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Abstract

Al influence refers to AI’s impact on the knowledge and values of individuals by acting as
producers, mediators, and receivers of information. As a result, it impacts our collective
processes of creating and spreading knowledge, forming beliefs, and reaching consensus.
We argue that there are mechanisms of inconspicuous influence in AI development and
deployment pipelines, which, when amplified by societal dynamics, could lead to dangerous
outcomes that we may reverse by early interventions. We detail those mechanisms, amplifiers,
and potential long-term consequences.

1 Introduction

1.1 Overview of Al Influence

AT influence refers to the impact of Al technologies on the knowledge and values of individuals, whether as
a producer (e.g., LLM output), mediator (e.g., recommender system), or receiver (e.g., preference learning
from human feedback) of information. As a result, it further impacts our collective processes of creating and
spreading knowledge, forming beliefs, and reaching consensus. Different from “AI’s impact in general”, which
concerns AI’s broad societal impacts encompassing economic, legal, social, and environmental dimensions,
“AT Influence” specifically zeroes in on the epistemic and axiological dimensions of this impact. It is concerned
with how AI alters how humans know (epistemology) and what humans value (axiology), rather than just the
direct outcomes of AI deployment.

We propose “Al influence” to unify scattered research efforts. Empirical research on Al influence is
ongoing but scattered. Those efforts are either clustered around specific affected subjects — Wikipedia (Wagner
& Jiang;, 2025, Stack Exchange community (Burtch et al., |2024), open-source community (Yeverechyahu
et al, 2024), scientific publication and peer review (Liang et al., 2024azb)), political campaigns and elections
(Hackenburg & Margetts, |2024a; |Potter et al., |2024) — or carved up along discipline boundaries like machine
learning, cognitive science, education, human-AT interaction, and epistemology, with little cross-disciplinary
discourse taking place.

AT influence is not necessarily a harm. Despite that Al influence on human epistemology poses serious
concerns, it is too early to conclude that Al influence is, on net, a bad thing. Humans are bound by cognitive
limitations, and it’s likely that AI may expand our cognitive capacity and improve our collective deliberation.

1.2 Our Contributions

Proposing Al influence as a distinctive research field Al influence concerns the pervasive, subtle, and
long-term ways Al reconfigures human internal states — in particular, the cognitive processes of acquiring
and using knowledge, forming beliefs, and making judgments. This is distinct from Al safety or Al ethics
research, where researchers address direct harms imposed on marginalized groups or engineering failures of
AT systems (Gross, [2023; [Hendrycks & Mazeikal 2022]).

Introducing a three-level framework for AI influence We decompose the landscape of Al influence
into three dimensions: mechanisms, the basic channels through which Al influences human epistemology;
amplifiers, external factors that significantly enlarge such influence; and consequences, societal hazards that
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Figure 1: Formalizing the distinction between mechanisms, amplifiers, and consequences.

the amplified influence have led to or may soon lead to. These are orthogonal dimensions often connected by
fully interconnected relationships, which allows us to focus on each of them individually while also touching
on their connections.

Summarizing methodologies for studying AI influence We summarize all the methods that are used
so far to study AI influence in Table[2] We also reason from first principles what could be used to study the
influence from technologies on human truth-seeking and morality development process. We illuminate the
gap and discuss future research directions.

Language Models Language Models Recommender Knowledge-Based
(Supervised) (Reinforced) Systems Systems
Context Space C Natural-language prompts User-item pairs Assertions/attributes
Action Space A Natural-language responses Scores/rankings (Truth) Values
Distribution D¢ Training-time distribution of contexts Expert input coverage
Policy Space II Parameterized deep neural networks Deterministic
assignments
Loss Function £y Cross-entropy loss Plackett-Luce Disagreement Abidance with
against human disagreement with with human expert-sourced
response human preference  scoring/ranking constraints (0/1)
Regularizer (2 Weight decay KL regularization Social Logical consistency
regularization constraints (0/1)

Table 1: How four example types of Al system training/development can be mapped onto the common
formalism. Each column represents one simplified, canonical example of that type of system, with only
distinctive features shown.

