
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECOUPLING DYNAMICAL RICHNESS FROM REPRE-
SENTATION LEARNING: TOWARDS PRACTICAL MEA-
SUREMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamic feature transformation (the rich regime) does not always align with pre-
dictive performance (better representation), yet accuracy is often used as a proxy
for richness, limiting analysis of their relationship. We propose a computationally
efficient, performance-independent metric of richness grounded in the low-rank
bias of rich dynamics, which recovers neural collapse as a special case. The metric
is empirically more stable than existing alternatives and captures known lazy-to-
rich transitions (e.g., grokking) without relying on accuracy. We further use it to
examine how training factors (e.g., learning rate) relate to richness, confirming
recognized assumptions and highlighting new observations (e.g., batch normal-
ization promote rich dynamics). An eigendecomposition-based visualization is
also introduced to support interpretability, together providing a diagnostic tool for
studying the relationship between training factors, dynamics, and representations.

1 INTRODUCTION

In machine learning, feature learning is often viewed through two complementary perspectives:
improvement of representations and non-linear training dynamics. The representation perspective
emphasizes feature quality — how well it supports downstream tasks like classification and promotes
generalization (Bengio et al., 2013). The dynamics perspective — often called rich regime in rich
versus lazy training (Chizat et al., 2019) — concerns the dynamic transformation of features beyond
linear models. While dynamical richness frequently correlates with representation usefulness, rich
dynamics reflect a preference (inductive bias) toward certain solutions, without necessarily benefiting
all tasks (Geiger et al., 2020; Göring et al., 2025). For example, dynamic feature learning can impair
the performance on an image classification task (Fig. 1).

The representation perspective of feature learning — central to deep learning’s success — remains
poorly understood. However, its dynamic aspects, often shaped in practice by initialization and
optimization, are well understood in the context of layerwise linear models (e.g., linear networks).
Greedy dynamics with low-rank biases (Saxe et al., 2014; Mixon et al., 2020) explain neural collapse
(Papyan et al., 2020) in vision tasks; delayed saturation dynamics (Nam et al., 2024) have been linked
to emergence (Brown et al., 2020) and scaling laws (Kaplan et al., 2020) in large language models;
and initialization-dependent dynamics (Kumar et al., 2024; Kunin et al., 2024; Lyu et al., 2024)
offer insights into grokking (Power et al., 2022) in arithmetic tasks. See Nam et al. (2025) for a
comprehensive overview.

To better understand the link between rich dynamics and representation improvement, we need
independent metrics for dynamics and representations. However, prior dynamics metrics, while
insightful, are not optimized for practical richness measurement (Section 4.1). In this paper, we
propose a dynamical richness that compares the activations before and after the last layer. The metric
(1) generalizes neural collapse, (2) is computationally cheap, (3) performance-independent, and (4)
operates in function space. We demonstrate that our metric empirically tracks dynamical richness
without referencing performance, and assess its robustness against existing metrics. Finally, we
experiment our metric, with complementary visualization, across various setups, highlighting its
potential as a tool for uncovering new empirical insights.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Correct Label
Encoding

Training Set

Incorrect Label
Encoding

Test Set

v
v

(a) MNIST with label encoding

Full
backprop

(Rich)

Last layer
only

(Lazy)

Train acc. ↑ 100% 98.7%
Test acc. ↑ 10.0% 74.4%
DLR ↓ 0.0087 0.63

(b) Performance and richness metric

100 101 102

k

0.00
0.25
0.50
0.75
1.00

Π
∗
(k

)

(i) Target projection

100 101 102

k

0.00
0.25
0.50
0.75
1.00

Π̂
(k

)

(ii) Self projection

100 101 102 103

k

10 5

10 3

10 1

ρ
k
/
ρ

1

(iii) Eigenvalue

full backprop (10.0%), DLR = [8.7e-3] last layer only (74.4%), DLR = [6.3e-1]full backprop (10.0%), DLR = [8.7e-3] last layer only (74.4%), DLR = [6.3e-1]

(c) Visualization of representation quality (i) and our metric (ii,iii) using the eigendecomposition

Figure 1: Rich dynamics ̸= better generalization. We trained a 4-layer MLP on label-encoded
MNIST. (a): The first 10 pixels are encoded with true labels in training and random labels in testing;
both the encoding and the image serve as valid features for training. (b): A full backpropagation
model (rich) biases toward the encodings and generalizes poorly, while a last-layer-only-trained
model (lazy) relies on the full image and generalizes better. Our low-rank-based metric DLR (Eq. (4))
quantifies the dynamical richness (DLR ∈ [0, 1] where 0 is richest) independent of the performance.
(c): Complementary visualization method (Eq. (5)): (i) Cumulative contribution of last-layer features
in expressing the target function — top 10 features are irrelevant in the rich model. (ii) Contribution
to the learned function — the rich model uses only the top 10 features, while the lazy model uses
all. (iii) Relative feature norms — rich model concentrates on the top 10; lazy model decays more
gradually. Test accuracies andDLR values are shown in parentheses and square brackets, respectively.
See Section 5.1 for details, and Appendix C for background and motivation.

Contributions:

• We introduce the Minimum projection operator TMP (Definition 1) and define the dynamical
low-rank measure DLR (Eq. (4)), a light weight and performance independent metric.

• We show that DLR reduces to neural collapse as a special case, connecting our formulation
to a well-studied phenomenon while extending it to settings without labels.

• We empirically confirm that DLR captures known lazy-to-rich transitions such as grokking
and target downscaling (Table 2), aligning with theoretical expectations while giving a
direct evaluation without referencing performance. We also empirically assess its robustness
against alternatives.

• We demonstrate the utility of our metric by showing how various training factors (e.g.,
architecture and learning rate) relate to richness and performance (Table 3). Our metric
explicitly confirms prior assumptions and uncovers new observations, such as batch nor-
malization shifting VGG-16 on CIFAR-100 from lazy to rich dynamics. We further adapt
eigendecomposition to visualize the metric for improved interpretability.

2 SET UP AND BACKGROUND

For analytical tractability, we use MSE loss and supervised settings where target function entries are
orthogonal and isotropic (e.g., balanced C-way classification or regression with scalar output).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Notations. For the input space X , we train on n samples from q, the underlying true distribution
on the input space X . The width of the last layer (or the linear model) is p. The dimension of
the output function (and the output of the neural network) is C. Denote f̂ and f∗ as the learned
function (at any point in training) and the target function, respectively. We use bra-ket notation
⟨f |g⟩ := Ex∼q[f(x)g(x)] to mean the inner product over the input distribution (Appendix B). See
Appendix A for a glossary.

Empirical details. Full experimental details, link to the source code, and statistical significance for
the tables are provided in Appendix H. All error bars represent one standard deviation.

Feature kernel operator. We define the feature map Φ : X → Rp as the map from the input to
the post-activations of the penultimate layer. For 1 ≤ k ≤ p, denote the kth feature as the kth entry
Φk(x) of Φ(x) = [Φ1(x), . . . ,Φp(x)]. We define the feature kernel operator T : L2(X)→ L2(X),
generalization of self-correlation matrix in function space, as

T [f](x′) := Ex∼q

[
p∑

k=1

Φk(x)Φk(x
′)f(x)

]
, T =

p∑
k=1

|Φk⟩ ⟨Φk| , (1)

where L2(X) is the Hilbert space of square-integrable functions on X (with distribution q). The sec-
ond expression is T in bra-ket notation. Using Mercer’s theorem (Mercer, 1909), we can decompose
the operator into eigenfunctions and eigenvalues

T :=

p∑
k=1

ρk |ek⟩ ⟨ek| , T [ek] = ρkek, ⟨ek|el⟩ = δkl, (2)

where ρk ∈ R is a non-negative eigenvalue and ek : X → R is the orthonormal eigenfunction. The
operator T and the eigenfunctions ek play a key role in kernel regression with feature map Φ (i.e.
K(x, x′) = Φ(x)TΦ(x′)). The linear model (kernel) has inductive bias toward larger (eigenvalue)
eigenfunctions (Bordelon et al., 2020; Jacot et al., 2020; Spigler et al., 2020; Canatar et al., 2021;
Cui et al., 2021; El Harzli et al., 2024) and generalizes better when larger eigenfunctions (larger ρk)
also better describe the target function (larger ⟨ek|f∗⟩) — also known as the task-model alignment
(Bordelon et al., 2020). See Appendix C for a gentle introduction.

Rich dynamics. Chizat et al. (2019) introduced rich dynamics as deviations from the exponential
saturation observed in linear models. Subsequent works (Kunin et al., 2024; Dominé et al., 2025;
Nam et al., 2025) identified these dynamics as sigmoidal saturation or amplifying dynamics — arising
from gradient descent in layerwise models — and connected them to phenomena like neural collapse
(Mixon et al., 2020), feature emergence (Nam et al., 2024), and grokking (Kunin et al., 2024). See
Nam et al. (2025) for a comprehensive overview.

Low-rank bias and neural collapse. Low-rank hidden representations naturally emerge in the rich
regime, as shown by studies across linear networks (Saxe et al., 2014; Ji & Telgarsky, 2019; Arora
et al., 2019a; Lampinen & Ganguli, 2019; Gidel et al., 2019; Tarmoun et al., 2021), unconstrained
feature models (Mixon et al., 2020; Fang et al., 2021), and matrix factorization (Arora et al., 2019b;
Li et al., 2020). These works find that gradient dynamics decouple into a minimal number of modes,
governed by the rank of the input-output correlation matrix (often that of the output C), causing
gradients to concentrate on those modes and produce low-rank representations. In practice, the
low-rank bias is observed as neural collapse (Papyan et al., 2020), which consists of four conditions
NC1-4 stated in Appendix D. Although often associated with improved representations, neural
collapse does not consistently imply better generalization (Zhu et al., 2021; Nguyen et al., 2022; Hui
et al., 2022; Su et al., 2023), remaining largely a dynamical phenomenon. See Kothapalli et al. (2022)
for an overview.

Change in NTK as measure of rich dynamics. Beyond performance, changes in the Neural
tangent kernel (NTK, Jacot et al. (2018)) before and after training are among the most commonly
used proxies for rich dynamics (Chizat et al., 2019; Atanasov et al., 2021; Kumar et al., 2024).
Although theoretically well-founded, NTK-based measures scale with the total number of parameters
and are computationally infeasible even for moderate vision models. For this reason, we omit NTK
from our analysis and we focus only on the feature kernel of the last layer (Eq. (1)).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 RICHNESS MEASURE DLR

We introduce a dynamical richness measure that exploits the low-rank bias of rich dynamics and
show that it reduces to neural collapse as a special case.

3.1 LOW RANK BIAS AS RICHNESS MEASURE

We define the learned function space Ĥ = span{f̂1, . . . , f̂C} where f̂k : X → R is the kth entry
of the network’s learned function (at any given time). In an ideal rich dynamics scenario, only the
minimal number of features are learned throughout the dynamics and are sufficient to express (linearly
span) the learned function space. Leveraging this idea, we define the minimal projection operator
TMP .

Definition 1 (Minimum Projection (MP) operator). For a neural network with learned function f̂
and features Φ(x), the corresponding T is an MP-operator TMP if it can be expressed as

TMP [u] = a1 ⟨1|u⟩1+ a2PĤ(u) for all u ∈ L2(X), (3)

where a1, a2 > 0, 1 is a constant function, and PĤ is the orthogonal projection onto Ĥ.

