbols, ⟨look⟩ = look, ⟨left⟩ = 371

lturn, ⟨1⟩ = 1, and so forth. 372

Examples Here are some examples: 373

i = “jump left 2” ∈ Lang-attval ∩ Lang-conj 374

⟨i⟩ = iter(and(lturn, jump), 2). 375

Also, 376

i′ = “jump left 2 and walk up 3” ∈ Lang-conj 377

⟨i′⟩ = and(iter(and(lturn, jump), 2), 378

iter(and(uturn, walk), 3)). 379

5.2 Signaling Game for Sequential Data 380

Agent architectures and game procedure have to 381

be adapted to the sequential inputs defined above. 382

Hence, our signaling game takes a sequence-to- 383

sequence-to-sequence procedure. 384
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Architecture Speaker and listener agents are rep-385

resented as a seq2seq model based on single-layer386

LSTMs (Hochreiter and Schmidhuber, 1997) with387

standard attention mechanisms (Dong and Lapata,388

2016), similarly to Chaabouni et al. (2019b).389

Game Procedure A sequential signaling game390

consists of a tuple (I, A, k, eos, S, L), where I is391

an input space, A is a finite alphabet s.t. eos ̸∈ A,392

k is a message length, and eos is a special symbol393

for end-of-sentence. A message spaceM is defined394

as the set of sequences of length k over A, S : I →395

M is a speaker, and L :M → I is a listener. Note396

that x + eos denotes a sequence x attached with397

eos. The goal of the game is to minimize398

∆(i+ eos, L(S(i+ eos) + eos))399

for a uniformly sampled i ∈ I , where ∆ is the400

humming distance.401

5.3 Optimization for Agents402

As ∆ is indifferentiable, we use REINFORCE403

(Williams, 1992), which gives the following dif-404

ferentiable loss:405

E[{∆(i+ eos, o)− b} logPS(m|i+ eos)]406

+E[{∆(i+ eos, o)− b} logPL(o|m+ eos)]407

+E[λSH(PS) + λLH(PL)]408

where PS (resp. PL) is the output distribution of409

speaker (resp. listener) over a message m (resp.410

output o) given an input i (resp. message m), b is a411

mean baseline,H denotes entropy, and λS , λL are412

nonnegative hyper-parameters. The last term is an413

entropy regularizer (Williams and Peng, 1991).414

5.4 CGI for Emergent Languages415

We apply CGI to emergent languages. As there is416

no prior knowledge on them, CGI should avoid ad417

hoc methods, considering the following:418

(1) Features in a log-linear model have to be as419

simple as possible.420

(2) Lexical entries have to be generated automat-421

ically without any manual templates.422

(3) Lexicon size has to be minimal; otherwise it423

is hard to interpret results, e.g., to measure424

compositionality with CGL.425

There is no existing method satisfying all of them426

simultaneously. We combine three methods. For427

(1), we follow ZC05 (Zettlemoyer and Collins, 428

2005): each feature is the count of times that each 429

lexical entry is used in a derivation. However, 430

ZC05 generates lexical entries with manual tem- 431

plates, contrary to (2). Instead, we follow KZGS10 432

(Kwiatkowski et al., 2010) that creates a new lex- 433

icon by merging and splitting the existing entries 434

in use. The problem in KZGS10 is that the lexi- 435

con size increases monotonically during iterations, 436

which is against (3). Thus, we follow ADP14 (Artzi 437

et al., 2014) to discard the entries no longer in use. 438

Other modifications are detailed in Appendix A. 439

5.5 Other Languages for Comparison 440

To evaluate the effectiveness of our measures, we 441

