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Abstract

Robustness is a critical aspect of machine learning models. Existing robustness evaluation
approaches often lack theoretical generality or rely heavily on empirical assessments, limiting
insights into the structural factors contributing to robustness. Moreover, theoretical robust-
ness analysis is not applicable for direct comparisons between models. To address these
challenges, we propose TopoLip, a metric based on layer-wise analysis that bridges topolog-
ical data analysis and Lipschitz continuity for robustness evaluation. TopoLip provides a
unified framework for both theoretical and empirical robustness comparisons across different
architectures or configurations, and it reveals how model parameters influence the robustness
of models. Using TopoLip, we demonstrate that attention-based models typically exhibit
smoother transformations and greater robustness compared to convolution-based models,
as validated through theoretical analysis and adversarial tasks. Our findings establish a
connection between architectural design, robustness, and topological properties.

1 Introduction

Robustness is a fundamental aspect of machine learning models (Bai et al., 2021; Wang et al., 2022). Build-
ing a robust model has various advantages, which include maintaining high performance under various input
corruptions, being resilient to adversarial attack, and generalizing well to out-of-distribution data (Buzhinsky
et al., 2023; Szegedy, 2013; Boopathy et al., 2019). When evaluating the robustness of models, performance
analysis or intrinsic robustness analysis are mainly used (Weng et al., 2018; Wang et al., 2016; Hein &
Andriushchenko, 2017). Performance analysis assesses how well a model maintains metrics like accuracy
and prediction entropy under adversarial attacks, noise, or other perturbations (Carlini & Wagner, 2017;
Rathnakumar et al., 2024). While this approach provides straightforward empirical evaluations, it often
lacks insights into the theoretical and structural properties contributing to robustness. In contrast, intrinsic
robustness analysis examines properties such as the Lipschitz continuity of models, probability distributions,
or intrinsic dimensions (Szegedy, 2013; Buzhinsky et al., 2023; Tulchinskii et al., 2024). However, such tech-
niques are either difficult to generalize (to multi-layer or other complex settings), or the given bounds are
too loose. Furthermore, such methods do not allow direct theoretical robustness comparison across different
architectures or configurations. Lacking theoretical foundations and relying largely on experiments for ro-
bustness analysis may lead to inconsistent conclusions and limited insights into the underlying mechanisms
contributing to robustness.

To fill this gap, we propose a method for robustness comparison. By comparing the robustness of different
architectures or configurations, we can gain insights into choosing or developing robust models without
deriving exact robustness based on some metric. Based on the comparison method, we propose TopoLip,
a metric based on layer-wise analysis that enables robustness comparison in both theory and experiments.
Additionally, TopoLip provides insights into how model parameters influence robustness.

To introduce and validate the proposed comparison method, we use Transformer and ResNet — two dom-
inant classifiers in vision tasks using distinct approaches — for comparison. The Transformer architecture,
introduced by Vaswani (2017), has become highly popular and has made significant impacts across various
fields. In contrast, ResNet, introduced by He et al. (2016), is built using convolutional layers with resid-
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ual connections. As noted by Bai et al. (2021), Transformers are more robust than CNNs when handling
out-of-distribution data. We further validate this by theory and experiments.

This paper is organized as follows: Section 3 presents preliminary concepts; Section 4 introduces the TopoLip
robustness metric; Section 5 demonstrates that attention-based models are smoother and thus more robust
than convolution-based models; and Section 6 provides experimental results to validate our theoretical find-
ings. Our main contributions are:

e We propose a metric for evaluating the robustness of models. This metric allows for both theoret-
ical and empirical comparisons of robustness across models and provides insights into how model
parameters influence robustness.

e We establish a relationship between the Lipschitz continuity of persistence diagrams and probability
distributions, linking topological data analysis to robustness evaluation.

o We analyze the mean-field regime of attention and convolution layers, comparing their Lipschitz
conditions. Our findings reveal that attention layers are inherently more robust to variations in
input data distributions compared to convolution layers.

o We extend the analysis to Vision Transformers (ViTs) and ResNets, demonstrating a consistent
relationship between architectural design and robustness.

o Finally, we validate our theoretical insights through adversarial tasks. Experimental results confirm
that attention-based models generally exhibit greater robustness than convolution-based models in
handling corrupted data.

2 Related work

Robustness metric. Weng et al. (2018) converts robustness analysis into a local Lipschitz constant esti-
mation problem to derive theoretical robustness. However, the method is algorithm-based, and the process
relies on computing some metric that serves as a theoretical performance for the final robustness derivation.
Therefore, it can not derive a robustness score without running the algorithm in a concrete setting, making
it impossible to get insights into the model robustness completely by theory. Similarly, Weng et al. (2018)
developed a robustness metric that is attack-independent and can be used with any neural network classifier.
However, this approach is not well-suited for the theoretical analysis of individual models. Buzhinsky et al.
(2023) proposes a metric to measure the robustness of a classifier. This metric is based on probabilistic rea-
soning within the latent spaces of generative models, which makes it challenging to apply to specific model
settings. Hein & Andriushchenko (2017) derives a closed-form Lipschitz bound for evaluating the robustness
of a multi-layer perception (MLP) with a single hidden layer. Nevertheless, a closed-form bound is hard to
derive for a neural network with more than one hidden layer, not to mention increasing the complexity of
the architecture such as the transformer. Wang et al. (2016) uses topology to study robustness. However,
no robustness bounds or estimates were provided for neural networks, and thus no comparison can be made
between architectures or model configurations.