Ignoring the constant function (setting a1 = 0), whose discussion is deferred to Appendix D, the
TMP is (up to a constant scale) a projection operator PĤ that removes all components orthogonal to
Ĥ. If T is TMP , the last-layer features span only a C-dimensional space that matches the learned
function space, reflecting the low-rank structure characteristic of rich dynamics. We thus define the
low rank measure DLR as the similarity between the T — defined by the current features — and the
MP-operator TMP — defined by the current learned function — as a metric for richness:

DLR := 1− CKA(T , TMP), (4)

where CKA is the centered kernel alignment (Kornblith et al., 2019) with bounded value in [0, 1].
Because CKA is normalized and uses centered (zero-mean) alignment, the metric remains consistent
for any a1 and a2 (Appendix B.3). We subtract the CKA measure from 1 so that lower values
indicate richer dynamics, consistent with more widely used metrics of richness. The novelty of our
metric DLR lies in defining the minimum projection operator TMP and comparing it to T to quantify
dynamical richness, not in using well-established CKA. Notably, CKA is primarily used to compare
the NTK before and after training (Chizat et al., 2019; Kumar et al., 2024; Baratin et al., 2021).

Intuition. Our metric (Eq. (4)) compares the activations before (T) and after (TMP) the last layer.
In rich dynamics, low-rank bias dictates that only the minimal necessary features are learned and
used (DLR = 0). In this case, the final layer performs no additional processing since earlier layers
have already completed the task. Conversely, an excess of features indicates a bottleneck — such as
limited expressivity in earlier layers — that prevents the full manifestation of low-rank bias.

Time complexity. The algorithm is highly efficient. For n samples (from either train or test), it
requires n forward passes to record activations before and after the final layer, producing matrices of
size n × p and n × C, where p is the last-layer width and C the number of classes. DLR is then
computed in O(npC). Since typically n≫ p≫ C, setting n ≈ O(p) suffices, reducing complexity
to O(p2C). In standard models with p ≈ 103, this is far cheaper than NTK-based methods, which
scale quadratically with the total number of parameters. See Appendix E for details.

3.2 CONNECTION TO NEURAL COLLAPSE

Suppose that the empirical distribution coincides with the true distribution and the neural network
perfectly classifies all labels with one-hot vectors. We show that if T is an MP-operator, then the
NC1 and NC2 conditions (Appendix D) of neural collapse hold. Let dagger † denote pseudo inverse,
Ai the set of datapoints with class label i, so the ith learned function f̂i coincides with the one-hot
indicator function for Ai. Following Papyan et al. (2020), we define the ith class mean vector as
µi := Ex∈Ai [Φ(x)] and the global mean vector as µ̄ := C−1

∑C
i=1 µi.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proposition 1. If T is an MP-operator, then the NC1 condition (collapse of within-class variability)
Σ†

bΣW = 0 holds, where inter-class covariance matrix Σb and intra-class covariance matrix ΣW are

Σb =

C∑
j=1

(µj − µ̄)(µj − µ̄)T and ΣW =

C∑
i=1

Ex∈Ai

[
(Φ(x)− µi)(Φ(x)− µi)

T
]
.

Proposition 2. If T is an MP-operator, then the NC2 condition (convergence of features to a simplex
equiangular tight frame) holds:

(µi − µ̄)T (µj − µ̄) ∝ δij −
1

C
.

See Appendix D for proofs and further discussions.

Although the ideal criteria of T is TMP implies neural collapse criteria as a special case, they differ
in general: we measure how well features (random variables or functions) express the learned
function, while neural collapse concerns how training feature vectors represent class mean vectors.
Based on function space, our measure extends to test data, enables feature quality assessment (Eq. (5)),
and is more empirically robust (Tables 1 and 2), extending beyond neural collapse (see Appendix D).

4 EXPERIMENTS

Here, we share our empirical results. We first compare our metric with existing metrics of richness,
then we confirm that our measure empirically tracks known lazy-to-rich transitions. We further
conduct experiments on various training setup to explore the relationship between training factor,
rich dynamics, and performance (better representations).

4.1 COMPARISON TO PRIOR MEASURES OF RICH DYNAMICS

Three alternative metrics for richness measures are: (1) similarity to the initial kernel, Sinit =
CKA(Kinit,Klearned) ∈ [0, 1] (Yang & Hu, 2021), (2) the parameter norm ∥θ∥2F (Lyu et al., 2024),
and (3) class separation from neural collapse, NC1 = Tr(Σ†

bΣW) (Papyan et al., 2020; Stevens
et al., 2002; He & Su, 2023; Xu & Liu, 2023; Súkeník et al., 2024), where Σb and ΣW are the inter-
and intra-class covariances (Proposition 1). Prior metrics depend on the initial kernel, parameter
norms, or class labels, which can constrain their use as independent measures of richness.

Table 1: Richness for weight decay

Epoch 0 (init) 200

Train Acc.↑ 10.0% 10.2%
Test Acc.↑ 9.85% 10.0%
DLR↓ 0.59 1.0
Sinit↓ 1.0 0.20
∥θ∥2F ↓ 3.1 ·103 2.2 ·10−5

NC1↓ 1.2 · 105 7.5 ·10−14

Table 2: Richness metrics for target downscaling

α 2 · 10−1 2 · 100 2 · 101

Train Acc.↑ 100 % 100% 100%
Test Acc.↑ 92.7% 92.4% 88.3%
DLR↓ 4.9 · 10−2 1.1 · 10−1 5.6 · 10−1

Sinit↓ 6.8 · 10−2 4.1 · 10−2 5.2 · 10−2

∥θ∥2F ↓ 3.4 · 103 3.2 · 103 3.2 · 103
NC1↓ 2.3 · 104 3.2 · 103 8.1 · 102

Table 1 shows an extreme case of training an MLP on MNIST with large weight decay and a negligible
learning rate. Here, the dynamics are dominated by L2 weight decay, with little meaningful learning.
While existing metrics can sometimes misinterpret this as rich behavior (smaller after training), our
span-based measure correctly identifies the lack of dynamical richness (bigger after training).

Table 2 presents a more practical setting, where we tune laziness via target downscaling (i.e.,
y → y/α). Prior works (Chizat et al., 2019; Geiger et al., 2020) show that scaling targets by a factor
α induces lazier training where larger α implies greater laziness. A good metric should capture this.
Our measure aligns with α, while all other measures misalign with laziness. By not relying on initial
kernel, weight norm, or labels, our metric shows greater robustness in this setup. See Fig. 11 in
Appendix F for visualization of the dynamics in Table 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Kernel distance from initialization (Sinit). Kernel deviation (Yang & Hu, 2021), albeit often
the comparison of NTKs, is a common measure of rich dynamics (Chizat et al., 2019). However,
it measures the deviation from initial kernel, not how the kernel changed (e.g. weight decay alone
changes the kernel in Table 1). While theoretically appealing for near-lazy models, the metric can be
less accurate in deep, rich-training regimes where most practical training occurs.

Parameter norm (∥θ∥2
F). Smaller parameter norms often correlate with rich dynamics in practice,

similar to how the authors of Lyu et al. (2024) used it in their study of grokking. However, small
weights promote rich dynamics (Kumar et al., 2024; Atanasov et al., 2024; Nam et al., 2025; Saxe
et al., 2014; 2019), not the other way around. In fact, rich dynamics can occur for larger initialization
(Braun et al., 2022; Dominé et al., 2025) and depends on broader factors such as layer imbalances
(Kunin et al., 2024; Dominé et al., 2025; Nam et al., 2025).

Neural collapse measure (NC1). Separation-based metrics measure how training samples deviate
relative to class boundaries (Papyan et al., 2020; Stevens et al., 2002; He & Su, 2023; Xu & Liu,
2023; Súkeník et al., 2024). While most similar to our metric, they are unbounded, sensitive to output
scaling, and can be empirically ill-conditioned. As shown in Table 1, these issues can lead to dramatic
value shifts and hinder interpretability.

Low-rank measure (DLR). Our proposed metric evaluates the alignment between features and the
learned function, achieving its optimum when they span the same space isotropically (i.e., a scaled
projection operator). Our metric exploits the low-rank bias of rich dynamics through the alignment
and is normalized between [0, 1]. Crucially, it does so without relying on class labels, accuracy, or
the initial kernel, making the measure more appealing as an independent measure of richness.

4.2 EMPIRICAL FINDINGS REGARDING TRAINING FACTORS

Table 3: Richness measure and performance on various setups

Task Architecture Condition Train acc. Test acc. DLR Figure
Mod
97

2-layer
transformer

Step 200 (before grokking) 100% 5.2% 0.51 Fig. 12Step 3000 (after grokking) 100% 99.8% 0.11

CIFAR-
100 ResNet18

learning rate = 0.005 100% 66.3% 0.053
Fig. 4learning rate = 0.05 100% 78.3% 0.025

learning rate = 0.2 100% 74.5% 0.039
CIFAR-
10 ResNet18 weight decay = 0 100% 93.5% 0.05 Fig. 13weight decay = 10−4 100% 94.1% 0.015

weight decay = 10−3 100% 94.8% 0.003
CIFAR-
10

ResNet18 This experiment compares
architectures only.

100% 94.8% 0.026 Fig. 14MLP 99.8% 55.4% 0.48

CIFAR-
10 ResNet18

no label shuffling 100% 95.0% 0.031
Fig. 1510% label shuffling 100% 66.1% 0.042

full label shuffling 100% 9.5% 0.034

MNIST CNN full backpropagation 100% 99.1% 0.043 Fig. 16last layer only training 99.7% 96.8% 0.51
CIFAR-
100 VGG-16 without batch nomralization 99.5% 21.7% 0.66 Fig. 3with batch normalization 100% 72.0% 0.073

Table 3 demonstrates the practical usefulness of our performance-independent metric, summarizing
the correlation between training factor, performance, and richness in various setups. The visualization
of most experiments are provided in Appendix F.

The first row empirically confirms that our metric is a richness metric, explicitly capturing known
lazy-to-rich transition of grokking (Kumar et al., 2024; Kunin et al., 2024; Lyu et al., 2024; Nam
et al., 2025).

Rows two to four confirm the assumptions that optimal learning rate (2nd row), weight decay (3rd
row), and architecture (4th row) achieves high performance through rich dynamics (Ginsburg et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2018; Liu et al., 2022; He et al., 2016). Indeed, our metric makes this link explicit by having a
smallest value for the optimal setting. Although such relationships are broadly recognized, they are
typically only addressed implicitly.

The fifth and sixth rows, like Fig. 1, demonstrate that rich dynamics do not strictly correlate with
performance. ResNet18 on CIFAR-10 retains rich dynamics even when the labels are shuffled, and
convolutional neural network (CNN) on MNIST can achieve similar performance through both lazy
and rich dynamics.

The last row reveals a new observation: VGG-16 on CIFAR-100 is lazy without batch normalization
but rich with it, accompanied by a significant performance gap. While the performance effect of
batch normalization is empirically established, its underlying role remains debated. Our metric helps
clarify this by reframing generalization in terms of the more tractable problem of rich dynamics.

102 103 104

n

10 1

100

te
st

er
ro

r

(a) Test error

102 103 104

n

10 1

100
te

st
lo

ss

(b) Test loss

102 103 104

n

10 2

10 1

100

D
L
R

(c) Richness measure

data augmentation no data augmentation Gaussian Process

Figure 2: Learning curve and feature learning metric. (a): Learning curves of ResNet18 on
CIFAR-10. Both error (a) and loss (b) learning curves show a transition to a faster-decaying power law
with additional data near n ≈ 103, correlating with the shift in decay of the richness measure DLR

in (c). This agrees with theoretical study on phase transition (Rubin et al., 2024) that a sufficiently
large number of data points is critical for rich dynamics — a promising observation toward better
understanding feature learning dynamics. A linear model (Gaussian process) was plotted in (a,b) to
highlight the transition into faster-decaying learning curve.

5 VISUALIZATION METHODS

While metrics provide quantitative summaries, component-wise visualization aids interpretation.
For instance, how significant is the contrast between VGG-16 trained with versus without batch
normalization (Fig. 3)? Or why does a small change in DLR correspond to large performance
differences under varying learning rates (Fig. 4)? Does the CIFAR-10 MLP begin in a lazy regime, or
transition into it during training (Fig. 14 in Appendix F)? To address such questions, we introduce a
complementary visualization based on widely used eigendecomposition of kernel (Eq. (1)).

