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Abstract—Reconstructing 3D hand meshes from video files
is significantly challenging due to objects in the video often
occluding the hand during manipulation. These occlusions can
greatly reduce the quality of information extracted from the
obscured regions and decrease temporal hand coherence over
time. Existing approaches focus primarily on global occlusion
regions but overlook temporal hand coherence, which limits
their performance. Herein, we propose a novel framework
called IFVONet, designed to improve 3D hand mesh re-
construction by effectively capturing inter-frame variations
and improving the recovery of global occlusions. IFVONet
comprises three key components: (1) Pixel-Domain Variation
Module for identifying inter-frame variations across adjacent
frames, enhancing temporal hand coherence. (2) Enhanced
Global Occlusion Recovery Module for integrating hand infor-
mation into global occlusion representation, thereby improving
the accuracy of occlusion feature recovery. (3) Hand Regression
Module for dynamically aggregating hand information from
inter-frame variations and globally recovered occlusion features
into comprehensive hand representations, ultimately leading to
enhanced 3D hand reconstruction. Extensive experiments on
the HO3D-v2 and HO3D-v3 datasets demonstrate that our
proposed IFVONet achieves state-of-the-art performance on
both 3D hand mesh reconstruction and pose estimation.

Keywords-3D Hand Mesh Reconstruction; Transformer;
Deep Learning; Video Understanding;

I. INTRODUCTION

Reconstructing 3D hand meshes from RGB frames is
crucial for numerous real-world applications, including aug-
mented reality (AR) [1] and behavior understanding [2].
To support these applications, ensuring an optimal user
experience is crucial. Therefore, the reconstruction process
must be not only accurate and robust but also temporal
coherence through time. Recently, several techniques have
been proposed for 3D hand mesh reconstruction from a
∗
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Figure 1. Structural and reconstruction comparison with state-of-art
methods, the proposed method IFVONet not only keeps hand coherence
and natural hand reconstruction results through time for the reconstruction
result but considers inter-frame variation for the structural design.

single RGB frame [3], [4], [5], [6]. To extract enough
information and alleviate occlusion situations for targeted
tasks, some of the existing works utilized spatial attention
mechanisms to recover occluded hand feature [3], [7], others
proposed texture or lightning models to get a better hand
mesh result [4], [8]. These methods are more efficient on
single static hand images. However, existing methods suffer
severe performance degradation under sequence data due
to limited information for a single RGB frame, leading to
temporal hand incoherence through time and inaccurate hand
pose reconstruction results.

On the other hand, multi-frame RGB-based approaches
have gained attention, which can explore additional temporal
information, such as hand motion, to enhance model perfor-
mance. S2HAND(V) [9] constrains smooth hand motion by
presenting a motion-aware joint loss function to help train
a frame-wise model with promising results. SeqHand [10]
utilizes ConV-LSTM to extract temporal movement infor-
mation over consecutive frames. Besides, Inter-frame loss
is used by Liu [11] to leverage spatial-temporal consistency
for adjacent frames. H2ONet [12] additionally inputs short
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and long historical frame information to fetch non-occlusion
and infuse finger-level information. Even though they can
get additional information from adjacent frames, they lack
a mechanism to handle the inter-frame variation, leading to
incoherent temporal results through time, as shown in Fig.1.

In this paper, We propose IFVONet, an Inter-Frame-
Variation and Occlusion-aware Network, to enhance recon-
structing 3D by effectively capturing inter-frame variations
and improving the recovery of global occlusions. Firstly, to
address variations across frames, we incorporate inter-frame
interactions at the pixel level into 3D hand reconstruction
using an attention mechanism. Secondly, to improve the
recovery of global occlusions, we refine the components of
the Feature Injection Transformer (FIT) by systematically
analyzing the effectiveness of each component on 3D hand
reconstruction. Finally, we dynamically fuse the information
on inter-frame variations and occlusion recovery using a
learned probability map. Our proposed IFVONet frame-
work improves occlusion recovery features and preserves
temporal hand coherence by capturing inter-frame variations,
leading to enhanced 3D hand reconstruction.

To summarize, our main contributions are as follows:
• We explicitly integrate inter-frame variations into the

3D hand reconstruction process, resulting in enhanced
and temporally coherent 3D hand reconstruction.