2 Absence of Al Influence in Existing Paradigms

A large class of intelligent systems are designed to interact with humans in ways that alter human cognition.
Current examples of such systems include:

e« Language Models and Language Agents. Language models undergo pretraining on massive
amounts of human-generated data (Devlin et al 2019)), which equip them for interaction with human
users on information-seeking tasks. More importantly, the alignment training on these models (Ji
et al.) through reinforcement learning from human feedback (Bai et al., 2022), direct preference
optimization (Rafailov et al., [2023)), or personalization methods (Chen et al., 2024), makes them
produce user-preferred behaviors in explicitly interactive setups.
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e Recommender and Ranking Systems. These systems function as information gatekeepers that
filter vast item spaces to present users with prioritized content. Architectures in this domain have
evolved from matrix factorization techniques (Koren et al., 2009) to deep candidate generation
and ranking models (Covington et al., 2016)). While typically framed as predictors of static user
preferences based on historical interaction data, modern iterations frequently employ reinforcement
learning objectives to maximize long-term engagement rewards (Chen et al., 2019). This optimization
process treats the user’s internal state as a dynamic component of the environment. Consequently,
the system actively shapes user preferences by determining the exposure distribution of information
and altering the choice architecture available to the agent.

e Knowledge-Based and Decision Support Systems. Knowledge-based systems often utilize
structured data representations, including knowledge graphs and ontologies (Wang et al., |2017)), or
hybrid neuro-symbolic architectures that integrate deep learning with rule-based constraints (Belle,
2020). Unlike open-ended generation, these tools operate within strictly defined action spaces to
output risk scores, diagnostic suggestions, or factual retrievals. The epistemic influence here manifests
through automation bias and anchoring (Bansal et al 2021)). By presenting calculated probabilities
or retrieved facts with high system confidence, these tools establish authoritative baselines that shift
the human decision boundary regardless of the underlying ground truth.

We focus on this class of Al systems in the rest of this paper and avoid distinctions between them, as their
commonalities induce the mechanisms, amplifiers, and consequences that we will introduce. In this section,
we first dissect the currently mainstream formalisms that guide the training of these systems, and then specify
the categories of missing elements.

2.1 Common Formalism for Learning From Humans

One common pattern emerge upon examining the mainstream formalisms in the development and training
of all major types of Al systems that we consider. This high-level pattern involves a space C of contezts, a
distribution D¢ over contexts, a space A of actions, and a space II C A[A]C of policies mapping any context
to a distribution over actions. The task is then to solve the optimization problem

minimize E.vp, [Lo(c,7(c))] + Q(7), st. meTl,

where Lg(-, ) is a (parameterized) loss defined against human annotation, and Q(-) a regularization term.

Table [I] explains how the training or development of the aforementioned types of systems — language models
(Devlin et al., |2019; |Bai et al.l [2022)), recommender systems (Resnick & Varian, |1997), and knowledge-based
systems (Akerkar & Sajja, 2009) — can be mapped to such a formalism. It also implies what the parameter 6
stands for, i.e., a human belief state, describing the beliefs, preferences, etc. of the human in the training loop.

There is the further dimension of time. The common formalism above is typically used to accomodate time
in one of two ways.

1. Assuming Full Stationarity. When the loss function and the context distribution is stationary and
the policy is memory-less, the interaction at each time step is simply a replay of the previous time
steps. As such, the temporal setup can be directly reduced to the one-off setup. This is the case in,
for example, language model training (Bai et al., |2022; Hadfield-Menell et al.| |2016)).

2. Assuming Stationarity of Loss Function. In formalisms such as Markov decision processes, the context
(state) depends on the interaction history, and the policy is memory-ful and maps a pair of context
and history to an action distribution. However, they still assume a stationary loss (reward) function,
i.e., 8, = 0, for some fixed reward parameter 6. This is the case in, for example, most recommender
systems trained with reinforcement learning (Afsar et al., 2022).

In reality, however, neither approaches fully suffice, as the implicit assumption of a stationary loss function
(0 = 0) fails. Tt fails due to the natural shift and development of human beliefs/preferences, and, importantly,
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due to the presence of AI influence. In other words, the loss function (parameterized by 6;) at the ¢-th time
step is often a function of the previous actions taken by the Al system.

Note that 6; can either be the state of a single human source (e.g., a user convinced of conspiracy theories who
now gives conspiracy theory-aligned preference feedback), or that of a human collective (e.g., a company’s
hiring distribution being biased by a discriminatory hiring decision support system, which feeds back into the
system’s training data).