need more and less compositional languages as 442

well as emergent languages to apply CGI. To 443

this end, we use Lang-attval/conj and AdjSwap- 444

x (x ∈ {1, 2}). AdjSwap-x is made by apply- 445

ing x-times random adjacent swaps to each mess- 446

sage in emergent languages. As Lang-attval and 447

Lang-conj are fully compositional by definition, 448

they should be judged more compositional than 449

emergent languages. On the other hand, AdjSwap- 450

x should be judged less compositional. van der 451

Wal et al. (2020) adopted three languages for the 452

same purpose: fully-structured, random, and shuf- 453

fled emergent languages. The fully-structured cor- 454

responds to Lang-attval/conj in our case. We use 455

AdjSwap-x as instances of less-compositional lan- 456

guages rather than random and shuffled emergent 457

languages. This is because preliminary experi- 458

ments revealed that CGI totally fails for these lan- 459

guages (see Appendix C). While this is an expected 460

behavior, we additionally employ AdjSwap-x as a 461

language supposed to be more compositional than 462

random and shuffled emergent languages, for ob- 463

taining more insights. 464

5.6 Evaluation Metrics for Compositionality 465

We use CGF/L as well as TopSim and TRE. When 466

clarifying the target language, we write the metrics 467

as (measure)-(language), e.g., TopSim-Emergent, 468

CGF-AdjSwap-1, and CGL-Lang-attval. 469

6 Experiments 470

We show the experimental results in this section. 471

Let (I, A, k, eos, S, L) be a sequential signaling 472

game as defined in Section 5.2. 473

For (hyper-)parameter settings, see Appendix B. 474
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1,1,1 16,13 25,1,1
S/S V S\V

: λx.and(x, iter(and(rturn, walk), 2)) : run : λx.iter(and(rturn, x), 3)
<

S : iter(and(rturn, run), 3)
>

S : and(iter(and(rturn, run), 3), iter(and(rturn, walk), 2))

Figure 2: Example correct derivation tree of a message 1, 1, 1, 16, 13, 25, 1, 1 when (I, k, |A|) = (Lang-conj, 8, 31).

Figure 3: CGF plotted under various (I, k, |A|). The
error bars represent one standard error of mean.

6.1 Compositionality of Emergent Languages475

We investigate whether CGF/L works as a measure476

of compositionality. If CGF works, the follow-477

ing inequality should hold: CGF-Lang-attval/conj478

> CGF-Emergent > CGF-AdjSwap-1 > CGF-479

AdjSwap-2. Likewise, if CGL works, CGL-480

Lang-attval/conj < CGL-Emergent < CGL-481

AdjSwap-1 < CGL-AdjSwap-2. First, we report482

that CGF-Lang-attval is 0.984 (±0.0463), CGL-483

Lang-attval is 12.3 (±0.852), CGF-Lang-conj is484

0.868 (±0.1173), and CGL-Lang-conj is 23.8485

(±17.59), where (±_) denotes a standard error of486

mean 8. For the rest, Figure 3 (resp. Figure 4)487

shows CGF (resp. CGL) under various (I, k, |A|).488

For I = Lang-attval, Figure 3 shows surpris-489

ingly that CGI fails: CGF-Emergent is near or490

equal to 0. Besides, CGL-Emergent and CGL-491

AdjSwap-x in Figure 4 do not show clear differ-492

ences. Hence, neither CGF nor CGL does not rec-493

ognize the compositionality of emergent languages.494

CGF is almost 0 (Figure 3) and CGL concentrates495

around the size of training data 32 (Figure 4), which496

means the models overfit the training data. There497

are two possible reasons for it: emergent languages498

8We train models 32 times for Lang-attval and Lang-conj
respectively.

