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Abstract

This paper proposes a method for investigating
the syntactic structure of emergent languages
using categorial grammar induction. Although
the structural property of emergent languages
is an important topic, little has been done on
syntax and its relation to semantics. Inspired
by previous work on CCG induction for natu-
ral languages, we propose to induce categorial
grammars from the sentence-meaning pairs of
emergent languages. Since an emergent lan-
guage born in a common environment called
signaling game is represented as pairs of a mes-
sage and a meaning, it is straightforward to
extract sentence-meaning pairs to feed to cate-
gorial grammar induction. We also propose two
compositionality measures that are based on the
information obtained from induced grammars.
Our experimental results reveal that our mea-
sures can recognize compositionality. While
correlating with existing measure TopSim, our
measures can gain more insights on the compo-
sitional structure of emergent languages from
induced grammars.

1 Introduction

Communication among artificial agents born in
an environment is called emergent communication
and its protocols are emergent languages (Lazari-
dou and Baroni, 2020). Major motivations in this
area are (1) to develop interactive Al (Foerster
et al., 2016; Mordatch and Abbeel, 2018; Lazari-
dou et al., 2020), (2) to study language evolution
(Kirby, 2001; Graesser et al., 2019; Dagan et al.,
2021), and (3) to understand emergent languages
or compare them with humans’ (Kottur et al., 2017;
Chaabouni et al., 2019a; Kharitonov et al., 2020).
(1) and (2) are important from the engineering or
scientific points of view. In fact, (3) is fundamen-
tal since the first two are not achievable without
recognizing and filling the gap between emergent
and human languages. Despite its importance, few
methods have been established to evaluate the struc-
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Figure 1: Illustration of a signaling game and categorial
grammar induction (CGI). We first generate message-
meaning pairs in the game, and then feed them to CGI.

ture of emergent languages with respect to syntax
and semantics. Previous work frequently employs a
signaling game (Lewis, 1969) or its variant, where
agents are either a function from a meaning space
to a message space or its inverse. The problem is
that little has been analyzed on how syntax com-
bines messages to yield semantics or meanings.
Such a structural property is known as composi-
tionality.

To analyze the syntax of emergent languages,
we focus on categorial grammar induction (CGI,
e.g., Zettlemoyer and Collins, 2005) and propose
to apply it to emergent languages. Figure 1 illus-
trates the relationship between a signaling game
and CGI. Since CGI derives an explicit lexicon and
a semantic parser given sentence-meaning pairs, it
is suitable for the syntactic analysis of a language
emerging as message-meaning pairs in a signaling
game. We also propose compositionality measures



built on the F1-score for unseen data and the lexi-
con size of CGI parsers. It is based on the intuition
that a compositional language is expected to be
generalized and described by a minimal lexicon.

Compositionality measures for emergent lan-
guages have been proposed, such as topographic
similarity (TopSim, Brighton and Kirby, 2006),
tree reconstruction error (TRE, Andreas, 2019), po-
sitional disentanglement (PosDis, Chaabouni et al.,
2020), and bag-of-symbols disentanglement (Bos-
Dis, Chaabouni et al., 2020). We choose TopSim
and TRE to compare with ours, since TopSim is
most popular (e.g., Lazaridou et al., 2018) and TRE
is similar to ours in the sense that it assumes struc-
tured meaning representations. Note that they do
not consider the structure between a message and a
meaning space, whereas our approach is aware of
it with an explicit lexicon and a parser.

Pioneering and suggestive work by van der Wal
et al. (2020) on the syntax of emergent languages
proposes to apply unsupervised grammar induction
(UGI) originally developed for natural languages:
CCL (Seginer, 2007) and DIORA (Drozdov et al.,
2019). UGl is reasonable if neither gold derivations
nor meanings are available!. Note that UGI esti-
mates the structure of emergent languages given
only messages, whereas ours is intended to derive
not only the structure but also the systematic com-
position of messages to meanings given message-
meaning pairs.

Our contributions are (1) to propose to apply
categorial grammar induction (CGI) to emergent
languages for understanding their structure, (2) to
propose two CGI-based compositionality measures
that are more syntax-aware than existing composi-
tionality measures, and (3) to show they can indeed
measure compositionality.

2 Signaling Game in General

Most studies on emergent communication employ
Lewis signaling game (Lewis, 1969) or its vari-
ant as an environment for agents to communicate.
A signaling game contains a tuple (I, M, S, L),
where [ is an input space, M is a message space, a
mapping S : I — M is a speaker, and a map-
ping L : M — 1 is a listener. The goal is
i = L(S(7)) for a sampled input i € I. Agents
S, L are trained to achieve the goal given I, M.
On the other hand, in a variant called referential

"For example, if agents describe image data (e.g., Lazari-
dou et al., 2018), the meaning representations are unclear.

game or discrimination game, a listener is defined
as L : M x P(I) — I, where P(I) is the power
set of I. The goal is to distinguish ¢ from other dis-
tractors: i = L(S(7), C) for candidates C' € P(I)
s.t. © € C. An input space is typically a set of
image data (Havrylov and Titov, 2017; Lazaridou
et al., 2018; Bouchacourt and Baroni, 2018), se-
quential data (Li et al., 2020; Stowik et al., 2021),
or attribute-value objects (Li and Bowling, 2019;
Chaabouni et al., 2020; Ren et al., 2020). Besides,
a message space is a set of discrete sequences in
most studies.