In the following subsections, we examine this missing influence in the training paradigms, from three precisely
defined angles (Figure [1]).

2.2 Mechanisms: Sources of Immediate Influence

Figure (1| shows how the loss function Ly, , (decided by the preferences and beliefs of the humans that the
system learns from) at time step ¢t + 1 depends on both the previous time step’s human preferences and
beliefs (6;) and the action taken by the AI system (a¢).

In Section [3] we will qualitatively explore the direct mechanisms of Al influence, i.e., the causal pathways
through which the Al system’s action a; directly and immediately impacts the human belief state 6;11 at the
next time step. Ranging from persuasion (Durmus et al.l |2024)) to reliance (Nirman et al.| |2024]), such impact
is empirically well-established through human studies (Jakesch et al., 2023} |Glickman & Sharot, [2024b)) and
has been theoretically studied in a reinforcement learning setup (Carroll et al., [2024).

2.3 Amplifiers: Temporal Factors that Escalate Impact

In contrast to mechanisms, we define amplifiers as the factors that lead to the escalation of ATl impact on the
human belief state from the previous time step (6;) to the next (6411), i.e., the causal dependence of 6;11 on
0; that results in compounding errors.

Such factors can be endogenous, such as human confirmation bias (Oeberst & Imhoff, |2023)), or exogenous,
such as echo chambers formed by human-AT interaction (Glickman & Sharot, |2024b} [Sharma et al., |2024),
or institutional factors that entrench biased consensus (Lawrence et al., 2001} [Bisson et all 2021). We will
discuss these factors in more detail in Section [4

2.4 Consequences: Impact on Belief States Over Time

When both mechanisms of influence and amplifiers of influence are present, they tend to imply that the impact
of AI actions on the human belief state #; compounds over time, eventually leading to large and potentially
irreversible changes. Again, such changes can either be at the individual levels (beliefs, preferences) or at the
collective level (norms, culture, collective knowledge).

In Section [5} we qualitatively characterize some key potential consequences of amplified AT influence. Some
of them have already seen strong empirical evidence, while others are currently speculative predictions about
long-term outcomes.

3 Mechanisms

In this section, we cover specific mechanisms through which Al systems play a direct and immediate role
in influencing human epistemics and morality, at an individual level and societal level. By mechanisms, we
refer to either technical limitations of Al systems or new ways through which humans interact with Al that
directly causes change in human epistemics.

Here, we emphasize that the Al systems change how information is originated, disseminated, propagated,
and received by humans or Al systems. The scope extends beyond that of algorithmic biases.
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Table 2: Related research classified by methodology and topic. Empty cells indicate the lack of known
works. Due to the relative scarcity of qualitative studies, we include them as a single category while using a
fine-grained partition for quantitative studies.
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3.1 Al Introduces Distinct Biases into Collective Knowledge

Although AI systems are trained on data generated by humans, they do acquire distinctive biases from
humans (Glickman & Sharot| 2024b; Kahneman et al., |2021]). Specifically, there are the following reasons
that introduce distinctive Al biases:

o Learning systems like LLMs are struggling with long-tail knowledge. As a primary example of
learning-based intelligent systems, the question-answering accuracy of LLMs correlate strongly with
how many times questions and answers co-occur in the training dataset (Kandpal et al.l 2023 Das
et al., [2024).

o Architectures create unique AI biases. Architectural biases often stem from technical limitations, as
opposed to biases in datasets that can be more readily resolved by more training or more data. One
notable example is the bias of Convolutional Neural Networks (CNNs) towards texture (Geirhos
et al |2018). Tokenization, the strategy LLM employs to split words into subwords, introduces biases
unique to Al, such as downgrading arithmetic performances (Singh & Strouse, [2024)), mishandling
grammatical structures, and biases in handling rare words (Phan et al., [2024).

Through training and deploying AI systems that acquire distinct biases, we risk introducing new biases into
the collective knowledge-making process, such as publication, journalism, scientific research, etc. Such Al
biases might be persistent or even amplified because of digital reliance or feedback loops, as we will discuss in
the following two subsections.