5.1 VISUALIZATION THROUGH DECOMPOSED FEATURES

Bengio et al. (2013) described feature learning as the process of learning better representations
for a downstream model, such as the classifier. Building on this idea, we view the earlier layers,
represented by the feature map Φ : X → Rp, as providing improved features for the final linear layer.
Combined with our T -dependent richness metric, this motivates a visualization method that extends
the linear model analysis of T . See Appendix C for related works and a gentle overview.

Our visualizes quantifies three aspects (cumulative quality Π∗(k), cumulative utilization Π̂(k), and
relative eigenvalue ρk/ρ1) of the last-layer features through the eigenfunctions ek of T :

(i) : Π∗(k) =

k∑
j=1

⟨ek|PH∗ [ek]⟩2

dim(H∗)
, (ii) : Π̂(k) =

k∑
j=1

⟨ek|PĤ[ek]⟩2

dim(Ĥ)
, (iii) : ρk/ρ1, (5)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where H∗ = span{f∗
1 , . . . , f

∗
C} and Ĥ = span{f̂1, . . . , f̂C} are the target and learned function

spaces, and PH : H → H is the projection operator onto the space H. All cumulative measures
lie in [0, 1], reflecting how well the top k features span the respective space. Notably, Π∗(k) is the
cumulative power in Canatar & Pehlevan (2022), quantifying the contribution of the top features in
expressing the target.

These three measures together capture complementary views of feature learning. The cumulative
quality (Π∗(k)) reflects how well the features align with the task. The utilization (Π̂(k)) indicates how
many features are used by the final layer, while the relative eigenvalues (ρk/ρ1) show their relative
magnitudes or importance. The latter two (Π̂ and ρk/ρ1) decompose the deviation from DLR = 0
condition by visualizing how many features are used and how many are significant (non-negligible).

For computation, we approximate eigenfunctions with the Nyström method (Baker & Taylor, 1979;
Williams & Rasmussen, 2006) using a sufficiently large sample size (Appendix E). The function
approximation enables test-set evaluation of the quality measure in (i), analogous to using test loss
as a proxy for generalization, ultimately visualizing both performance (i) and the metric (ii, iii) in a
common basis. As eigendecomposition arises naturally in study of kernels, similar visualizations
have appeared in prior works (e.g., (Canatar et al., 2021)); see Appendix G for details.

Interpreting visualization In perfectly rich dynamics (e.g., blue line in Fig. 3), Π̂(C) = 1 in
(ii), showing that only the first C features are used by the last layer. Additionally, ρ2 ≈ ρC and
ρC ≫ ρC+1 in (iii), indicating that the features have only C significant dimensions. The first
eigenvalue, corresponding to a constant function, is ignored because of the centering in CKA (see
Appendix D). If the performance is high, Π̂(C) ≈ 1 in (i), showing that first C features well express
the target. For the lazy regime, more eigenfunction will be used (slower capping in (ii)) and the
feature occupy higher dimensions (slower decay in (iii)).

5.2 VISUALIZATION RESULTS

0 50 100 150 200
k

0.00
0.25
0.50
0.75
1.00

Π
∗
(k

)

(i) Target projection

0 50 100 150 200
k

0.00
0.25
0.50
0.75
1.00

Π̂
(k

)

(ii) Self projection

100 101 102 103 104

k

10 5

10 3

10 1

ρ
k
/ρ

1

(iii) Eigenvalue

batchnorm (72.0%), [7.3e-2] no batchnorm (21.7%), [6.6e-1]batchnorm (72.0%), [7.3e-2] no batchnorm (21.7%), [6.6e-1]

Figure 3: Visualization of VGG16 on CIFAR-100 with and without batch normalization. We
visualize the last row of Table 3, where batch normalization shifts the model from the lazy to the rich
regime. The eigenvalue distribution (iii) highlights this difference: with batch normalization, only
100 features are significant, whereas without it the eigenvalues decay slowly.

Figs. 3 and 4 illustrate how visualization complements the metric. In Fig. 3, the batch-norm included
model uses only 100 features (eigenfunctions) in (ii) and shows clear low-rank structure in (iii). The
batch normalization lacking model uses significantly more feature (4096 in total) in (ii) and show
power-law distribution in (iii): indicating significantly lazy dynamics. In Fig. 4(ii), the model with
the smallest learning rate uses over 100 features to express the learned function, unlike models with
larger learning rates, suggesting lazier dynamics and poorer performance.

Fig. 5 reveals another novel pattern in feature learning dynamics: feature quality correlates with
feature intensity during training, with larger features improving faster. While it is expected that
a generalizing model in the rich regime obtains a few high-quality features after training, the
correlation between quality and intensity during training has not been previously observed or studied.
Interestingly, it appears to contrast with the silent alignment (Atanasov et al., 2021), which suggests
quality (dynamically) precedes intensity — highlighting a new direction for future research.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

50 100 150
k

0.4
0.5
0.6
0.7

Π
∗
(k

)

(i) Target projection

50 100 150
k

0.7

0.8

0.9

1.0

Π̂
(k

)

(ii) Self projection

100 101 102 103 104

k

10 5

10 3

10 1

ρ
k
/
ρ

1

(iii) Eigenvalue

lr=0.2 (74.5%), [3.9e-2] lr=0.05 (78.3%), [2.5e-2] lr=0.005 (66.3%), [5.3e-2]lr=0.2 (74.5%), [3.9e-2] lr=0.05 (78.3%), [2.5e-2] lr=0.005 (66.3%), [5.3e-2]

Figure 4: Visualization on the role of learning rate. We visualize the 2nd row of Table 3 where the
learning rates are varied (up to training instability) for ResNet18 on CIFAR-100. The second column
(ii) shows that smallest learning rate uses significantly more eigenfunctions (features), while other
models uses minimal 100 eigenfunctions, indicating a lazier dynamics.

0 50 100 150 200
k

0.00
0.25
0.50
0.75
1.00

Q
∗ k
/m

a
x
(Q

∗ k
)

(i) Target Projection

0 50 100 150 200
k

0.00
0.25
0.50
0.75
1.00

Q̂
k
/m

a
x
(Q̂

k
)

(ii) Self Projection

0 50 100 150 200
k

0.5

1.0

ρ
k
/ρ

2
(iii) Eigenvalue

epoch 0 (1%) epoch 1 (15%) epoch 5 (34%) epoch 30 (55%) epoch 400 (78%)

Figure 5: Correlation among dynamics of feature quality, utilization, and intensity. We show
individual metrics (e.g., Q∗(k) := Π∗(k)− Π∗(k − 1)) instead of cumulative metrics (Π∗(k) and
Π̂(k)) at different epochs for ResNet18 on CIFAR-100, normalized for better presentation. Larger
intensity features exhibit higher quality and utilization during training.

6 DISCUSSION AND CONCLUSION

Discussion. We introduced a performance-independent metric for dynamical richness, DLR, which
reduces to neural collapse as a special case (Propositions 1 and 2) and empirically agrees with prior
studies on lazy-to-rich transitions (Tables 2 and 3).

Table 3, Fig. 2 are examples of how the metric can be used for the analysis. We confirm established
assumptions explicitly with an independent metric, while potentially challenging a few (Fig. 5). We
also reveal new findings (Fig. 3), offering a direction for theoretical research.

Moreover, we provide a complementary visualization to extend these results for additional information,
also uncovering novel insights such as the alignment between representation quality and feature
intensity (Fig. 5).

Limitations. The current form of TMP is limited to orthogonal and isotropic target functions.
While this covers most classification tasks, a more general setup would be preferable. Additionally,
our metric is light-weight, but as a trade-off, focuses only on last-layer features, leaving the dynamics
of the entire network dynamics unexplored.

Conclusion. By offering a lightweight, robust, and performance-independent metric on rich dynam-
ics, we aim to lay the groundwork for future theoretical studies on their connection to representation
learning. More broadly, we see this work as a diagnostic tool toward bridging empirical observations
on representation learning (e.g., rule of thumb) and theoretical understanding of rich dynamics. In
future work, we plan to extend beyond the current focus on balanced tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

As mentioned in the main text, full experimental details, link to the source code, and statistical
significance for the tables are provided in Appendix H. All error bars represent one standard deviation.
The algorithm for approximating the metric and visualization are provided in Appendix E.

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Andrea Amadei, Antonius BM Linssen, and Herman JC Berendsen. Essential dynamics of proteins.
Proteins: Structure, Function, and Bioinformatics, 17(4):412–425, 1993.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient de-
scent for deep linear neural networks. In 7th International Conference on Learning Representations,
2019a. URL https://openreview.net/forum?id=SkMQg3C5K7.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019b.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners: The
silent alignment effect. arXiv preprint arXiv:2111.00034, 2021.

Alexander Atanasov, Alexandru Meterez, James B Simon, and Cengiz Pehlevan. The optimization
landscape of sgd across the feature learning strength. arXiv preprint arXiv:2410.04642, 2024.

Christopher TH Baker and RL Taylor. The numerical treatment of integral equations. Journal of
Applied Mechanics, 46(4):969, 1979.

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent,
and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In International
Conference on Artificial Intelligence and Statistics, pp. 2269–2277. PMLR, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. In International Conference on Machine Learning,
pp. 1024–1034. PMLR, 2020.

Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dynamics of
deep linear networks with prior knowledge. Advances in Neural Information Processing Systems,
35:6615–6629, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Kevin M Buckley and Xiao-Liang Xu. Spatial-spectrum estimation in a location sector. IEEE
transactions on acoustics, speech, and signal processing, 38(11):1842–1852, 1990.

Abdulkadir Canatar and Cengiz Pehlevan. A kernel analysis of feature learning in deep neural
networks. In 2022 58th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1–8. IEEE, 2022.

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model align-
ment explain generalization in kernel regression and infinitely wide neural networks. Nature
communications, 12(1):2914, 2021.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

10

https://openreview.net/forum?id=SkMQg3C5K7

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates
in kernel regression: The crossover from the noiseless to noisy regime. Advances in Neural
Information Processing Systems, 34:10131–10143, 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Clémentine Carla Juliette Dominé, Nicolas Anguita, Alexandra Maria Proca, Lukas Braun, Daniel
Kunin, Pedro A. M. Mediano, and Andrew M Saxe. From lazy to rich: Exact learning dynamics in
deep linear networks. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ZXaocmXc6d.

Ouns El Harzli, Bernardo Cuenca Grau, Guillermo Valle-Pérez, and Ard A Louis. Double-descent
curves in neural networks: a new perspective using gaussian processes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 11856–11864, 2024.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Layer-peeled model: Toward understanding
well-trained deep neural networks. arXiv preprint arXiv:2101.12699, 4, 2021.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020
(11):113301, 2020.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Boris Ginsburg, Igor Gitman, and Yang You. Large batch training of convolutional networks
with layer-wise adaptive rate scaling, 2018. URL https://openreview.net/forum?id=
rJ4uaX2aW.

Gene H Golub et al. Cf vanloan, matrix computations. The Johns Hopkins, 113(10):23–36, 1996.

Niclas Alexander Göring, Charles London, Abdurrahman Hadi Erturk, Chris Mingard, Yoonsoo
Nam, and Ard A. Louis. Feature learning is decoupled from generalization in high capacity neural
networks. In High-dimensional Learning Dynamics 2025, 2025. URL https://openreview.
net/forum?id=pVJpk4tuVu.

Hangfeng He and Weijie J Su. A law of data separation in deep learning. Proceedings of the National
Academy of Sciences, 120(36):e2221704120, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Mark O Hill. Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2):
427–432, 1973.

Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pp.
8571–8580, 2018.

Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Kernel
alignment risk estimator: Risk prediction from training data. Advances in Neural Information
Processing Systems, 33:15568–15578, 2020.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=HJflg30qKX.

