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ABSTRACT

Humans and many animals show remarkably adaptive behavior and can respond
differently to the same input depending on their internal goals. The brain not only
represents the intermediate abstractions needed to perform a computation but also
actively maintains a representation of the computation itself (task abstraction). Such
separation of the computation and its abstraction is associated with faster learning,
flexible decision-making, and broad generalization capacity. We investigate if such
benefits might extend to neural networks trained with task abstractions. For such
benefits to emerge, one needs a task inference mechanism that possesses two crucial
abilities: First, the ability to infer abstract task representations when no longer
explicitly provided (task inference), and second, manipulate task representations to
adapt to novel problems (task recomposition). To tackle this, we cast task inference
as an optimization problem from a variational inference perspective and ground
our approach in an expectation-maximization framework. We show that gradients
backpropagated through a neural network to a task representation layer are an
efficient heuristic to infer current task demands, a process we refer to as gradient-
based inference (GBI). Further iterative optimization of the task representation
layer allows for recomposing abstractions to adapt to novel situations. Using a toy
example, a novel image classifier, and a language model, we demonstrate that GBI
provides higher learning efficiency and generalization to novel tasks and limits
forgetting. Moreover, we show that GBI has unique advantages such as preserving
information for uncertainty estimation and detecting out-of-distribution samples.

1 INTRODUCTION

Cognitive science and neuroscience hold a prominent place for (top-down) abstract task representa-
tions in many accounts of advanced cognitive functions in animals, including humans (Niv, 2019).
The brain not only represents the intermediate abstractions needed to perform a task but also actively
maintains a representation of the task itself (i.e., task abstraction, (Mante et al., 2013; Rikhye et al.,
2018; Zhou et al., 2019; Vaidya et al., 2021; Hummos et al., 2022)). Such separation of the computa-
tion and its abstraction is theorized to support learning efficiency, as well as adaptive behavior. First,
regarding learning efficiency, task abstractions facilitate learning by organizing experiences collected
(Yu et al., 2021). Human participants learn faster once they discover the underlying task structure
(Badre et al., 2010; Collins, 2017; Vaidya et al., 2021; Castañón et al., 2021). In fact, humans have a
bias to discover and use such latent task structures even when they do not exist or might hurt their
performance (Gaissmaier & Schooler, 2008; Collins, 2017). Second, regarding adaptive behavior,
previous work has shown that the brain updates these task abstractions to meet current task demands
of the environment and (re)composes them to solve new problems (Miller & Cohen, 2001; Collins &
Koechlin, 2012). Indeed, depending on the context, the brain is able to respond to the same sensory
input in novel ways by composing an appropriate task abstraction that guides processing of the input
(Rikhye et al., 2018; Tafazoli et al., 2024), supporting flexible decision making and generalization to
novel situations (Collins & Koechlin, 2012; Vaidya et al., 2021).

Traditional artificial neural networks (ANNs) architectures have a static computational graph that
entangles input processing with task inference. For task-dependent computations in ANNs, one
popular solution is to build task representations into the structure of the network by using modular
networks; where each module could represent a given task (Andreas et al., 2016; Kirsch et al., 2018;
Goyal et al., 2019). Alternatively, one could regularize the weight updates such as to maximize an
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orthogonal computational space for each task (Kirkpatrick et al., 2017; Masse et al., 2018). Our
framework is most related to models that add task encoding input layers, which provide information
about the current task demands to the network (Yang et al., 2019; Hurtado et al., 2021; Wang &
Zhang, 2022; Kumar et al., 2022; 2024).

However, these previous models lack two important task inference features which we unpack in what
follows and motivate our work. First, these models do not propose a mechanism to efficiently identify
these tasks if they appear again in data, and thereby flexibly (re)adapt to the demands of previously
encountered task. Second, and perhaps most importantly, these models lack a principled way of
recomposing previously learned task abstractions, thereby minimizing the necessity for new learning
(i.e. parameters update) to adapt to new situations (Lake et al., 2017). Importantly, neural systems
impose a unique constraint on such task inference and recomposition mechanisms. As the neural
system ’learns’ through updating parameters, previous values in the task abstractions layer might
become outdated. Thereby, the task inference mechanisms must be able to adjust dynamically to
changes in neural parameters.

To address the challenge of an efficient inference mechanism that can capture the two properties just
described, and maintain alignment to neural parameters, we propose Gradient-Based Inference (GBI)
of task abstractions. This solution is grounded in variational inference, offering a robust and flexible
framework. For an intuitive example of this framework, we consider that during upbringing, we may
observe situations where people’s feelings were labeled as sadness or as anxiety. As we interact with
others we may try to infer their emotional states relying on subtle cues. We incrementally adjust
our conclusions with every cue, moving closer to one emotion or the other, as make predictions and
receive feedback during the interaction. If, by the end of the interaction, both emotions seem equally
likely, then either the situation is uncertain or that the person is experiencing an emotion outside of
those two. Another promising class of models used iterative optimization in task abstractions space
to discover latent tasks and associate them with an internally generated task abstractions (Butz et al.,
2019; Hummos, 2023; Sandbrink et al., 2024). While these models offered a solution for continual
learning, they relied on rounds of iterative optimization in task abstractions space, and were based on
a limited understanding of of gradient descent dynamics in this space. GBI tackles the computational
efficiency by investigating a role for one-step gradients to infer task abstractions. Further, by using
pre-defined human-labeled task abstractions we were able to assess the accuracy and uncertainty
estimates of gradient-based inference in task abstraction space.