Figure 4: CGL plotted under various (I, k, |A|). The
error bars represent one standard error of mean.

are not compositional or the training data for CGI 499

is insufficient. We suppose the former is true since 500

CGF-Lang-attval is near perfect (0.984) and CGL- 501

Lang-attval is almost minimal (12.3) with the same 502

size of training data. 503

For I = Lang-conj, Figure 3 reveals that CGF 504

exactly shows the order of compositionality as 505

expected: CGF-Lang-conj > CGF-Emergent > 506

CGF-AdjSwap-1 > CGF-AdjSwap-2. Likewise, 507

CGL in Figure 4 shows the expected order: CGL- 508

Lang-conj < CGL-Emergent < CGL-AdjSwap-1 509

< CGL-AdjSwap-2. Hence, CGF and CGL recog- 510

nize the compositionality of emergent languages. 511

Nevertheless, CGF-Emergent is less than half of 512

CGF-Lang-conj and CGL-Emergent is over 50 513

times larger than CGL-Lang-conj. It suggests that 514

emergent languages are not fully compositional. 515

6.2 Comparison with Existing Measures 516

Next, we check the relationships among CGF/L, 517

TopSim, and TRE. We show the results for I = 518

Lang-conj, where CGF/L recognizes the composi- 519

tionality of emergent languages. Figure 5 shows 520

the scatter plot of TopSim and CGF. It shows a 521

correlation with Pearson ρ = 0.644 (p = 8.77 × 522

10−24 ≪ 0.01). We also note that TopSim and 523

CGL show a correlation with Pearson ρ = −0.689 524

7



Figure 5: Scatter plot of CGF-Emergent and TopSim-
Emergent, when I = Lang-conj. Pearson correlation is
ρ = 0.644 (p = 8.77× 10−24 ≪ 0.01).

(p = 2.88×10−28 ≪ 0.01). Although p-values are525

considerably small, ρs are moderate. Besides, Fig-526

ure 5 shows several data points with high TopSim527

but low CGF. It suggests that TopSim tends to528

judge partially compositional languages more com-529

positional than CGF.530

Figure 6 shows the scatter plot of TRE and531

CGF. Astonishingly, it shows no correlation be-532

cause of the unnatural concentration of TRE around533

k ∈ {4, 8} if |A| ∈ {31, 63} . It means that a com-534

position κη fails to learn so that its outputs are535

trapped between 0 and 1/|A|. We speculate that536

the definition of κη or δ in Section 2.1 should have537

involved any nonlinear function. The scatter plots538

for CGLs are listed in Appendix D.539

6.3 Example Derivation Tree of Emergent540

Language541

Finally, Figure 2 exemplifies a derivation tree in an542

emergent language that CGI judges highly compo-543

sitional (CGF = 0.914, CGL = 423). We can see544

how the message is combined to yield the meaning,545

which is a striking feature of CGI that the exist-546

ing compositionality measures do not have. In this547

example, 16,13 means “run,” 25,1,1 means “548

right 3,” and 1,1,1 means “ and walk right 2.”549

Interestingly, it suggests message and meaning seg-550

mentation does not necessarily match the intuitive551

segmentation as shown in Section 3.1.552

7 Discussion553

The experimental results show that CGF and CGL554

work as a compositionality measure for emergent555

languages. Note that the observations on Lang-conj556

are consistent with those of van der Wal et al.557

(2020) in a sense that fully structured languages558

are judged the most syntactical, the emergent lan-559

Figure 6: Scatter plot of CGF-Emergent and TRE-
Emergent, when I = Lang-conj. Unnatural concen-
tration around k ∈ {4, 8} is observed.