Here, we propose a method that can not only derive a Lipschitz bound for robustness completely by theory,
but the bounds of different architectures or configurations can be compared with each other by replacing the
values of parameters as well. Moreover, the comparison is not only robust in theory but also in experiments.

Topological Data Analysis. This work is partly built upon Topological Data Analysis (TDA), which
focuses on measuring the topological structures within data. The Wasserstein distance is extensively used
in TDA to quantify differences between the topological structures of distributions (Cohen-Steiner et al.,
2005). Although persistence diagrams (discussed in Appendix A) are not equivalent to probability spaces,
they possess properties that allow for the definition of probability measures (Mileyko et al., 2011). In our
study, we further explore the relationship between persistence diagrams and probability spaces, particularly
in terms of their Lipschitz continuity.
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3 Preliminaries

3.1 Problem setup

Suppose the input is a 2D image with resolution (H, W) and C' channels. In Vision Transformers (ViT),
the image is reshaped into a sequence of flattened patches p € RN*(P 2'0), where (P, P) is the resolution of
the patches and N = HW/P? is the number of patches (Dosovitskiy, 2020). This input is then mapped by
an embedding matrix E € R(" Z'C)Xd, where d is the embedding dimension. The mapping yields a matrix of
size RN*4 which can be interpreted as a sequence of N input vectors {z;}¥.; C R?. These vectors are often
expressed as an input matrix X = [xq,...,xx] € RV,

For a convolutional layer in residual networks (ResNet), let y(a) € R® represent the input at position a.
By utilizing a (2k + 1) x (2k + 1) filter, the response of a convolutional layer at position a can be written
as ¥(a) =3 geper Wes0(y(a + B8)) + b, where W € ROXCX(2k41)” ig 5 weight matrix representing C filters
(where we set the #(filter) = #(channel)), ¢ denotes the activation function, and b € R® is a bias term.
Since there are H x W positions at the input image, each corresponding to one response, the input image
can be regarded as a C' x N’ sequence where N’ = HW. More details of the convolutional layer setting will
be discussed later.

Previous works have restricted the input sequence of the attention layer X = [z1,...,2n5] € BEY where
Bgr C R? is the closed ball centered at 0 and of radius R (Castin et al., 2024; Geshkovski et al., 2024). We
apply this restriction and assume each dimension of x; (i € [N]) is drawn i.i.d. from N (0, 0?). Specifically, by
applying Chebyshev’s inequality that with high probability 1 —d/t?, we have ||z;|| < to. For the convolution
layer, we assume the input Y = [y1,...,yn/] € BQ%N, where B, € RY. Since we set C infinitely large to
introduce the mean-field regime of convolution, we instead bound each element: with a high probability
1 —1/t%, we have |y;;| < to.

3.2 Discrete frameworks

We define the discrete frameworks of attention and convolution same as the settings in the previous research
(He et al., 2015; Chi et al., 2023).

Definition 1 (Attention layer). Given an input sequence X € , consider a single-head attention layer
with parameters {Qm, Km, Vintmem) C R4, The output of the single-head attention layer is denoted as

X = Attn,,(X) = [Ty, ..., Zn] € RN where each T; for i € [N] is given by

Rde

mej'

N (x;'Q:;Kmmj> v i exp (xj Q) Kmxj /\/W)
- mTi =
T ﬁvj exp (a:} Q;Kmxk/\/W)

k=1

A multi-head attention extends this concept by allowing the model to attend to information from different
representation sub-spaces jointly. A M-head attention layer is defined as MHAttn(z;, X) := o;, where

0; = WO (®M_, head,,)
head,, = [Attn,, (X)].; = [Attn(X; {Qum, K, Vi D],

with WO € R>*Md peing learned projection matrices, and [A].; denotes the i-th column of matriz A.

Next, we define the Transformer with PreLayer Normalization (Pre-LN), which is used in various sys-
tems (Fan et al., 2019; Katharopoulos & Fleuret, 2020; Xiong et al., 2019). For a given input vector

x; € RY, layer normalization transforms it as LN(x;) = (2; — us)/0s © v + B, where p; = 1/d Z?Zl Tij,

o, = \/Z?:l(‘ri»j —p)?/d, v € R and B € R? are learned scaling and shifting parameters, and ®
denotes element-wise multiplication. An MLP layer with hidden dimension d’ is defined as MLP(z;) =
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Wod(Wia; 4 b1) + by where Wy € RY %4 W, € R¥*4 b € RY by € R?, and ¢ denotes the ReLU function.
The Pre-LN Transformer is then expressed as:

TF(X) = MLP o LN (X + MHAttn o LN(X)) + MHAttn o LN(X) + X.

Definition 2 (Convolutional layer). Consider a convolutional layer with C filters and C' input channels. In
practice, each filter could have a different size, and padding is typically applied to maintain consistent output
dimensions. To ease the analysis, we set all filters have the same size (2k + 1) x (2k +1). Let y;(a) € R
represents the input to the convolutional layer with filter i at position «, then the output at position o can
be writen as

c
i(e) =) D Weipd(yela+B)) +b

c=1 Beker
where ker := {(po,p1) € Z2; |pol, Ip1| < k}, Weip € REXC denotes the weight for from channel ¢ to channel
i at position (-4 ), b € R is the corresponding bias term, and ¢ is the ReLU function.
Given a mini-batch of size N, and a given input sequence of vectors X = [x1,...,2x] € R¥¥Y  batch
normalization (BN) is applied as BN(z;) = x; — pp/op © v + (5, where pup = 1/NZ£\;1 Ti, OB =
\/1/N 2511(% — 11p)2. A bottleneck block of ResNet is then expressed as

Res(X) = X + Conv o BN o Conv o BN o Conv o BN(X).