Our findings confirm that empirical findings from cognitive science do indeed extend to neural
networks. During training, providing task abstractions leads to faster learning (improved data-
efficiency), and limits forgetting by inducing task-specific modules in the underlying neural network.
During test, with weights frozen, models trained with task abstractions show adequate task inference
through GBI, and can be adapted rapidly to produce different responses to the same input with better
capacity to generalize. We first show these results in an intuitive contextual switching task for which
we know the underlying Bayesian generative model. We then consider image classification datasets
starting with MNIST and scaling up to CIFAR-100 (image generation, section 3.2). Further, this
image generation framework allows us to test the capacity for the detection of out-of-distribution
(OOD) samples and estimating uncertainty. In a third experiment (language experiment, section
3.3), we show that GBI is a domain-general method, and demonstrate several of these results in
language modeling, specifically, task inference, data efficiency, and generalization.

2 METHODS

Overview. We assume a dataset is equipped with a task abstraction. Conceptually, a task abstraction
groups data samples into conceptual categories defined across dataset samples rather than individual
data points. Mathematically, we model this by a graphical model where the data point X is generated
from a task abstraction Z. Now we use a neural network to model this graphical model with data
X, task abstraction Z and unknown parameter θ, our neural network model has the form of a joint
likelihood function

L(θ;X,Z) = p(X,Z|θ). (1)

At the training phase, given a data point X with the abstraction of interest Ẑ directly observed, we
train the neural network by doing gradient descent on − logL(θ;X, Ẑ) with respect to θ.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

At the test phase, we no longer assume access to task abstraction Z and require the model to identify
them in individual data points efficiently. Moreover, we require for our model a mechanism to
manipulate the abstract representations to adapt to new unseen situations. Specifically, we update our
Z through gradient descent on − logL(θ;X,Z).

The prediction of the model with task abstraction Z is

X̂ = argmax
X
L(θ;X,Z). (2)

Connections to Expectation-Maximization algorithm. Notice that this method has deep connec-
tions to the classical Expectation-Maxmimization (EM) algorithm. In the training phase, since Ẑ is
drawn from the distribution pZ|X, the training attempts to find θ̂ such that

θ̂ = argmax
θ

EpZ|X [logL(θ;X,Z)]. (3)

Equation 3 is a compact way to write the classical EM algorithm where the expectation steps are
replaced by direct observation. Let the probability distribution of Z be q. We can write

log p(X|θ) = Eq[log p(X|θ)] (4)
= Eq[log p(X,Z|θ)− log p(Z|X, θ)]. (5)

By adding and subtracting an entropy of q, we have

= Eq[log p(X,Z|θ)] +H(q) +KL(q||pZ|X) (6)

where KL divergence KL(q||p) is defined as −Eq[log
p
q ] and the entropy H(q) is defined as

−Eq[log q]. Now the expectation step corresponds to find q such that Eq[log p(X,Z|θ)] +H(q) is
maximized. Notice that this is equivalent to minimizing the KL divergence KL(q||pZ|X) and we know
it is minimized at 0 when q = pZ|X. In particular, we have Eq[log p(X,Z|θ)] +H(q) = log p(X|θ).

At the maximization step, we find θ such that Eq[log p(X,Z|θ)] + H(q) is maximized, but since
H(q) does not depend on θ, it is equivalent to maximize Eq[log p(X,Z|θ)] and therefore it is exactly
Equation 3.

At our testing phase, since we are not able to access pZ|X directly, we optimize q through gradient
descent. Our objective is exactly the expectation step with the regularization term H(q) implemented
as L2 regularization on Z.

There are different methods to optimize Z and we discuss two methods we use in this paper, iterative
optimization and one-step gradient update below to obtain gradient-based inference (GBI) estimates
over latent variable values.

Iterative optimization of Z. One method for doing gradient descent on Z is to iteratively optimize
z using the gradient ∂L/∂z. We implement iterative optimization using Adam optimizer with a
learning rate of 0.01 and L2 regularization scaled by 0.01. This method usually takes many iterations
(Marino et al., 2018). Another method is to learn an update rule fϕ(·) that converts the gradient
directly into an inferred z ← fϕ(∂L/∂z) (Marino et al., 2018). This method allows for rapid
inference during run time but requires training of the update rule (like other meta-learning methods).

One-step gradient update. We explore an alternative that requires only one pass through the
model by updating the gradient only once. Without iteratively optimizing Z through gradient update,
one-step gradient update usually heavily depends on the initialization: because if the initialization
is far away from the optimal Z, the local gradient information might not be informative of the
global optimum. However, notice that in the expectation step, our goal is to find the probability
distribution of Z, q, such that Eq[log p(X,Z|θ)]+H(q) is maximized. We can consider an alternative
objective function fα(q) = Eq[log p(X,Z|θ)] + αH(q) for some α > 0 and let q∗α be the point that
maximizes this alternative objective function. Since entropy is concave, by increasing α we make
the function more concave and therefore the gradient is more informative of the actual optimum
(Fig 1B). Furthermore, q∗α will also become closer to the maximal entropy point q̄ = argmaxq H(q).
Therefore we can choose our initialization point as the maximal entropy point and output q̂ using our
one step gradient update rule:

q̂ = softmax(q̄ +∇fα(q̄)). (7)
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Figure 1: Schematics of the framework. A) Schematic of training phase and testing/generalization
phase. During training, ground truth Z provided to the model and neural parameters θ are optimized.
During testing, θ remains fixed, while Z is inferred using gradient descent. B) Schematic of how
regularization of Z during training shapes the task abstraction space. Z values for Task A and B are
pushed towards the maximum entropy point in Z, and are organized on the entropy curvature around
the max entropy points. Gradient steps from the maximal entropy points then push the model towards
the Z values of the appropriate task representation.

Here, we use a softmax function to project q back to the space of distribution. We implement
this update using the SGD optimizer with learning rate 1 and no momentum terms. We reset our
initialization point to maximal entropy to obtain q̂ for the next data point.

In the following section, we implement these methods in a toy task (for comparison to Bayesian
inference), an image generation and classification model, and finally, a simple language model. Code
available at https://anonymous.4open.science/r/neuralbayes-F06F/.

