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Abstract

Imaging the electrical activity of the heart can be achieved with invasive catheterisation.
However, the resulting data are sparse and noisy. Mathematical modelling of cardiac
electrophysiology can help the analysis but solving the associated mathematical systems
can become unfeasible. It is often computationally demanding, for instance when solving
for different patient conditions. We present a new framework to model the dynamics
of cardiac electrophysiology at lower cost. It is based on the integration of a low-fidelity
physical model and a learning component implemented here via neural networks. The latter
acts as a complement to the physical part, and handles all quantities and dynamics that
the simplified physical model neglects. We demonstrate that this framework allows us to
reproduce the complex dynamics of the transmembrane potential and to correctly identify
the relevant physical parameters, even when only partial measurements are available. This
combined model-based and data-driven approach could improve cardiac electrophysiological
imaging and provide predictive tools.
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1. Introduction

Mathematical modelling of the heart has been an active research area for decades, and it
is now more and more coupled with artificial intelligence approaches (Mansi et al., 2020;
Giffard-Roisin et al., 2017; Karoui et al., 2021; Trayanova et al., 2021). Among the multi-
physics phenomena involved in cardiac function, cardiac electrophysiology (EP) models can
accurately reproduce electrical behaviour of cardiac cells.

© 2022 V. Kashtanova, I. Ayed, A. Arrieula, M. Potse, P. Gallinari & M. Sermesant.



DL for Model Correction in Cardiac EP Imaging

In order to describe the dynamics of transmembrane voltage, current, and different ionic
concentrations in the cardiac cell, biophysically detailed models such as the Ten Tusscher-
Panfilov model (Ten Tusscher et al., 2004; Ten Tusscher and Panfilov, 2006) have been
proposed. However, these models are complex and computationally expensive, and have
many hidden variables which are impossible to measure, making model parameters difficult
to personalise. Another type of model, phenomenological models, are simplified models
derived from biophysical models. Examples include the FitzHugh-Nagumo, Aliev-Panfilov,
and Mitchell-Schaeffer models (FitzHugh, 1961; Nagumo et al., 1962; Aliev and Panfilov,
1996; Nash and Panfilov, 2004; Mitchell and Schaeffer, 2003). These models employ fewer
variables, they have fewer parameters and are therefore especially useful for rapid compu-
tational modelling of wave propagation at the organ level. However, they are less realistic
and therefore need a complementary mechanism to fit them to the measured data. Ma-
chine learning and in particular deep learning (DL) approaches could help providing such
a correction mechanism. The combination of rapid phenomenological models and machine
learning components could then allow the development of rapid and accurate models of
transmembrane dynamics.

In the last few years, DL neural networks have been increasingly used in order to learn
dynamical models from data motivating a large number of publications. For example, Long
et al. (2018, 2019) endowed neural layers with additional structure, useful for learning PDEs.
Chen et al. (2018) used the adjoint method to learn differential equations parametrised with
neural networks. Ayed et al. (2019b) propose a framework for learning models using a purely
data driven approach in partially observable settings. Willard et al. (2020) propose a broad
survey of ML for physics-based modeling.

In spite of achieving good progress in cardiac electrophysiology simulations (Ayed et al.,
2019a; Kashtanova et al., 2021) data-driven models alone could not reproduce the com-
plex unseen dynamics like the repolarisation (Kashtanova et al., 2021), and the maximum
forecasting horizon is still limited. For this reason, researchers have begun to use cou-
pled physico-statistical approaches for cardiac electrophysiology simulations with a high
precision and at low cost. For example, Court and Kunisch (2021) designed a neural net-
work that approximates the FitzHugh-Nagumo model, Sahli Costabal et al. (2020) used a
physics-informed neural network for cardiac activation mapping accounting for underlying
wave propagation dynamics, Fresca et al. (2021) proposed an approach to create a nonlin-
ear reduced order model with the help of deep learning algorithms (DL-ROM) for cardiac
electrophysiology simulations, and Herrero Martin et al. (2022) present a physics-informed
neural network for accurate action potential simulation and EP model parameter estima-
tion. However, the majority of these coupled approaches bases on high-fidelity physical
models and fits them to the data. This could be computationally expensive and cannot
manage large discrepancies between simulated and real data.