11

https://openreview.net/forum?id=ZXaocmXc6d
https://openreview.net/forum?id=rJ4uaX2aW
https://openreview.net/forum?id=rJ4uaX2aW
https://openreview.net/forum?id=pVJpk4tuVu
https://openreview.net/forum?id=pVJpk4tuVu
https://openreview.net/forum?id=HJflg30qKX
https://openreview.net/forum?id=HJflg30qKX

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint:2001.08361, 2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Vignesh Kothapalli, Ebrahim Rasromani, and Vasudev Awatramani. Neural collapse: A review on
modelling principles and generalization. arXiv preprint arXiv:2206.04041, 2022.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). 2009. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=vt5mnLVIVo.

Daniel Kunin, Allan Raventos, Clémentine Carla Juliette Dominé, Feng Chen, David Klindt, An-
drew M Saxe, and Surya Ganguli. Get rich quick: exact solutions reveal how unbalanced ini-
tializations promote rapid feature learning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
eNM94i7R3A.

Andrew K. Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. In 7th International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=ryfMLoCqtQ.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

Yizhang Lou, Chris E Mingard, and Soufiane Hayou. Feature learning and signal propagation in deep
neural networks. In International Conference on Machine Learning, pp. 14248–14282. PMLR,
2022.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D. Lee, and Wei Hu. Dichotomy of
early and late phase implicit biases can provably induce grokking. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=XsHqr9dEGH.

James Mercer. Xvi. functions of positive and negative type, and their connection the theory of integral
equations. Philosophical transactions of the royal society of London. Series A, containing papers
of a mathematical or physical character, 209(441-458):415–446, 1909.

Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features. arXiv
preprint arXiv:2011.11619, 2020.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in neural information processing systems, 31, 2018.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory
and Experiment, 2021(12):124003, 2021.

Yoonsoo Nam, Nayara Fonseca, Seok Hyeong Lee, Chris Mingard, and Ard A. Louis. An exactly
solvable model for emergence and scaling laws in the multitask sparse parity problem. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=cuWsR25bbI.

12

http://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=vt5mnLVIVo
https://openreview.net/forum?id=eNM94i7R3A
https://openreview.net/forum?id=eNM94i7R3A
https://openreview.net/forum?id=ryfMLoCqtQ
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=cuWsR25bbI
https://openreview.net/forum?id=cuWsR25bbI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yoonsoo Nam, Seok Hyeong Lee, Clémentine Carla Juliette Dominé, Yeachan Park, Charles London,
Wonyl Choi, Niclas Alexander Göring, and Seungjai Lee. Position: Solve layerwise linear models
first to understand neural dynamical phenomena (neural collapse, emergence, lazy/rich regime,
and grokking). In Forty-second International Conference on Machine Learning Position Paper
Track, 2025. URL https://openreview.net/forum?id=nrlGUdlo16.

Duc Anh Nguyen, Ron Levie, Julian Lienen, Gitta Kutyniok, and Eyke Hüllermeier. Memorization-
dilation: Modeling neural collapse under label noise. arXiv preprint arXiv:2206.05530, 2022.

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra. Journal of
Machine Learning Research, 21(252):1–64, 2020. URL http://jmlr.org/papers/v21/
20-933.html.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv:2201.02177, 2022.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

Noa Rubin, Inbar Seroussi, and Zohar Ringel. Grokking as a first order phase transition in two layer
networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=3ROGsTX3IR.

Andrew Saxe, Shagun Sodhani, and Sam Jay Lewallen. The neural race reduction: Dynamics of
abstraction in gated networks. In International Conference on Machine Learning, pp. 19287–19309.
PMLR, 2022.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In Yoshua Bengio and Yann LeCun (eds.), 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6120.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019.

James B Simon, Madeline Dickens, Dhruva Karkada, and Michael R DeWeese. The eigenlearning
framework: A conservation law perspective on kernel regression and wide neural networks.
Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel methods:
empirical data versus teacher–student paradigm. Journal of Statistical Mechanics: Theory and
Experiment, 2020(12):124001, 2020.

James Stevens et al. Applied multivariate statistics for the social sciences, volume 4. Lawrence
erlbaum associates Mahwah, NJ, 2002.

Jingtong Su, Ya Shi Zhang, Nikolaos Tsilivis, and Julia Kempe. On the robustness of neural collapse
and the neural collapse of robustness. arXiv preprint arXiv:2311.07444, 2023.

13

https://openreview.net/forum?id=nrlGUdlo16
http://jmlr.org/papers/v21/20-933.html
http://jmlr.org/papers/v21/20-933.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=3ROGsTX3IR
http://arxiv.org/abs/1312.6120

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Peter Súkeník, Marco Mondelli, and Christoph Lampert. Neural collapse versus low-rank bias: Is
deep neural collapse really optimal? arXiv preprint arXiv:2405.14468, 2024.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pp. 10153–10161. PMLR, 2021.

Michael te Vrugt and Raphael Wittkowski. Projection operators in statistical mechanics: a pedagogical
approach. European Journal of Physics, 41(4):045101, 2020.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Jing Xu and Haoxiong Liu. Quantifying the variability collapse of neural networks. In International
Conference on Machine Learning, pp. 38535–38550. PMLR, 2023.

Greg Yang and Edward J. Hu. Tensor programs IV: Feature learning in infinite-width neural networks.
In Proceedings of the 38th International Conference on Machine Learning, pp. 11727–11737.
PMLR, 2021. URL https://proceedings.mlr.press/v139/yang21c.html. ISSN:
2640-3498.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34:29820–29834, 2021.

14

https://proceedings.mlr.press/v139/yang21c.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A GLOSSARY

Symbol. Name Definition Ref

C Class count The number of classes. Section 2
p Layer width The width of the last layer Section 2
n Sample count The number of training samples Section 2
X Input space Space of inputs Section 2
q Input distribution The probability distribution that generates samples in the

input space.
Section 2

Φ Feature map A map from input to post-activation of the penultimate
layer (the activations fed to the last layer).

Section 2

Φ(x) (Last layer)
Features

A p-dimensional random variable or the post-activation of
penultimate layer for x ∼ q.

Section 2

T (Feature kernel)
integral operator

A map from Hilbert space to Hilbert space that depends
on Φ(x), x ∼ q (typically the last layer features)

Eq. (1)

TMP Minimum projec-
tion operator

A special set of operators that depends on the learned
function f̂ .

Definition 1

ek kth eigenfunction The eigenfunction of T . Eq. (2)
ρk kth eigenvalue The eigenvalue of T . Eq. (2)
f̂ Learned function A C-dimensional vector output function f̂ : X → RC

expressed by the neural network.
Section 2

f∗ Target function A C-dimensional vector output function f∗ : X → RC

with correct labels. The output is always a one-hot vector
(up to a scaling constant).

Section 2

H∗ Target function
space

Space linearly spanned by the entries of the target func-
tion.

Section 3

Ĥ Learned function
space

Space linearly spanned by the entries of the learned func-
tion

Section 3

PH Projection opera-
tor

Projection operator ontoH. IfH = span{e1, e2, . . . , ep},
where ek’s are orthonormal, the the projection operator is
given as PH =

∑p
k=1 |ek⟩ ⟨ek|.

Section 3

α Downscale
constant

Prefactor that downscaling the target such that y → y/α Section 4.1

Σb Inter-class covari-
ance matrix

Covariance of class mean vectors for the training set. Eq. (33)

ΣW Intra-class covari-
ance matrix

Covariance of training feature vectors within given class. Eq. (32)

CKA(·, ·) Centered kernel
alignment

Alignment measure between two matrices or operators.
It is normalized between [0, 1] and ignores the mean (for
matrices) or constant function (for operators)

Eq. (6)

∥θ∥2F Parameter norm Norm of all parameters in the model. It was used as rich-
ness measure with smaller value meaning richer dynamics.

Section 4.1

DLR low rank metric Our proposed metric of dynamical richness. Smaller is
richer.

Eq. (4)

Sinit Kernel deviation The CKA measure between the learned and initial kernel. Section 4.1
NC1 Neural collapse

metric
The trace of Σ†

bΣW , measuring the training feature vectors
variance compared to class boundaries.

Proposition 1

Π∗(k) Cumulative qual-
ity

Measure of how well the first k eigenfunctions span the
target function space.

Eq. (5)

Π̂(k) Cumulative
utilization

Measure of how well the first k eigenfunctions span the
learned function space.

Eq. (5)

Q∗(k) Quality Per-feature quality or Π∗(k)−Π∗(k−1) where Π∗(0) = 0 Fig. 5
Q̂(k) Utilization Per-feature utilization or Π̂(k)−Π̂(k−1) where Π̂(0) = 0 Fig. 5

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B TECHNICAL SUPPLEMENTARY MATERIAL

Here, we introduce technical terms used in the main text and the following appendices.

B.1 BRA-KET NOTATION

In physics, bra-ket notations are widely used to express the inner product in function space. In our
paper, we use them to avoid overload of expectations and to clarify that we are using functions. Note
that we use bra-ket notation for the expectation over the true input distribution only:

⟨f |g⟩ = Ex∼q[f(x)g(x)] .

The notation is also useful for expressing operators such as T :

T [f](x) =
p∑

k=1

|Φk⟩ ⟨Φk|f⟩ = [Φ1 ⟨Φ1|f⟩ , . . . ,Φp ⟨Φp|f⟩].

Because T maps vector function f : X → Rp to a vector function, T [f] : X → Rp is also a vector
function with

T [f](x) = [Φ1(x) ⟨Φ1|f⟩ , . . . ,Φp(x) ⟨Φp|f⟩],
where ⟨Φk|f⟩ are scalars and Φk : X → R are functions.

B.2 FEATURES ARE RANDOM VARIABLES AND (WELL-BEHAVED) RANDOM VARIABLES FORM
A HILBERT SPACE

In machine learning, textbooks often overlook the mathematical distinction between feature maps
and features, treating them as interchangeable. However, they are fundamentally different.

A feature map is a function f : X → Y , defined independently of any distribution. A feature, by
contrast, is a random variable induced by applying a feature map to inputs drawn from a distribution
q over X .

Features are therefore distribution-dependent: applying the same feature map to different input
distributions yields different features. For instance, a fixed neural network defines a feature map, but
the resulting features — such as last-layer activations — will differ between MNIST and Fashion-
MNIST due to changes in the input distribution. The distinction also applies to kernel operators
T : H → H (distribution dependent) and kernels K : X × X → R (distribution independent).

The distinction becomes more important when we wish to discuss Hilbert space. A Hilbert
space requires an inner product between functions (feature maps), which depends on the un-
derlying distribution. For example, sin(x) and sin(2x) are orthogonal for q = unif [0, 2π]

where
∫ 2π

0
sin(x) sin(2x)dx = 0, but not for unit Gaussian distribution q = N (0, 1) where∫∞

−∞ sin(x) sin(2x)e−x2/2dx ̸= 0.

For an underlying probability distribution and a set of functions (feature maps), we can form a Hilbert
space. A common example of a Hilbert space will be the set of solutions expressed by a linear model
such as

f(x) = w1x+ w2x
2 + w3x

3.

Assuming the features [x, x2, x3] are linearly independent on input distribution q, they form a
3-dimensional Hilbert space.

B.3 CENTERED KERNEL ALIGNMENT

The centered kernel alignment (CKA) (Kornblith et al., 2019) measures the similarity between two
matrices or operators, and are commonly used for tracking the evolution of NTK (Baratin et al., 2021;
Lou et al., 2022):

CKA(A,B) =
Tr(c(A)c(B))

∥c(A)∥F ∥c(B)∥F
, (6)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where c(A) = (I−|1⟩ ⟨1|)A(I−|1⟩ ⟨1|) is centering operator, where I is identity, |1⟩ is the constant
function or constant vector, and ∥·∥F is Frobenius norm. The centering operator removes the constant
shift. The analogy is measuring the similarity of two multivariate Gaussian random variables by
comparing their covariance matrices E[(X −E[X])(X −E[X])T] instead of their autocorrelation
matrices E[XXT].

For TMP , if the learned function space Ĥ contains the constant function — which is empirically true
throughout the training for all our experiments and always true if it perfectly fits the training samples
(Appendix D) — c(TMP)/∥c(TMP)∥F becomes an orthogonal projection operator on the constant
complement of Ĥ, and is independent of the values of a1 and a2.