3 EXPERIMENTS

The experiments are organized as follows. In Section 3.1, we first investigate the properties of GBI
on a simple synthetic dataset generated from a ground truth Bayesian model. We show that GBI
displays better data-efficiency, generalizes better and forgets less, in addition to being able to pass
neural gradients back to the Bayesian model to support Bayesian computations. Section 3.2 assesses
the potential of GBI as a novel image classifier, the GBI ability to generate task samples, and to detect
OOD samples. Finally, in Section 3.3, we demonstrate the abilities of GBI to recompose previously
learned tasks, and thereby flexibly adapt to novel tasks using a language model.

3.1 EXPERIMENT 1, TOY TASK: TASK ABSTRACTIONS REDUCE FORGETTING AND IMPROVE
GENERALIZATION BY INDUCING TASK MODULES

We begin with a simple dataset of one-dimensional observations unfolding in time, x0:t. The observa-
tions are generated from two alternating Gaussian distributions with distinct means (N (0.2, 0.1) or
N (0.8, 0.1), Fig 6A, C). The ground truth generative causal model (Fig 6A) has the task node (z)
as a binary variable with values either z1 = [0, 1] or z2 = [1, 0]. Context node switched between
those two values with a probability Pv = 0.005, but we enforced a minimum block length of 20 and a
maximum of 50 (further details in Appendix B). Knowing the ground truth generative model, we can
analytically calculate the likelihood of each zi as p(xt|zi) and the posteriors p(zi|x0:t)(Fig 6C).

To estimate these Bayesian quantities from a neural network, we train a 100-unit LSTM (Hochreiter
& Schmidhuber, 1997) to predict the next observation xt+1 given: (i) the five previous observations
({xt, ..., xt−h}, h = 5) presented sequentially, and (ii) a task abstraction input which we set to the
task z values, one-hot encoded with either [0, 1] or [1, 0] after passing through a softmax function.
We name this model GBI-LSTM and train it on the task (training details in appendix B), and in the
following sections, we compare its learning dynamics to an LSTM with no such task input.

GBI-LSTM is data efficient. GBI-LSTM learns the task faster (i.e. better data efficiency) (Fig
2C,D). Example full runs in appendix B (Fig S9), (LSTM, Fig S8). On one hand, this seems obvious
as the GBI-LSTM gets additional contextual information, but on the other hand, the task is simple
enough that it is not clear that a 100-unit LSTM needs the additional information. To explain, we
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Figure 2: Training on a toy sequence prediction task with and without task abstractions input. One-
dimensional data is generated from a Gaussian distribution that flips its mean every 20-50 timesteps
(between µ1 = 0.2 or µ2 = 0.8, with fixed standard deviation σ at 0.1). An example training data for
A) an LSTM trained with task input (GBI-LSTM) and B) without task input (LSTM). C) We compare
the training loss of GBI-LSTM and LSTM. Note the variability in these loss estimates despite
the simulation run over 10 random seeds is due to the stochastic block transitions still coinciding
frequently. D) We show the mean loss per block but exclude the initial 20 predictions in each block to
exclude poor performance from either model limited to transitioning between tasks. E) We quantify
the ratio of shared neurons active in the 0.2 blocks and the 0.8 blocks using ‘task variance’ to identify
engaged neurons. We binned training blocks into groups of 5 to aggregate the data and increase
accuracy.

reasoned that the available task abstraction deeply influences what solutions the network learns and
allows for modules to emerge for each task. We used ‘task variance’ to identify neurons active in each
task, a measure used in neuroscience literature (Yang et al., 2019). We identify active neurons by
selecting units with the highest variance across samples of inputs and outputs for a task. We see that
neurons for each task overlap in the LSTM but separate into modules in the GBI-LSTM, throughout
training (Fig 2E). At inference time, with weights frozen, the baseline LSTM handles task transitions
efficiently (Fig S8). The GBI-LSTM has the weights frozen but we now iteratively optimize the task
abstraction layer z using vanilla SGD optimizer with a learning rate of 0.5 and we see that it also
transitions between tasks by updating its task abstraction input z (Fig 3A-C, Fig S9).

GBI-LSTM generalizes better and forgets less. GBI-LSTM generalizes better to values outside
of the training range (Fig 3D). By using iterative optimization, a gradient step in Z every time step,
the GBI-LSTM can interpolate and better predict data points drawn from other distributions far from
the two training distributions (Fig 3E). Moreover, we observe that the baseline LSTM already shows
signs of catastrophic forgetting in this very simple setting. Testing MSE is worse around one of the
two training means depending on which mean generated the last block of data during training. In
figure 3D, we show the responses from runs where the last training block had the 0.2 Gaussian mean
active. In contrast, as quantified in Table 1 the GBI-LSTM shows no signs such forgetting (Fig 3E).

Table 1: Quantifying the generalization and forgetting on the toy task. Both models were trained on
data generating means 0.2 and 0.8. We aggregate model prediction errors (mean MSE values ± SEM)
tested on data generated from means -0.2 through 1.2. We identified the data generating mean during
the second last block of the training sequence to assess forgetting. 20 runs with different seeds.