guages are judged the second, and lower struc- 560

tured broken languages are the least. However, nei- 561

ther CGF nor CGL recognizes the compositionality 562

when an input space is a small set of attribute-value 563

objects. It casts doubt on attribute-value settings for 564

studying structural similarities between emergent 565

and human languages. We found a moderate corre- 566

lation between CGF/L and TopSim which suggests 567

that CGI is not as sensitive to partial composition- 568

ality as TopSim. On the other hand, TRE does not 569

work if the alphabet size is too large, probably due 570

to the choice of δ or κη in Section 2.1. Finally, we 571

can directly observe the systematic composition 572

of a message to a meaning, which is a salient fea- 573

ture of CGI that previous work does not have. We 574

hope that it brings deeper insights on the syntax 575

and semantics of emergent languages. 576

8 Conclusion 577

This paper introduces categorial grammar induc- 578

tion (CGI) as a new compositionality measure for 579

the structure of emergent languages. We proposed 580

to apply CGI to emergent languages and define two 581

compositionality measures CGF and CGL. Our ex- 582

periments revealed that CGF/L can measure com- 583

positionality as we expected. Unlike existing mea- 584

sures, our approach meets compositionality in a 585

traditional sense, allowing us to analyze emergent 586

languages with a lexicon and derivation trees. For 587

future work, it would be interesting to study the 588

structure of the derivations of emergent languages. 589

Besides, we speculate that situated CCGs (Artzi 590

and Zettlemoyer, 2013) are applicable, which in- 591

duce CGs considering an external world. Hence, 592

CGI may be applicable to visual referential games 593

as well as 2D-grid world communication. 594

8



References595

Jacob Andreas. 2019. Measuring compositionality in596
representation learning. In 7th International Confer-597
ence on Learning Representations, ICLR 2019, New598
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.599

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014. Learn-600
ing compact lexicons for CCG semantic parsing. In601
Proceedings of the 2014 Conference on Empirical602
Methods in Natural Language Processing, EMNLP603
2014, October 25-29, 2014, Doha, Qatar, A meet-604
ing of SIGDAT, a Special Interest Group of the ACL,605
pages 1273–1283. ACL.606

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-607
pervised learning of semantic parsers for mapping608
instructions to actions. Trans. Assoc. Comput. Lin-609
guistics, 1:49–62.610

Diane Bouchacourt and Marco Baroni. 2018. How611
agents see things: On visual representations in an612
emergent language game. In Proceedings of the 2018613
Conference on Empirical Methods in Natural Lan-614
guage Processing, Brussels, Belgium, October 31 -615
November 4, 2018, pages 981–985. Association for616
Computational Linguistics.617

Henry Brighton and Simon Kirby. 2006. Understanding618
linguistic evolution by visualizing the emergence of619
topographic mappings. Artif. Life, 12(2):229–242.620

Rahma Chaabouni, Eugene Kharitonov, Diane Boucha-621
court, Emmanuel Dupoux, and Marco Baroni. 2020.622
Compositionality and generalization in emergent lan-623
guages. In Proceedings of the 58th Annual Meet-624
ing of the Association for Computational Linguistics,625
ACL 2020, Online, July 5-10, 2020, pages 4427–4442.626
Association for Computational Linguistics.627

Rahma Chaabouni, Eugene Kharitonov, Emmanuel628
Dupoux, and Marco Baroni. 2019a. Anti-efficient629
encoding in emergent communication. In Advances630
in Neural Information Processing Systems 32: An-631
nual Conference on Neural Information Processing632
Systems 2019, NeurIPS 2019, December 8-14, 2019,633
Vancouver, BC, Canada, pages 6290–6300.634

Rahma Chaabouni, Eugene Kharitonov, Alessandro635
Lazaric, Emmanuel Dupoux, and Marco Baroni.636
2019b. Word-order biases in deep-agent emergent637
communication. In Proceedings of the 57th Confer-638
ence of the Association for Computational Linguis-639
tics, ACL 2019, Florence, Italy, July 28- August 2,640
2019, Volume 1: Long Papers, pages 5166–5175.641
Association for Computational Linguistics.642

Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. 2021.643
Co-evolution of language and agents in referential644
games. In Proceedings of the 16th Conference of the645
European Chapter of the Association for Computa-646
tional Linguistics: Main Volume, EACL 2021, Online,647
April 19 - 23, 2021, pages 2993–3004. Association648
for Computational Linguistics.649

