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Abstract
Foundation models are transforming Earth obser-
vation, yet struggle to generalize across bands
and sensors to handle the data for different appli-
cations. We introduce GeoCrossBench, a novel
benchmark that extends the standard GeoBench,
to evaluate this critical cross-band capability in
remote sensing foundation models. We measure
generalization by augmenting datasets with ad-
ditional optical and radar data, training on RGB,
then testing on other bands. We first evaluate
existing models, as a reality check on current per-
formance and for analysis of pretraining effects,
then evaluate our own self-supervised extension
of the ChannelViT model, χViT, to improve cross-
band performance. While our χViT demonstrates
strong results compared to currently available re-
mote sensing specific models, none of them out-
performs general-purpose vision models like DI-
NOv2. These findings highlight the necessity of
benchmarks like GeoCrossBench to advance ro-
bust foundation models for comprehensive Earth
observation.

1. Introduction
The growth of remote sensing data and satellite imagery in
particular (Gorelick et al., 2017; Zhu et al., 2017; Ma et al.,
2019) has led to the development of sophisticated deep learn-
ing models capable of analyzing complex geospatial patterns
and dynamics. Among these, pre-trained foundation models
have emerged as a popular paradigm for learning generaliz-
able representations from vast and diverse remote sensing
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(RS) datasets (Xiong et al., 2024; Fuller et al., 2023; Cong
et al., 2022; Han et al., 2024; Tseng et al., 2025; Jakubik
et al., 2023; Wang et al., 2024). Such RS data is inher-
ently multimodal, with sensors capturing information across
various bands of the electromagnetic spectrum, including
multispectral, hyperspectral, and synthetic aperture radar
(SAR) (Torres et al., 2012; Drusch et al., 2012; Roy et al.,
2014; Guanter et al., 2015). While these foundation models
have shown transfer on downstream tasks for the same sen-
sors and bands, their transfer to inputs with different sensors
and bands, their cross-band generalization, is an issue for
practical applications. This type of generalization deter-
mines how well a model transfers between different spectra
and modalities such as from RGB optical to near-infrared
(NIR) or SAR. Robust generalization across spectral do-
mains is crucial for creating more versatile and practical RS
models.

We introduce GeoCrossBench to assess cross-band gener-
alization in remote sensing and guide progress. GeoCross-
Bench focuses on three canonical remote sensing tasks:
scene classification, semantic segmentation, and change de-
tection, covering both Sentinel-2 optical/multispectral data
and Sentinel-1 SAR data. Specifically, we build GeoCross-
Bench from the GeoBench datasets (Lacoste et al., 2023)
and enrich them with additional public datasets that widen
the range of resolutions and geographic contexts. For the
datasets missing SAR bands we fuse the Sentinel-2 multi-
spectral bands (RGB, NIR, ...) with co-registered Sentinel-1
SAR bands (VV/VH dual-polarization). The core idea of
GeoCrossBench is to train models on a common band con-
figuration (e.g., RGB) and then evaluate on a variety of
unseen bands from both optical and SAR modalities, as
illustrated in Figure 1. To provide a comprehensive analy-
sis, we evaluate generalization using two primary settings:
full fine-tuning and fine-tuning with frozen backbone. For
practical utility and simplicity, models are trained on RGB
imagery, given its greater abundance and the more common
expertise associated with it over multispectral or radar data.

We evaluate a range of existing and recent foundation mod-
els using GeoCrossBench. Building on ChannelViT (Bao
et al., 2024), an extension of the Vision Transformer (ViT)
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Figure 1. The GeoCrossBench evaluation framework. Models are
trained on RGB bands and tested on their generalization to various
triplets of optical bands (e.g., RGB, RGE1, RE1E2, N’S1S2) and
SAR bands (VV, VH). We report performance for each combina-
tion and on average.