Data range LSTM MSE GBI-LSTM MSE
Second last training block (0.2 or 0.8) 0.30 ± 0.03 0.24 ± 0.02
Inside training range (0.3-0.7) 0.27 ± 0.02 0.25 ± 0.01
Outside training range (<0.2 & >0.8) 0.35 ± 0.06 0.26 ± 0.03

Bayesian properties of GBI-LSTM. We can use our GBI-LSTM for inference, i.e. approximate
Bayesian quantities such as the posterior and the likelihood function of z. We distinguish between
two ways we can use the GBI-LSTM, first by taking one-step gradient updates from maximal entropy
points (‘default state’ mode) and second is the iterative optimization of the task abstraction z at a
lower learning rate (‘task-engaged’ mode) which we used above to perform the task and generalize
to novel data. In the ‘default state’ mode, we set the task abstraction layer to its state of maximum
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Figure 3: Neural network trained with task abstractions can dynamically tune itself to incoming
data and generalizes to novel data points. A) Responses of the GBI-LSTM to sample data and
B) the gradients of the prediction loss w.r.t. to the two Z units. C) Iteratively optimized Z values
accumulating evidence dynamically. D) As a generalization test, while the network was trained on
data from Gaussians with means 0.2 and 0.8, we test its responses to Gaussians between -0.2 to 1.2
(in 0.1 increments). We record the mean MSE values across 20 runs with different random seeds and
compare to the baseline LSTM trained without task abstraction input. We only show runs where the
last block of training was a 0.2 block, to highlight models behavior on that mean vs the other (0.8). E)
The mean of the Gaussian data vs. the mean network predictions in each generalization block. These
results are further quantified in Table 1. F-H) We show the other mode of using the same GBI-LSTM
for gradient-based inference. We fix the task abstraction input Z to its state of maximum entropy
(here [0.5, 0.5]) and take gradients from that point. While the network responds in the middle (F),
the gradients w.r.t to Z (G) or similarly, the one-step gradient descent Z values behave much like the
likelihood function, c.f. values computed using a Bayesian graphical model 6C.

entropy (here, the mean of the two values observed in training). For each time step, we take one
step in z space to lower the prediction error, and then reset to max entropy for the next point. These
one step z values (Fig 3H) behave much like the likelihoods of z computed through the ground truth
causal model (See Fig S6 for a plot of the likelihoods and one gradient step z overlaid). Moreover, we
see that these one step z can support Bayesian computations when used in lieu of the likelihood term
in the Bayesian equation (previously calculated using the Gaussian probability distribution equation).
i.e., we are able to pass one step z values to a Bayesian graphical model and Bayesian computations
proceed normally (Fig S7).

3.2 EXPERIMENT 2, IMAGE GENERATION: ONE-STEP GRADIENTS FOR ACCURATE TASK
INFERENCE AND OOD DETECTION

We next assess how accurate GBI is in inferring task abstractions in an image generation setup with
more tasks. In addition, we show that GBI has more beneficial properties, such as better OOD
detection, and uncertainty estimates that require no calibration.

We train a convolutional autoencoder to reconstruct images. The decoder gets an additional input of
a one-hot encoding of the image class in addition to the latent embedding from the encoder (Fig 4
Schematic). We train this structure for 4 epochs using an MSE reconstruction loss (full details in
Appendix C). Confirming the results observed in the toy task, the network receiving additional image
class trains faster compared with baseline autoencoder, (Fig S12).

One-step gradients infer task abstractions with sufficient accuracy. At test time, we set the task
abstraction (i.e., image class) input z to maximum entropy point and take one gradient step of the
reconstruction loss with respect to the class inputs z, and directly interpret the resulting vector to infer
the class label. We make two kinds of comparison, first to methods that used gradient-based inference,
we refer to them as entropy-based (Wortsman et al., 2020) and norm-based inference(Roy et al., 2024)
and we see that GBI outperforms previous gradient-based methods (Table 2, implementation details
in appendix C). Second, we compare GBI with four canonical methods to infer class based on the
same architecture, as follows: (i) a convolutional classifier of the same architecture as the encoder, as
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a measure of what one might gain from a dedicated inference model that maps from inputs to task
abstraction (in this case, image class). (ii) iteratively optimizing the latent following the traditional
variational inference paradigm (VI), which is the same as our model, but increases the computational
budget by taking many smaller steps of gradient descent in task abstraction space. (iii) evaluating
the model’s MSE loss at each image one-hot encoding and selecting the one with lowest MSE loss,
as a general representation of Bayesian methods that require evaluating a likelihood function over
all hypotheses of interest. (iv) evaluating the model’s reconstruction MSE again, but in a purely
generative model trained from task abstraction input to image reconstruction with no encoder, as
an ablation to the separation of task input and task abstraction in our model. The goal: show that
GBI suffers only a small drop in accuracy while offering a small computational budget and no added
parameters. We see that GBI outperforms other gradient-based methods EBI and NBI, and show only
a small drop in accuracy compared to canonical classifier (Table 2). We can also use our same model
and increase the computational budget with iterative optimization or serial likelihood assessments
when higher accuracy is required. More importantly, GBI, being a generative model, offers a set of
unique advantages as we discuss next.

High OOD detection with GBI. GBI retains
many of the desirable properties of a generative
model and thus can evaluate the probability of the
data under the model. Therefore, we reasoned
that GBI may estimate uncertainty accurately (Fig
S10) giving it an advantage in detecting out-of-
distribution (OOD) over traditional models. To test
this, We compared a traditional convolutional clas-
sifier with GBI, both trained on MNIST digits and
using fashionMNIST clothing items as the OOD
dataset (Xiao et al., 2017). Using one gradient
step task abstraction layer logits, GBI is superior
at detecting OOD samples compared with the con-
volutional classifier (figure4). In comparing our
OOD detection results to current state-of-the-art
methods we noted that the standard setup in study-
ing OOD detection does not involve normalizing
the image brightness mean and variance, making it
trivial to discriminate the in and out-of-distribution

Table 3: One gradient step values in GBI trained
MNIST show better OOD detection on fMNIST
dataset compared to classifier logit and state-
of-the-art likelihood regret method. AUCROC
values averaged over 10 seeds with standard de-
viations. We examine the case when pixel inten-
sity statistics were normalized so methods are
not trivially detecting changes in brightness. En-
semble networks and Bayesian neural networks
though perform better that likelihood regret in
this setting. Unnormalized results in Tab S6

Method AUCROC
GBI 0.89 ± 0.03
Classifier Softmax Maxes 0.73 ± 0.08
Likelihood Regret 0.80 ± 0.06
Ensemble networks 0.809 ± 0.011
Bayesian Neural nets 0.859 ± 0.040

datasets. We compared our OOD results to the Likelihood Regret (LR) method for OOD detection
in a generative model Xiao et al. (2020) (see supplementary material for implementation details).
On unnormalized data samples, where detection methods can take advantage of differences in pixel
intensities between the in and out-of-distribution samples, both GBI and LR perform high (Fig A14,
Table A6). However, when data samples are normalized GBI shows a clear advantage over LR (table
3).