• We propose a novel framework, IFVONet, which
comprises three key modules: a Pixel-Domain module
for capturing inter-frame variations, a refined Global
Occlusion Recovery module for retrieving occlusion
information, and a Variation-Occlusion-Aware hand re-
gression module for fusing inter-frame variation fea-
tures with recovered global occlusion information.

• Through comprehensive evaluations across two datasets
containing HO3D-v2 and HO3D-v3, our results con-
sistently demonstrate IFVONet’s significant potential
in enhancing the quality and temporally coherence
of 3D hand reconstruction, achieving state-of-the-art
performance.

The remainder of this paper is organised as follows:
Section 2 reviews related work in 3D hand mesh recon-
struction from RGB frames along with occlusion-aware
pose estimation methods. Section 3 details our proposed
IFVONet framework. Section 4 evaluates the performance
of our proposed IFVONet framework and discusses the
results and section 5 concludes this paper.

II. RELATED WORK

A. 3D hand mesh reconstruction from RGB image

Existing works on 3D hand mesh reconstruction tech-
niques can be divided into two groups as RGB and depth
images, according to the type of image they input.

For RGB-based methods, some works estimate the re-
quired parameters for MANO[13] to get hand vertices and

3D hand joints [3], [6], [5], [14]. Given the RGB input,
Pavlakos1[14] regress pose, shape and camera parameter
based on Transformer, which is a representative work for
this pipeline, similar to HMR[15] in human mesh recon-
struction task. However, others regress hand vertices directly
from deep learning networks [16], [17], [18]. Specifically,
Jiang [8] utilized the attention-based module to formulate
the correlation across vertex and joint features and further
regress the coordinates of the vertex.

For depth-based methods, Korrawe et al. [19] started to
utilize interactive optimization to deform the hand mesh.
Later on, deep learning-based approaches [20] were explored
with depth-based methods to improve model performance,
such as CNN.

When the hand is occluded by itself or an object in the
sequence data, the majority of the current methods produce
undesirable temporal hand coherence results, as they largely
ignore temporal information.

B. 3D hand mesh reconstruction from RGB video

Some recent efforts have utilised multi-frame information
for 3D hand mesh reconstruction in video-based approaches.
Compared with the original RGB-based S2Hand method
[4], the S2HAND(V) [9] adds a quaternion loss function,
which can explore joint rotation representation across multi
frames. An optical-flow-guided approach is used by Hasson
et al [21] to take advantage of photometric consistency
across time. H2ONet [12] is the most relevant and closely
related approach, which explores non-occlusion information
by estimating finger-level occlusions and fusing hand-level
information from long and short historical frames. However,
the existing approaches mainly concentrate on occlusion
recovery and do not consider inter-frame variation to im-
prove temporal hand coherence, which is addressed in our
proposed IFVONet framework.

C. Occlusion-aware pose estimation

There are three primary methods to consider when esti-
mating occlusion-based position, including attention mech-
anisms, data augmentation and temporal information.

The attention mechanism-based methods utilise spatial
information [22], [7], [3], [23]. Zhou et al [7] estimated
occlusion-aware attention map to address redundant data
and recover missing information from occlusion during data
cleansing. For hand pose estimation under occlusion, Han-
dOccNet [3] explores the relationship between occlusion and
non-occlusion region to obtain complete hand information.
Data augmentation methods simulate the occlusion situation
[24], [25], [26]. Cheng et al [25] masks out key-points during
the training phase to simulate low to severe occlusion. Even
though these techniques can improve model performance,
the generated occlusion is synthetic when compared with
real occlusion. Temporal methods adopt temporal informa-
tion from the sequence file [12], [27], [28]. Cheng et al
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Figure 2. Pipeline for proposed IFVONet. IFVONet contains a three-branch backbone, Pixel-Domain Variation (PDV), Global Occlusion Recovery
(GOR), Variation-Occlusion Awareness hand regression. We first extract the global hand feature, global occlusion feature, t frame hand feature and t− 1
frame hand feature from three-branch backbone. Inter-frame variation is extracted from the proposed Pixel-Domain Variation while keeping the temporal
hand coherence. Global Occlusion Recovery is proposed to alleviate the occlusion situation. Variation-Occlusion awareness hand regression generates 3D
hand mesh reconstruction, 2D hand pose estimation, and 3D hand pose estimation.