3.2 Cognitive Offloading, Cognitive Enhancements, and Digital Reliance

AT can enhance human cognitive performance, which can take place either directly by providing advice and
implementable solutions (Senior et al, 2020} Fawzi et al |2022) or indirectly by revealing novel cognitive
strategies and problem-solving approaches (Shin et al., [2023). Cognitive offloading is the term commonly
used to describe such activities, namely, physical actions (such as preparing a grocery list) to reduce cognitive
demands required (Risko & Gilbert], [2016). Research shows that humans are willing to offload attention-
demanding tasks to Al systems (Wahn et all 2023). Al systems are also used to improve human cognitive
performance. For example, a study that examines the performance of Go players (Shin et al. 2023|) reveals
that the performance of Go players improved after being exposed to AlphaGo moves, possibly as a result of
learning novel non-human strategies from AlphaGo. Consistent results come from a study examining human
problem-solving in a navigation task (Brinkmann et al., [2022)). In this study, participants navigated through
complex networks. Each path was associated with rewards (earning points) or penalties (losing points).
Before performing the task, participants were exposed to solutions generated by the AI or by humans. The
results demonstrated enhanced performance (accumulation of higher rewards) among players learning from
AT, mainly due to the exposure to counterintuitive but optimal strategies generated by the Al. For example,
the Al better identified than humans paths that initially appeared suboptimal but ultimately yielded better
outcomes.

On the other hand, those cognitive offloading and enhancement activities enabled by AI may lead to digital
reliance. Research demonstrates that reliance on digital tools, and in particular AI, alters different cognitive
processes such as memory, critical thinking, and problem-solving. For example, [Sparrow et al.| (2011)) showed
that when information is accessible through search engines, individuals prioritize remembering where to
find this information rather than retaining it. This pattern extends to modern AI systems as well. [Gerlich
(2025) found that cognitive offloading to AT tools correlates with reduced critical thinking engagement,
particularly among younger users who exhibit higher dependency. Consistent with these empirical findings,
Zhai et al.| (2024) conducted a systematic review revealing that over-reliance on Al dialogue systems impairs
critical thinking and decision-making by fostering cognitive shortcuts. Together, these studies suggest that in
some cases, delegating cognitive tasks to Al systems may deteriorate fundamental cognitive and thinking
capabilities.

In the context of this paper, digital reliance makes space for bias amplification, as we will discuss in the
following subsections.
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3.3 Al Persuasion Directly Reshapes Human Beliefs

As AT systems become integral to how humans access and evaluate information, they exert increasing influence
over the processes of belief and opinion formation. Recent studies demonstrate that conversational Al
can measurably shape political attitudes (Hackenburg & Margetts, 2024b; [Fisher et al., |2025)) and alter
support for electoral candidates (Argyle et al., |2025). While persuasive capacity generally scales with
model size, post-training methods and prompting strategies can yield even larger effects (Durmus et al.l
2023; [Hackenburg & Margetts| 2024b). Consequently, smaller models with targeted fine-tuning can achieve
persuasive capabilities comparable to frontier systems, rendering influence tools broadly accessible. Techniques
that maximize persuasive effectiveness, such as information-dense rhetoric, are associated with systematic
reductions in factual accuracy, indicating a potential trade-off between persuasive power and epistemic
reliability (Hackenburg & Margetts, 2024b)).

Although such persuasive capabilities raise concerns about manipulation for financial or political gain, they
may also be directed toward prosocial ends. Targeted human—Al dialogues have been shown to increase
effective charitable giving beyond either static Al messages or human appeals (White et al., [2024). Similarly,
conversational interventions with AT can durably reduce conspiratorial thinking, with effects persisting for up
to two months (Costello et all 2024b)), and can decrease confidence in false beliefs (Goel et al., 2025)). At the
individual level, the epistemic influence of Al can be seen as dual-use: it can amplify both epistemic risk and
epistemic improvement, depending on the underlying objectives.

3.4 Al Reallocates Human Attention

One of the major functionalities of Al systems is that they reorganize and redistribute information available
to us, as search engines (including LLM-based ones) and RecSys-based social media do. In the previous
subsection, we cover new mechanisms through which Al biases affect human judgements, while in this case,
AT influences what we see and think by selecting what information gets presented to us and receives our
attention. This may have a strong agenda-setting effect on our thinking (Mendler-Diinner et all 2024a)).