Agent Architecture Each agent is typically rep-
resented as a neural network, in particular, an
encoder-decoder model. The speaker decoder and
listener encoder are often recurrent neural networks.
The speaker encoder can be a convolutional neural
network, recurrent neural network, or perceptron,
according to /. The listener decoder can be ei-
ther the same as the speaker encoder or a classifier,
depending on the goal.

Optimization Methods The speaker-listener pair
is trained in an End-to-End manner, regarded as a
single neural network. Previous work uses REIN-
FORCE (Williams, 1992) and/or Gumbel-Softmax
trick (Jang et al., 2017; Maddison et al., 2017),
since the standard backpropagation is not applica-
ble to discrete messages.

2.1 Existing Compositionality Measures

Compositionality is popular among those who are
interested in the structural similarity between emer-
gent and human languages. In the experiments,
we compare our measures with TopSim (Brighton
and Kirby, 2006) and TRE (Andreas, 2019). Let
(I, M, S, L) be a signaling game defined above.

TopSim Let d;, dys be distance functions in [
and M. TopSim is defined as Spearman correla-
tion between d(x,y) and dps(S(x), S(y)) for all
(x,y) € I x I. This score requires only dy, dps as
structural information for I, M.

TRE The intuition of TRE is that if an emergent
language is compositional, it should be approxi-
mated by another explicitly compositional function
f 1 — M. Notethateach i € I has to be a binary
tree t in which a node n is binary node denoted as
n = (n/,n”), unary node denoted as n = (n’), ora
leaf node denoted as n = [. Besides, each m € M
has to be a sequence of a fixed length £ over a fi-
nite alphabet A. The calculation of TRE involves



a distance ¢ and a composition r, with a trainable
parameter = (V,W,{E;};). ¢ is defined as L1
distance between k x |A| matrices. k,, is defined
as a mapping from a binary tree t € I toa k x | A|
matrix:

where F; is a k X | A| matrix for each leaf node ,
and V, W are k x k matrices. Define one_hot(m)
as a k x |A| matrix, the r-th row of which is the
one-hot vector of the r-th symbol in m € M. Then,
TRE is computed with stochastic gradient descent
as follows:

o1 . .
TRE = min i zezl d(ky(i), one_hot(S()))

Note that the lower TRE is, the higher composition-
ality is judged. TRE is similar to ours in the sense
that inputs are assumed to be tree-structured.

3 Categorial Grammar Induction

In this section, we introduce categorial grammar
(CG) and review its induction (CGI) for natural
languages. CGl is also eligible for the analysis of
emergent languages in signaling games, as it de-
rives a lexicon and a parser from message-meaning
pairs. Although previous work is on combinatory
categorial grammar (CCG), we restrict it to CG?.

3.1 Categorial Grammar

The formalism for our semantic parsing is cat-
egorial grammar (CG, Steedman, 1996, 2000).
Context-free grammars are described largely with
rules, whereas CGs are described largely with /ex-
ical entries and their rules are simple. A lexical
entry w - X:1) is a triple of a word w, a category
X (defined below), and a logical form . Consider
the following example pair of a message and its
logical form:

“look left 17
iter(and(1lturn, look), 1)

>One might wonder why we do not use CCG. This is
because the input spaces for our signaling games are described
by context-free grammars, whose expressive power is known
to be equal to that of CG. Nevertheless, it is interesting to
speculate whether emergent languages can have complex rules
like composition or type-raising. It is left for future work.

Their lexical entries can be described as follows:

look -V : 1ook
left - S\V : Az.and(1turn, z)
1+ 8S\S: Az.iter(z,1)

Symbols like V, S\V, and S\S represent syntactic
types or categories. A category is either an atomic
category of the form N, V, or S, or a complex cat-
egory of the form X/Y or X\Y where X,Y are
categories. The atomic categories N, V, and S stand
for the linguistic notions of noun, intransitive verb,
and sentence respectively?.

In addition, CGs have application rules to
describe the way to combine adjacent categories.

Application rules (with semantics):

X/Y:f Yia = X:f(a) (>
Yia X\Y:f = X:fla)

where X, Y are categories. The first rule named
“>” is called the forward application rule, while
the second rule named “<” is called the backward
application rule. Rule > (resp. <) means that a
predicate f of category X/Y (resp. X\Y) can
take an argument a of category Y to yield f(a) of
category X.

With the lexical entries and the application rules,
we can construct a derivation tree of “look left 1”
as follows:

look left 1

v S\V S\s
:look : Az.and(lturn, z) : Ax.iter(z, 1)

S:and(lturn, look)
S:iter(and(lturn, look),1)

3.2 Log-linear Probabilistic CGs

Given a lexicon A, a set of lexical entries, there
might be multiple derivations for each message.
Following previous work on CG induction (e.g.,
Zettlemoyer and Collins, 2005), we choose the
most likely derivation by using a log-linear model,
which contains a feature vector ¢ and a parameter
vector . Given a message m, the joint probability
of a logical form ¢/ and a derivation 7 is defined as:

ef-o(m,)
3 gy €0 ST AN

P74 | m;0,A) =

3The category of intransitive verbs is usually S /N (S/NP)
or S\N (S\NP), but we regard V as a atomic category. This
is because the languages and logical forms we define in Sec-
tion 5.1 take an imperative form without any subject.