B.4 EFFECTIVE DIMENSION

A covariance matrix or an integral operator may be fully ranked, but their eigenvalues may decay fast
(e.g., by a power-law). The small eigendirections are often negligible, and researchers use various
effective dimensions to measure the number of significant dimensions. In this appendix, we will use
the exponent of entropy (Hill, 1973) to measure the effective dimension.

For a matrix or an operator with positive eigenvalues [ρ1, · · · , ρp], the effective dimension is

exp

(
−

p∑
i=1

ρi∑p
j=1 ρj

ln

(
ρi∑p
j=1 ρj

))
. (7)

Note that the effective dimension, the exponential of Shannon entropy, is d when the eigenvalues
have d equal non-zero entries. A slower decay of entries of ρ (in non-increasing order of entries)
generally yields a higher effective dimension than a vector with a faster decay.

The effective dimension of a matrix (operator) can be interpreted as the number of linearly independent
vectors (functions) needed to effectively describe the matrix (operator). This is similar in spirit to
the principal component analysis (PCA) (Abdi & Williams, 2010) in that only the directions with
significant variance are considered.

As discussed in Appendix D, the first eigenfunction is always a constant function, which is irrelevant
for our measure DLR and dynamical interpretation. Because the first eigenvalue is often much larger
than other significant eigenvalues, we use

Deff (ρ) := 1 + exp

(
−

p∑
i=2

ρi∑p
j=2 ρj

ln

(
ρi∑p
j=2 ρj

))
. (8)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C LINEAR MODELS, FEATURES, AND THEIR INDUCTIVE BIAS

Here, we will introduce the recent findings on the inductive bias of linear models and demonstrate
the significance of eigenvalues and eigenfunctions of T . Linear regression or kernel regression is a
rare case where its inductive bias is analytically calculable (Bordelon et al., 2020; Jacot et al., 2020;
Spigler et al., 2020; Canatar et al., 2021; Cui et al., 2021; El Harzli et al., 2024; Simon et al., 2023).
For a given feature map Φ : X → Rp or kernel K(x, x′) = Φ(x)TΦ(x′), the model is expressed as
the p dimensional (p can be infitnite) linear model

f̂(x;w) =

p∑
k=1

wkΦk(x). (9)

The objective of (ridgeless) regression is to minimize the following empirical loss

Lemp(f̂) =
1

2

n∑
i=1

∣∣∣f̂(x(i))− f∗(x(i))
∣∣∣2 + lim

λ→0
λ∥w∥2F , (10)

where x(i) denotes the ith sample in the training set. The second term is the regularization which
we take the limit so the solution is unique (pseudo inverse solution) for an overparameterized setup
(n < p).

C.1 EIGENFUNCTIONS - ORTHONORMALIZED FEATURES

In many cases, [Φ1(x),Φ2(x), · · · ,Φp(x)] are not orthonormal. For example, the features [x, x2] of
f(x) = w1x+ w2x

2 for q = unif [0, 1] are not orthonormal:

⟨x|x2⟩ =
∫ 1

0

x3dx ̸= 0, ⟨x|x⟩ =
∫ 1

0

x2dx ̸= 1, ⟨x2|x2⟩ =
∫ 1

0

x4dx ̸= 1. (11)

The diagonalization into the eigenfunctions returns the orthonormal basis of the hypothesis (Hilbert)
spaceH = span{Φ1(x),Φ2(x), · · · ,Φp(x)}, more formally known as Reproducing Kernel Hilbert
Space (RKHS). The eigenvalue now shows the norm of the feature along the direction of eigenfunction
as the features [Φ1(x),Φ2(x), · · · ,Φp(x)] are not normalized (Fig. 6).

Figure 6: Diagonalization of features Since the features [Φ1(x),Φ2(x), · · · ,Φp(x)] span a vec-
tor space, each function Φk : X → R can be represented as a vector. The overlap among
Φk’s (non-zero linear correlation) and differing norms of Φk’s result in diagonalized features
[
√
ρ1e1,

√
ρ2e2, · · · ,

√
ρpep] to have distinct intensities (norms) ρ1, · · · , ρp.

The transformation between the eigenfunction basis and the feature basis is

Φi(x) =
∑
j

Oij
√
ρjej(x), Oij =

1
√
ρj
⟨Φi|ej⟩ , (12)

where O ∈ Rp×p is an orthogonal matrix (follows trivially from Eq. (2)). Using Eq. (12), the model
can be reparameterized in the eigenfunction basis

f(x) =

p∑
k=1

wkΦk(x) =

p∑
k=1

θk
√
ρkek(x). (13)

Note that because θ = Ow, the norm of the parameters is conserved (i.e. ∥θ∥F = ∥w∥F), indicating
that weighted basis [

√
ρ1e1,

√
ρ2e2, · · · ,

√
ρpep] instead of normalized basis [e1, e2, · · · , ep] must

be used to represent the ‘intensity’ or norm of the features [Φ1(x), · · · ,Φp(x)].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 INDUCTIVE BIAS TOWARD LARGE FEATURES FOR MINIMUM NORM SOLUTION

For overparameterized linear models, the inductive bias determines the returned function as many
functions can express the training set. Here, we brief the linear models’ inductive bias toward larger
(significant) features or eigenfunctions (Bordelon et al., 2020; Jacot et al., 2020; Spigler et al., 2020;
Canatar et al., 2021; Cui et al., 2021; El Harzli et al., 2024; Simon et al., 2023).

The inductive bias is quantified through learnability Lk (Simon et al., 2023) or the expectation ratio
between the learned coefficient and true coefficient for ek:

Lk := ES∼qn

[
⟨f̂ |ek⟩
⟨f∗|ek⟩

]
=

ρk
ρk + κ

, where
p∑

k=1

ρk
ρk + κ

= n. (14)

The learnabilities always sum to n — the number of training datapoints — and constant κ is the
constant that satisfies the equality.

We can understand the inductive bias from the (vanishing) regularization on L2 norm (λ∥w∥2F in
Eq. (10)) and parameterization in Eq. (13). If different eigenfunctions can equally express the training
set, eigenfunction with larger eigenvalue often requires smaller coefficient θk to express the samples.
Because ∥w∥2F = ∥θ∥2F , expressing the data with larger (eigenvalue) eigenfunctions minimizes the
norm, creating an inductive bias toward larger features.

Instead of the derivation found in the references (Bordelon et al., 2020; Jacot et al., 2020; Spigler
et al., 2020; Canatar et al., 2021; Cui et al., 2021; El Harzli et al., 2024) — which requires random
matrix theory or replica trick — we show an example of the inductive bias in Fig. 7.

100 101

k

10 4

10 3

10 2

10 1

100

ρ
k
/m

a
x
(ρ
k
)

α= − 4

α= 4

(a) Eigenvalues

0.0 0.2 0.4 0.6 0.8 1.0
x

3

2

1

0

1

2

3

f(x
)

α=-4.0
α=4.0

(b) Bias by the eigenvalues

Figure 7: Different inductive biases by the eigenvalues (intensity). Two 10-parameter linear
models are trained on 4 datapoints (overparmaterized) with gradient flow. Both linear models use
sin basis functions such that f(x) =

∑10
k wkk

α
√
2 sin(2πkx) — spanning an identical function

space — but differ in the eigenvalues with α = −4 (blue) and α = 4 (orange), leading to different
inductive biases. (a): The blue model has a greater intensity for lower-frequency sin functions, while
the orange model shows the opposite. (b): The learned functions show that the blue model used
lower-frequency functions while the orange used higher-frequency functions to express the training
samples.

Fig. 7 shows that two linear models with same hypothesis space but different eigenvalues learn
dramatically different functions. The blue model has large eigenvalues for low-frequency functions
and fits the datapoints using low-frequency functions. The orange model with opposite eigenvalue
distribution fits the training set with high-frequency functions — a clear example of an inductive bias
toward large (intensity) features.

In the references, the generalization loss is

LG =
1

1− 1
n

∑p
j L

2
j

(
p∑
k

(1− Lk)
2 ⟨ek|f∗⟩∗2

)
. (15)

The equation formalizes the task-model alignment: the alignment between large features (large ρk
thus large Lk) and high quality (large ⟨ek|f∗⟩) leads to better generalization.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.3 DYNAMICAL INDUCTIVE BIAS TOWARD LARGE FEATURES

Here, we review how gradient descent introduces the dynamical inductive bias toward larger features.
For a linear model with feature map Φ and kernel integral operator T , the gradient flow dynamics
under MSE loss with infinite training datapoints and zero initialization becomes

df

dt
= −T [f − f∗] . (16)

The derivation is trivial with

df

dt
(x′) =

p∑
k

dwk

dt
Φk(x

′) =

p∑
k

− ∂L
∂wk

Φk(x
′) (17)

= −Ex

[
(f(x)− f∗(x))

p∑
k

df

dwk
(x)

]
Φk(x

′) (18)

= −Ex

[
(f(x)− f∗(x))

p∑
k

Φk(x)

]
Φk(x

′) (19)

= −T [f − f∗] , (20)

where in the second line, we used Eq. (10) on infinite datapoints so Lemp = L. In the last line, we
used the definition of integral operator (Eq. (1)).

Using the eigenvalues ρk and eigenfunctions ek of the kernel integral operator T , we obtain the
dynamics for each ⟨ek|f⟩ by inner producting ek on both sides of Eq. (16),

d ⟨ek|f⟩
dt

= Ex′

[
ek(x

′)
df

dt
(x′)

]
= −Ex′ [ek(x

′)T [f − f∗] (x′)] (21)

= −⟨ek|T [f − f∗]⟩ (22)
= −ρk(⟨ek|f⟩ − ⟨ek|f∗⟩), (23)

where we use the definition of eigenfunction in the last line (Eq. (2)). Expanding f in the eigenfunction
basis and plugging in Eq. (21), the function f at time t is a sum of p independent modes that saturate
faster for larger eigenvalues:

f(x)|t =
p∑

k=1

⟨ek|f∗⟩ (1− e−ρkt)ek(x), (24)

where we assumed f is a zero function at initialization. Eq. (24) shows that gradient flow decouples
the dynamics of linear models into p modes, where each mode corresponds to the evolution of
⟨ek|f⟩ having a saturation speed governed by ρk — thus the dynamical inductive bias toward larger
eigenfunction.

C.4 APPLICATION TO OUR METHOD

Here, we detail the intuition of our visualization methods. As described in Bengio et al. (2013),
feature learning (of representation) is providing better features for a simpler learner. The analogy
allows us to describe a neural network as (1) feature map Φ providing better features for (2) the last
layer — the simple learner (Fig. 8). Yet, better features for the last layer is ill-defined.

The last layer interacts with rest of the network only through the features. While the exact dynamics
differs from linear models, the last layer maintains the dynamical inductive bias (Appendix C.3)
toward larger features. Furthermore, the quality (⟨ek|f∗⟩), utilization (⟨ek|f̂⟩), and intensity ρk
formalisms readily extend to the last layer features, motivating our visualization method.

In the rich regime, features evolve during training, and Fig. 9(a-c) demonstrates an example of change
in features for 4-layer MLP trained to fit the Heaviside step function. The eigenfunctions are difficult
to visualize in practice as the input space is high dimensional. Fig. 9(d-f) shows our visualization,
capturing the evolution of features by measuring properties natural to linear regression.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

...

input
data

feature map

last
linear layer

class 1

class C

...

last layer features

Figure 8: A neural network decomposed into a feature map and a linear last layer. (left):An
abstract diagram depicting a DNN architecture as a combination of the feature map Φ : X → Rp

from the input space X to the p post activations of the penultimate layer, and final linear classifier for
C-way classifcation. Most neural networks share this abstract structure and mainly vary in how they
create their feature maps. (right): Illustration of the visualization methods in function space.