To alleviate this limitation, we propose a framework to Augment incomplete PHYsical
models with a deep learning component for ideNtifying comlex cardiac ElectroPhysiology
dynamics (APHYN-EP) from data, based on a fast low-fidelity (or incomplete) physical
model. This framework has two components which decompose the dynamics into a physical
and a data-driven term. The data-driven deep learning component is designed so as to
capture only the information that cannot be modeled by the incomplete physical model.
The proposed model closely follows the approach of Yin et al. (2021). But in contrast
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to this work, that considers fully-observable dynamics and simple test use cases, cardiac
electrophysiology dynamics have a high complexity and represent simultaneously multiple
underlying processes. Furthermore, most cardiac electrophysiology models lack measure-
ments for some variables, which makes them partially-observable and requires inferring the
dynamics from incomplete observations only. Fig. 1 presents the general framework of our
approach. Training amounts to identifying the physical model parameter (inverse problem)
and learning the neural network parameters (direct problem) together. After training, the
model can be used for forecasting at multiple horizons.

Simple EP
model  Fp

DL model  Fa

+ ODE Solver(XT, Fp+ Fa, (T+1:T+   ) )

Fp, Fa
 min   ||Fa|| 

s t    dXt / dt = (Fp+Fa)(Xt) 

Physical / DL cooperation treaning
Estimated physical

parameters

Data Forecasted  
data

Figure 1: General APHYN-EP framework scheme. During the training phase two-
component framework learn the parameters for the physical (Fp) and the data-
driven (Fa) components from data. Then via an ODE solver the framework can
forecast further the learned dynamics.

2. Learning Framework

To learn cardiac electrophysiology dynamics (Xt) we solve an optimization problem via
a physics-based data-driven framework APHYN-EP. This framework combines a physical
model (Fp) representing an incomplete description of the underlying phenomenon and a
neural network (Fa) which will complement the physical model by capturing the information
that cannot be modeled by the physics component:

min
Fp∈Fp,Fa∈Fa

‖Fa‖ subject to ∀X ∈ D, ∀t, dXt

dt
= F (Xt) = (Fp + Fa)(Xt). (1)

Our incomplete physical model is the two-variable (v, h) model by Mitchell and Schaeffer
(2003) for cardiac electrophysiology simulation (2). The variable v represents normalised
(v ∈ [0, 1]) dimensionless transmembrane potential while the “gating” variable h controls
the repolarisation (return to the initial state):

∂tv = div (σI∇v) +
hv2(1− v)

τin
− v

τout
+ Jstim

∂th =

{
1−h
τopen

if v < vgate

−h
τclose

if v > vgate

(2)

where Jstim is a transmembrane potential activation function, which is equal to 1 in the
stimulated area during stimulation time (tstim). This physical model has been successfully
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used in patient-specific modelling (Relan et al., 2011), it covers general electrophysiology
dynamics and, in contrast to more detailed electrophysiology models, it is flexible in terms
of spatial and temporal steps. Assuming that we can obtain the coordinates of an applied
electrical stimulation from the data and using v(t = 0) ≡ 0 and h(t = 0) ≡ 1 we can
calculate an approximation of h for any time point t with the help of a simple integration
scheme.

For the data-driven component we use a Residual Network (ResNet) (He et al., 2016),
because it can accurately reproduce transmembrane potential dynamics (Ayed et al., 2019a;
Kashtanova et al., 2021). The choice of data-driven component is not limited by the ResNet
architecture. We performed preliminary experiments with other types of convolutional
networks (out of scope for this paper), but overall the ResNet model was the more stable
along the different simulations.