Lastly, we provide an illustration of how the GBI framework enables adaptive behavior, where in
response to the same input (image), changing the task abstraction (the image label) can lead to a
different input-to-output transformation, allowing for an additional layer of flexibility in task selection
(Fig S11).

CIFAR-100. We apply GBI to the CIFAR-100 dataset, which features color images of vehicles,
animals with diverse backgrounds. The GBI accuracy 18% well above that obtained from a pure
generative model (Table 4) (i.e. a model to decode image class to image directly). This suggests a
positive effect from the separation of visual input and task abstraction streams. We see only a small
drop between evaluating the likelihood of each image class for each image (requires one for each of
the 100 image classes, accuracy 21%) and GBI which requires only 1 run. However, GBI accuracy is
rather low, suggesting that backpropagation found solutions that relies on the visual input features
more than the image class input. This observation coupled with the overall low accuracy from the
pure generative model suggests that image class input does not significantly reduce the variance
seen in pixel space, leading the decoder to favor the visual features from the encoder. We anticipate
that scaling to larger datasets will benefit from richer task abstractions. This highlights a role for
algorithms that discover richer abstractions directly from data (Butz et al., 2019; Hummos, 2023).
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Figure 4: Robust out-of-distribution (OOD) samples detection in a GBI autoencoder compared to a
classifier. Both models were trained on MNIST digits, and tested on OOD dataset fashionMNIST.
We take the A) max value of the task abstraction layer in GBI and for the B) logits in the classifier
and consider how are they distributed for in-distribution samples and OOD samples. C) ROC curves
show that GBI max values are more discriminative.

3.3 EXPERIMENT 3, LANGUAGE: FASTER
TRAINING AND ACCURATE TASK
INFERENCE AND GENERALIZATION Table 4: GBI accuracy on CIFAR100 using a mul-

tiplicative task abstraction. The task abstraction
is projected through a frozen embedding layer
( Bernoulli distribution) then multiplies the visual
information going to decoder.

Method Test Accuracy (%) Model runs
Pure generative 9.57 ± 0.19 100
GBI 18.52 ± 0.38 1
Iterative optimization 18.53 ± 0.38 400
Likelihood 21.30 ± 0.36 100

Next we consider language modeling for a self-
supervised sequence modeling task. During
training, we examine the effects of task abstrac-
tions on data-efficiency, and during testing, we
evaluate ability to infer task abstractions and
ability to generalize to unseen language datasets.

Table 2: GBI outperforms other gradient-based
inference methods, and compares well to other
canonical methods in ML (small drop in accuracy,
but only one run through the neural network com-
ponent). For iterative optimization, we further ex-
amine the relationship between optimization steps
and accuracy in Fig S13.

Method Accuracy (%) Runs
Canonical methods
Classifier 91.44 ± 0.51 1
Pure generative 81.91 ± 2.3 10
Ours
GBI 85.46 ± 3.60 1
Iterative Optimization 88.51 ± 3.42 50
Likelihood (Recon MSE) 91.94 ± 3.38 10
Other gradient-based methods
EBI 27.37 ± 2.22 1
NBI 78.78 ± 1.21 10

Method We train an LSTM (with 2 layers,
200 units each) on word-level language pre-
diction and compare an LSTM with our GBI-
LSTM. To demonstrate the effectiveness of task
abstractions in this setting, we represent each
task abstraction as a one-hot encoded identi-
fier of each training dataset. We use datasets
included in the BabyLM challenge (Warstadt
et al., 2023), which provides 10 datasets in-
spired by what language data children might
be exposed to during development, including
wikipedia dataset, movie subtitles, children sto-
ries, and adult conversations, amongst others
(listed in Appendix E). We train the two mod-
els on 3 of these datasets in a setting analogous
to the Bayesian model dataset described earlier
with data in each batch randomly drawn from
one of the three datasets (we vary the choice of
the 3 training datasets across seeds). The GBI-
LSTM receives additional input with a one-hot encoded dataset identifier during training concatenated
to the input token at each time step.

During testing, we use one-step gradients to infer the dataset from the text data provided as we
assume no access to the dataset identifier at test time. We then use iterative optimization of the task
abstraction input z to adapt the model to novel datasets by taking gradients steps on one batch of data
and evaluating on the test set.

Results First, we focus on the effect of task abstractions on data-efficiency. Compared with the
LSTM, GBI-LSTM displays lower training and validation losses (Fig 5A, B). While the improvement
is modest, we emphasize that we only had to add <1.6 bits of information to obtain it.
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Figure 5: Better data-efficiency in an LSTM trained with task abstraction input (dataset ID one-hot)
(GBI-LSTM) compared to training without such input (LSTM). Cross entropy loss for GBI-LSTM
decreases faster for GBI-LSTM on the A) training set and B) testing set. Note that we train with a
word-level tokenizer with a larger output dimension which has a highe cross entropy loss upper bound
( 12). Each simulation run had three language datasets picked randomly from 10 datasets. 10 data set
picks, each run for 3 random seeds, shaded area SEM. C) One-pass gradient-based inference can infer
dataset ID accurately at test time needing only a few words. D) Iterative optimization can be used
to adapt a GBI-LSTM to a novel dataset. We compare it to optimizing the inputs of an LSTM that
was trained with no task provided to rule out any generic optimization effects. Due to the variability
of loss values across datasets, for each choice of 3 training datasets (12 sets), we take the mean and
SEM over 4 seeds and then aggregate the results from all 48 model runs.