Then, the parsing problem is to find the most likely
logical form v given m:

= arg maxp( | m; 0, A)
P

=arg maXZP(T,UJ | m; 0, A).
L4 T

3.3 CG Induction Algorithm

Algorithm 1 Common Structure of CG Induction

Input: A dataset £ = {(m’, ¢’ )}j.\]:1 of message-meaning
pairs, a seed lexicon Ageed, the number of iterations 7',
and a learning rate .
Output: Lexicon A and parameter vector 6
1: Ao < INITLEX(E, Ageed)
2: Oo <+ INITPARAM(E, Aseed)
> Step O: Initialize lexicon and parameter
3: fort € {1,...,T}do
4: A} + UPDATELEX(E, 01, At—1, Ao)
> Step 1: Update Lexicon
5: 0; <« UPDATEPARAM(E, 0;—1,A] )
> Step 2: Update Parameter
6: A ¢ PRUNELEX(E,0;—1,A})
> Step 3: Prune Lexicon (optional)
7: end for

8: return At and 61

Several CG induction (CGI) algorithms have
been proposed. Algorithm 1 shows their common
structure as a pseudo code. Generally, the inputs
to CGI are a training data & = {(m/,¢7)}}1,
of message-meaning pairs, a seed lexicon Ageeq,
the number of iterations 7', and a learning rate -,
while the outputs are a lexicon A and a parameter 6.
CGI involves four procedures: (1) lexicon and pa-
rameter initialization (INITLEX, INITPARAM) that
helps learning in early iterations, (2) lexicon update
(UPDATELEX) that introduces a new potential lexi-
con, (3) parameter update (UPDATEPARAM) with
gradient descent, and optionally (4) lexicon pruning
(PRUNELEX) that discards a lexicon no longer in
use. ZCO05 (Zettlemoyer and Collins, 2005) is the
first paper formalizing CGI. ZCO7 (Zettlemoyer
and Collins, 2007) is its improved version. In
ZC05/07, INITLEX is simply Ay = Ageeq and UP-
DATELEX relies on hand-crafted templates to add
a new lexicon. KZGS10/11 (Kwiatkowski et al.,
2010, 2011) modified UPDATELEX so that it can
create a new lexicon by automatically merging and
splitting the existing entries in use. In KZGS10/11,
INITLEX returns £ themselves with category S in
addition to Ageeq:

Ag < AgeeqU {m? FS:97 | j=1,...,N}

Then, the lexical entries are split or merged during
the iteration, seeking an appropriate segmentation.
A problem in KZGS10/11 is that the lexicon size
increases monotonically over iterations. ADP14
(Artzi et al., 2014) addressed this issue by adding
a lexicon pruning process (PRUNELEX), which

discards the lexical entries no longer in use®.

4 CGI as a Compositionality Measure

We propose two compositionality measures CGF
and CGL, which are based on an induced categorial
grammar. Let Epain, Etest be a training and test data
for CGI. We train a log-linear model with ;a1 to
derive a lexicon A and a parameter # and test it
with &gt to calculate the Fl-score for semantic
parsing:

recision x recall
Fl1-score = 2 x P

precision + recall
# correctly parsed

precision =
# parsed

recall # correctly parsed
|gtest|

following previous work (Zettlemoyer and Collins,
2005) °. Then, CGF and CGL are defined as:

CGF = Fl-score, CGL = |A]

Note that the higher CGF (resp. lower CGL) is, the
more compositional a language is judged, since a
compositional language should be generalized and
described by a minimal lexicon.

4.1 Difference from Existing Measures

Although existing compositionality measures such
as TopSim and TRE are also mappings from
message-meaning pairs to a real number, neither
they clarify the structure of a message space M nor
they derive any compositional function from M to
an input space I.

Remember that TopSim only involves distance
functions dj, dj;, the choice of which is left to
humans, and it does not clarify the structure of M.
On the other hand, our approach can derive the
structure of M by deriving a lexicon. TRE induces
a composition «,, : I — M, but not the inverse. As
Andreas (2019) is aware, it causes a language with
identical messages for all meanings to be judged

4ADP14 also has improvements in UPDATELEX, but we
do not go into them in this paper.

If A does not have sufficient lexical entries, the model
fails to parse messages regardless of correctness.



compositional, contrary to our intuition. Again,
ours would not regard it as compositional since a
CGI parser is a function M — I.

Therefore, what differentiates us from the exist-
ing measures is that our approach can derive an
explicit lexicon and a semantic parser, whereas the
existing measures cannot 6.