3.3 Mean field frameworks

We only define the mean-field attention layer and the mean-field convolution layer here, since our goal is to
evaluate the Lipschitzness of models, and the Lipschitzness of the Pre-LN Transformer and the ResNet can
be calculated by simply multiplying the Lipschitz numbers of other components.

When the input sequence length N is infinitely large, it can be convenient to model self-attention as a map
between probability measures (Sander et al., 2022; Geshkovski et al., 2024; Castin et al., 2024). Indeed,
the self-attention map is permutation equivalent, which enables the map from X = [z1,...,zn] to m(X) =

1 N

N Zz’:l Oz,

Definition 3 (Pushforward (Santambrogio, 2015)). For a probability measure u on R and a measurable
map ¢ : R? — R?, the pushforward of u through ¢, denoted as pup, s the probability measure defined by
(opp)(B) = u(p~Y(B)) for any Borel set B C R%, where ¢~ 1(B) := {z € R : p(x) € B}.

Definition 4 (Mean-field self-attention (Castin et al., 2024)). Let Q,K,V € R4 and define A :=
KTQ/\/d/M. Mean-field self-attention with parameters (A, V) is described as:

_ Jexp(zT ATy)Vydu(y)

F:p€P(RY s (T)pp, Tulz)= Texp@™ A7 y) du(y) for x € RY.

Since convolution can be permutation equivariant with respect to the channels, it can also be modeled as
a map between probability measures. Specifically, the convolutional layer maps the input ¥ = [y1, ..., y¢]
to m/(Y) = & chzl oy, where y;(a) = >3 We gd(xc(a + B)) is the response from channel c. In previous
works, the number of channels is set sufficiently large to make mean field theory applicable (Xiao et al.,
2018). Therefore, we can introduce the mean-field convolution based on this limit.

Definition 5 (Mean-field convolution). Set W € ROXOX@kH1* - For simplicity, we denote Wg € R the
weight from one channel to another at position (- + 8). A mean-field convolutional layer with parameter W
is described as:

Gy € Pe(R) = (L) F;f(y(a))Z/ > Wey(a+ B)du' (Wy) +b
BEker

where ker = {(v,n); (|7],|n| < k}, b € R. Here, we ignore the Relu function to ease the analysis.
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4 Topological Lipschitzness

4.1 Robustness

We consider a classifier f; = ¢; 0 g1 where g1 maps input data from the input space X to an intermediate
space X1, which is equipped with a distance function d;. The function c¢; subsequently maps data from
(X1,d1) to the output space Y, which represents the target labels or classes. Wang et al. (2016) defines
the classifier f; : X — Y to be {4, }-strong-robust against adversarial attacks if for any z,2’ € X,
P(fi(x) = fi(@)|fo(x) = fo(z"),do(go(x), go(x")) < §) > 1 — ny. Here, fy represents an oracle that provides
ground truth labels (e.g., a human annotator). Now, consider another classifier fo and assume the following
relationships among the classifiers and their mappings:

(X17d1)
(X,dx) —2— (Xo,do) —2 (Y,dy)

(X2,d2)

Under this framework, we can assert that fo is more robust than f; if fo is {9, 2 }-strong-robust with the
same ¢ but a smaller 72 < 7;. Intuitively, this means that when the oracle considers two distinct inputs as be-
longing to the same class, f> has a higher possibility than f; of recognizing them as such under perturbations
within . In other words, if there exist inputs z, 2’ such that d(z, z') < § and dy (fi(z), fi(2’)) > efori =1, 2,
then a more robust classifier satisfies Lips < Lip; where Lip; := max, .+ dy (fi(z), fi(z'))/d(z, 2") (z,2' € X).
Therefore, by examining the Lipschitz constants of classifiers, we can gain insights into their robustness and
effectively compare different models. We transform the input and output of models into probability distri-
butions and consider the Wasserstein distance (Definition 7) in between to derive topological Lipschitzness.

4.2 Topological Lipschitzness

Before defining Topological Lipschitzness, we first explain the reason why it is needed.

The Wasserstein distance is a metric between probability distributions on a given space. Instead of con-
sidering Lipschitz continuity between individual data points, analyzing the Lipschitzness of the Wasserstein
distance between the input and output distributions of a function provides insights into its global behavior
and smoothness (Santambrogio, 2015; Villani, 2021).

However, calculating the Wasserstein distance requires that both probability distributions reside in the
same dimensional space. While dimension reduction techniques can align their dimensions, this approach
becomes inefficient when computing Wasserstein distances between layers of the model such as convolutional
neural networks (CNNs), which typically have layers with diverse embedding dimensions, leading information
loss at different scales if using dimension reduction. Moreover, while the Gromov-Wasserstein distance is
widely used to compare distributions with different dimensions, it is computationally expensive (Zhang
et al., 2024; Vayer et al., 2019). It can also fail to capture slight changes (e.g., small perturbations in
feature embeddings) between two distributions, making it inefficient for analyzing the intermediate outputs
of transformer-based and residual models. This is because the input and output of each layer in transformers
are highly similar (Raghu et al., 2021), as are those in residual models due to their residual structure.