Instead of solving the ODE in Eq. (1), we use an integral trajectory-based approach
which is robust and less sensitive to the time resolution (Yin et al., 2021). We compute

the next state X̃
(i)
h∆t from the initial state X

(i)
0 as an approximate solution of the integral∫ X(i)

0 +h∆t

X
(i)
0

(F
θp
p + F θaa )(Xs) dXs obtained by a differentiable ODE solver (Chen et al., 2018,

2021). The APHYN-EP training uses an algorithm adapted from Yin et al. (2021).

Algorithm 1: APHYN-EP

Initialization: θ0, λ0 ≥ 0, τ > 0;
for epoch = 1 : Nepochs do

for batch in 1 : B do

Ltraj(θj) =
∑N

i=1

∑T/∆t
h=1 ||X

(i)
h∆t − X̃

(i)
h∆t||

θj+1 = θj −∇ [λjLtraj(θj) + ‖Fa‖]
end
λj+1 = λj+ τLtraj(θj+1)

end

Additionally, in order to train simultaneously the physical and the data-driven compo-
nents of APHYN-EP via automatic differentiation tools (provided by the Pytorch library
(Paszke et al., 2019)) we implemented the Laplace operator in (2) with a simple finite-
difference scheme. To avoid difficulties with high time resolution required in this numerical
scheme we used two different time steps in the integration schemes for the physical compo-
nent computations and for the computations of the final forecast given by the framework.

3. Experimental settings

3.1. Data collection

To evaluate our method, we used a dataset of transmembrane potential activation simulated
with a monodomain reaction-diffusion equation and the Ten Tusscher – Noble – Noble –
Panfilov ionic model (Ten Tusscher et al., 2004), which represents 12 different transmem-
brane ionic currents. The simulations were performed with a recent version of the propag-5
software (Krause et al., 2012; Potse, 2018) with a spatial step of 0.2 mm and a time step of
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1 ms, the same as used by Ten Tusscher et al. (2004). The computational domain represents
a slab of 2D cardiac tissue of size 24 × 24 elements. For one data sample, one stimulation
was applied for 1 ms in the selected area for transmembrane potential activation. Since
the grid was symmetric under 90-degree rotations, the stimulations were done only on each
grid point of the first quarter of the cardiac slab. Then, we applied data-augmentation
techniques to translate the simulations on the three remaining quarters. Overall we had a
database of 500 training samples and 100 validation samples. Each simulation represented
500 ms of propagation, which represents 40 seconds of computation on a 12-core Intel Xeon
W-2133 CPU.

The data simulated via the Ten Tusscher model are considered here as the ground truth.
The objective is then to learn the complex dynamics generated with this model with the
APHYN-EP model combining a simplified physics description with a deep learning compo-
nent. This will result in a low computational cost surrogate model of the computationally
intensive Ten Tusscher model.

3.2. Training settings

The physical model (Fp) of Eq. 2 was implemented with a standard finite-difference scheme
for the Laplace operator with a spatial resolution of 1 mm2 pixels and inner time resolution
of 0.01 ms. We estimated only σ and τin as unknown parameters in (2), because they
represent the major part of early dynamics (velocity and upstroke) and therefore the main
difference between the Mitchell–Schaeffer and the Ten Tusscher – Noble – Noble – Panfilov
models in our simulations. The initial Mitchell-Schaeffer model parameters are taken as
in the original paper (Mitchell and Schaeffer, 2003): τout = 6, τopen = 120, τclose = 150,
vgate = 0.13 and tstim = 1. The data-driven model (Fa) is ResNet with 8 filters at the initial
stage, one down-sampling initial layers and three intermediary blocks, and starts with a
re-weighted orthogonal initialisation for its parameters.

We used a time resolution of 0.1 ms to compute the forecast given by APHYN-EP.
Training was performed using a horizon of 6 time frames. Training was performed by
learning a 4 frames horizon for the first 10 epochs, and then 6 frames. This leads to more
stable results. We trained APHYN-EP until full model convergence (about 100 epochs)
using an ADAM optimiser (Kingma and Ba, 2014) with initial learning rate of 10−3. The
algorithm hyper-parameters λ0 and τ were set to 1 and 103 respectively.