Second, we focus on task inference. We show that GBI can quickly and reliably infer the dataset at
hand, and in fact, it takes a few words from the first batch to accurately infer the dataset (Fig 5C).
Note that similar to likelihood functions, gradient inference can handle variable amounts of evidence,
and the estimation accuracy scales with the amount of evidence available.

Third, we focus on generalization. Our results show that task abstraction layers improves the model’s
ability to generalize to novel tasks (Fig 5D), similar to the case in the synthetic Bayesian dataset (Fig
3D,E). We use a 4th dataset not seen during training, and we compare the GBI-LSTM and LSTM
losses on this novel dataset. To allow gradient descent to compose the closest solution to the novel
datasets, we optimize the task abstraction input nodes of the GBI-LSTM to lower its prediction loss
and we see a decrease in loss as it adjusts to this new unseen dataset (Fig 5D) (See Appendix E
for example run). Notably, the GBI-LSTM starts out at a higher loss, on average, highlighting that
task-aware models require task inference.

4 CONCLUSIONS AND FUTURE DIRECTIONS

Overall we show that neural networks with access to task abstractions learn faster, forget less, adapt to
changes in data distribution, and generalize to new situations. At the same time, we also provide tools
for the networks to function independently infer their own task abstractions during testing. These
task abstractions can be provided by humans, a trained teacher model, or inferred from data with no
supervision (e.g. (Hummos, 2023)). Task-dependent networks require task inference and inferring
an incorrect task impairs function. In animal brains, some computations that are frequently needed
or are critical for survival might be better mapped to the default state of the brain. The brain shows
distinct dynamics when not engaged in a specific task, the default mode, and we show previously
unexplored connections between feedback signals in this default state and distributional inference
signals that can support many probabilistic quantities such as uncertainty and surprise. We see
future work addressing the limitation of relying on human-provided task abstractions as opposed to
unsupervised discovery of richer multidimensional task representations along dimensions important
for adaptation and generalization. Finally, while our method is theoretically motivated, we see future
work extending these findings to larger datasets and more real-world applications.
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A RELATED WORK

A.1 ADAPTING LARGE MODELS

Several methods have been developed for adapting large models to specific tasks without expensive
full fine-tuning. Prompt and prefix tuning involve the use of learnable prompts (Lester et al., 2021) or
a continuous prefix (Li & Liang, 2021) that guide the model’s outputs. Lower-rank adaptation (Hu
et al., 2021) modifies model parameters with a low-rank tensor, learned during adapting the model,
while Adapters introduce small, task-specific modules within the network that are trained while the
rest of the model remains fixed (Houlsby et al., 2019). Different from these methods, our approach
to contextualizing a generative model proposes providing context signals or inferring them during
the pretraining of the model. This allows the model to organize knowledge along these dimensions
giving it an inductive bias anticipating variations along the same dimensions.

A.2 ITERATIVE VARIATIONAL INFERENCE

Variational inference, a method that recasts inference as an optimization problem (Jordan et al.,
1998; Neal & Hinton, 1998), has been instrumental to the development of deep variational models.
However, recent work has primarily used the variational formulation for training, relying on fast
amortized directed encoders to infer an approximate posterior distribution (Kingma & Welling, 2013;
Rezende et al., 2014), thereby avoiding the potentially lengthy optimization loops of taking gradients
through the decoder to refine the posterior distribution. To mitigate this, amortized variational
inference employs an additional neural network that takes either the gradients from the decoder, or
the reconstruction errors and updates the approximate posterior distribution with only a few iterations
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needed (Marino et al., 2018). Our work builds upon these insights, demonstrating that the initial
gradient to the latent carries sufficient information to approximate likelihood functions. This reduces
the need for multiple model runs or learning an additional model, but keeps iterative refinement as an
option for complex samples.

A.3 QUANTIFYING UNCERTAINTY

Uncertainty quantification is a critical aspect of both Bayesian and neural network paradigms, with a
rich and extensive history of literature, for review see (Abdar et al., 2021). Many approaches derive
from the maximum likelihood interpretation of neural network training (MacKay, 1992), known as
Bayesian Neural Networks (BNNs). Such models model uncertainty by placing prior distributions
over the model’s weights, with Variational Inference and dropout-based methods (like MCdropout
and MCdropConnect) serving as practical approximations (Blundell et al., 2015; Graves, 2011; Gal
& Ghahramani, 2016; Srivastava et al., 2014). Ensemble methods, such as Deep Ensembles, improve
predictive performance and provide calibrated uncertainty measures by aggregating predictions of
multiple independently trained neural networks (Lakshminarayanan et al., 2017). Lastly, temperature
scaling is a post-processing method used to calibrate the model’s softmax outputs, aligning the
model’s confidence with its prediction accuracy (Guo et al., 2017).

A.4 OUT-OF-DISTRIBUTION (OOD) DETECTION

The role of out-of-distribution (OOD) detection is essential for the secure implementation of machine
learning systems. This is due to the tendency of models to deliver erroneously confident predictions
when faced with data that diverges from the distribution on which they were initially trained. Current
OOD detection methods fall primarily into two classes: discriminator-based either the logit or the
feature space (Hendrycks & Gimpel, 2018) or generation-based approaches which employ either
the disparity in data reconstruction or the estimation of density in latent space (Nalisnick et al.,
2019), with the appealing intuition that generative models capture the data distribution and can
detect out of distribution samples. While one might suspect that our method works because it adds
a generative objective, recent work showed that several families of generative models might assign
a higher probability to out-of-distribution data than in-distribution ((Nalisnick et al., 2019; Fetaya
et al., 2020)). Using their rich visual latent spaces, they can generalize easily to other datasets.
Different that these models, our model separates computation of visual features into one stream and
the task abstractions into another, instead of assessing OOD probability from the visual features, we
selectively assess in the task abstraction space.