(Dosovitskiy et al., 2021) for channel-wise modeling, we
develop a new baseline for band-wise modeling in RS. We
call this model χViT (ChiViT), short for Channel-based
iBOT pre-trained ViT, and pretrain it using the iBOT (Zhou
et al., 2022) paradigm on our own large-scale, multi-modal
dataset.

We find that many current foundation models struggle with
cross-band generalization. Furthermore we discover that
RS-specific foundation models fail to outerperform general-
purpose vision models like DINOv2 (Oquab et al., 2023).
Finally we show that our extension of ChannelViT to remote
sensing does in fact deliver improved cross-band transfer to
achieve competitive results. These experiments underscore
the pressing need for a rigorous and standardized bench-
marks like GeoCrossBench.

On publication we will share the GeoCrossBench data, code,
and models. This full release can help measure progress,
identify weaknesses in current approaches, and drive the
development of more robust and reliable foundation models.

2. GeoCrossBench Benchmark: Dataset and
Evaluation Protocol

GeoCrossBench is designed to rigorously assess the cross-
band generalization of remote sensing (RS) foundation mod-

els. The primary goal is to evaluate how well models, trained
on standard RGB imagery, adapt to unseen spectral band
combinations, including those from different sensor types
like multispectral optical and Synthetic Aperture Radar
(SAR). The benchmark is built upon key RS tasks—scene
classification, semantic segmentation, and change detec-
tion—utilizing diverse spectral modalities and a standard-
ized evaluation protocol to ensure fair comparisons.

2.1. Datasets

GeoCrossBench extends several datasets from the origi-
nal GeoBench benchmark by systematically fusing them
with Sentinel-1 SAR data where previously absent, and
also incorporates new relevant datasets. All datasets
within GeoCrossBench leverage 10-band optical data
from Sentinel-2 (bands with ≤20m resolution) and dual-
polarization SAR data from Sentinel-1 (VV, VH), resulting
in a consistent 12-band input structure per sample. This
includes datasets for scene classification (x-bigearthnet,
x-so2sat, x-brick-kiln, x-eurosat), semantic segmentation
(x-cashew-plantation, x-SA-crop-type, x-harvey-building,
x-sen1floods11), and change detection (x-harvey-flood, x-
oscd). The process of integrating Sentinel-1 data involved
co-registering SAR imagery with existing optical data, en-
suring temporal and spatial alignment suitable for cross-
modal learning and evaluation.

2.2. Evaluation Protocol

The core evaluation principle of GeoCrossBench is to train
(or fine-tune) models exclusively on the RGB bands (B4,
B3, B2 from Sentinel-2) of the training split for each down-
stream task. Subsequently, these models are evaluated on
the test split using a predefined set of 3-channel optical and
2-channel SAR band combinations:

• RGB: Sentinel-2 B2, B3, B4 (seen during training).
• RGE1: Sentinel-2 B4, B3, B5.
• RE1E2: Sentinel-2 B5, B6, B7.
• N’S1S2: Sentinel-2 B8A, B11, B12.
• VV-VH: Sentinel-1 VV and VH polarizations.

Performance on these unseen band combinations, relative
to the in-distribution RGB performance (which is also mea-
sured), quantifies the model’s cross-band generalization.

For scene classification, models assign labels to image
patches, with performance (F1Score or Accuracy, depend-
ing on the dataset) averaged across the five band settings.
For semantic segmentation, pixel-level classification qual-
ity (mIOU or bIOU) is averaged across these band combi-
nations. For change detection, models identify differences
between image pairs. During testing, the ’after’ image uses
the various target band combinations while the ’before’ im-
age remains RGB; the final score (bIOU or F1Score) is
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an average across these conditions. The overall GeoCross-
Bench score for a model on a task is this averaged metric.

3. Model Comparisons and Baselines
We considered a wide variety of models and fine-tuned
them in two primary settings: (i) full fine-tuning, where all
parameters of the pretrained foundation model and the task-
specific head are updated; and (ii) fine-tuning with frozen
backbone, where only the parameters of a newly added
task-specific head (e.g., a linear layer for classification, a de-
coder for segmentation/change detection) are trained. These
settings represent a trade-off between model’s training ca-
pacity and preservation of the generalization capabilities
that might come from pretraining.