5 Experimental Setup

This section introduces a signaling game, optimiza-
tion method, CGI algorithm, and evaluation metrics
specific to our experiments. The overall experimen-
tal procedure is as follows:

1. Split an input space [ in half: Dirain, Diest-

2. Train a speaker S and a listener L with Dypaip.
Validate and test them with Dyegt.

3. Given trained S, make datasets for CGI by
pairing each message with its logical form:

& ={(5(0), () | i € Da}

where = € {train, test} and (7) is the logical
form of ¢, to which CGI is applicable.

4. Train a CG parser with Egpain, test it with Egegt,
and calculate CGF with &;.s; and CGF with a
derived lexicon A.

5. Calculate TopSim and TRE with Dyip .

5.1 Input Space for Signaling Game

We define two input spaces for our signaling game:
Lang-attval and Lang-conj ’. Lang-attval is the
same as attribute-value inputs in previous work
(e.g., Kottur et al., 2017), while Lang-conj is more
complex. Moreover, we define logical forms for
each input.

Lang-attval Lang-attval is defined as the set of
sequences derived from the following context-free
grammar with a start symbol S:

S - V'R
V' -V D
V —look | jump | walk | run
D — left | right | up | down
R —1|2[3|4
TopSim and TRE are still reasonable if our purpose is
to distinguish partially (but insufficiently) compositional lan-

guages from the ones not compositional at all.

"They are inspired by the commands of Chaabouni et al.
(2019b) or SCAN (Lake and Baroni, 2018).

Lang-attval is regarded as attribute-value objects
(Kottur et al., 2017; Andreas, 2019; Li and Bowling,
2019; Ren et al., 2020). In our case, attributes are
verb, direction, and repetition, each of which has 4
values (e.g., look, jump, walk, and run for verb).

Lang-conj Let S” be a start symbol. Then,
Lang-conj is the set of sequences derived from the
above context-free grammar in addition to the fol-
lowing rules:

S" —-S1|S¢
S —andS

Each element in Lang-conj is either an element in
Lang-attval or a conjunction of two elements in
Lang-attval.

Logical Form We define the logical form of
each element in Lang-attval/conj, to which CGI
is simply applicable. We temporarily denote el-
ements parenthetically to clarify their derivation
trees (e.g., “S(V/(V(jump), D(left)), R(2))” for
“jump left 2”). Then, the logical form (i) of a
derivation : is defined inductively as follows:

(S"(S(x))) = (S(x))
(S"(S(x),S'(y))) = and((S()), (S'(»)))
(S'(and, S(x))) = (S(x))
(S(V(2),R(y))) = iter((V'(z)), (R(y)))
(V/(V(2),D(y))) = and((D(y)), (V(x)))
(X(z)) = (@) (X €{V,D,R}),

and for terminal symbols, (look) = look, (left) =
lturn, (1) = 1, and so forth.

Examples Here are some examples:

¢ = “jump left 2” € Lang-attval N Lang-conj
(i) = iter(and(lturn, jump), 2).

Also,

!/

7 = “jump left 2 and walk up 3” € Lang-conj
(i) = and(iter(and(lturn, jump),?2),
iter(and(uturn,walk), 3)).

5.2 Signaling Game for Sequential Data

Agent architectures and game procedure have to
be adapted to the sequential inputs defined above.
Hence, our signaling game takes a sequence-to-
sequence-to-sequence procedure.



Architecture Speaker and listener agents are rep-
resented as a seq2seq model based on single-layer
LSTMs (Hochreiter and Schmidhuber, 1997) with
standard attention mechanisms (Dong and Lapata,
2016), similarly to Chaabouni et al. (2019b).

Game Procedure A sequential signaling game
consists of a tuple (I, A, k, eos, S, L), where [ is
an input space, A is a finite alphabet s.t. eos ¢ A,
k is a message length, and eos is a special symbol
for end-of-sentence. A message space M is defined
as the set of sequences of length k over A, S : I —
M is a speaker, and L : M — I is a listener. Note
that z + eos denotes a sequence x attached with
eos. The goal of the game is to minimize

A(i + eos, L(S(i + eos) + eos))

for a uniformly sampled ¢ € I, where A is the
humming distance.

5.3 Optimization for Agents

As A is indifferentiable, we use REINFORCE
(Williams, 1992), which gives the following dif-
ferentiable loss:

E[{A(i + eos, 0) — b} log Pg(m|i + eos)]
+E[{A(i + eos,0) — b} log Pr(o|m + eos)]
+E[A5’H(P5) + )\LH(PL)]

where Pg (resp. Pr) is the output distribution of
speaker (resp. listener) over a message m (resp.
output o) given an input ¢ (resp. message m), b is a
mean baseline, / denotes entropy, and Ag, Ay, are
nonnegative hyper-parameters. The last term is an
entropy regularizer (Williams and Peng, 1991).

5.4 CGI for Emergent Languages

We apply CGI to emergent languages. As there is
no prior knowledge on them, CGI should avoid ad
hoc methods, considering the following:

(1) Features in a log-linear model have to be as
simple as possible.

(2) Lexical entries have to be generated automat-
ically without any manual templates.

(3) Lexicon size has to be minimal; otherwise it
is hard to interpret results, e.g., to measure
compositionality with CGL.