The code and data used for APHYN-EP training are freely available on the official
github project page.

4. Results

We present here qualitative results on the forecast over 9 ms after assimilating only one first
frame of dynamics (see Fig. 2). These first 9 ms represent an important part of the cardiac
dynamics from early depolarisation to full depolarisation. We can observe a very good
agreement between the ground truth and the forecast transmembrane potentials generated
by APHYN-EP in Fig. 3. The correction term brought by Fa is clearly visible.

Table 1 shows the mean squared error (MSE) results for our framework for different
forecasting horizons on validation data samples. To calculate this error, for each data sam-
ple, we fed the model with only one initial test measurement, then let it predict several
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Table 1: Mean-squared error (MSE) of normalised transmembrane potential forecasting per
time-step for different forecasting horizons.

MSE (6 ms) MSE (12 ms) MSE (24 ms) MSE (50 ms)
APHYN-EP 0.0057 0.0037 0.0029 0.002
Physical model only 0.0093 0.0111 0.0096 0.0085
Resnet model only 0.0195 0.0220 0.1593 9.9212
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Figure 2: APHYN-EP predicted dynamics for the transmembrane potential diffusion. The
figure shows a 9 ms of forecast).
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Figure 3: (a,b) Transmembrane potential at point (10,10) in the cardiac slab (red point,
see Fig. 2) with different forecasting horizons. Ground truth (GT), APHYN-EP,
physical (Fp) and data-driven (Fa) component of APHYN-EP.

steps forward without any additional information. We also added for comparison two base-
line models corresponding to the two components of our model, each used alone: only the
“incomplete” physical model and only the data-driven model (ResNet) trained on the same
dataset as APHYN-EP, described in 3.1. As we can see, APHYN-EP captured the observed
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dynamics with good precision for different time horizons, even if for training we used only
the first 6 ms. In the same time, the pure physical and the data-driven models when used
alone struggle to learn the proper dynamics. Figure 5 visually confirms those numerical re-
sults. The physical model (as well as APHYN-EP) correctly identifies the velocity and the
activation time of transmembrane potential, but not the transmembrane potential values,
due to its physical construction and limitations. The data-driven model can have a good
precision, but it reproduces only average dynamics and is very sensitive to self-generated
noise, which is crucial when forecasting.
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Figure 4: Predicted dynamics for the transmembrane potential diffusion by APHYN-EP
physical component (second row), error with ground-truth diffusion for this phys-
ical component of APHYN-EP (third row), and trained APHYN-EP data-driven
component contribution (bottom row).

Figures 3 and 4 represent the performance of different components of APHYN-EP and
their contribution to the final result. We can see which part of the generated transmembrane
potential was created by the physical component of the framework (see Fig. 4 (second row)).
The data-driven component was used only to correct the difference between the ground-
truth dynamics and the physical part (see Fig. 4 (third and fourth rows)).

5. Conclusion

We have presented the APHYN-EP framework for modeling complex cardiac electrophysiol-
ogy dynamics via a surrogate model combining simplified physics and deep neural networks.
We demonstrated that this framework is able to reproduce with good precision the dynam-
ics simulated by the Ten Tusscher – Noble – Noble – Panfilov ionic model, even using a
simplified electrophysiology model as a physical component of the framework.

Such framework opens up possibilities in order to introduce prior knowledge in deep
learning approaches through explicit equations and to correct model errors from data.