To address this challenge, we introduce Topological Lipschitzness (TopoLip). TopoLip is defined as the
Wasserstein Lipschitzness between persistence diagrams (explained later) of a function’s input and output.
Compared to the Gromov-Wasserstein distance, computing the Wasserstein distance of persistence diagrams
is both computationally efficient and sensitive to small perturbations such as stretching and squishing (Vish-
wanath et al., 2020). When comparing model robustness theoretically, the Wasserstein Lipschitz constants
of each layer’s input and output can be directly compared. Later, we will demonstrate that TopoLip is a
constant multiple of the Wasserstein Lipschitz constant. Experimentally, the input and output are trans-
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formed into persistence diagrams, and their Wasserstein distance is computed. The maximum rate of change
of this Wasserstein distance defines TopoLip.

Persistence diagrams are essential tools in TDA that capture the multi-scale topological features of data.
Each feature is represented as a point in the diagram with coordinates indicating its birth and death scales.
For more details on persistence diagrams and their properties, see Appendix A.

Informally, TopoLip measures the Lipschitzness of the Wasserstein distance between the persistence diagrams
of a function’s input and output. The relationship can be illustrated as follows:

Input Distribution —F , Feature Embeddings —7  Persistence Diagrams

| _—

(Probability Distribution)

Here, TopoLip combines the Lipschitzness of the function F' with the Lipschitz map g that generates persis-
tence diagrams. Formally, by Lemma 1, TopoLip is defined as follows:

Definition 6. Let g be a Lipschitz map defined by:
qg: D — PDy
9(X) = {(bi,d;)| feature i in Hy, births at b; and dies at d; }

where D is the space of finite metric spaces (datasets), and PDy, is the space of persistence diagrams for
dimension k with the Wasserstein distance W, (p > 1). For a Lipschitz function F, its Topological Lips-
chitzness is defined as:
. W, . .
Lipp o (F) := Lip"(g) - Lip" (F).

The map g is Lipschitz due to the stability theorem presented in Cohen-Steiner et al. (2005). When g is fixed
(in this work, persistent homology) to generate persistence diagrams, Lip(g) remains constant. Therefore, the
TopoLip of a function is directly proportional to its Wasserstein Lipschitzness. By examining the Wasserstein
Lipschitzness of a model, we can compare the TopoLip of different models and thus assess their robustness.

5 Wasserstein Lipschitzness comparison

We begin by defining the Wasserstein Lipschitness:

Definition 7 (Lipschitz constant with respect to the 1-Wasserstein distance (Castin et al., 2024)). Denote
P.(RY) the set of compactly supported probability measures on RY. P-Wasserstein distance is defined as:

1/p
W, — ( in / o —y||Pd7r<x,y))

€M (p,v)

for p,v € Po(R?), where I(p,v) is the set of couplings between p and v. For a map F : P.(R?) — P.(R?)
and any subset X C P.(R?), the Lipschitz constant of F on X is defined as:

. Wi (F(p), F(v))
LlpW1 Fy):= sup ——————"—.
( X) w,vEX  uFv Wl (/J,’ V)

If Lip(Fx) is finite, then F is said to be Wa-Lipschitz continuous on P.(RY).

The reason for using Lip"* instead of Lip""? here is because for probability measures y and v, Wy (u,v) <
Wo(p, v) holds, meaning that the 1-Wasserstein Lipschitzness can be extended to the 2-Wasserstein Lips-
chitzness.

To ensure a fair comparison of variances between the self-attention and convolutional layers, we take each
element of Q, K,V,W© in the self-attention layer to be drawn i.i.d. from N(0,0?). For the convolution
layer, to follow common initialization schemes such as He initialization (He et al., 2015), each element of W
is drawn from i.i.d. N(0,02/(C(2k +1)?)). We assume H, W, C in the input image size H x W x C are very
large. For the self-attention layer, the input is a sequence with size d x N, where d is the embedding dimension
and N = ’}LZV For the convolution layer, the input is a sequence with size C' x N’ where N’ = HW.
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5.1 Attention and convolution

Theorem 1. Let Q, K,V € R¥™4. For any t > \/d and s > o+/2log2, with probability at least min{l —
d/t2,1 — 2=/ and assuming |Allop > 2/0?, the mean-field single-head attention map Attnjpp,.)
with parameter (Q, K, V') is W1 -Lipschitz continuous on the set P(By,), and its Lipschitz constant is bounded
by

Lip™ (Attnp(p,,)) = 2ta(20Vd + s)(1 + tad™?(20Vd + s5)?)

Similarly, the Lipschitz constant of mean-field M-head attention map MHAttn p(p, ) is bounded by
M
Lip"* (MHAttnp(p,,)) = 2toV M (20Vd + 5)*(1 + toy | E(za\/& +5)2).

To simplify the upper bounds, assume ¢t = pVd, s = qo for constants p, ¢ > 0. Under this assumption, the
Lipschitz constants of a single-head and multi-head attention layer can be approximated as follows:

Lip"™* (Attnp(p,,)) = O(c°d?), Lip"" (MHAttnp(p,,)) = O(c%d>?M).

Theorem 2. Let W € REXCXEk+D? ypere Weip ~ N(O, C(#j—lﬁ) represents the weight from channel c
to channel i at position (- + ). Denote the output vector of the mean-field convolutional layer as y(a) =
[71(), -, To(@)] where J;(a) = [5 (Zﬂ Wei pyi(a + B) + bi) du(Wy). For any t > 0, with probability at

least 1 — 1/t2, the Lipchitz constant of the mean-field convolution map Conv|p(p,,) with parameter W is
bounded by

Lile(Coan(Bw)) = (2k + 1)\/tUC' (1 + ) = O(kVoC).