We elaborate on the problem of attention allocation and the resulting segmentation of users. For sophisticated
users of Al technologies, it is possible for generative models to be hugely creative, adding to intellectual
diversity (Meincke et al., |2024). But such possibilities require careful technique and strategy, from few-shot
prompting to chain-of-thought reasoning to iterative strategies in general. For the vast majority of the
model-using public, who may not understand what the models are and do, and have little ability to execute
prompt engineering strategies, usage may be largely passive and simplistic. Models will therefore tend to
provide answers and content to the majority of users that conform to mainstream, modal patterns — the
most likely next token, the probabilistic best answer or idea. This, in fact, is their central tendency and what
they are designed to do. Using the models in a simplistic auto-complete or recommendation engine-style is
likely to direct human attention to mainstream ideas and trends that are featured prominently on the open
web (where the model pre-training has taken place), and not necessarily to more diverse, challenging, obscure,
or marginal ideas or viewpoints.

4 Amplifiers

Mechanisms enumerated in Section [3] explain the forces that AI systems exert on human cognition and
epistemology. Those forces tend to be subtle and may not pose extreme risks on their own.

Meanwhile, in this section, we introduce a range of amplifiers that are external to Al systems and may
significantly increase Al influence (usually social factors), to the degree of posing systemic risks described in
Section [

4.1 Human-Al Dual Influence Creates Feedback Loops

The influence between AI and humans is not one-directional. Humans’ preferences can be influenced by the
content generated by Al systems, while Al systems are trained to align with human preferences as well (e.g.,
Reinforcement Learning with Human Feedback (Ziegler et al., 2019)). Such a feedback loop between humans
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and Al is similar to the feedback loop between content users and content creators in recommender systems,
where users’ tastes are shaped by the content they consume and creators produce content to fit users’ tastes
(Jiang et all 2019} Lin et al., 2024]).

Although human-AT dual influence might help to improve the alignment between humans and Al, it could also
bring potential harm. For example, when humans or Al have initial biases or errors regarding a certain topic,
such biases and errors can be circulated and amplified in human-AI interactions. There has been extensive
research on human-to-Al and Al-to-human influence, but it was not until very recently that research showed
human-AT interaction may further exacerbate this influence mechanism: biased Al systems can affect human
beliefs, rendering humans more biased compared to the initial state, due to the amplification of bias by Al
systems and assigned trust by humans in Al judgments (Glickman & Sharot|, 2024bja).

AT bias is an established research field (Mayson) 2018]). In this paper, however, we argue that digital reliance
on Al and feedback loops established in human-Al interactions legitimize larger concerns over this topic. Not
only because bias affects the accuracy of medical decisions (Challen et al. 2019)) or racial fairness (Salinas
et al., [2023), which are by themselves important problems, but also because those biases are permanently
introduced into epistemic processes and alter our worldviews (Vicente & Matute, |2023)).

4.2 Trust Amplifies Al Influence

Do higher levels of trust in Al correlate with increased Al influence? Recent research provides evidence
supporting this claim. For example, [Vicente & Matute| (2023) demonstrated that higher trust in Al systems
in medical diagnostic tasks led participants to adopt more of AIl’s biased recommendations, and even carry
these into subsequent tasks. Similarly, it was found that self-reported trust in Al systems was associated
with the persuasiveness of deceptive Al classifications; interestingly, trust was not associated with the effect
of improved Al-generated truthful explanations in the case of news headlines (Danry et al. 2024), although
results to the contrary were found in a credit loan decision-making setup (Sunny, [2025)).

Current evidence suggests that human trust in Al is highly sensitive to context and culture. While in many
contexts, people prefer Al advice over humans’ (Araujo et al., |2020; [Logg et al. |2019), in high-stakes contexts
(such as medicine or other life-threatening cases), people assign trust to humans more than Al systems (Reis
et al} 2024). Additionally, Globig et al. (2024) found that trust in AI varies significantly across cultures
(Globig et all 2024)). Individuals in Eastern countries (e.g., India, Indonesia) exhibit greater trust and
optimism towards AI compared to their Western counterparts (e.g., U.S., Germany), who tend to be more
skeptical and cautious (Globig et al., |2024)).

4.3 Institutional Path Dependence

Institutional path dependence refers to the tendency of organizations and systems to make decisions and
adopt practices based on past trajectories, often locking in early patterns of behavior (Page et al |2006).
Epistemic frameworks through which institutions understand and address issues can be influenced by Al, an
influence that can be hard to remove given the self-reinforcing nature of institutions (Arthur} 2018).