Future work will evaluate this framework on more challenging settings: presence of scars,
multiple onsets and various conduction velocities in the cardiac tissue slab. We also left for
the future the adaptation of the APHYN-EP application on the surface of real 3D heart.
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Figure 5: Transmembrane potential ground truth (GT), generated by APHYN-EP, by
Physical model and ResNet model at the leftmost upper point (1,1) (a,b), at
point (10,10) (c,d) and the rightmost bottom point (23,23) (e,f) in the cardiac
slab with different forecasting horizons, the same GT dynamics as at Fig. 2-3.
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Investments in the Future project managed by the National Research Agency (ANR) with

8



DL for Model Correction in Cardiac EP Imaging

the reference number ANR-19-P3IA-0002, through the “Research and Teaching chairs in
artificial intelligence (AI Chairs)” funding for DL4Clim project, and through ANR grant
reference ANR-10-IAHU04-LIRYC. The research leading to these results has also received
European funding from the ERC starting grant ECSTATIC (715093). The authors are
grateful to the OPAL infrastructure from Université Côte d’Azur and to HPC resources of
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Stefania Fresca, Andrea Manzoni, Luca Dedè, and Alfio Quarteroni. POD-enhanced deep
learning-based reduced order models for the real-time simulation of cardiac electrophysi-
ology in the left atrium. Front. Physiol., 12, 2021.

Sophie Giffard-Roisin, Thomas Jackson, Lauren Fovargue, Jack Lee, Herve Delingette, Reza
Razavi, Nicholas Ayache, and Maxime Sermesant. Non-invasive personalization of a
cardiac electrophysiology model from body surface potential mapping. IEEE Trans.
Biomed. Eng., 64(9):2206–2218, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE conf. CVPR, pages 770–778, 2016.

Clara Herrero Martin, Alon Oved, Rasheda A. Chowdhury, Elisabeth Ullmann, Nicholas S.
Peters, Anil A. Bharath, and Marta Varela. EP-PINNs: Cardiac electrophysiology char-
acterisation using physics-informed neural networks. Front. Cardiovasc. Med., 8, 2022.

Amel Karoui, Mostafa Bendahmane, and Nejib Zemzemi. Cardiac activation maps recon-
struction: a comparative study between data-driven and physics-based methods. Front.
Physiol., 12:1265, 2021.

9



DL for Model Correction in Cardiac EP Imaging

Victoriya Kashtanova, Ibrahim Ayed, Nicolas Cedilnik, Patrick Gallinari, and Maxime Ser-
mesant. EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac
electrophysiology. In Int. Conf. FIMH, volume 12738 of Lecture Notes in Computer Sci-
ence, pages 482–492. Springer International Publishing, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint:1412.6980, 2014.

Dorian Krause, Mark Potse, Thomas Dickopf, Rolf Krause, Angelo Auricchio, and Frits W.
Prinzen. Hybrid parallelization of a large-scale heart model. In Facing the Multicore-
Challenge II, volume 7174 of Lecture Notes in Computer Science, pages 120–132. Springer,
2012.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-net: Learning PDEs from
data. In Int. Conf. ICML, pages 3208–3216. PMLR, 2018.

Zichao Long, Yiping Lu, and Bin Dong. PDE-net 2.0: Learning PDEs from data with a
numeric-symbolic hybrid deep network. J. Comput. Phys., 399:108925, 2019.

Tommaso Mansi, Tiziano Passerini, and Dorin Comaniciu. Artificial Intelligence for Com-
putational Modeling of the Heart. Elsevier, 2020.

Colleen C Mitchell and David G Schaeffer. A two-current model for the dynamics of cardiac
membrane. Bull. Math. Biol, 65(5):767–793, 2003.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating
nerve axon. Proceedings of the IRE, 50(10):2061–2070, 1962.

Martyn P. Nash and Alexander V. Panfilov. Electromechanical model of excitable tissue to
study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol., 85(2):501–522, 2004.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imper-
ative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst., 32,
2019.

Mark Potse. Scalable and accurate ECG simulation for reaction-diffusion models of the
human heart. Front. Physiol., 9:370, 2018.

Jatin Relan, Phani Chinchapatnam, Maxime Sermesant, Kawal Rhode, Matt Ginks, Hervé
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