1.0 0.5 0.0 0.5 1.0
x

2

1

0

1

2

y

(a) epoch : 0

1.0 0.5 0.0 0.5 1.0
x

(b) epoch : 10

1.0 0.5 0.0 0.5 1.0
x

(c) epoch : 100

f ∗ e1 e2 e3 f̂

0 5 10 15 20
k

0.7

0.8

0.9

1.0

Π
∗
(k

)

(d) Target Projection

0 5 10 15 20
k

0.7

0.8

0.9

1.0

Π̂
(k

)

(e) Self Projection

0 5 10 15 20
k

10 6

10 3

100

ρ
k
/ρ

1

(f) Eigenvalue

epoch 0 epoch 10 epoch 100

Figure 9: Toy model demonstrating feature learning. A 4-layer MLP with width 1000 and scalar
input and output is trained to learn the Heaviside step function f∗ over the domain [−1, 1]. (a): The
first three eigenfunctions (dashed) are shown at initialization, resembling orthogonal polynomials.
(b,c): During training, features evolve such that a single feature (red) fits both the target and learned
functions (grey and green). (d,e,f): Our visualization metrics defined in Eq. (5) at different epochs.
(d) and (e) show that fewer features can express the target/learned function, and (f) shows that only a
few features are significant after training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D THE RELATIONSHIP BETWEEN THE MP-OPERATOR TMP AND NEURAL
COLLAPSE

Neural collapse (Papyan et al., 2020) (NC) refers to a state of a DNN when the feature vectors of the
training set and last layer weights form a symmetric and clustered structure at the terminal phase of
training (TPT) or when trained past the point where the training error vanishes. The structure has
been studied mainly in the Unconstrained Feature Model (UFM) (Mixon et al., 2020) and has sparked
theoretical studies. See Kothapalli et al. (2022) for a review.

NC is defined by the emergence of four interconnected phenomena upon TPT: NC1) collapse of
within-class variability, NC2) convergence of features to a rigid simplex equiangular tight frame
(ETF) structure, NC3) alignment of the last layer and features, and NC4) simplified decision by
nearest class:

1. Within class variance tends to 0
ΣWΣ†

b → 0, (25)

2. Convergence to simplex ETF

(µi − µ̄)T (µj − µ̄)

∥(µi − µ̄)∥2∥(µj − µ̄)∥2
→ Cδij − 1

C − 1
, (26)

3. Convergence to self duality
wi

∥wi∥2
− µi − µ̄

∥(µi − µ̄)∥2
→ 0, (27)

4. Simplification to nearest class center

argmax
i

wiΦ(x) + bi → argmin
i
∥Φ(x)− µi∥2. (28)

D.1 PROOFS OF PROPOSITION 1 AND 2

For completeness, we restate the conditions. We assume the true distribution q equals the empirical
distribution of the training set — the expectation Ex (and bra-ket notation) is over the training
samples. We assume balanced classification and define Ai as the set of training samples with class
label i. We assume the learned function is a perfectly classifying indicator function, giving

f̂i(x) :=

{
0 : x /∈ Ai

1 : x ∈ Ai
(29)

The feature class mean vector for label i is

µi = Ex∈Ai [Φ(x)] =
C

n

∑
x∈Ai

Φ(x) = C ⟨f̂i|Φ⟩ . (30)

Note that ⟨f̂i|Φ⟩ ∈ Rp is a vector with ⟨f̂i|Φ⟩ = [⟨f̂i|Φ1⟩ , . . . , ⟨f̂i|Φp⟩].
The global mean vector is

µ̄ =
1

C

C∑
i

µi = ⟨Φ|
C∑
i=1

f̂i⟩ = ⟨1|Φ⟩ . (31)

The feature intra (within)-class covariance ΣW ∈ Rp×p is

ΣW :=

C∑
i

Ex∈Ai

[
(Φ(x)− µi)(Φ(x)− µi)

T
]
. (32)

The feature inter (between)-class covariance Σb ∈ Rp×p is

Σb :=
1

C

C∑
i

(µi − µ̄)(µi − µ̄)T . (33)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma 1. For the conditions given above, if T [f](x′) = Φ(x′)TEx∼q′ [Φ(x)f(x)] is TMP , then

ΦT (x′)T (µi − µ̄) = a2(Cf̂i(x
′)− 1). (34)

Proof. By the definition of indicator functions of equal partitions,

⟨f̂i|f̂j⟩ =
1

C
δij ,

C∑
i=1

f̂i = 1, ⟨1|f̂j⟩ =
1

C
. (35)

It follows that Cf̂j − 1 is orthogonal to 1:

⟨1|Cf̂i − 1⟩ = 0. (36)

We can express the function Φ(x′)T (µi − µ̄) : X → R in terms of T

Φ(x′)T (µi − µ̄) = Φ(x′)T
(
⟨Φ|Cf̂i⟩ − ⟨Φ|1⟩

)
(37)

= Φ(x′)TEx[Φ(x)(Cf̂i(x)− 1)] (38)

= T [Cf̂i − 1](x′), (39)

where we used the definition of the means (Eqs. (30) and (31)) in the first line and the definition of T
(Eq. (1)) in the last line. As T is TMP , we obtain

Φ(x′)T (µi − µ̄) = TMP [Cf̂i − 1](x′) (40)

= a2(Cf̂i(x
′)− 1), (41)

where we used Eq. (36) and the definition of TMP (Definition 1).

Corollary 1. In the setup of Lemma 1, we have

µT
i (µj − µ̄) = a2(Cδij − 1).

Proof. From the definition of class mean (Eq. (30)) and Lemma 1,

µT
j (µi − µ̄) = Ex′

[
Cf̂j(x

′)Φ(x′)T (µi − µ̄)
]

(42)

= Ex′

[
Cf̂j(x

′)a2(Cf̂i(x
′)− 1)

]
(43)

= a2(Cδij − 1), (44)

where we used that Ex′ [f̂2
j (x

′)] = Ex′ [f̂j(x
′)] = C−1.

Proposition 1. If T is an MP-operator, then the NC1 condition (collapse of within-class variability)
Σ†

bΣW = 0 holds, where inter-class covariance matrix Σb and intra-class covariance matrix ΣW are

Σb =

C∑
j=1

(µj − µ̄)(µj − µ̄)T and ΣW =

C∑
i=1

Ex∈Ai

[
(Φ(x)− µi)(Φ(x)− µi)

T
]
.

Proof. We will show that Tr(ΣbΣW) = 0, which automatically proves the proposition as covariance
matrices are positive semi-definite. We have

Tr(ΣbΣW) = Tr

∑
j

(µj − µ̄)(µj − µ̄)T
∑
i

Ex∈Ai(Φ(x)− µi)(Φ(x)− µi)
T

 (45)

=
∑
i,j

Ex∈Ai

[(
(Φ(x)− µi)

T (µj − µ̄)
)2]

(46)

=
∑
i,j

Ex∈Ai

[
a22

(
Cf̂j(x)− 1− Cδij + 1

)2]
(47)

= a22C
2
∑
i,j

Ex∈Ai

[(
f̂j(x)− δij

)2]
, (48)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where we used linearity of trace, sum, expectation in the first line and Lemma 1 in the second line.

Expanding Eq. (48),

Tr(ΣbΣW) = a22C
2
∑
i,j

Ex∈Ai

[
(1− 2δij)f̂j(x) + δij

]
(49)

= a22C
∑
i,j

(δij(2− 2δij)) (50)

= 0, (51)

where we used that learned functions are indicator functions in the second line.

Proposition 2. If T is an MP-operator, then the NC2 condition (convergence of features to a simplex
equiangular tight frame) holds:

(µi − µ̄)T (µj − µ̄) ∝ δij −
1

C
.

Proof. From the definition of global mean (Eq. (31)) and Lemma 1,

µ̄T (µi − µ̄) = Ex′
[
Φ(x′)T (µi − µ̄)

]
(52)

= Ex′

[
a2(Cf̂i(x

′)− 1)
]

(53)

= 0. (54)

Using Corollary 1 and Eq. (54),

(µi − µ̄)T (µj − µ̄) = Ca2(δij −
1

C
). (55)

D.2 THE FIRST EIGENFUNCTION, THE CONSTANT FUNCTION, THE ANALOG OF GLOBAL MEAN
VECTOR IN SIMPLEXT ETF

Here, we discuss the constant function, which, by definition of TMP (Definition 1), is the largest
eigenfunction if T is TMP . In all experiments except Fig. 9, the largest eigenfunction is the constant
function throughout training, with ⟨1|e1⟩ > 0.95. For our visualization, we ignore the first eigenvalue
from analysis as the constant function is removed in CKA (Eq. (6)).

In the NC2 condition, the k-simplex ETF structure is a set of k orthogonal vectors projected on k − 1
dimensional space along the compliment of the global mean vector. For example, projecting [0, 0, 1],
[0, 1, 0], and [1, 0, 0] onto the orthogonal complement of [13 ,

1
3 ,

1
3] (the global mean vector) gives three

vertices [− 1
3 ,−

1
3 ,

2
3], [−

1
3 ,

2
3 ,−

1
3], [

2
3 ,−

1
3 ,−

2
3] which forms an (ordinary plane) equilateral triangle.

Our operator TMP (Definition 1) has an analogous structure, where it is a (scaled) projection operator
(a2PĤ) except along the constant function. The CKA (Eq. (6)) also measures the alignment except
along the mean direction (for matrices) or the constant direction (for operators). This allows neural
networks to have any arbitrary eigenvalue for the constant function, yet perfectly align with DLR = 0.

When T is TMP , the definition of TMP (Definition 1) trivially shows that the largest eigenfunction is
the constant function. A peculiar observation is that the first eigenfunction of T remains the constant
function (⟨1|e1⟩ > 0.95) throughout training in all our experiments (except Fig. 9). This pattern
also appears in hierarchical datasets (Saxe et al., 2022), suggesting that natural data may consistently
prioritize the constant function as the dominant mode — warranting further investigation.

D.3 GENERALITY OF OUR METRIC BEYOND NEURAL COLLAPSE

As discussed in the main text, our metrics are defined in terms of functions (random variables) while
neural collapse is defined by the feature vectors of the training set. Working in the function space, we
can measure the quality Eq. (5), which is inaccessible from formalism using training feature vectors.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Another important difference is that we focus on the learned function instead of mean class label
vectors. This allows more independence beyond neural collapse, allowing the method to be applied
on broader set of tasks: tasks with orthogonal and isotropic target functions form a broader class than
balanced classification tasks. Regression task with scalar output is an example.

In Fig. 10, we train ResNet18 on MNIST as a regression task with scalar output (f∗ : X → R),
where a digit i is correctly predicted if i − 0.5 < f(x) < i + 0.5. Unlike C-way classification,
which typically uses C features, the regression model reaches the rich regime with just two — one of
which is constant. Neural collapse formalism, focusing on class labels, does not readily extend to
regression tasks, demonstrating that our function-based formalism is more general, label-independent,
and applicable beyond classification.

0 5 10 15 20
k

0.00
0.25
0.50
0.75
1.00

Π
∗
(k

)

(a) Target projection

0 5 10 15 20
k

0.00
0.25
0.50
0.75
1.00

Π̂
(k

)

(b) Self projection

100 101 102 103

k

10 5

10 3

10 1

ρ
k
/ρ

1

(c) Eigenvalue

regression (98.7%), [4.9e-2] classification (99.7%), [4.4e-3]regression (98.7%), [4.9e-2] classification (99.7%), [4.4e-3]

Figure 10: Rich dynamics for regression problem with scalar output. ResNet18 was trained on
MNIST via regression (blue) and classification (orange). For regression, the target/learned functions
are scalar output functions, and an image x with digit i is correctly classified if i− 0.5 < f(x) <
i+0.5. It can be seen that both models are in the rich regime, using the minimum number of features.