[27] proposed a temporal CNN to complete a 3D pose
with occluded 2D key-points. Additionally, H2ONet [12]
predicted finger-level occlusion probabilities to guide hand-
level feature infusion over short and long time frames.

Different from the above methods, our proposed IFVONet
framework embeds temporal information with cross-pixel at-
tention to extract the inter-frame variation on the pixel level,
followed by cross-region attention to learn the correlation
between occlusion and hand regions with a dynamic fusion
of relevant information.

III. IFVONET FRAMEWORK

Our goals are to estimate 3D hand mesh vertex V3D, 3D
hand pose J3D and 2D hand pose J2D for each frame, given
two sequenced 2D RGB images I ∈ R256×256×3 contain-
ing the hand-object interaction information from adjacent
frames. To achieve the above goals, the IFVONet framework
is proposed in this paper, which consists of three modules
within the output from a three-branch backbone: a Pixel-
Domain Variation module (PDV), a Global Occlusion Re-
covery module (GOR) and a Variation-Occlusion awareness
hand regression.

Given the adjacent frames, three different inputs are
firstly generated, including hand image I0 for the current
frame, hand image I1 for the previous frame and con-
catenated images I3. ResNet50 with FPN is utilised as
a backbone to obtain the hand feature for each frame
Ft ∈ R256×32×32 and Ft−1 ∈ R256×32×32 and global hand
feature Fh ∈ R256×32×32 and the global occlusion feature
Fo ∈ R256×32×32 for the concatenated frames.

Figure 3. The pipeline for Pixel-Domain Variation (PDV). Hand feature
from the current and previous frames to extract the pixel-level variation
and keep the unchanged hand region, improving temporal hand coherence
through time.

A. Pixel-Domain Variation (PDV)

Temporal hand coherence plays an important role in se-
quence data, leading to a better user experience in real-world
applications. Therefore, Pixel-Domain Variation (PDV) is
proposed to distinguish the variation across frames on the
pixel level, which can distinguish the inter-frame variation
and unchanged hand region to maintain hand pose stability
through time. The illustration of PDV is shown in Figure
3. PDV is a Transformer-based module which takes two
features, Ft−1 and Ft. Two same sub-modules are adopted
in the PDV to consider the pixel variation across frames.
Different from the standard Transformer, a symmetric cross-
pixel attention (CPA) module is utilised to formulate this
variation.

Three 1x1 Convolution layers are first performed to obtain
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QT , KT and VT (T ∈ t− 1, t) indicating the query, key
and value feature of each frame. Then the query feature QT

of one frame to fetch the key feature KT and the value
feature VT of the other frame are utilised through Multi-
Head Attention (MHA) as:

Ft−1→t = sigmoid(
Qt−1K

T
t√

d
)Vt

Ft→t−1 = sigmoid(
QtK

T
t−1√
d

)Vt−1

where Ft−1→t and Ft→t−1 are the cross-pixel attention
feature encoding the variation region between two frames,
and d is a normalisation constant. Afterwards, the output
frame features F ′ ∈ R256×32×32 are obtained by a point-
wise MLP layer fp as:

F ′
t = fp(Ft−1→t)

F ′
t−1 = fp(Ft→t−1)

B. Global Occlusion Recovery (GOR)

The Global Occlusion Recovery module (GOR), as shown
in Fig.4, is improved from the Feature Injecting Transformer
(FIT) [3], which contains sigmoid-based and normalisation-
based attention modules, to enhance the correlation between
hand and occlusion information. In addition, the contribution
of the FIT is systematically analysed, including the con-
tribution of its sub-modules to the hand information and
occlusion information, thereby paying more attention to its
related regions.