For instance, widespread Al application in the education sector may plant deep-rooted Al influence in children
(Xu & Ouyang, [2022)), AT advisors and analytics may bias governmental decision-making processes toward
specific data-driven perspectives (Castelnovo & Sorrentino, [2021)), Al-influenced public opinion can reinforce
or challenge institutional norms (Panait & Ashrafl [2021)), and early critical attitudes toward Al-generated art
and writing have led to the enactment of institutional policies against the use of language models (Takagil 2023;
Kreitmeir & Raschkyl, 2023). Once these Al-mediated epistemic influences take root, their self-reinforcing
nature may make it difficult to shift away from initial decisions, even in light of new evidence or changing
contexts.

The self-reinforcing nature of the institutional path dependence problem will be particularly difficult to
mitigate, given recursion (Peterson, 2024)). Once embedded narratives take hold and the climate of human
opinion gets expressed at scale on social media and the web, AI models themselves will subsequently be
trained on this new data containing Al influence. This “data coil” means path dependence becomes difficult
to resist or reverse (Beer} |2022]).
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4.4 Socio-Economic Matthew Effect

Advanced Al systems threaten to dramatically amplify existing socio-economic inequalities through what we
term the “Al Matthew Effect”, whereby initial advantages in Al access and capability compound exponentially
over time.

Specifically, AT Matthew Effect occurs when groups initially receiving more benefit from AT (e.g., the wealthy,
speakers of majority languages, those living in developed nations, those with access to GPUs, those working
in fields where training data is more abundant) receive cascading benefits, and vice versa. An example is
when biases against minority languages in LLMs shrink their user base who speak minority languages, which
could further reinforce biases against minority languages due to under-representation.

This dynamic could manifest through several interconnected mechanisms:

Productivity amplification: Al systems act as force multipliers for human productivity, with their
effectiveness scaling in proportion to the user’s existing capabilities and resources. High-skilled knowledge
workers with access to state-of-the-art AI tools can leverage them to augment their expertise, potentially
increasing their productivity by orders of magnitude. Meanwhile, workers in lower-skilled positions may find
their jobs automated or devalued, creating a widening productivity gap.

Capital concentration: Organizations with early access to powerful Al systems can optimize operations,
reduce costs, and capture market share more effectively than competitors. This advantage creates a self-
reinforcing cycle where increased profits enable further Al investment and development, leading to market
concentration.

5 Consequences

Influence mechanisms (Section, whose effects are magnified by amplifiers (Section, may lead to long-term
consequences that are associated with large-scale hazards.

Long-term consequences are hard to clearly demonstrate in advance, but some have nonetheless manifested
in empirical studies. Here we make a non-exhaustive list of these potential consequences.

AT systems that are trained on human data contains human errors and biases (Mayson, [2018; Binz & Schulz,
2023; [Yax et al., |2024). Direct and indirect interactions with those models can circulate those biases back
to humans (Morewedge et al., |2023}; Valyaeva, [2024]). Furthermore, those human errors and biases can be
amplified via human-Al interactions because humans may assign more trust in Al output than average
humans (Logg et al., 2019). These psychological traits of humans and the training methods of learning
systems (e.g. LLMSs) raise concerns that those human errors and biases might be permanently preserved,
amplified, and even locked into human society over the long run. The term “lock-in” refers to cases where
values, beliefs, knowledge, and practices are introduced into human society, last for a long time, spread widely,
assume a dominant memetic position in a population, are institutionalized (therefore hard to remove), and
cause damage (Hendrycks & Mazeikal [2022)).

5.1 Lock-in of Al Biases

AT bias has been well documented and studied — not only in the realms of fairness and equality (Bolukbasi
et al.| [2016; |Caliskan et al.| |2017)), but also on broadly construed biases in cultural and factual domains
(Santurkar et al., [2023).