Li Dong and Mirella Lapata. 2016. Language to logical 650
form with neural attention. In Proceedings of the 651
54th Annual Meeting of the Association for Compu- 652
tational Linguistics, ACL 2016, August 7-12, 2016, 653
Berlin, Germany, Volume 1: Long Papers. The Asso- 654
ciation for Computer Linguistics. 655

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit 656
Iyyer, and Andrew McCallum. 2019. Unsupervised 657
latent tree induction with deep inside-outside recur- 658
sive auto-encoders. In Proceedings of the 2019 Con- 659
ference of the North American Chapter of the Asso- 660
ciation for Computational Linguistics: Human Lan- 661
guage Technologies, NAACL-HLT 2019, Minneapolis, 662
MN, USA, June 2-7, 2019, Volume 1 (Long and Short 663
Papers), pages 1129–1141. Association for Compu- 664
tational Linguistics. 665

Jakob N. Foerster, Yannis M. Assael, Nando de Fre- 666
itas, and Shimon Whiteson. 2016. Learning to com- 667
municate with deep multi-agent reinforcement learn- 668
ing. In Advances in Neural Information Processing 669
Systems 29: Annual Conference on Neural Informa- 670
tion Processing Systems 2016, December 5-10, 2016, 671
Barcelona, Spain, pages 2137–2145. 672

Laura Graesser, Kyunghyun Cho, and Douwe Kiela. 673
2019. Emergent linguistic phenomena in multi- 674
agent communication games. In Proceedings of 675
the 2019 Conference on Empirical Methods in Natu- 676
ral Language Processing and the 9th International 677
Joint Conference on Natural Language Processing, 678
EMNLP-IJCNLP 2019, Hong Kong, China, Novem- 679
ber 3-7, 2019, pages 3698–3708. Association for 680
Computational Linguistics. 681

Serhii Havrylov and Ivan Titov. 2017. Emergence of 682
language with multi-agent games: Learning to com- 683
municate with sequences of symbols. In Advances 684
in Neural Information Processing Systems 30: An- 685
nual Conference on Neural Information Processing 686
Systems 2017, December 4-9, 2017, Long Beach, CA, 687
USA, pages 2149–2159. 688

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long 689
short-term memory. Neural Comput., 9(8):1735– 690
1780. 691

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categori- 692
cal reparameterization with gumbel-softmax. In 5th 693
International Conference on Learning Representa- 694
tions, ICLR 2017, Toulon, France, April 24-26, 2017, 695
Conference Track Proceedings. OpenReview.net. 696

Eugene Kharitonov, Rahma Chaabouni, Diane Boucha- 697
court, and Marco Baroni. 2020. Entropy minimiza- 698
tion in emergent languages. In Proceedings of the 699
37th International Conference on Machine Learning, 700
ICML 2020, 13-18 July 2020, Virtual Event, volume 701
119 of Proceedings of Machine Learning Research, 702
pages 5220–5230. PMLR. 703

Simon Kirby. 2001. Spontaneous evolution of linguis- 704
tic structure-an iterated learning model of the emer- 705
gence of regularity and irregularity. IEEE Trans. 706
Evol. Comput., 5(2):102–110. 707

9

https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://doi.org/10.3115/v1/d14-1134
https://doi.org/10.3115/v1/d14-1134
https://doi.org/10.3115/v1/d14-1134
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://proceedings.neurips.cc/paper/2019/hash/31ca0ca71184bbdb3de7b20a51e88e90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/31ca0ca71184bbdb3de7b20a51e88e90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/31ca0ca71184bbdb3de7b20a51e88e90-Abstract.html
https://doi.org/10.18653/v1/p19-1509
https://doi.org/10.18653/v1/p19-1509
https://doi.org/10.18653/v1/p19-1509
https://aclanthology.org/2021.eacl-main.260/
https://aclanthology.org/2021.eacl-main.260/
https://aclanthology.org/2021.eacl-main.260/
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://doi.org/10.18653/v1/D19-1384
https://doi.org/10.18653/v1/D19-1384
https://doi.org/10.18653/v1/D19-1384
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://proceedings.mlr.press/v119/kharitonov20a.html
http://proceedings.mlr.press/v119/kharitonov20a.html
http://proceedings.mlr.press/v119/kharitonov20a.html
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430