The sigmoid-based attention module can filter the low-
related region [3]. Moreover, the occlusion feature not
only contains the occluded hand information but also con-
tains undesired information(e.g., background). Therefore,
the sigmoid-based attention module is utilised to generate
the correlation map on the occlusion region rather than the
hand region. Query qsig and key ksig are extracted from
the Fo and the Fh separately by two 1x1 convolution layer.
Therefore, the correlation map Csig can be obtained with:

Csig = sigmoid(
qsigk

T
sig√

dksig

)

Compared with the traditional attention method, the nor-
malisation attention mechanism offers a simple yet efficient
way to improve the model performance [29]. As the hand
feature not only contains the information under the visible
hand feature but also includes invisible hand information.
Therefore, the normalisation-based attention module scores
the hand regions, which helps to mitigate the occlusion
information on the invisible hand region. Then, query qnorm
and key knorm are extracted from the Fo and the Fh

separately. Afterwards, the module generates the score map
Snorm as follows:

Figure 4. The overall pipeline for Global Occlusion Recovery (GOR). The
Transformer Block contains sigmoid-based attention and a Normalization-
based attention module, using the addition operation with concatenated Fo

into Fh.

Snorm = BN(f1×1(
qsigk

T
sig√

dksig

))

Similar to HandOccNet [3], which considers the injec-
tion of the hand and occlusion region, instead of applying
a multiplication, an addition operation is simply adopted
between score map Snorm and the correlation map Csig ,
aiming to obtain the high-related region to address in the
missing information:

C = Csig + Snorm

Then, the invisible hand information is obtained by multi-
plying the correlation map C by value vh, which is obtained
with one 1 × 1 convolution layer. Therefore, the refined
hand feature F ′

h is obtained with the MLP module and layer
normalisation layer. Besides, as the value vh preserves the
essential information for the hand information, a residual
connection between F ′

h and vh is utilised and the output
feature FGOR ∈ R256×32×32 is obtained by:

FGOR = vh +MLP (LN(C × vh))

C. Variation-Occlusion awareness Hand Regression

As the detailed inter-frame variation provided by PDV
is crucial to maintain temporal hand coherence in the
sequence data, the utilisation of variation information is
important for global occlusion recovery. Different from the
previous fusion, which directly adds or multiplies the output,
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Figure 5. The pipeline for Variation-Occlusion awareness hand regression.
The possibility map is calculated to leverage the balance between inter-
frame variation and global occlusion information.

Variation-Occlusion Fusion (VOF) is proposed for the global
recovered occlusion feature FGOR to selectively learn useful
variation features from FPDV without being overwhelmed,
which can leverage the information from global recovered
occlusion feature and inter-frame variation, as shown in
Fig.5 Specifically, within the output of PDV, the F ′

t and F ′
t−1

are firstly concatenated to obtain concatenated variation hand
feature FPDV across frames. Furthermore, the FPDV is
regarded as the backup, enabling it to provide the required
variation information to FGOR. Then, the probability of
these two pixels belonging to the hand region is calculated:

p = Sigmoid(fgor(FGOR)× fpdv(FPDV ))

where fgor and fpdv represent the 1 × 1 convolution layer
following with Batch Normalisation layer. If the value of p
is high, we would argue that FGOR contains more rich and
accurate hand information, and vice versa. Therefore, the
refined hand feature FHand ∈ R256×32×32 can be written
as:

FHand = pFGOR + (1− p)f1x1(FPDV )

Given the variation-occlusion awareness hand feature
FHand, regression head produces 2D joint pose estimation,
3D joint pose estimation and 3D hand mesh vertices based
on MANO [13]. The hourglass block first generates sub-
heatmaps H ∈ R256×32×32 for each joint and 2D hand
joint coordinates J2D ∈ R21×2 within the input of en-
hanced feature FHand. Secondly, four residual blocks and
two different fully-connected layers first concatenate each
sub-heatmap and generate pose θ ∈ R48×3 and shape
β ∈ R10 parameters. Four linear layers are adopted for
shape regression and one for pose regression respectively. To
obtain 3D hand vertices V3D ∈ R778×3 and 3D hand joint
coordinates J3D ∈ R21×3, the regressed pose θ parameter
multiplies the joint regression matrix and applies forward
kinematics based on MANO [13].

D. Loss Functions

To train the proposed IFVONet, we use common loss
function for 2D and 3D results, including 3D hand mesh
vertices, 2D joint coordinates and 3D joint coordinates.