1
(2k + 1)/ C

where we assume t to be some moderate positive number to simplify the upper bound.

From the above bounds, we know that the Wasserstein Lipschitzness of attention layers, as well as their
TopoLip and robustness, are highly related to the embedding dimension d and the head number M. Since d
and M are fixed, we can indicate that Lip" of attention layers remains in a certain range. For convolution
layers, since their Wasserstein Lipschitzness is related to the channel number C' which usually is not fixed in
a model, its robustness tends to be lower than attention layers.

Furthermore, if the bound of Lip™" is tight enough, it can represent the scale or dynamics Lip""*. Suppose
the bounds in Theorem 1 and 2 are tight, then we can assess the Lipschitz bounds of both models from
a practical perspective. In practice, typical parameter values are often set as follows: o ~ 1072, d ~ 102,
M ~ 10, k ~ 10', and C ~ 102. Under this setting, the Lipschitz bound for multi-head attention is on the
order of O(107%), whereas that for convolutional layers is significantly larger, around O(10'). To provide a
more concrete comparison, consider the following specific parameter settings: d = 512, M = 8, o = 0.05,
k = 3, and C = 512. Under this setting, o°d? =~ 0.08, oSdE M ~ 0.74, while kv/oC ~ 15. Furthermore,
it is important to note that C is not fixed in practice. For instance, the number of channels in ResNet50
are 64—256—512—1024—2048, which leads to a larger Lipschitz bound for convolutional layers. Therefore,
convolution is more unstable under this setting, leading to greater TopoLip and lower robustness.

Theorem 1 and 2 indicates that while Lip"2 of convolution has a bound that is highly unpredictable, Lip"V? of
attention has a fixed bound, and the bound is relatively tight under practical settings. In a real-life scenario,
attention and convolution layers are rarely used solely. Instead, they are one part of the models. To conduct
a thorough comparison, we extend our investigation to two widely used models: Vision Transformer (ViT)
and residual neural network (ResNet).

5.2 ViT and ResNet

We consider the Pre-Layer Normalized Vision Transformers (Pre-LN ViT) and ResNet. Building upon
the calculations presented in Theorems 1 and 2, and utilizing Lemma 1, we derive the following Lipschitz
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constants:

Lip"*(TF) = (Lip"* (MLP) - Lip"* (LN) 4 1) - (1 + Lip""* (MHAttn) - Lip""* (LN))
=0 (maX {1, 3PP M, oTd* M, Ulodg/QM}) ,

Lip"* (Res) = 1 + Lip"* (Conv)? - Lip"* (BN)? = O (max {1, k3o5/203}> .

From these results, we observe that the Lipschitz constants Lip"* for both ViTs and ResNets retain and
further magnify the parameter dependencies inherent in their respective attention and convolutional layers.
Notably, when considering the same settings as discussed in Section 5.1, we find that Lip"*(TF) = O(1) for
ViTs, whereas Lip" (Res) = O(10%) for ResNets. Additionally, since the number of channels C' in ResNet
can be very large, the Lipschitz constant for ResNet can become significantly higher than that of ViT. As a
result, ViTs tend to have a lower TopoLip value, which means they are smoother in terms of their topological
properties compared to ResNets. This smoothness suggests that ViTs are less affected by changes or noise
in the input, which could make them more stable and robust in their performance.

6 Experimental results

We conduct experiments using the CIFAR-10 and CIFAR-10C dataset to evaluate the relationship between
TopoLip and robustness. Specifically, we train ResNet18/50/101 and three ViTs (small, base, and large) for
practical settings. We also train two convolution-only models (Conv) and two attention-only models (Attn),
each with small and large configurations, to verify the theoretical results for attention and convolution layers.

For Convs, the small configuration uses up to 64 channels across all layers, while the large configuration
scales up to 2048 channels in the final layers. For Attn models, the small version features 4 attention heads
with an embedding dimension of 128, whereas the large version uses 12 heads with an embedding dimension
of 512. All Convs and Attns have 10 layers. Detailed configurations for Attn, Conv, ResNet, and ViT
architectures are provided in Table 1.

We train Attns for 100 epochs, Convs for 200 epochs, ResNets for 100 epochs, and ViTs for 200 epochs on
CIFARI10 for each model to reach optimal or near-optimal performance levels under the given configurations.
ResNet models achieved validation accuracies exceeding 90%, while ViTs range from 77.8% to 87.0% (Fig-
ure 7). Attn models, however, showed much lower validation accuracies, with both configurations remaining
below 35%, reflecting the limitations of their simplified architectures. In contrast, Conv models performed
significantly better, with the small configuration achieving 57.1% and the large configuration reaching 85.7%,
despite their simple designs (Figure 8). From the loss curves, we observed that only the training of the large
Attn model failed under its simple configuration. This could be attributed to the behavior of attention
layers in the early training stages, where they amplify the importance of certain positions or data points.
Once a position is deemed important, its attention score increases, reinforcing its significance as training
progresses. Without mechanisms like layer normalization to mitigate this effect, the training process can
converge prematurely, hindering further weight updates. In fact, the large Attn model’s loss failed to record
after the first epoch, causing its loss curve in Figure 8 to appear “lost”.