Satwik Kottur, José M. F. Moura, Stefan Lee, and Dhruv708
Batra. 2017. Natural language does not emerge ’nat-709
urally’ in multi-agent dialog. In Proceedings of the710
2017 Conference on Empirical Methods in Natural711
Language Processing, EMNLP 2017, Copenhagen,712
Denmark, September 9-11, 2017, pages 2962–2967.713
Association for Computational Linguistics.714

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Gold-715
water, and Mark Steedman. 2010. Inducing proba-716
bilistic CCG grammars from logical form with higher-717
order unification. In Proceedings of the 2010 Con-718
ference on Empirical Methods in Natural Language719
Processing, EMNLP 2010, 9-11 October 2010, MIT720
Stata Center, Massachusetts, USA, A meeting of SIG-721
DAT, a Special Interest Group of the ACL, pages722
1223–1233. ACL.723

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Gold-724
water, and Mark Steedman. 2011. Lexical generaliza-725
tion in CCG grammar induction for semantic parsing.726
In Proceedings of the 2011 Conference on Empirical727
Methods in Natural Language Processing, EMNLP728
2011, 27-31 July 2011, John McIntyre Conference729
Centre, Edinburgh, UK, A meeting of SIGDAT, a Spe-730
cial Interest Group of the ACL, pages 1512–1523.731
ACL.732

Brenden M. Lake and Marco Baroni. 2018. General-733
ization without systematicity: On the compositional734
skills of sequence-to-sequence recurrent networks. In735
Proceedings of the 35th International Conference on736
Machine Learning, ICML 2018, Stockholmsmässan,737
Stockholm, Sweden, July 10-15, 2018, volume 80 of738
Proceedings of Machine Learning Research, pages739
2879–2888. PMLR.740

Angeliki Lazaridou and Marco Baroni. 2020. Emergent741
multi-agent communication in the deep learning era.742
CoRR, abs/2006.02419.743

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls,744
and Stephen Clark. 2018. Emergence of linguistic745
communication from referential games with sym-746
bolic and pixel input. In 6th International Conference747
on Learning Representations, ICLR 2018, Vancouver,748
BC, Canada, April 30 - May 3, 2018, Conference749
Track Proceedings. OpenReview.net.750

Angeliki Lazaridou, Anna Potapenko, and Olivier Tiele-751
man. 2020. Multi-agent communication meets nat-752
ural language: Synergies between functional and753
structural language learning. In Proceedings of the754
58th Annual Meeting of the Association for Compu-755
tational Linguistics, ACL 2020, Online, July 5-10,756
2020, pages 7663–7674. Association for Computa-757
tional Linguistics.758

David K. Lewis. 1969. Convention: A Philosophical759
Study. Wiley-Blackwell.760

Fushan Li and Michael Bowling. 2019. Ease-of-761
teaching and language structure from emergent com-762
munication. In Advances in Neural Information Pro-763
cessing Systems 32: Annual Conference on Neural764

Information Processing Systems 2019, NeurIPS 2019, 765
December 8-14, 2019, Vancouver, BC, Canada, pages 766
15825–15835. 767

Yaoyiran Li, Edoardo Maria Ponti, Ivan Vulic, and Anna 768
Korhonen. 2020. Emergent communication pretrain- 769
ing for few-shot machine translation. In Proceedings 770
of the 28th International Conference on Computa- 771
tional Linguistics, COLING 2020, Barcelona, Spain 772
(Online), December 8-13, 2020, pages 4716–4731. 773
International Committee on Computational Linguis- 774
tics. 775