However, a consequential effect has been largely overlooked: when humans interact with these biased systems,
they internalize the systems’ amplified bias and become more biased than they initially were (Glickman &
Sharot), [2024b; [Vicente & Matute, |2023)). This bias amplification feedback loop relies on two key characteristics
of AT systems: First, Al systems provide a higher signal-to-noise ratio compared to humans, consistently
producing less variable outputs than human judgments (Kahneman et al.l |2021). Second, in many domains,
humans perceive Al systems as more capable and accurate than other humans (Logg et al.l 2019), making
them more receptive to Al influence or uncritically adopting Al biases. For instance, clinicians inherit
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AT biases even after Al systems are removed (Vicente & Matute, 2023). These characteristics create a
dynamic where even small initial biases can be rapidly adopted and magnified through human-AlI interactions.
Furthermore, this effect raises particular concerns for children, who have more malleable knowledge structures
and may be more susceptible to AIl’s influence than adults (Kidd & Birhane, |2023a)), raising the concern that
such Al biases would be locked-in over generations.

5.2 Goodhart’s Law and Value Capture

Human objectives are often operationalized into quantifiable metrics — for instance, research quality being
quantified as citation counts, and idea quality being quantified as the number of retweets. In economics,
Goodhart’s law, “when a measure becomes a target, it ceases to be a good measure,” states that optimizing
for a quantifiable proxy initially leads to improvement in the true objective, but beyond a certain point, such
optimization often leads to (potentially catastrophic) degradation in the true objective (Goodhart| |1984).

An instance of Goodhart’s law in the case of human values, value capture, happens when one mistakes
quantified proxies for their much richer terminal values, and exclusively optimizes for the former instead,
thereby losing the ability of personal deliberation on their values (Nguyenl |2024a)).

AT has already been used in such quantification of objectives, for example, in social media (Anandhan et al.,
2018)); other similar uses of Al has also been proposed, including as arbiters for resolving human disagreement
(Tessler et al.l [2024]) and human representatives for collective decision-making (Zhang et al., 2024). In all such
cases, human actors may be incentivised, or are already incentivised (Ltuders et al.l |2022; |Wolf et al., |2017)),
to optimize for the Al-defined objectives. If such optimization becomes the dominant concern of human
participants — which is plausible given that AI products are often designed to be game-like and addictive (De
et al., |2025) — value capture may steer people’s values and objectives away from an ideal deliberative choice.

5.3 Knowledge Collapse

Knowledge collapse (Petersonl 2024)) is defined as the progressive narrowing over time of the set of information
available to humans, along with a concomitant narrowing in the perceived availability and utility of different
sets of information. It is hypothesized to manifest as a “mode collapse” of collective knowledge in the human
community, where long-tail information is lost while mainstream information is strengthened.

Peterson| (2024) mainly focuses on unrepresentative data, lack of in-depth exploration during LLM inference,
and algorithmic limitations of next-token prediction as the potential causes of knowledge collapse. [Peterson
(2024) argues that by making mainstream information more readily available, learning systems like LLMs
shift attention away from long-tail information.

In addition to these concerns, we note that other mechanisms outlined in this paper, including, for example,
dual influence (Lin et al., [2024]), can similarly contribute to knowledge collapse. From a mechanistic angle,
knowledge collapse and lock-in share many commonalities, most especially the reinforcement of existing
popular ideas and the suppression of marginal ones.

5.4 Epistemic Stratification

Epistemic stratification is the unequal distribution of access to knowledge, resources, and cognitive tools
across individuals or groups, leading to disparities in their ability to acquire, evaluate, and generate knowledge
(Silva Filho et al.l [2023]).

AT may contribute to epistemic stratification by amplifying existing disparities, such as through unequal access
to advanced Al tools, biased algorithmic recommendations that reinforce echo chambers, the prioritization of
information access for privileged demographics (Kay et al, 2024)), or the increasingly centralized control over
AT development (Brynjolfsson & Ngj 2023)).
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6 Caveats and Counterarguments

6.1 Al Systems Have Negligible Influence on Human Cognition

FEmpirical evidence does not provide a holistic picture of Al’s impact on human cognition. It is true that
humans are becoming more reliant on Al systems for their tasks, but it is unclear whether having Al systems
to process those tasks for humans would necessarily degenerate or enhance those cognitive capabilities of
humans. At least, it is still unclear whether humans’ navigation skills are compromised because of using GPS
tools (Fricker} 2021} |Jadallah et al., 2017).