First, L1 loss calculates the Euclidean distance between the
prediction and ground truth, including the 3D mesh vertices
loss Lmesh, 2D joint coordinates loss Lpose2D and 3D joint
coordinates loss Lpose3D. Formally, we have

Lmesh =

1∑
i=0

||Vt−i − V̂t−i||1

Lpose2D =

1∑
i=0

||J2D
t−i − Ĵ2D

t−i||1

Lpose3D =
1∑

i=0

||J3D
t−i − Ĵ3D

t−i||1

As the MANO layer is applied for the regression head, to
ensure the performance of MANO and avoid outliers for
these essential parameters, we use L1 loss for pose β and
shape θ parameters. Formally, we have

Lmano pose =

1∑
i=0

||Pt−i − P̂t−i||1

Lmano shape =

1∑
i=0

||St−i − Ŝt−i||1

Our overall loss function is Ltotal = Lmesh + Lpose2D +
Lpose3D + Lmano pose + Lmano shape.

IV. EXPERIMENTS

A. Experiment Environment

The proposed method is implemented using PyTorch [30].
Adam optimiser [31] with batch size 64 is utilised for our
model training on NVIDIA A100 Tensor Core GPU. 40
epochs are taken with an initial learning rate of 10−4, which
is divided by 10 at the 20th epoch within the usage of the
step learning scheduler. The input images are resized into
256 x 256 and augmented by random scaling and rotating.

B. Dataset

The HO3D-v2 [32] dataset includes 66,034 samples from
55 sequences for training and 11,524 samples from 13
sequences for testing, and contains hand-object interaction
scenario on RGB sequences with different levels of occlu-
sion in three categories, including seen object with seen
hand, unseen object with seen hand and seen object with
unseen hand. 2D joints, MANO-based vertex and 3D hand
joints are included in the annotations.

Compared with the HO3D-v2 [32] dataset, the HO3D-v3
[33] dataset provides more image data and more accurate
annotations, which have been released recently. This dataset
contains 103,462 images for hand-object interaction, which
are divided into 83,325 training images and 20,137 testing
images with 3D hand annotation.
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Table I
RESULTS ON HO3D-V2 DATASET AFTER PA. BEST AND SECOND-BEST

SCORES.

Approaches J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
Hasson et al. [21] 11.4 77.3 11.4 77.3 42.8 93.2
Hasson et al. [34] 11.1 - 11.2 - 46.4 93.9
TempCLR [28] 10.6 - 10.6 - 48.1 93.7
Liu et al. [11] 9.8 - 14.7 81.2 53.0 95.7
HOISDF [35] 9.2 - - - - -
HandOcc(V) [3] 9.2 81.5 9.3 81.5 54.2 95.9
H2ONet [12] 9.0 82.0 9.1 81.9 54.7 96.0
Our IFVONet 9.0 81.9 9.0 82.0 55.4 96.2

Table II
RESULTS ON HO3D-V2 DATASET BEFORE PA. BEST AND

SECOND-BEST SCORES.

Approaches J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
Liu et al. [11] 30 49.0 28.9 50.3 23.2 68.5
H2ONet [12] 26.9 52.4 26.1 53.5 24.9 70.7
HandOcc(V) [3] 25.2 53.4 24.5 54.4 25.4 72.6
Our IFVONet 24.8 54.6 24.1 55.6 26.1 73.9

C. Evaluation Metrics

J-PE/V-PE stands for joints/vertices position errors in
millimetres (mm) that is achieved by calculating the av-
erage Euclidean distance between predicted joint/vertices
and ground-truth 3D hand joint/vertices coordinates. Further-
more, the joints/vertices position errors are also measured af-
ter Procrustes Alignment to reflect the reconstruction quality
of the hand shape.

J-AUC/V-AUC represents the area under the curve (AUC)
of the percentage of correct key points (PCK) for joints and
vertices, respectively. These metrics provide a comprehen-
sive evaluation of the IFVONet’s accuracy in predicting
the correct positions of key points and vertices on the
hand mesh. Specifically, PCK measures the fraction of key
points that fall within a certain distance threshold from the
ground truth, offering a robust indication of the IFVONet’s
precision in localizing joints and vertices.

The F-score calculates the harmonic mean of recall and
precision between the predicted and ground-truth hand-
mesh vertices. This metric balances the trade-off between
precision (the proportion of predicted vertices that are cor-
rectly located) and recall (the proportion of ground-truth
vertices that are correctly predicted). By combining these
two aspects, the F-score provides a single, unified measure
of the IFVONet’s performance in accurately reconstructing
the hand mesh. In our experiments, thresholds of 5mm and
15mm are adopted.