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. 776
2017. The concrete distribution: A continuous re- 777
laxation of discrete random variables. In 5th Inter- 778
national Conference on Learning Representations, 779
ICLR 2017, Toulon, France, April 24-26, 2017, Con- 780
ference Track Proceedings. OpenReview.net. 781

Igor Mordatch and Pieter Abbeel. 2018. Emergence 782
of grounded compositional language in multi-agent 783
populations. In Proceedings of the Thirty-Second 784
AAAI Conference on Artificial Intelligence, (AAAI- 785
18), the 30th innovative Applications of Artificial 786
Intelligence (IAAI-18), and the 8th AAAI Symposium 787
on Educational Advances in Artificial Intelligence 788
(EAAI-18), New Orleans, Louisiana, USA, February 789
2-7, 2018, pages 1495–1502. AAAI Press. 790

Franz Josef Och and Hermann Ney. 2003. A systematic 791
comparison of various statistical alignment models. 792
Comput. Linguistics, 29(1):19–51. 793

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B. Co- 794
hen, and Simon Kirby. 2020. Compositional lan- 795
guages emerge in a neural iterated learning model. 796
In 8th International Conference on Learning Repre- 797
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 798
26-30, 2020. OpenReview.net. 799

Yoav Seginer. 2007. Fast unsupervised incremental pars- 800
ing. In ACL 2007, Proceedings of the 45th Annual 801
Meeting of the Association for Computational Lin- 802
guistics, June 23-30, 2007, Prague, Czech Republic. 803
The Association for Computational Linguistics. 804

Agnieszka Słowik, Abhinav Gupta, William L. Hamil- 805
ton, Mateja Jamnik, Sean B. Holden, and Christo- 806
pher J. Pal. 2021. Structural inductive biases in 807
emergent communication. In Proceedings of The 808
43rd Annual Meeting of the Cognitive Science Soci- 809
ety, CogSci 2021. 810

Mark Steedman. 1996. Surface structure and interpre- 811
tation, volume 30 of Linguistic inquiry. MIT Press. 812

Mark Steedman. 2000. The syntactic process. Lan- 813
guage, speech, and communication. MIT Press. 814

Oskar van der Wal, Silvan de Boer, Elia Bruni, and 815
Dieuwke Hupkes. 2020. The grammar of emergent 816
languages. In Proceedings of the 2020 Conference on 817
Empirical Methods in Natural Language Processing, 818
EMNLP 2020, Online, November 16-20, 2020, pages 819
3339–3359. Association for Computational Linguis- 820
tics. 821

10

https://doi.org/10.18653/v1/d17-1321
https://doi.org/10.18653/v1/d17-1321
https://doi.org/10.18653/v1/d17-1321
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D11-1140/
https://aclanthology.org/D11-1140/
https://aclanthology.org/D11-1140/
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://arxiv.org/abs/2006.02419
http://arxiv.org/abs/2006.02419
http://arxiv.org/abs/2006.02419
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://doi.org/10.18653/v1/2020.coling-main.416
https://doi.org/10.18653/v1/2020.coling-main.416
https://doi.org/10.18653/v1/2020.coling-main.416
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/089120103321337421
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://aclanthology.org/P07-1049/
https://aclanthology.org/P07-1049/
https://aclanthology.org/P07-1049/
https://arxiv.org/abs/2002.01335
https://arxiv.org/abs/2002.01335
https://arxiv.org/abs/2002.01335
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.18653/v1/2020.emnlp-main.270


Ronald J. Williams. 1992. Simple statistical gradient-822
following algorithms for connectionist reinforcement823
learning. Mach. Learn., 8:229–256.824

Ronald J. Williams and Jing Peng. 1991. Function opti-825
mization using connectionist reinforcement learning826
algorithms. Connection Science, 3:241–268.827