There is no existing method satisfying all of them
simultaneously. We combine three methods. For

(1), we follow ZCO05 (Zettlemoyer and Collins,
2005): each feature is the count of times that each
lexical entry is used in a derivation. However,
ZCO05 generates lexical entries with manual tem-
plates, contrary to (2). Instead, we follow KZGS10
(Kwiatkowski et al., 2010) that creates a new lex-
icon by merging and splitting the existing entries
in use. The problem in KZGS10 is that the lexi-
con size increases monotonically during iterations,
which is against (3). Thus, we follow ADP14 (Artzi
et al., 2014) to discard the entries no longer in use.
Other modifications are detailed in Appendix A.

5.5 Other Languages for Comparison

To evaluate the effectiveness of our measures, we
need more and less compositional languages as
well as emergent languages to apply CGI. To
this end, we use Lang-attval/conj and AdjSwap-
x (x € {1,2}). AdjSwap-x is made by apply-
ing z-times random adjacent swaps to each mess-
sage in emergent languages. As Lang-attval and
Lang-conj are fully compositional by definition,
they should be judged more compositional than
emergent languages. On the other hand, AdjSwap-
x should be judged less compositional. van der
Wal et al. (2020) adopted three languages for the
same purpose: fully-structured, random, and shuf-
fled emergent languages. The fully-structured cor-
responds to Lang-attval/conj in our case. We use
AdjSwap-z as instances of less-compositional lan-
guages rather than random and shuffled emergent
languages. This is because preliminary experi-
ments revealed that CGI totally fails for these lan-
guages (see Appendix C). While this is an expected
behavior, we additionally employ AdjSwap-x as a
language supposed to be more compositional than
random and shuffled emergent languages, for ob-
taining more insights.

5.6 Evaluation Metrics for Compositionality

We use CGF/L as well as TopSim and TRE. When
clarifying the target language, we write the metrics
as (measure)-(language), e.g., TopSim-Emergent,
CGF-AdjSwap-1, and CGL-Lang-attval.

6 Experiments

We show the experimental results in this section.
Let (I, A, k,eo0s,S, L) be a sequential signaling
game as defined in Section 5.2.

For (hyper-)parameter settings, see Appendix B.
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<

S:iter(and(rturn,run),3)

S: and(iter(and(rturn,run), 3), iter(and(rturn,walk), 2))

Figure 2: Example correct derivation tree of a message 1, 1,1, 16, 13,25, 1,1 when (1, k, | A|) = (Lang-conj, 8, 31).
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Figure 3: CGF plotted under various (I, k, |A|). The
error bars represent one standard error of mean.

6.1 Compositionality of Emergent Languages

We investigate whether CGF/L works as a measure
of compositionality. If CGF works, the follow-
ing inequality should hold: CGF-Lang-attval/conj
> CGF-Emergent > CGF-AdjSwap-1 > CGF-
AdjSwap-2. Likewise, if CGL works, CGL-
Lang-attval/conj < CGL-Emergent < CGL-
AdjSwap-1 < CGL-AdjSwap-2. First, we report
that CGF-Lang-attval is 0.984 (4-0.0463), CGL-
Lang-attval is 12.3 (£0.852), CGF-Lang-conj is
0.868 (£0.1173), and CGL-Lang-conj is 23.8
(£17.59), where (£_) denotes a standard error of
mean . For the rest, Figure 3 (resp. Figure 4)
shows CGF (resp. CGL) under various (I, k, | A]).

For I = Lang-attval, Figure 3 shows surpris-
ingly that CGI fails: CGF-Emergent is near or
equal to 0. Besides, CGL-Emergent and CGL-
AdjSwap-z in Figure 4 do not show clear differ-
ences. Hence, neither CGF nor CGL does not rec-
ognize the compositionality of emergent languages.
CGF is almost 0 (Figure 3) and CGL concentrates
around the size of training data 32 (Figure 4), which
means the models overfit the training data. There
are two possible reasons for it: emergent languages

8We train models 32 times for Lang-attval and Lang-conj
respectively.
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Figure 4: CGL plotted under various (I, k, |A]). The
error bars represent one standard error of mean.

are not compositional or the training data for CGI
is insufficient. We suppose the former is true since
CGF-Lang-attval is near perfect (0.984) and CGL-
Lang-attval is almost minimal (12.3) with the same
size of training data.

For I = Lang-conj, Figure 3 reveals that CGF
exactly shows the order of compositionality as
expected: CGF-Lang-conj > CGF-Emergent >
CGF-AdjSwap-1 > CGF-AdjSwap-2. Likewise,
CGL in Figure 4 shows the expected order: CGL-
Lang-conj < CGL-Emergent < CGL-AdjSwap-1
< CGL-AdjSwap-2. Hence, CGF and CGL recog-
nize the compositionality of emergent languages.
Nevertheless, CGF-Emergent is less than half of
CGF-Lang-conj and CGL-Emergent is over 50
times larger than CGL-Lang-conj. It suggests that
emergent languages are not fully compositional.