3.1. Pre-trained Foundation Models and Supervised
Models

Specialized Remote Sensing Foundation Models. We
picked most publicly available models pre-trained on re-
mote sensing data having less than 100M parameters (ViT-
B and Swin-B), namely ChannelViT (Bao et al., 2024),
DOFA (Xiong et al., 2024), SatlasNet (Bastani et al., 2023),
CROMA (Fuller et al., 2023), AnySat (Astruc et al., 2024)
and Prithvi (Jakubik et al., 2023).

General-purpose Image Foundation Models. We also
added several general-purpose models as baselines. We took
self-supervised models of self-distillation type iBOT (Zhou
et al., 2022), which is pretrained on ImageNet, and DI-
NOv2 (Oquab et al., 2023) pretrained on a huge custom
dataset of 145M images. Note that we use ViT-B version
of DINOv2 which is actually distilled from a much larger
ViT-g teacher. Following (Lacoste et al., 2023), we also fine-
tuned ImageNet-pretrained ResNet-50 and ViT-B that have
never gone through self-supervised training. Recent work
(Xu et al., 2025) has demonstrated that even non-pretrained
models can produce competitive results with enough hyper-
parameter tuning budget. We omitted such baselines as we
prefer fine-tuning recipes that are relatively easy and quick
to implement for each new downstream task.

3.2. A New Baseline: Self-supervised Channel-ViT on
Remote Sensing Data

The ability to learn transferable representations from di-
verse partially observed spectral inputs is essential for robust
cross–band generalization. Motivated by recent advances in
multi-channel self-supervision we extend ChannelViT (Bao
et al., 2024) with a hierarchical pre-training recipe tailored
to remote sensing imagery that we name χViT (ChiViT).
The core idea is to give each spectral band equal impor-
tance during pretraining such that the network can be a)
fine-tuned on any subset of bands available without architec-

tural changes and b) able to exchange information between
spectrally distinct modalities.

Pretraining dataset. To pretrain χViT for strong cross-
band generalization, we extended Satlas Pretrain dataset
(Bastani et al., 2023) up to over 23 million images. This
dataset was collected to expose the model to a wide spec-
trum of Earth’s surface characteristics, captured by various
spectral bands and resolutions. Notably we added “parallel”
data: the BigEarthNet (Sumbul et al., 2021) and Sen12MS
datasets (Schmitt et al., 2019), offer Sentinel-1 and Sentinel-
2 image pairs that are lined up, crucial for learning joint
radar-optical features.

4. Results
Experiments on GeoCrossBench highlight several key find-
ings. Firstly, remote sensing foundation models demon-
strate constrained capabilities in generalizing across spectral
bands. This limitation is particularly pronounced when deal-
ing with bands that diverge significantly from standard RGB,
such as Synthetic Aperture Radar (SAR), suggesting that
current RS-specific pretraining may not adequately capture
the nuances of diverse spectral data. Secondly, general-
purpose image foundation models, notably DINOv2 (es-
pecially its frozen backbone version), achieve surprisingly
robust cross-band performance, often outperforming foun-
dation models specifically pretrained for RS. Thirdly, while
full fine-tuning generally leads to better accuracy, there are
instances, where a frozen backbone excels, as seen in Figure
3. All these findings are supported by model rankings in
Table 1 and visual summaries in Figure 2, where Figure 2a