D. Superior Performance in Reconstructing 3D Hand

We qualitatively and quantitatively evaluate the effective-
ness of IFVONet in reconstructing 3D hand, comparing it
against seven baseline methods across three datasets: HO3D-
v2, HO3D-v3, and 100DOH. For the baseline HandOcc [3],
we extend it to a video version with two adjacent image
inputs, naming it HandOcc(V).

Table III
ALIGNED RESULTS ON HO3D-V3 DATASET. BEST AND SECOND-BEST

SCORES.

Approaches J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑
ArtiBoost [36] 10.8 78.5 10.4 79.2 50.7 94.6
Keypoint Trans [37] 10.9 78.5 - - - -
H2ONet [12] 9.8 80.3 9.8 80.5 51.6 95.3
Our IFVONet 9.6 80.9 9.5 81.0 52.6 95.4

1 IFVONet Consistently Outperform Baselines.
Quantitively, we report J-PE, J-AUC, V-PE, V-AUC, F@5
and F@15 on HO3D-v2 values on HOD3-v2 and HOD-v3
datasets. The results in Table I and Table II show that our
proposed IFVONet achieves superior performance across
almost all metrics for both before and after Procrustes
Alignment (PA) cases. Notably, IFVONet consistently
outperforms the baselines by a significant margin in all
metrics in Table II, demonstrating the superiority of our
proposed method in 3D hand reconstruction. To further
validate the effectiveness of IFVONet, we conducted
experiments on a recent larger hand reconstruction
dataset, HO3D-v3. The results in Table III indicate that
IFVONet consistently achieves better performance than
the baselines, further demonstrating the effectiveness
of our proposed IFVONet in 3D hand reconstruction.
Qualitively, we visualize the reconstructed 3D hand based
on HO3D-v2 and 100DOH datasets. The results in Fig.6
demonstrate that IFVONet generates more accurate and
natural hand mesh results than baselines, even within the
wild dataset(100DOH). For instance, in the first image,
IFVONet produces a more natural-looking thumb and
complete fingers than both HandOcc(V) and H2ONet. Such
improvements are evident in the reconstructed 3D hands,
particularly in the areas highlighted by red circles in Fig. 6.

2 IFVONet Effectively Captures Temporal Coher-
ence. To validate that IFVONet can effectively capture
the temporal coherence of 3D hands in adjacent images,
we present visualizations of the reconstructed 3D hands in
Fig. 6. The results demonstrate that the 3D hands recon-
structed by IFVONet exhibit significantly greater temporal
coherence across adjacent images compared to the baselines,
also indicating the effectiveness of the architectural design
of the proposed IFVONet.

E. Ablation Studies

We conduct ablation experiments on the HO3D-v2 dataset
using J-PE, M-PE and F-scores as the evaluation metric.
Specifically, the effectiveness of each component (PDV,
GOR, VOF) is investigated in our model architecture.
The results are shown in Table IV, where the first row
demonstrates the performance of a basic model that does
not consider the utilisation of inter-frame variation based
on a standard Transformer with Softmax activation func-
tion instead of Sigmoid function. The remaining rows in
Table IV show the results of adding sub-components to
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Figure 6. Qualitative result on HO3D-v2 and 100DOH dataset compared with the state-of-the-art methods.

the basic model. Our proposed IFVONet outperforms the
basic model, indicating that each component leads to more
accurate 3D hand mesh reconstruction and pose estimation.

Table IV
EFFECTIVENESS OF EACH COMPONENT ON HO3D-V2 (AFTER PA). TF:
STANDARD TRANSFORMER ARCHITECTURE WITH SOFTMAX FUNCTION.

Models J-PE ↓ M-PE ↓ F@5 ↑ F@15↑
TF 9.7 9.7 52.5 95
GOR 9.5 9.4 52.5 95.7
GOR + PDV 9.3 9.3 54.4 95.8
GOR + PDV + VOF 9.0 9.0 55.4 96.2

Ablation on GOR Table V shows the difference between
FIT [3] and demonstrates that our proposed combination
of Sigmoid and Batch Normalisation based attention on
the Focc and Fhand regions achieves the best performance
on J-PE, M-PE and F-scores. Compared with the standard
Transformer architecture (first row Table V), we can see
that using the Softmax attention function declines the model
performance. We also report the results of the Softmax and

Batch normalisation attention-based module. This combina-
tion produces better results when compared with FIT by
applying softmax attention on Focc and Batch Normalisation
attention on Fhand separately. Furthermore, to explore more
information from Focc, we adopt sigmoid attention instead
of softmax attention, demonstrating the best performance
on all the performance metrics, especially on M-PE. There-
fore, we demonstrate that the Sigmoid function and Batch
normalization attention can boost the model performance,
indicating the effectiveness of our GOR design.