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-828
ing to map sentences to logical form: Structured clas-829
sification with probabilistic categorial grammars. In830
UAI ’05, Proceedings of the 21st Conference in Un-831
certainty in Artificial Intelligence, Edinburgh, Scot-832
land, July 26-29, 2005, pages 658–666. AUAI Press.833

Luke S. Zettlemoyer and Michael Collins. 2007. Online834
learning of relaxed CCG grammars for parsing to835
logical form. In EMNLP-CoNLL 2007, Proceedings836
of the 2007 Joint Conference on Empirical Meth-837
ods in Natural Language Processing and Computa-838
tional Natural Language Learning, June 28-30, 2007,839
Prague, Czech Republic, pages 678–687. ACL.840

A Modifications of CGI841

INITLEX We set Λseed = ∅, as we do not have842

any prior knowledge on emergent languages.843

UPDATELEX In KZGS10, UPDATELEX in-844

cludes part of a potential new lexicon pruning the845

rest, while ours includes all of them. This is be-846

cause the PRUNELEX of ADP14 would implicitly847

do the same thing. Moreover, the original UP-848

DATELEX splits lexical entries as a higher-order849

unification problem to find f and g s.t. h = f(g)850

or h = f ◦ g, given a logical form h. On the other851

hand, ours splits the entries as a problem only to852

find h = f(g), ensuring that f ̸= λx.x. and g is853

not a function.854

INITPARAM Since the algorithm can only search855

limited space in practice, a reasonable parameter856

initialization is required. KZGS10 used a statisti-857

cal translation method9, while we simply compute858

mean pointwise mutual information (pmi) between859

n-grams and logical constants. Formally, given a860

feature, i.e., a lexical entry m ⊢ X : ψ, its initial861

parameter is defined as:862

1

|Cnst(ψ)|
∑

c∈Cnst(ψ)

pmi(m, c)863

if |Cnst(ψ)| > 0 otherwise 0. Cnst(ψ) enumer-864

ates the logical constants (e.g. look, left, or 1)865

occurring in ψ.866

9Giza++ Model 1 (Och and Ney, 2003).

B (Hyper-)parameters 867

Agents For agent architecture, the hidden state 868

size is 100. For agent optimization, the number of 869

mini-batches per epoch is 100, the size of mini- 870

batches is 1000, and the learning rate is 0.001. 871

Agents train either for 200 epochs or until loss 872

L for a validation dataset reaches 0. Besides, the 873

weight of speaker’s (resp. listener’s) entropy regu- 874

larizer λS = 0.1 (resp. λL = 1). These parameters 875

are determined according to our preliminary exper- 876

iments. 877

Signaling Game For signaling games, an input 878

space I ∈ {Lang-attval,Lang-conj}, the size |A| 879

of an alphabet A is in {15, 31, 63}, and a message 880

length k ∈ {4, 8}. 881

CGI For CGI, the number of iterations T = 10, 882

a learning rate γ = 0.1, and a beam size for CKY 883

parsing is 10, referring to Artzi et al. (2014) and 884

our preliminary experiments. 885

TRE For TRE, a learning rate is 0.01 and the 886

number of steps is 1000 following the implementa- 887

tion of Andreas (2019). 888

C Shuffled Emergent Language and 889

Random Sequence 890

Figure 7 and Figure 9 show the compari- 891

son among CGF/L-Emergent, CGF/L-Shuffled, 892

CGF/L-Random. 893

D Other Experimental Results 894

Figure 8 shows the scatter plot of TopSim and CGL 895

when I = Lang-conj. Figure 10 shows the scatter 896

plot of TRE and CGL when I = Lang-conj. 897
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Figure 7: CGF plotted under various (I, k, |A|). The
error bars represent one standard error of mean.

Figure 8: Scatter plot of CGL-Emergent and TopSim-
Emergent.

Figure 9: CGL plotted under various (I, k, |A|). The
error bars represent one standard error of mean.

Figure 10: Scatter plot of CGL-Emergent and TRE-
Emergent.
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