Table 1. Per-task ranking of all tested models on GeoCrossBench.
The last column indicates the average rank across 10 tasks.
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DINOv2❄ 1 1 1 7 2 2 4 5 6 7 3.60
χViT 4 8 8 3 3 5 1 6 1 4 4.30
iBOT❄ 2 4 3 6 5 6 3 8 7 1 4.50
iBOT 8 3 6 1 6 10 5 3 4 6 5.20
DINOv2 7 2 2 5 1 15 6 4 5 5 5.20
ViT-B 6 5 4 2 4 11 2 2 3 17 5.60
ChannelViT 9 11 13 4 9 1 10 1 8 3 6.90
χViT❄ 3 10 12 12 11 4 8 11 2 12 8.50
ResNet50 14 7 5 10 7 9 13 7 9 20 10.10
DOFA 16 13 9 9 8 3 15 17 10 14 11.40
DOFA❄ 15 12 10 15 10 7 14 14 11 9 11.70
SatlasNet 5 6 7 18 16 13 11 19 19 10 12.40
ChannelViT❄ 10 15 18 13 13 20 12 10 17 2 13.00
CROMA 11 14 11 16 19 12 9 15 12 18 13.70
AnySat 13 17 15 19 20 16 7 9 13 13 14.20
SatlasNet❄ 19 9 14 17 12 14 17 12 20 8 14.20
Prithvi 12 18 16 8 14 18 19 18 14 15 15.20
CROMA❄ 17 16 19 20 17 8 18 13 16 16 16.00
AnySat❄ 20 20 20 11 18 19 16 16 15 11 16.60
Prithvi❄ 18 19 17 14 15 17 20 20 18 19 17.70
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shows metrics for each model and task averaged across band
combinations and Figure 2b shows the drop of the perfor-
mance of all models on the band combinations of x-eurosat
dataset. The results for the fine-tuned DOFA on the test
bands, shown in this second figure, serve as an upper bound
for its generalization from RGB to these band combinations.
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Figure 2. Quick summary of the main results on GeoCrossBench.

The experimental results prompt discussion on several criti-
cal points. The overall value of current RS-specific pretrain-
ing methods is brought into question, as general-purpose
models leveraging common visual features (e.g., shapes,
contours) perform competitively. This suggests a potential
need for novel pretraining strategies designed to capture
deeper, more fundamental relationships between different
spectral bands. Regarding the possibility of benchmark
saturation, our analysis indicates that GeoCrossBench has
not reached its limits. Non-RGB bands contain substan-
tial information relevant to the tasks, implying that there is
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Figure 3. Performance of models with frozen backbone (x-axis) vs.
full fine-tuning (y-axis). Each point is a model-dataset pair.

considerable room for improvement in model performance.

5. Related Work
Remote sensing presents unique data challenges, motivating
specialized foundation models (Rolf et al., 2024) to han-
dle vast unlabeled data and enable efficient transfer learn-
ing. Pioneering works like SatMAE (Cong et al., 2022)
and Satlas (Bastani et al., 2023) established self-supervised
and large-scale supervised pre-training for RS, respectively,
while Scale-MAE (Reed et al., 2023) focused on generaliza-
tion across spatial resolutions. Our work, GeoCrossBench,
complements these by addressing the critical challenge of
spectral generalization across bands. While many RS foun-
dation models learn from varied spectral bands, employing
techniques like auto-encoding (e.g., SatMAE (Cong et al.,
2022), MMEarth (Nedungadi et al., 2024)), learning sepa-
rate intra-modal representations (e.g., SoftCon (Wang et al.,
2024), DOFA (Xiong et al., 2024)), or joint inter-modal
representations (e.g., CROMA (Fuller et al., 2023), AnySat
(Astruc et al., 2024), Galileo (Tseng et al., 2025)), they
typically do not focus on generalization to unseen bands.
GeoCrossBench targets this crucial gap, highlighting the
need for models to adapt across spectral inputs.

Conclusion
We introduce GeoCrossBench to evaluate cross-band gener-
alization in remote sensing foundation models. Our experi-
ments reveal that current remote sensing-specific foundation
models do not yet significantly outperform general-purpose
vision models in cross-band tasks. We hope that GeoCross-
Bench will serve as a catalyst for future research.
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