Next, we evaluate the TopoLip of the models to understand their robustness. To measure the Wasserstein
distance between the persistence diagrams of the input and output at each layer (or each block for ResNets),
we first switch the models to evaluation mode to freeze their parameters. Then, we input the test dataset
and collect the outputs from all layers. Using these outputs, we compute their persistence diagrams and
calculate the Wasserstein distances between adjacent layers. Next, we compute the absolute change rates.
If the Wasserstein distances of two adjacent layers are W D; and W Dy, the absolute change rate between
them is defined as |[(W Dy — WD;)/W Dy|. Finally, the TopoLip is computed as the maximum absolute
change rate observed across all layers (Table 2).

From Table 2, we know that Attns have relatively lower Wasserstein Lipschitz constants than Convs, and
ViTs have lower Wasserstein Lipschitz constants than ResNets, which align with the theoretical results.
While TopoLip provides certain insights into the robustness of models, we propose that rather than focusing
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Table 1: Model configurations.
Model Configuration

Attn (small) 4 heads; embedding dimension: 128 (h4 d128)

Attn (large) 12 heads; embedding dimension: 512 (h12 d512)

Conv (small) #(channel): 3—+64—64—64—64—64—64—64—64—64

Conv (large)  #(channel): 3—+64—64—128—128—256—512—1024—2048—2048
ViT (small) 6 heads; embedding dimension: 384 (h6 d384)

ViT (base) 12 heads; embedding dimension: 768 (h12 d768)

ViT (large) 16 heads; embedding dimension: 1024 (h16 d1024)

ResNet18 #(channel): 3—64—64(x2)—128(x2)—256(x2)—512(x2)
ResNet50 #(channel): 3—64—64(x3)—128(x4)—256(x6)—512(x3)
ResNet101 #(channel): 3—64—64(x3)—128(x4)—256(x23)—512(x3)

Table 2: Topolip on CIFAR-10 and CIFAR-10C Corruptions (%). Abbreviations: "s, b, 1" stand for small,
base, and large, respectively; "Res" stands for ResNet; W; stands for the i-Wasserstein distance. High-
lighted values indicate relatively lower results in comparisons of Attn vs. Conv and ViT vs. ResNet for
W, and W, respectively.

Attn(s) Attn(l) Conv(s) Conv(l) ViT(s) ViT(b) ViT(l) Resl8 Res50 Res101

Wi(]) 0.57 1.00 6.83 16.20 097 1.15 0.82 229 145 1.50
Wy(l) 0.52 1.00 4.13 7.27 0.56 0.64 0.46 1.10 0.60 1.02

solely on TopoLip, analyzing the entire change rate landscape offers a deeper understanding of the model’s
robustness.

The results of the absolute change rate and cumulative absolute change rate are shown in Figure 1 to 4.
Since ResNets and ViTs have different numbers of layers, we interpolate their results to align them on
a normalized scale from layer 0 to 1 for consistent comparison. From Figures 1 and 2, we observe that
Convs exhibit higher maximum change rates (TopoLip) compared to Attns, indicating that Attns are more
robust and topologically smooth than Convs, which aligns with the theoretical results in Section 5.1. From
Figure 3, we see that ResNet models have a higher TopoLip than ViTs, with their change rates displaying
more turbulent behavior. This is visualized more clearly in Figure 4. Interestingly, the cumulative 2-
Wasserstein change rate of the ViT (large) model is comparable to that of ResNet18, suggesting that they
share a similar level of robustness. Moreover, the cumulative 2-Wasserstein curve for ViT (base) progresses
slightly slower but remains close to those of ViT (large) and ResNet18. This indicates comparable robustness
levels, with ViT (base) showing a marginally higher robustness. The corresponding Wasserstein distances
are shown in Figure 9 and 10.

Finally, we evaluate the robustness of the models using the CIFAR-10C dataset. CIFAR-10C is an extended
version of CIFAR-10, designed to assess model robustness by introducing 15 types of common corruptions,
each applied at five severity levels. For our evaluation, we focus on five corruption types: Gaussian Noise,
Motion Blur, Snow, Impulse Noise, and Pixelate. The results are summarized in Table 3, where models
demonstrating superior robustness (compared to their baselines) are highlighted.

From Table 3, we observe that ViTs (small and base) are generally more robust than ResNets across the
selected corruption tasks. However, ViT (large) does not exhibit the same level of robustness as its smaller
counterparts. Instead, its robustness appears closer to that of ResNet18. Moreover, the robustness of ViT
(base) is relatively close to ResNet18 compared to other ResNets. These results align with the earlier analysis.

For Attn and Conv models, while Attn models demonstrate significant robustness, we hypothesize that this
is not solely due to the architecture itself. Instead, the limited training capacity of Attn models in such
simple configurations likely results in low baseline performance, which can make even slight performance
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Figure 2: Cumulative absolute change rate of the Wasserstein distance of persistence diagrams of Attns and

Convs.

improvements appear substantial in comparison. Overall, the robustness results align with the Wasserstein
change rate findings, underscoring the close relationship between TopoLip and model robustness. Further-
more, analyzing the whole Wasserstein distance change rate landscape along with TopoLip provides a more
comprehensive understanding of a model’s robustness characteristics.

Table 3: Model Performance on CIFAR-10 and CIFAR-10C Corruptions (%).