Table V
COMPARISON OF MODELS WITH VARIOUS GOR ARCHITECTURES ON

HO3D-V2. TF: STANDARD TRANSFORMER ARCHITECTURE WITH
INTEGRATED PDV AND VOF.

GOR architectures J-PE ↓ M-PE ↓ F@5 ↑ F@15↑
Softmax attn. (Focc, Fhand) (TF) 9.5 9.5 52.6 95.7
Softmax attn. (Focc) + Sigmoid attn. (Fhand) (FIT) 9.2 9.3 54.2 95.9
Softmax attn. (Focc) + BN attn. (Fhand) 9.1 9.1 55.2 96.2
Sigmoid attn. (Focc) + BN attn. (Fhand) (Ours) 9.0 9.0 55.4 96.2

Ablation on PDV Table VI shows that the inter-frame
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variation consideration in the architecture boosts the perfor-
mance between two adjacent frames. We first compare the
performance with and without the inter-frame variation for
two adjacent frames. Compared the results when no inter-
frame variation is considered (first row Table VI), the inter-
frame variation is distinguished, leading to a more coher-
ent hand mesh result by retaining the unchanged regions.
Furthermore, we compare the inter-frame variation across
two frames and three frames. The inter-frame variation
between three frames is implemented by interacting pixels
from the nearest adjacent frames for the current frame and
distinguishing the variation between the current frame and
the last two frames. Performance evaluations show that the
inter-frame variation between three adjacent frames results in
worse performance due to overwhelming information, when
compared with two adjacent inputs.
Ablation on VOF Table VII shows the effectiveness of
dynamic fusion between inter-frame variation and global
occlusion information. When compared with the dynamic
fusion mechanism, the usage of direct addition and multi-
plication between inter-frame variation and global occlusion
features results in worse performance, since the model
cannot leverage the importance of inter-frame variations
and occlusion features. However, adopting dynamic fusion
and possibility scores calculation improves the performance,
thereby revealing the efficiencies of adaptively combining
the global occlusion and inter-frame variation information.

Table VI
COMPARISON OF MODELS WITH VARIOUS PDV ARCHITECTURES ON

HO3D-V2.

PDV architectures input frames J-PE ↓ M-PE ↓ F@5 ↑ F@15↑
Without inter-frame variation 2 9.4 9.4 53.6 95.8
With inter-frame variation (Ours) 2 9.0 9.0 55.4 96.2
With inter-frame variation 3 9.6 9.6 52.4 95.4

Table VII
COMPARISON OF MODELS WITH VARIOUS VOF ARCHITECTURES ON

HO3D-V2.

VOF architectures J-PE ↓ M-PE ↓ F@5 ↑ F@15↑
Addition 9.6 9.5 52.6 96.4
Multiplication 9.4 9.4 53.3 95.9
Dynamic Fusion (Ours) 9.0 9.0 55.4 96.2

V. CONCLUSION

In this paper, we proposed a novel hand mesh framework
named IFVONet, which parses hand comprehensive repre-
sentation from inter-frame variation and occlusion informa-
tion. Furthermore, to better leverage the balance between
inter-frame variation and global occlusion information, our
proposed IFVONet utilised a dynamic feature fusion mech-
anism that makes hand features more robust to occlusion
and maintains the temporal hand feature in the sequence

data. Experimental results on the 3D hand mesh benchmark
achieved the latest state-of-the-art 3D hand reconstruction
performance.

In future work, we intend to explore inter-frame variation
from long historical frames for 3D hand reconstruction and
extend the proposed methodology to other domains, such
as human pose estimation. Specifically, we intend to further
optimize the effectiveness of the proposed module in chal-
lenging occlusion scenarios, such as darkness environments
or multi-hand occlusion scenarios.
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