6.2 Comparison with Existing Measures

Next, we check the relationships among CGF/L,
TopSim, and TRE. We show the results for I =
Lang-conj, where CGF/L recognizes the composi-
tionality of emergent languages. Figure 5 shows
the scatter plot of TopSim and CGF. It shows a
correlation with Pearson p = 0.644 (p = 8.77 x
1072 <« 0.01). We also note that TopSim and
CGL show a correlation with Pearson p = —0.689
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Figure 5: Scatter plot of CGF-Emergent and TopSim-
Emergent, when I = Lang-conj. Pearson correlation is
p=0.644 (p = 8.77 x 10~2* < 0.01).

(p = 2.88x10728 < 0.01). Although p-values are
considerably small, ps are moderate. Besides, Fig-
ure 5 shows several data points with high TopSim
but low CGF. It suggests that TopSim tends to
judge partially compositional languages more com-
positional than CGF.

Figure 6 shows the scatter plot of TRE and
CGF. Astonishingly, it shows no correlation be-
cause of the unnatural concentration of TRE around
k € {4,8}if |A| € {31,63} . It means that a com-
position k,, fails to learn so that its outputs are
trapped between 0 and 1/|A|. We speculate that
the definition of «,, or  in Section 2.1 should have
involved any nonlinear function. The scatter plots
for CGLs are listed in Appendix D.

6.3 Example Derivation Tree of Emergent
Language

Finally, Figure 2 exemplifies a derivation tree in an
emergent language that CGI judges highly compo-
sitional (CGF = 0.914, CGL = 423). We can see
how the message is combined to yield the meaning,
which is a striking feature of CGI that the exist-
ing compositionality measures do not have. In this
example, 16,13 means “run,” 25,1,1 means “__
right 3,” and 1,1,1 means “__ and walk right 2.”
Interestingly, it suggests message and meaning seg-
mentation does not necessarily match the intuitive
segmentation as shown in Section 3.1.

7 Discussion

The experimental results show that CGF and CGL
work as a compositionality measure for emergent
languages. Note that the observations on Lang-conj
are consistent with those of van der Wal et al.
(2020) in a sense that fully structured languages
are judged the most syntactical, the emergent lan-

x (Lang-conj, 4, 15) x
x % (Lang-conj, 4, 31)
0.8 X x (Lang-conj, 4, 63) %
x % (Lang-conj, 8, 15) !
) X x % (Lang-conj, 8, 31)
c x X o
O o6 x % x % (Lang-conj, 8, 63)
£ x x : !
0.4
L x % ¥
W . ¥ o
(U] X % ¥
(@] 02 2 3¢
. x x,{‘
DI £
% x
x XX !
00{ X% % x x x
T T T T T T T T
1 2 4 5 © 7 8

3
TRE-Emergent

Figure 6: Scatter plot of CGF-Emergent and TRE-
Emergent, when I = Lang-conj. Unnatural concen-
tration around k € {4, 8} is observed.

guages are judged the second, and lower struc-
tured broken languages are the least. However, nei-
ther CGF nor CGL recognizes the compositionality
when an input space is a small set of attribute-value
objects. It casts doubt on attribute-value settings for
studying structural similarities between emergent
and human languages. We found a moderate corre-
lation between CGF/L and TopSim which suggests
that CGI is not as sensitive to partial composition-
ality as TopSim. On the other hand, TRE does not
work if the alphabet size is too large, probably due
to the choice of 0 or x,, in Section 2.1. Finally, we
can directly observe the systematic composition
of a message to a meaning, which is a salient fea-
ture of CGI that previous work does not have. We
hope that it brings deeper insights on the syntax
and semantics of emergent languages.

8 Conclusion

This paper introduces categorial grammar induc-
tion (CGI) as a new compositionality measure for
the structure of emergent languages. We proposed
to apply CGI to emergent languages and define two
compositionality measures CGF and CGL. Our ex-
periments revealed that CGF/L can measure com-
positionality as we expected. Unlike existing mea-
sures, our approach meets compositionality in a
traditional sense, allowing us to analyze emergent
languages with a lexicon and derivation trees. For
future work, it would be interesting to study the
structure of the derivations of emergent languages.
Besides, we speculate that situated CCGs (Artzi
and Zettlemoyer, 2013) are applicable, which in-
duce CGs considering an external world. Hence,
CGI may be applicable to visual referential games
as well as 2D-grid world communication.



References

Jacob Andreas. 2019. Measuring compositionality in
representation learning. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014. Learn-
ing compact lexicons for CCG semantic parsing. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
pages 1273-1283. ACL.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Trans. Assoc. Comput. Lin-
guistics, 1:49-62.

Diane Bouchacourt and Marco Baroni. 2018. How
agents see things: On visual representations in an
emergent language game. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 981-985. Association for
Computational Linguistics.

Henry Brighton and Simon Kirby. 2006. Understanding
linguistic evolution by visualizing the emergence of
topographic mappings. Artif. Life, 12(2):229-242.

Rahma Chaabouni, Eugene Kharitonov, Diane Boucha-
court, Emmanuel Dupoux, and Marco Baroni. 2020.
Compositionality and generalization in emergent lan-
guages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4427-4442.
Association for Computational Linguistics.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel
Dupoux, and Marco Baroni. 2019a. Anti-efficient
encoding in emergent communication. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 6290-6300.