Model CIFAR-10 Gauss Noise Motion Blur Snow Impulse Noise Pixelate

Attn (small) 34.2 36.5 (+2.3) 32.5 (-1.7) 30.0 (-4.2) 35.2 (4+1.0) 35.2 (4+1.0)
Attn (large) 12.0 16.9 (+4.9) 17.2 (+5.2) 14.8 (+2.8) 16.9 (+4.9) 17.0 (+5.0)
Conv (small) 57.1 31.3 (-25.8)  36.5 (-20.6)  38.0 (-19.1) 22.6 (-34.5) 42.7 (-14.4)
Conv (large) 85.7 44.4 (-41.3) 51.2 (-34.5)  61.6 (-24.1) 23.8 (-61.9) 60.8 (-24.9)
ViT (small) 77.8 53.4 (-24.4) 54.0 (-23.8) 55.3 (-22.5) 39.1 (-38.7) 62.7 (-15.1)
ViT (base) 85.2 60.8 (-24.4) 69.9 (-15.3) 75.8 (-9.4) 42.2 (-43.0) 78.3 (-6.9)
ViT (large) 87.0 41.4 (-45.6)  39.8 (-47.2)  36.1 (-50.9) 40.3 (-46.7) 41.7 (-45.3)
ResNet18 90.9 50.0 (-40.9) 63.0 (-27.9) 73.3 (-17.6)  32.8 (-58.1) 56.1 (-34.8)
ResNet50 91.4 50.0 (-41.4)  60.3 (-31.1) 73.1 (-18.3) 33.9 (-57.5) 54.8 (-36.6)
ResNet101 91.8 51.9 (-39.9) 61.2 (-30.6) 75.0 (-16.8) 35.1 (-56.7) 66.6 (-25.2)
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7 Conclusion

In this paper, we introduced TopoLip, a metric designed to assess the robustness of machine learning models
at a layer-wise level. TopoLip is effective for both theoretical and experimental comparisons of different
architectures or configurations, and can provide insights into how model robustness depends on parameters.
Through theoretical analysis of the Wasserstein-Lipschitz conditions in mean-field attention and convolution,
we revealed that attention-based models are inherently smoother than convolutional models, making them
more robust as defined by TopoLip. Experimental results further validated these findings, showing that
attention-based models exhibit greater robustness than convolution-based models when handling corrupted
data.
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A Persistence homology

We provide an intuitive overview of persistence homology, omitting a formal introduction that can be found
in (Le & Yamada, 2018; Bubenik et al., 2015; Naitzat et al., 2020). Filtration is a key technique in capturing
the topological features of data. Among various types of filtrations, the Cech complex is widely used. The
Cech complex constructs a topological structure by forming simplices based on the intersections of balls with
a specific radius centered at each data point (Figure 5). As the radius increases, more simplices are added,
allowing the complex to capture topological features at different scales.

-

L,/ o
Figure 5: Contruction of the Cech complex of the dataset.

During the filtration process of the Cech complex, topological features such as connected components and
holes emerge and disappear. These events are recorded using persistence barcodes, which track the birth
and death of each feature (Figure 6). Here, 5y and (31 represent the lifespan of connected components and
2D holes, respectively. The barcodes are then represented as points in a persistence diagram, which is a
multiset of points in the Cartesian plane R?. In the persistence diagram, Hy corresponds to connected
components and H; to 2D holes. Since the persistence diagram Dg can be considered as a discrete measure
1Dg = Zue Dy 0, where 0, is the Dirac unit mass on wu, the bottleneck distance is usually used to measure
the difference between persistence diagrams (Le & Yamada, 2018; Adams et al., 2017). Additionally, 1- and
2-Wasserstein distances are also frequently used (Berwald et al., 2018).
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Figure 6: Persistence barcode and persistence diagram.

Lemma 1 ((Lipschitz Constant of Composed Functions (Gouk et al., 2021))). Let (X,dx), (Y,dy), and
(Z,dz) be metric spaces. Suppose that f : X —'Y is Lipschitz continuous with Lipschitz constant Ly, and
g Y — Z is Lipschitz continuous with Lipschitz constant Ly. Then the composition go f : X — Z is
Lipschitz continuous with Lipschitz constant at most Ly - Ly. In other words, for all x1,x2 € X,

dz(9(f (1)), 9(f(22))) < Lf - Lg - dx (w1, 22).

14
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B Proof of section 3

Lemma 2 ((Vershynin, 2010)). Given a matriz A € R4 with entries Aij ~iia. N(0,02), denote the
singular values as s1(A) > s9(A) > -+ > sq4(A) > 0. Then:

+2
Plsy < 20Vd+1] >1— 2 27,

Proof of Theorem 1. We begin by bounding the Lipschitz constant for single-head attention. While
Castin et al. (2024) provides an upper bound for Lip(Attn|p(p,,)), their proof is abbreviated. Here, we
present the comprehensive proof and offer a potentially tighter lower bound. We also extend the analysis to
multi-head attention by providing an upper bound for Lip(MHAttnpg,,))-

Define the kernel function K (x,y) := ¢ A'Y. The mean-field attention map is then expressed as:
K(z,y)Vy
re [ K(z,y)du(y)
To bound the Lipschitz constant, we consider the difference between I', and I',, for two probability measures
pand vin P(By,):
ITu(z) = Ty(x )||L°°(Bta Rd)
| Jea K@ 9)Vydp(y) Jpa K@, y)dv(y) = Jpa K@, y)Vydv(y) Jp K (@, y)dply )‘
Jra K (2, 9)dp(y) [z K (2, y)dv(y)

Lu(z) = du(y)-

Denote y* := max lyl]. We bound the numerator first:
YEDLto

/ K (z,y)Vyduly / K(z,y)dv(y / K(z,y)Vydv(y / K(z,y)du(y )‘
_ ‘ / K () Vydi(y) / K () (dv — du)(y)
_ RdK(x,y)vy(du—du)(y)/ K(a:,y)du(y)‘