B BAYESIAN TOY DATASET

B.1 BAYESIAN GRAPHICAL MODEL TASK

B.1.1 BAYESIAN GENERATIVE MODEL

The task involves a sequence of observations xt with a new observation at each time step t. The
observations are generated from the following Bayesian model with context nodes z, a categorical
variable, here 2-way (binary). Variable z is represented as one-hot encoded vector that selects the
mean between two different configurations, while variance remains constant, as follows:

z0 = random choice: [0,1] or [1,0] (8)
with a transition probability matrix:

P (zt|zt−1) =

[
1− pv pv
pv 1− pv

]
(9)

Where Pv (=0.05) is the volatility of the context, or the probability of context switching every time
step. We enforce a minimum of 20 trials per block and a maximum of 50.

P (xt|zt = [0, 1]) = N (0.8, σ)

P (xt|zt = [1, 0]) = N (0.2, σ) (10)
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Figure 6: Comparing a Bayesian graphical model to GBI estimates of Bayesian likelihood of task
abstractions. A) Bayesian graphical model generating the data. Task node (z) flips periodically and
sets the mean of the Gaussian generating the data between µ1 = 0.2 or µ2 = 0.8, with fixed standard
deviation σ at 0.1. B) Sample generated data observations. The likelihood of each context node value
given data is calculated using the Gaussian probability density equation, more details in Appendix
B. B) GBI-LSTM was in default mode with z at max entropy as responses and one step gradients
recorded. C) Overlaid likelihoods computed using the ground truth Bayesian model and neural
gradients from GBI-LSTM for visual comparison.

Then using Bayes rule we express the posterior over context units at newest time step zt+1 given the
history of the observations as follows:

P (zt+1|x0:t+1) =
P (xt+1|zt+1)P (zt+1|z0:t, x0:t)

P (xt+1|z0:t, x0:t)
(11)

and the likelihood function as the Gaussian probability distribution density:

P (xt | zt) =
1√
2πσ2

exp

(
− (xt − µ1)

2

2σ2

)
(12)

B.1.2 NEURAL MODEL ARCHITECTURE AND TRAINING

We employed the LSTM implementation provided by Pytorch, utilizing an input layer of size [1, 100]
for mapping inputs to the LSTM, which consists of 100 hidden units. In the case of the GBI-LSTM
the model received additional inputs from two additional units, the task abstraction units, after passing
through a softmax activation function. An output layer of size [100, 2] was used to map to the output’s
mean and variance estimates. The model was trained to maximize the log-likelihood of the observed
data by predicting a mean and a variance estimate, allowing the model to express a distribution over
the next observation.. The final form of the objective derived from the Gaussian PDF has the MSE
divided by the output variance. The LSTM was trained using the Adam optimizer with a learning rate
of 10−3. To optimize the context representations, we employed Adam with a learning rate of 10−2

and a decay rate of 10−3.

C MNIST

C.1 FURTHER RESULTS ON MNIST AND CONFIDENCE

We compared the confidence values from the GBI autoencoder trained on MNIST digits to a con-
volutional classifier. The classifier and the encoder shared the same convolutional network, and the
decoder used its transpose convolutions. Being interested in the errors the models make, we limited
the capacity of the model and used a small number of convolutional filters, specifically we used these
layers, (table 5):

The classifier used this backbone followed by a non-linear layer mapping to 10 image classes, and
then a softmax. While the GBI autoencoder produced the 8 dimensional embedding from the encoder,
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Figure 7: Grafting the neural gradients into Bayesian computations. With the task abstraction input z
set to max entropy, we take one step along the gradients w.r.t to z. We use these one-step gradient
updates in lieu of the likelihood function (eqn 12), thereby avoiding having to discover the µ and σ
nodes of the underlying Bayesian causal model, and offloading the structure learning to the neural
network, but maintaining the ability to proceed with Bayesian computations.
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Figure 8: Training an LSTM on the Bayesian toy dataset, but no context from Bayesian nodes. An
RNN trained on next observation prediction on this simple task learns it trivially well, and can adapt
by detecting Gaussian distribution changes at context boundaries. Makes only one mistake typically
before switching its predictions.

Table 5: Architecture of the convolutional classifier and encoder networks. Decoder had the same
structure but transposed.

.

Layer Input Channels Output Channels Stride Activation
Conv2d image channels 2 2 ReLU
Conv2d 2 4 2 ReLU
Conv2d 4 8 - None
Flatten 8 - - -
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Figure 9: Training a GBI-LSTM on the Bayesian toy dataset with context from Bayesian model.

and concatenated the image label one-hot vector and passed those to the decoder. Of importance, we
limited the encoder embedding output to only 8 dimensional vector, otherwise the decoder would
ignore the labels and use the rich, but low level visual information from the encoder. We generated
a few samples from the network by providing an original image from the test set, but changing the
image label from 0 through 9, and examined the conditionally generated images, to ensure that the
decoder was using the image label (Fig 11).

We examined the distribution of confidence values that GBI autoencoder produced, and found
an informative distribution that can support post-hoc decision boundaries to get specific levels of
accuracy, including 100% accuracy in the highest confidence bins. While a classifier trained with a
softmax produces a distorted distribution that does not appear informative when binned (Fig S10).
However, using the test set, one can post-hoc calibrate the softmax temperature of the classifier to
obtain informative uncertainty estimates (Guo et al., 2017). Accordingly, our observation is that GBI
does not require any post-hoc re-calibration to get an informative confidence distribution, but such as
distribution is not unique.