Finally, the independence from the class labels allows another benefit of being applicable during
training. Neural collapse is defined only during the terminal stage of training and assumes 100%
classification. A measure without perfect classification can lead to unstable values, typically rising
from the pseudo-inverse of Σb (See also Appendix H). The NC1 measure shows a dramatic change in
logarithmic scale for experiments in Fig. 11(a,b) while our measure is more robust to such differences.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E CALCULATING THE METRIC AND VISUALIZATION IN PRACTICE

E.1 METRIC

In the main text, we used function and operator formalism. In practice, we must use finite approxima-
tion. We can use the CKA equation Eq. (6)

CKA(A,B) =
Tr(c(A)c(B))

∥c(A)∥F ∥c(B)∥F
, (56)

but use n× n feature matrices for A and B instead of operators. Let A1/2 ∈ Rp×n be feature vectors
(of the penultimate layer) of n samples and B1/2 ∈ Rc×n be output vectors (of the network) for n
samples. We can then approximate CKA by inserting A = (A1/2)TA1/2 and B = (B1/2)TB1/2

into the above equation. Because we already have the square root matrices, the computation cost of
CKA is O(npc).
Recall that n can be any number, and can be sampled from both train and test set. As A and B are
at most rank p and c respectively, n > p suffices in practice. Because p ≈ 103 in many models, we
can expect O(p2c) computation. In an author’s laptop, it can be computed in less than a minute for
all experiments. For NTK, p is no longer the width of the last layer, but total number of parameters,
quickly becoming infeasible.

E.2 VISUALIZATION

To calculate the eigenvalues and eigenfunctions (and thus the quality, utilization, and intensity) for a
feature map Φ : X → Rp, we need the true input distribution q, which is inaccessible. However, we
can use Nyström method (Baker & Taylor, 1979; Williams & Rasmussen, 2006) for a sufficiently large
sample size of n > p to approximate the eigenfunctions and eigenvalues of interest. We can create a
p× p empirical self-covariance matrix Σ from n samples of Φ(x). By diagonalizing Σ = USUT ,
we can obtain the empirical eigenvectors and eigenvalues, which can be used to approximate the true
eigenvalues and eigenfunctions:

ρk ≈ sk, ek(x) ≈ Φ(x)Tuk/
√
sk. (57)

The algorithm is summarized in Algorithm 1.

Algorithm 1 Empirical eigenfunctions and eigenvalues

1: Φ, Dtr (Prepare a feature map Φ and Dtr: n samples of training set)
2: ϕ← Φ(Dtr) (forward transform the input samples to feature vectors)
3: U, S, UT ← SV D(ϕϕT) (perform singular value decomposition)
4: [u1, u2, . . . , up]← U (find the column vectors of U)
5: for k in 1, 2, . . . , p do
6: ρk ← sk (approximate eigenvalues)
7: ek(x)← Φ(x)Tuk/

√
sk (approximate eigenfunctions)

8: end for

Functions not vectors. Note that eigenfunctions e′ks are defined beyond the training samples
used to compute ϕ and differ from the eigenvectors of the empirical self-covariance matrix. This
enables us to evaluate feature quality — via inner products with the target function — on the test set
rather than the training set, a capability not available for empirical eigenvectors.

Time complexity. The algorithm is computationally efficient in practice. The main cost in comput-
ing Eq. (57) is the SVD, typically with time complexity O(p3). A good approximation requires only
n = O(p) datapoints—more than the last layer width. Performing SVD on ϕ instead of ϕϕT yields U
and
√
S with O(p3) cost. Because last layers are typically narrow (e.g., p ≈ 103) and the algorithm

requires just n = O(p) forward passes, the overall computation is lightweight. In an author’s laptop,
the computation for all experiments takes less than a few minutes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F EXAMPLES OF OUR VISUALIZATION METHOD

In this section, we report additional findings made with our visualization tools.

0 10 20 30
k

0.4

0.6

0.8

1.0

Π
∗
(k

)

(i) Target projection

0 10 20 30
k

0.4

0.6

0.8

1.0

Π̂
(k

)

(ii) Self projection

100 101 102 103

k

10 5

10 3

10 1

ρ
k
/ρ

1

(iii) Eigenvalue

α= 2 · 10−1 (92.7%), DLR = [4.9e-2] α= 2 · 100 (92.4%), DLR = [1.1e-1] α= 2 · 101 (88.3%), DLR = [5.6e-1]α= 2 · 10−1 (92.7%), DLR = [4.9e-2] α= 2 · 100 (92.4%), DLR = [1.1e-1] α= 2 · 101 (88.3%), DLR = [5.6e-1]

Figure 11: Lazy/rich transition in target downscaling, illustrating how lazier dynamics (ii) use
more features and (iii) show a slower decay of eigenvalues (ignoring ρ1 of constant function, see
Appendix D).

0 50 100 150 200
k

0.00

0.25

0.50

0.75

1.00

Π
∗
(k

)

(i) Target Projection

40 80 120 160 200
k

0.00

0.25

0.50

0.75

1.00

Π̂
(k

)

(ii) Self Projection

50 100 150 200
k

10 5

10 3

10 1

ρ
k
/ρ

1

(iii) Eigenvalue

epoch 200 (5.2%), [5.1e-1] epoch 3000 (99.8%), [1.1e-1]

100 101 102 103

Train
Test

epoch 200 (5.2%), [5.1e-1] epoch 3000 (99.8%), [1.1e-1]

Figure 12: Lazy/rich transition in grokking. A 2-layer transformer is trained on the modular p
division task. The inset in the middle shows the training and test accuracies, where green and red
vertical lines indicate before and after grokking (steps 200 and 3000). Our metric in square brackets
shows the transition into the rich regime, while our visualization shows a clear difference in the use
of features.

Low rank bias. Table 4 shows that low-rank inductive bias is strong in vision tasks, where the
number of significant features always equals C (the number of orthogonal functions). See Eq. (8) in
Appendix B.4 for the Deff (ρ) expression. We also observe that our measure DLR is small in these
setups.

Table 4: Metrics of ResNet18 and VGG16 trained on image datasets

model dataset Deff (ρ) Deff (Q̂) DLR test accuracy (%)

ResNet18 MNIST 10.1 10.0 4.4 · 10−3 99.7
VGG16 MNIST 10.0 10.0 1.8 · 10−2 99.4

ResNet18 CIFAR10 10.4 10.0 3.1 · 10−3 94.8
VGG16 CIFAR10 10.0 10.0 1.1 · 10−3 93.3

ResNet18 CIFAR100 99.9 99.7 2.5 · 10−2 78.3
VGG16 CIFAR100 95.8 99.4 7.4 · 10−2 71.9

Weight decay is not the source of inductive bias. Fig. 13 shows that weight decay indeed aids
low-rank representation and smaller DLR. However, the model without any weight decay already
shows sufficiently low-rank representations, suggesting that dynamical inductive bias, not the weight
decay is the main driving cause of low-rank representations.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

5 10 15
k

0.7

0.8

0.9

1.0

Π
∗
(k

)

(i) Target projection

5 10 15
k

0.8

0.9

1.0

Π̂
(k

)

(ii) Self projection

100 101 102 103

k

10 5

10 3

10 1

ρ
k
/
ρ

1

(iii) Eigenvalue

wd=1e-3 (94.8%), [3.1e-3] wd=1e-4 (94.1%), [1.5e-2] no wd (93.5%), [5.0e-2]wd=1e-3 (94.8%), [3.1e-3] wd=1e-4 (94.1%), [1.5e-2] no wd (93.5%), [5.0e-2]

Figure 13: Effect of weight decay on rich dynamics. ResNet18 trained on CIFAR10 with varying
weight-decay (shown relative value to the fixed learning rate of 0.05). Larger weight decay leads to
richer dynamics with smaller DLR, but the dynamics is already rich without the weight decay.

0 5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

Π
∗
(k

)

(i) Target Projection

0 5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

Π̂
(k

)

(ii) Self Projection

0 5 10 15 20 25
k

10 5

10 3

10 1

ρ
k
/ρ

1

(iii) Eigenvalue

100 101 102 100 101 102 100 101 102

init (10.5%), [5.6e-1] epoch 1 (49.7%), [2.8e-1] epoch 5 (75.6%), [9.0e-2] epoch 200 (94.8%), [2.6e-2]init (10.5%), [5.6e-1] epoch 1 (49.7%), [2.8e-1] epoch 5 (75.6%), [9.0e-2] epoch 200 (94.8%), [2.6e-2]

(a) ResNet18 on CIFAR10

0 5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

Π
∗
(k

)

(i) Target Projection

0 5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

Π̂
(k

)

(ii) Self Projection

0 5 10 15 20 25
k

10 5

10 3

10 1

ρ
k
/ρ

1

(iii) Eigenvalue

100 101 102

100 101 102 100 101 102

init (9.9%), [6.1e-1] epoch 5 (35.6%), [4.2e-1] epoch 30 (55.7%), [3.5e-1] epoch 200 (55.4%), [4.8e-1]init (9.9%), [6.1e-1] epoch 5 (35.6%), [4.2e-1] epoch 30 (55.7%), [3.5e-1] epoch 200 (55.4%), [4.8e-1]

(b) MLP on CIFAR10

Figure 14: Role of architecture in the richness of the dynamics. ResNet18 (a) and a 4-layer MLP
of width 512 (b) are trained on CIFAR10, and their metrics are shown at different epochs. ResNet18
concentrates the metrics on the first 10 features after just one epoch, which persists until the end of
training. In contrast, MLP shows a less dramatic concentration on the first 10 features and deviates
from the rich dynamics around epoch 30 when it begins to use more features.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Role of architecture. As studied in Saxe et al. (2022), the architecture and dataset pair can influence
the performance even when dynamics are greedy (race toward shared representation). In Fig. 14,
we examine the dynamics of ResNet18 and a 4-layer MLP trained on CIFAR-10. In Fig. 14(a), the
training dynamics is restricted to the first 10 significant features, consistent with theoretical work in
linear neural networks. In Fig. 14(b), the training is mainly focused on the first 10 features, but we
observe that more features are used as training progresses, more similar to the dynamics of linear
models. We speculate that the lack of ability to feature learn in the earlier layers leads to the use of
additional features and thus leads to lazier training dynamics.

Rich dynamics ̸= generalization. In Fig. 1, we showed an example where rich dynamics led to
poorer performance. Fig. 16 shows a similar experiment in which both rich and lazy models achieve
near-perfect performance (> 95% test accuracy). Our visualization clearly shows the different usages
of features even when the performances are similar.

Rich dynamics without underlying data structure. Fig. 15 illustrates that rich dynamics can occur
independently of representation enhancement or underlying data structure. We trained ResNet18 on
CIFAR-10 with varying levels of label shuffling and observed that even with fully randomized labels,
the model enters the rich regime. This suggests that the dynamical low-rank bias is strong enough
to collapse expressive networks into minimal representations, consistent with prior observations of
neural collapse under random labeling (Zhu et al., 2021; Hui et al., 2022).

0 5 10 15 20
k

0.00
0.25
0.50
0.75
1.00

Π
∗
(k

)

(i) Target projection

0 5 10 15 20
k

0.00
0.25
0.50
0.75
1.00

Π̂
(k

)

(ii) Self projection

100 101 102 103

k

10 5

10 3

10 1
ρ
k
/ρ

1

(iii) Eigenvalue

no shuffle (95.0%), [3.1e-3] 10% shuffle (66.1%), [4.2e-2] random labels (9.5%), [3.4e-2]no shuffle (95.0%), [3.1e-3] 10% shuffle (66.1%), [4.2e-2] random labels (9.5%), [3.4e-2]

Figure 15: ResNet18 on 104 CIFAR-10 datapoints with shuffled labels. Models are trained with
0% (blue), 10% (orange), and 100% (green) label shuffling. As shown in the square brackets, all
exhibit rich dynamics with DLR < 0.1. Visualizations in (ii) and (iii) confirm the use of the top
10 significant features, but varying feature qualities (i) lead to varying test accuracies, shown in
parentheses.