<| [ sGast| (W] [ K@ = aow)|+| [ Kepvia-aow))

<2Vl | [ Kla)dto)

K (e, y)(dv — du)(y)‘
Rd

< 2[[Vilopy” /Rd K(z,y)du(y)|I1K (2, )l cor (B, Wi, v)

< 297 ([V]lop /Rd K (x, y)dp(y) || K (2, )llcor(s,,) Walp, v)

where we use the inequality Wi (u,v) < Wa(u,v). By Lemma 2, with probability at least 1 — 26_52/(2"2),

we have [[V]|op < 20Vd + s, [[A]lop < \/ %”KHOPHQHOP <y %(20@4‘ s)?. For |K(x,")|[co(B,,), we can
bound it as follows:

1K (2, )[co1(B.)
|K($, yl) B K(x7y2)|

= sup |K(z,y)|+ sup

YEBio y17£y2€B(0,t0) llyr — v2l|
< sup [K(z,y)|+ sup [V, K(z,y)l
YEBio YE Bt

< K, y) + v [ Allop K™ (2, )
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= K" (2, y)(1 + y"[|Allop)

where K*(z,y) := sup,cp, K(z,y) = exp(y*|lz" Al|) and the first inequality follows from the definition of
the C*! norm and the mean value theorem. Then ||T'(z) — T, ()|| (8, re) can be bounded by

ITu(@) = o (@)l = (B,, R)

2y*n»fnop,ﬁRdzz<m,y>du<y>\z<*<x,y><1 Ty Allp)

<

WQ(H’ V)

fou K 9)dia(y) fon K xydw>\

K(Iy)
K(z,y)dv(y)

= 24" ([Vllop(1 + v [ Allop) T Wa(p, v).
Rd

To bound the integral part, we transform [ dv(y) to [ p(y)dy where p(y) is the probability density function
(pdf) of y. Since y ~ N(0,0%I), by using the pdf of the multivariate Gaussian distribution, we have

K(z,y)dv(y) = . K(z,y)p(y)dy

Rd
1 zT A — 2 /(202
:W/Rde v el 2o gy
_eaznxuwzm/ e~llu=o*aT A2/ (20%) g,
o

2 T 2
— olllzTAl?/2

Therefore,
K*(z,y) W T 20T A2
=exp(y*||lx Al — *||x " A||7/2).
R ) = S0 I Al = ol AR )
To bound it at 1, we need to ensure that
2 * 2
* g T yo 2
v < Tl Al < LAl = Al > 55

holds. Under this condition, the final bound is

Hru(x) - Fu<x)||L°°(Bw,Rd) < QQ*HVHOP(l + y*”AHop)WQ(M,V) =: Lip(Attn)Wa(u, v).

Finally, since

D) =Ty (@)
I—\II\L/IHAttn(x) _ [MHAttn () — O :
Iy () = 1) (x)
where T'®(z) denotes the mean-field self-attention of k-th head, we have

ITAHAS (@) — TYHA ()| oo ,,, o)

I (z) =Ty ()
< W llop

r%@»ér¥@»|

M
<|[WOlopy| D Lip(Attnyp(s,,))?
i=1

<2y*v M”WOHOPHVHOP(l + y*HAHon)WQ(Hv v) =: Lip(MHAttn) Wa(u, v).
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With probability at least min{l — d/t*,1 — 2exp(—s?/(20?%))}, we can bound the terms by y* =

to, HWOHOP,HVHOP < 20Vd + s, 1Alop < VM/A|Kopll@llop < \/M/d(QO’\/g-i- 5)2. Therefore, the fi-
nal bounds become

1T, (@) = Do (@)l (1, ) < 2020V + 8)(1 + tod > (20Vd + 5)°)Wa(u, ),

M
HF%HA“n(x) — FI,E/IHA““(JJ‘)HLOO(BW’W) < 2toV M(Zo\/g +5)%(1 + toy/ j(Zax/ﬁ + 8)HWa(p, v)

where M = 1 for the single-head attention. O

Proof of Theorem 2. We begin by bounding the Lipschitz constant for a single response 7(«). We denote
7(a) = Jy (X Wawi(a+ B) + b)) du(Wy), then

7" (a) = 7" (a)]

_ / S Way(a+B) +bi | du(Wy) — / S Wayla+8) +b; | du(Wy)
R\ s R\ s
- / S Way(a + )+ b | (dp— dv)(Wy)
B

Wi (Na V)
2

§| Vw | Y Wayla+B)+bi |, Vy [ D Wayla+8) +b;
B B

< wa(awLB)l 13 Wl W)
B B

< \/Zly(aJrﬁ)l + 37 [Wal Wi, v)
B B

to

m Wa(p,v) =: LWa(p, v).

< (2k + 1)\/to+

Finally, since I'}, (o) = ¥(a), we can bound the difference between I'), and I, as:

C
T () = T (@)l Lo (B re) = J > 5 (@) =7 ()2
=1

< VCLWa(u,v)

1
=2k + 1)\/t00 (1 + W) Wa(p,v).

C Further experimental results

Figure 7 and 8 demonstrate the training/validation accuracy and loss of models. Figure 9 and 10 demonstrate
the Wasserstein distance of the persistence diagrams between adjacent layers of models.
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Figure 7: Accuracy and loss of ViTs and ResNets.
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Figure 8: Accuracy and loss of Attns and Convs.
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Figure 9: Wasserstein distance of the persistence diagrams of ViTs and ResNets.
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Figure 10: Wasserstein distance of the persistence diagrams of Attns and Convs.
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