Rahma Chaabouni, Eugene Kharitonov, Alessandro
Lazaric, Emmanuel Dupoux, and Marco Baroni.
2019b. Word-order biases in deep-agent emergent
communication. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 5166-5175.
Association for Computational Linguistics.

Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. 2021.
Co-evolution of language and agents in referential
games. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, EACL 2021, Online,
April 19 - 23, 2021, pages 2993-3004. Association
for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 1129-1141. Association for Compu-
tational Linguistics.

Jakob N. Foerster, Yannis M. Assael, Nando de Fre-
itas, and Shimon Whiteson. 2016. Learning to com-
municate with deep multi-agent reinforcement learn-
ing. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2137-2145.

Laura Graesser, Kyunghyun Cho, and Douwe Kiela.
2019. Emergent linguistic phenomena in multi-
agent communication games. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 3698-3708. Association for
Computational Linguistics.

Serhii Havrylov and Ivan Titov. 2017. Emergence of
language with multi-agent games: Learning to com-
municate with sequences of symbols. In Advances
in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 2149-2159.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735—
1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categori-
cal reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Eugene Kharitonov, Rahma Chaabouni, Diane Boucha-
court, and Marco Baroni. 2020. Entropy minimiza-
tion in emergent languages. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 5220-5230. PMLR.

Simon Kirby. 2001. Spontaneous evolution of linguis-
tic structure-an iterated learning model of the emer-
gence of regularity and irregularity. IEEE Trans.
Evol. Comput., 5(2):102-110.


https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://doi.org/10.3115/v1/d14-1134
https://doi.org/10.3115/v1/d14-1134
https://doi.org/10.3115/v1/d14-1134
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/27
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.18653/v1/d18-1119
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://proceedings.neurips.cc/paper/2019/hash/31ca0ca71184bbdb3de7b20a51e88e90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/31ca0ca71184bbdb3de7b20a51e88e90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/31ca0ca71184bbdb3de7b20a51e88e90-Abstract.html
https://doi.org/10.18653/v1/p19-1509
https://doi.org/10.18653/v1/p19-1509
https://doi.org/10.18653/v1/p19-1509
https://aclanthology.org/2021.eacl-main.260/
https://aclanthology.org/2021.eacl-main.260/
https://aclanthology.org/2021.eacl-main.260/
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://doi.org/10.18653/v1/n19-1116
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://doi.org/10.18653/v1/D19-1384
https://doi.org/10.18653/v1/D19-1384
https://doi.org/10.18653/v1/D19-1384
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/70222949cc0db89ab32c9969754d4758-Abstract.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://proceedings.mlr.press/v119/kharitonov20a.html
http://proceedings.mlr.press/v119/kharitonov20a.html
http://proceedings.mlr.press/v119/kharitonov20a.html
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430

Satwik Kottur, José M. F. Moura, Stefan Lee, and Dhruv
Batra. 2017. Natural language does not emerge ’nat-
urally’ in multi-agent dialog. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, pages 2962-2967.
Association for Computational Linguistics.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing proba-
bilistic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2010, 9-11 October 2010, MIT
Stata Center, Massachusetts, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1223-1233. ACL.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic parsing.
In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2011, 27-31 July 2011, John McIntyre Conference
Centre, Edinburgh, UK, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL, pages 1512—-1523.
ACL.

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In
Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmdissan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages
2879-2888. PMLR.

Angeliki Lazaridou and Marco Baroni. 2020. Emergent
multi-agent communication in the deep learning era.
CoRR, abs/2006.02419.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls,
and Stephen Clark. 2018. Emergence of linguistic
communication from referential games with sym-
bolic and pixel input. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Angeliki Lazaridou, Anna Potapenko, and Olivier Tiele-
man. 2020. Multi-agent communication meets nat-
ural language: Synergies between functional and
structural language learning. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 7663-7674. Association for Computa-
tional Linguistics.

David K. Lewis. 1969. Convention: A Philosophical
Study. Wiley-Blackwell.

Fushan Li and Michael Bowling. 2019. Ease-of-
teaching and language structure from emergent com-
munication. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural

10

Information Processing Systems 2019, NeurlPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
15825-15835.

Yaoyiran Li, Edoardo Maria Ponti, Ivan Vulic, and Anna
Korhonen. 2020. Emergent communication pretrain-
ing for few-shot machine translation. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, COLING 2020, Barcelona, Spain
(Online), December 8-13, 2020, pages 4716-4731.
International Committee on Computational Linguis-
tics.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Igor Mordatch and Pieter Abbeel. 2018. Emergence
of grounded compositional language in multi-agent
populations. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 1495-1502. AAAI Press.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Comput. Linguistics, 29(1):19-51.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B. Co-
hen, and Simon Kirby. 2020. Compositional lan-
guages emerge in a neural iterated learning model.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Yoav Seginer. 2007. Fast unsupervised incremental pars-
ing. In ACL 2007, Proceedings of the 45th Annual
Meeting of the Association for Computational Lin-
guistics, June 23-30, 2007, Prague, Czech Republic.
The Association for Computational Linguistics.