Two questions are instrumental to understanding Al systems’ impact on human cognition. For one, does
digital reliance influence human cognitive skills that are directly replaced by corresponding Al capabilities
(Teschke et all |2013)? For instance, does the use of GPS hurt human navigation skills (Fricker} [2021))?
The same question could be asked about other digital tools and human skills, such as calculators and
arithmetic skills, machine translation tools and second-language acquisition. For the other, do the replaced
domain-specific human skills undermine more general human cognitive capabilities? For example, do the
undermined arithmetic skills hurt human general mathematical reasoning and problem-solving abilities (Geary
et al., |2015; Hurst & Cordes|, 2018)7

Without sufficient empirical evidence on how human cognition might be altered in the presence of new tools,
especially AT systems, it is hard to firmly hold our position. Hence, an alternative view is, Al systems may
have a negligible impact on human cognitive capabilities over the long term. One reason is that we do
not understand the relationship between low-level domain-specific skills and high-level general capabilities.
Replacing the former by AI may have little negative impact on the latter, in which case adequate tool use
may actually enhance cognitive capabilities (Teschke et al., [2013).

6.2 Highly Parameterized Al Systems Are Less Biased and Error-Prone Than Humans Are

AT systems are biased (Jadallah et al.| [2017) and error-prone (Zhou et al., 2024)), as research has revealed,
but so are humans. Besides those inductive biases that are introduced by specific architectures and training
methods (Geirhos et al.l |2018; [Singh & Strouse} 2024), Al systems acquire their biases from training datasets
and, by extension, from humans. Highly parameterized AI systems such as LLMs are less biased and
error-prone than conventional machine learning models as they are more expressive, and techniques such as
RAG help to consult external sources for truth validation (Gao et al., [2023). Meanwhile, it is also likely that
state-of-arts Al systems may become even less biased and error-prone than average humans are. From the
point of view of collective truth-seeking (such as conducting scientific research and collective deliberation),
AT systems functioning as “shadow authors” to individual humans can be positive.

That being said, err should be on the side of being cautious. It is likely that Al biases, errors, and hallucinations
become more elusive before they are removed (Zhou et al., [2024). Once they are hard to find for average
users, commercial developers are much motivated to address those problems, creating persistent and even
amplified biases and errors (Ren et all 2024)), which are precisely what we warn in this paper.

6.3 Al’s Epistemic Influence Can Be Positive

In Section [5] we have detailed AI's long-term impact on human knowledge and values. Notably, they seem
overwhelmingly negative. It is not our intention to present negative views only, but we are likely biased and
limited in our perspectives. We want to raise attention on Al’s epistemic influence and avoid the cascading
effects over the long term, but we also want to acknowledge that we are far from having a holistic picture.

It is entirely likely the issues we have raised here can be addressed over time and people can become wise
in using those tools. For instance, users, especially students and researchers, may acquire a critical lens of
Al-generated content. Under the name of “Al literacy”, students are taught to use, understand, and evaluate
AT systems critically (Casal-Otero et all, [2023)). Sufficient critical thinking skills, paired with Al systems’
increasing reach and capabilities, may cultivate a generation of more informed learners and citizens who are
more capable of participating in collective truth-seeking and deliberative processes.
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7 Conclusion

AT exerts systematic influence over the beliefs and values in individuals and society. We have outlined
the mechanisms that enable such influence, the amplifiers that magnify the influence, and the potential
consequences it may entail.

The eventual aim of Al influence research is to enable the responsible management of Al influence over human
cognition, knowledge, and values, reaping its benefits while avoiding the harms. Accomplishing such an aim
requires coordination between communities of interdisciplinary methodologies and perspectives, including Al
safety and AI ethics communities, machine learning and human-computer interaction communities, social
science communities, and, importantly, industry actors.

Broader Impact Statement

Recognizing Al influence is a necessary precondition for managing it, and in this respect, we aim to promote
societal interest by raising awareness on the issue. Since mid 2025, reports of epistemic and psychological
harms from deployed Al systems — extreme examples of which include Al-driven psychosis :TREYGER
et al.L , with milder examples of influence and reliance being exponentially more prevalent (Phang et 3Ll.|7
@ — have become increasingly prevalent. Given the trend of increasingly wide and immersive deployment
of AT systems, it is likely that such epistemic and psychological impact will expand by orders of magnitude in
the near future. We hope that increased awareness on this class of problems can foster the development of

technical and governance solutions for the management of Al influence.
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