Other gradient-based methods details. First methods is norm-based inference(Roy et al., 2024).
These authors use the gradients norm to infer the task. They compute the gradient norm for each
possible task label and select the one with the lowest norm. Second, we compared our method to
entropy-based gradient inference (EBI), following the work of Wortsman et al. (2020). They run a
forward pass based on the superposition of all task labels each weighted by an α value. Subsequently,
they compute the output layer activation entropy, and take a step in α such as to minimize that entropy.
To perform a one-iteration inference, they select the supermask (or task) with the largest gradient
to minimize the entropy. Given that this method is limited to cross-entropy loss we reframe image
generation as minimizing a cross-entropy pixel-wise classification loss.

D OOD DETECTION

We provide the GBI gradient and classifier logit maximum values and ROC in the case where the
OOD dataset was not normalized. i.e., the OOD images had a different image brightness and variance
(Fig S14), but we argue that an ideal image system should ignore these broad changes in illumination
rather than rely on them to detect OOD samples.

Likelihood regret implementation We adapt the original code
(https://github.com/XavierXiao/Likelihood-Regret.git) to the MNIST/FMNIST OOD detec-
tion task, using the suggested hyperparameters they used for the FMNIST-MNIST experiment since
we are only testing for the opposite task. We ran 10 experiment seeds to calculate our results. We ran
the tests with the two datasets pixel intensities normalized.
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Figure 10: Confidence distributions and relationship with accuracy comparing a GBI network trained
with task abstractions and a convolutional classifier.
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Figure 11: Conditional generation from the GBI autoencoder network. We feed an original image to
the encoder and ask the decoder to reconstruct the image, as we vary the digit label input 0 to 9.
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Figure 12: Comparing task-aware (GBI) and context-free autoencoder (AE) training and validation
error on MNIST.

AUCROC (Unnormalized)
Method Value
GBI Maxes 0.90 ± 0.05
Classifier Softmax Maxes 0.68 ± 0.03
Likelihood Regret 1.00 ± 0.00

Table 6: Same comparison as in table 3, but with the in-distribution and OOD datasets having different
brightness statistics.
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Figure 13: Variational inference iterative optimization steps vs accuracy. The models were randomly
initialized in a classical variational inference fashion, and the latent representation was trained using
vanilla SGD, which proved to be more stable than other optimization algorithms such as Adam and
allowed control over learning rates. A) We highlight the accuracy line with the best end accuracy,
other learning rates in dashed lines. Horizontal lines mark the three gradient-based methods compared
in Table 2. B) A closer look at how higher learning rates eventually lead to lower accuracy, and we
picked the best learning rate based on end accuracy being the higest.
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Figure 14: The figure compares the minimum gradient values of the (A) gradient based inference
network (GBI) and the maximum classifier logits when fed an in-distribution image (MNIST) versus
an out-of-distribution (OOD) image (fashionMNIST). B) The OOD images have a darker average
intensity compared to MNIST, resulting in lower responses in the classifier logits. Exploiting this
discrepancy, a discriminating threshold based on classifier logits yields a reasonable ROC curve (C)
for distinguishing between the two distributions.
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Figure 15: An example run showing the loss on predicting words from the same sequence while
optimizing the latent context inputs

E LANGUAGE MODEL

E.1 FURTHER EXPERIMENTAL DETAILS ON TRAINING TASK-AWARE LANGUAGE MODEL

We based our language modeling approach on the official PyTorch example for training a word-
level language model, which can be found at https://github.com/pytorch/examples/
tree/main/word_language_model. We largely adopted the original design choices and
parameters, including the usage of a stochastic gradient descent optimizer with a decaying learning
rate, a sequence length of 35 words and a batch size of 20, gradients clipped to a value of 0.25, input
layer and output layer dropout rate 0.25, word-level tokenizer, and a log-softmax function at the
final output layer. We used the LSTM implementation. The tokenizer’s output was passed through
an embedding layer, followed by concatenation with a latent representation, specifically a one-hot
encoding of the dataset ID. The LSTM output passed through an MLP layer to project the LSTM’s
hidden units back to the number of tokens, and a log-softmax function was applied as the final output
activation.

Note that we trained the model on 3 datasets at a time and tested generalization on a fourth dataset to
keep the tokenizer from indexing more than 1 million distinct words. Adding more datasets lead to
the embedding layer having a massive size that would not fit in a GPU memory.

Here we provide brief information on the datasets included in the BaybLM challenge. We use their
more challenging smaller ”Strict-Small” data.
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Dataset Domain Dataset Size
AoCHILDES (MacWhinney, 2000) Child-directed speech 0.44M
British National Corpus (BNC),1 dialogue portion Dialogue 0.86M
Children’s Book Test (Hill et al., 2016) Children’s books 0.57M
Children’s Stories Text Corpus2 Children’s books 0.34M
Standardized Project Gutenberg Corpus (Lahiri, 2014) Written English 0.99M
OpenSubtitles (Lison & Tiedemann, 2016) Movie subtitles 3.09M
QCRI Educational Domain Corpus (QED; (Abdelali et al., 2014)) Educational video subtitles 1.04M
Wikipedia3 Wikipedia (English) 0.99M
Simple Wikipedia4 Wikipedia (Simple English) 1.52M
Switchboard Dialog Act Corpus (Godfrey et al., 1992) Dialogue 0.12M

Total – 9.96M

Table 7: The datasets included in the BabyLM Challenge (Warstadt et al., 2023), please see the
original paper for further details on datasets and sources. The authors reported the number of words
in the training set of each corpus. 1http://www.natcorp.ox.ac.uk 2https://www.
kaggle.com/datasets/edenbd/children-stories-text-corpus 3https://
dumps.wikimedia.org/enwiki/20221220/ 4https://dumps.wikimedia.org/
simplewiki/20221201/
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