Agnieszka Stowik, Abhinav Gupta, William L. Hamil-
ton, Mateja Jamnik, Sean B. Holden, and Christo-
pher J. Pal. 2021. Structural inductive biases in
emergent communication. In Proceedings of The
43rd Annual Meeting of the Cognitive Science Soci-
ety, CogSci 2021.

Mark Steedman. 1996. Surface structure and interpre-
tation, volume 30 of Linguistic inquiry. MIT Press.

Mark Steedman. 2000. The syntactic process. Lan-
guage, speech, and communication. MIT Press.

Oskar van der Wal, Silvan de Boer, Elia Bruni, and
Dieuwke Hupkes. 2020. The grammar of emergent
languages. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
3339-3359. Association for Computational Linguis-
tics.


https://doi.org/10.18653/v1/d17-1321
https://doi.org/10.18653/v1/d17-1321
https://doi.org/10.18653/v1/d17-1321
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D10-1119/
https://aclanthology.org/D11-1140/
https://aclanthology.org/D11-1140/
https://aclanthology.org/D11-1140/
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://arxiv.org/abs/2006.02419
http://arxiv.org/abs/2006.02419
http://arxiv.org/abs/2006.02419
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://openreview.net/forum?id=HJGv1Z-AW
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b0cf188d74589db9b23d5d277238a929-Abstract.html
https://doi.org/10.18653/v1/2020.coling-main.416
https://doi.org/10.18653/v1/2020.coling-main.416
https://doi.org/10.18653/v1/2020.coling-main.416
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/089120103321337421
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://aclanthology.org/P07-1049/
https://aclanthology.org/P07-1049/
https://aclanthology.org/P07-1049/
https://arxiv.org/abs/2002.01335
https://arxiv.org/abs/2002.01335
https://arxiv.org/abs/2002.01335
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.18653/v1/2020.emnlp-main.270

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8:229-256.

Ronald J. Williams and Jing Peng. 1991. Function opti-
mization using connectionist reinforcement learning
algorithms. Connection Science, 3:241-268.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
UAI '05, Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence, Edinburgh, Scot-
land, July 26-29, 2005, pages 658—-666. AUAI Press.

Luke S. Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In EMNLP-CoNLL 2007, Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, June 28-30, 2007,
Prague, Czech Republic, pages 678—687. ACL.

A Modifications of CGI

INITLEX We set Ageeq = 0, as we do not have
any prior knowledge on emergent languages.

UPDATELEX In KZGS10, UPDATELEX in-
cludes part of a potential new lexicon pruning the
rest, while ours includes all of them. This is be-
cause the PRUNELEX of ADP14 would implicitly
do the same thing. Moreover, the original UPp-
DATELEX splits lexical entries as a higher-order
unification problem to find f and g s.t. h = f(g)
or h = f o g, given a logical form h. On the other
hand, ours splits the entries as a problem only to
find h = f(g), ensuring that f # Az.z. and g is
not a function.

INITPARAM Since the algorithm can only search
limited space in practice, a reasonable parameter
initialization is required. KZGS10 used a statisti-
cal translation method®, while we simply compute
mean pointwise mutual information (pmi) between
n-grams and logical constants. Formally, given a
feature, i.e., a lexical entry m = X : 4, its initial
parameter is defined as:

Z pmi(m, ¢)

c€Cnst (1)

o
|Cnst ()]

if |Cnst(¢)] > 0 otherwise 0. Cnst(¢)) enumer-
ates the logical constants (e.g. look, left, or 1)
occurring in .

°Giza++ Model 1 (Och and Ney, 2003).
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B (Hyper-)parameters

Agents For agent architecture, the hidden state
size is 100. For agent optimization, the number of
mini-batches per epoch is 100, the size of mini-
batches is 1000, and the learning rate is 0.001.
Agents train either for 200 epochs or until loss
L for a validation dataset reaches 0. Besides, the
weight of speaker’s (resp. listener’s) entropy regu-
larizer Ag = 0.1 (resp. A;, = 1). These parameters
are determined according to our preliminary exper-
iments.

Signaling Game For signaling games, an input
space I € {Lang-attval, Lang-conj}, the size | A|
of an alphabet A is in {15, 31, 63}, and a message
length k € {4,8}.

CGI For CGlI, the number of iterations 7" = 10,
a learning rate v = 0.1, and a beam size for CKY
parsing is 10, referring to Artzi et al. (2014) and
our preliminary experiments.

TRE For TRE, a learning rate is 0.01 and the
number of steps is 1000 following the implementa-
tion of Andreas (2019).

C Shuffled Emergent Language and
Random Sequence

Figure 7 and Figure 9 show the compari-
son among CGF/L-Emergent, CGF/L-Shuffled,
CGF/L-Random.

D Other Experimental Results

Figure 8 shows the scatter plot of TopSim and CGL
when I = Lang-conj. Figure 10 shows the scatter
plot of TRE and CGL when I = Lang-con;.
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Figure 9: CGL plotted under various (I, k, |A|). The

Figure 7: CGF plotted under various (I, k, |A]). The error bars represent one standard error of mean.

error bars represent one standard error of mean.
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