100 101 102 103

k

0.00
0.25
0.50
0.75
1.00

Π
∗
(k

)

(a) Target projection

100 101 102 103

k

0.00
0.25
0.50
0.75
1.00

Π̂
(k

)

(b) Self projection

100 101 102 103

k

10 5

10 3

10 1

ρ
k
/ρ

1

(c) Eigenvalue

Last layer only (96.8%), [5.1e-1] Backpropagation (99.1%), [4.3e-2]Last layer only (96.8%), [5.1e-1] Backpropagation (99.1%), [4.3e-2]

Figure 16: Generalization does not imply rich regime. A CNN with width p = 1024 is trained on
the full MNIST dataset using two dynamics: last-layer-only training (lazy) and full backpropagation
(rich). Although both dynamics achieve test accuracy above 95%, they lead to dramatically different
use/significance of features: the metrics concentrate on the first 10 features for the rich regime, and
they are more evenly spread for the lazy regime.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Cross entropy loss. Fig. 17 shows that our method extends to models trained on cross-entropy loss,
while the mathematical interpretation is less straightforward.

0 5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

Π
∗
(k

)

(i) Target Projection

0 5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

Π̂
(k

)

(ii) Self Projection

0 5 10 15 20 25
k

10 5

10 3

10 1

ρ
k
/ρ

1

(iii) Eigenvalue

100 101 102

100 101 102 100 101 102

init (10.5%), [5.6e-1] epoch 1 (45.3%), [4.0e-1] epoch 5 (78.8%), [2.6e-1] epoch 200 (95.1%), [2.9e-2]init (10.5%), [5.6e-1] epoch 1 (45.3%), [4.0e-1] epoch 5 (78.8%), [2.6e-1] epoch 200 (95.1%), [2.9e-2]

Figure 17: Training with cross-entropy loss. We apply our visualization method to a ResNet18
trained on CIFAR-10 with cross-entropy loss. Similar to the MSE-trained model, it achieves small
value of DLR and shows concentration of feature usage and significance. Insets display all 512
features rather than just the top 25.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G RELATED WORKS ON VISUALIZATION

Eigendecomposition has long been a standard tool in science and engineering (Golub et al., 1996;
Buckley & Xu, 1990; Amadei et al., 1993; te Vrugt & Wittkowski, 2020), demonstrating its value
for visualization. Building on this, related empirical works have appeared (Raghu et al., 2017;
Morcos et al., 2018; Kornblith et al., 2019). For example, Singular vector canonical correlation
analysis (Raghu et al., 2017) resembles eigendecomposition but focuses on performance along leading
directions rather than on the number of features used to represent the learned function (i.e., lacking
Π̂). (Morcos et al., 2018; Kornblith et al., 2019) compare different networks, whereas our focus
is on before- and after-last-layer activations. Importantly, these approaches were not developed as
visualization tools for analyzing rich dynamics.

Similarly, visualizations related to neural collapse use eigendecomposition (Papyan, 2020), but
are inherently class-dependent, whereas our metric and visualization are class-independent. See
Appendix D.3 and Fig. 10.

The closest line of work is kernel-based visualization (Bordelon et al., 2020; Canatar et al., 2021;
Simon et al., 2023), especially (Canatar & Pehlevan, 2022). However, their visualization focuses
on cumulative power and the eigenvalue spectrum, whereas ours additionally separates dynamics
from performance, providing a complementary perspective. Additionally, the rich dynamics in the
literature refers to change in NTK, not the collapse (low-rank bias) of feature kernel.

While visualization is part of our contribution, our main contribution lies in introducingDLR as a met-
ric of richness and presenting supporting empirical results. Visualization serves as a complementary
tool to illustrate the dynamics and facilitate future studies.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H EMPIRICAL DETAILS

Here, we share information on our practical setups and their statistical significance. The code can be
found at https://anonymous.4open.science/r/RDRFL-0DBA/.

H.1 STATISTICAL SIGNIFICANCE

We reproduce tables from the main text but with the addition of one standard deviation values. In the
main text, all error bars in the plots represent one standard deviation over at least three runs.

Table 5: Statistical significance of Figure 1(b)

Full backprop (Rich) Last layer only (Lazy)

Train acc. ↑ 100 (±0)% 98.7 (±0.11) %
Test acc. ↑ 10.0 (±4.3 · 10−2)% 74.4 (±0.19) %
DLR ↓ 8.7 · 10−3 (±4.0 · 10−4) 6.3 · 10−1 (±3.2 · 10−3)

Table 6: Statistical significance of Table 1

Epoch 0 (init) 200

Train Acc.↑ 10.0 (±0.8)% 10.2(±0.27)%
Test Acc.↑ 9.85 (±1.0)% 10.0(±0.33)%
DLR↓ 0.59 (±1.6 · 10−2) 1.0 (±6.4 · 10−5)

Sinit↓ 1.0 (±0) 0.20 (±1.1 · 10−2)

∥θ∥2F ↓ 3.1 ·103 (±3.5 · 102) 2.2 ·10−5 (±2.5 · 10−9)

NC1↓ 1.2 · 105 (±7.2 · 102) 7.5 · 10−14 (±1.5 · 10−14)

Tr(ΣW)↓ 15.6 (±1.4) 7.1 · 10−18 (±1.1 · 10−18)

Table 7: Statistical significance of Table 2

α 2 · 10−1 2 · 100 2 · 101

Train Acc.↑ 100 (±0)% 100 (±0)% 100 (±0)%
Test Acc.↑ 92.7 (±3.4 · 10−2)% 92.4 (±5.2 · 10−2)% 88.3 (±3.7 · 10−1)%
DLR↓ 4.9 · 10−2 (±4.4 · 10−3) 1.1 · 10−1 (±9.4 · 10−3) 5.6 · 10−1 (±6.1 · 10−2)

Sinit↓ 6.8 · 10−2 (±2.1 · 10−3) 4.1 · 10−2 (±4.5 · 10−3) 5.2 · 10−2 (±1.8 · 10−2)

∥θ∥2F ↓ 3.4 · 103 (±1.1 · 101) 3.2 · 103 (±4.4) 3.2 · 103 (±2.0)
NC1↓ 2.3 · 104 (±4.1 · 103) 3.2 · 103 (±4.3 · 102) 8.1 · 102 (±1.4 · 102)

Tr(ΣW)↓ 2.0 (±0.25) 3.1 · 10−1 (±2.3 · 10−2) 1.2 · 10−1 (±1.2 · 10−2)

H.2 DISCUSSION ON NC1 MEASURE

In Tables 6 and 7, the NC1 measure is numerically unstable due to the pseudo-inverse of Σb. For
stability, We used Σ†

b ≈ (Σb + 10−4I)†. In addition to NC1, we consider a similar measure Tr(ΣW)
Papyan et al. (2020) for collapse of within class variability, which is also reported in Tables 6 and 7.
The measure Tr(ΣW) also shows a similar trend to NC1.

H.3 DATASET DETAILS

We use publicly available datasets, including MNIST Deng (2012) and CIFAR-10/100 Krizhevsky
et al. (2009) from Pytorch Paszke et al. (2019), and mod p division task from https://github.
com/teddykoker/grokking.

32

https://anonymous.4open.science/r/RDRFL-0DBA/
https://github.com/teddykoker/grokking
https://github.com/teddykoker/grokking

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 8: Statistical significance of Table 3

Task Architecture Condition DLR

Mod
97

2-layer
transformer

Step 200 (before grokking) 0.51 (±0.04)
Step 3000 (after grokking) 0.11 (±0.01)

CIFAR-
100 ResNet18

learning rate = 0.005 0.053 (±0.01)
learning rate = 0.05 0.025 (±0.004)
learning rate = 0.2 0.039 (±0.007)

CIFAR-
10 ResNet18

weight decay = 0 0.05 (±0.003)
weight decay = 10−4 0.015 (±0.003)
weight decay = 10−3 0.003 (±0.001)

CIFAR-
10

ResNet18
.

0.026 (±0.003)
MLP 0.48 (±0.07)

CIFAR-
10 ResNet18

no label shuffling 0.031 (±0.004)
10% label shuffling 0.042 (±0.003)
full label shuffling 0.034 (±0.004)

MNIST CNN
full backpropagation 0.043 (±0.005)
last layer only training 0.51 (±0.008)

CIFAR-
100 VGG-16

without batch nomralization 0.66 (±0.01)
with batch normalization 0.073 (±0.002)

H.4 MODEL DETAILS

Our model implementations are based on publicly available code assets, including VGG16 from
PyTorch Paszke et al. (2019), ResNet18 from Nakkiran et al. Nakkiran et al. (2021), and the modular
division task from https://github.com/teddykoker/grokking.

As described in the main text, we only trained ours models on MSE loss where the targets are one-hot
vectors (up to scaling constant). The constant α is used to scale the output y → y/α.

Table 9: Dataset details

Figure dataset training
sample count

α batch size

Fig. 1 Encoded MNIST
(Appendix H.4.1)

60,000 (all) 1/3 128

Table 2 MNIST 60,000 (all) 1 128
Fig. 2 CIFAR-10 · 1/3 128
Fig. 3 CIFAR-100 50,000 (all) 1/10 128
Fig. 5 CIFAR-100 50,000 (all) 1/10 128

Fig. 11 MNIST 1,000 · 128
Fig. 12 mod-p division 4,656 1 512
Fig. 15 CIFAR-10 10,000 1/3 128

H.4.1 ENCODED MNIST

In Fig. 1, we encoded the labels as one-hot vectors on the first 10 pixels of the MNIST dataset. For
the training set, we encoded the true labels, but for the test set, we encoded random labels.

33

https://github.com/teddykoker/grokking

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H.4.2 CIFAR-10/100

For CIFAR-10/100, we use standard augmentation using randomcrop 32 with padding 4 and
random horizontal flip with probability 0.5. We also use standard normalization with mean
[0.4914, 0.4822, 0.4465] and standard deviation [0.2023, 0.1994, 0.2010] for each channels.

Table 10: Training details

Figure optimizer learning
rate

momentum
/ beta

weight
decay

epochs learning rate scheduling

Fig. 1 Adam 1 · 10−3 [0.9, 0.999] 0 100 None
Table 1 SGD 1 · 10−6 0 1 · 10−3 200 None
Fig. 2 SGD 5 · 10−2 0.9 5 · 10−5 200 ×0.2 per 60 epochs
Fig. 3 SGD 1 · 10−2 0.9 1 · 10−5 400 None
Fig. 5 SGD 5 · 10−2 0.9 5 · 10−5 400 ×0.2 per 60 epochs

Fig. 11 Adam 1 · 10−3 [0.9, 0.999] 0 100 None
Fig. 12 Adam 1 · 10−3 [0.9, 0.98] 0 4000 None
Fig. 15 SGD 5 · 10−2 0.9 5 · 10−5 200 ×0.2 per 60 epochs

H.5 COMPUTE RESOURCES

The models ran on GPU cluster containing RTX 1080 (8GB), RTX 2080 (8GB), RTX3060 (12 GB),
and RTX3090 (24GB). The typical time to train a model is 2 hours, but it varies from 10 minutes to 6
hours depending on the experiment. The evaluation metrics take less than 5 minutes and may need up
to 2GB of CPU memory.

H.6 USE OF LLMS

Large language models (LLMs) were used to polish writing to make the paragraphs more concise.

34

	Introduction
	Set up and Background
	Richness measure DLR
	Low rank bias as richness measure
	Connection to neural collapse

	Experiments
	Comparison to prior measures of rich dynamics
	Empirical findings regarding training factors

	Visualization methods
	Visualization through decomposed features
	Visualization results

	Discussion and Conclusion
	Glossary
	Technical supplementary material
	Bra-ket notation
	Features are random variables and (well-behaved) random variables form a Hilbert space
	Centered kernel alignment
	Effective dimension

	Linear models, features, and their inductive bias
	Eigenfunctions - orthonormalized features
	Inductive bias toward large features for minimum norm solution
	Dynamical inductive bias toward large features
	Application to our method

	The relationship between the MP-operator TMP and neural collapse
	Proofs of proposition 1 and 2
	The first eigenfunction, the constant function, the analog of global mean vector in simplext ETF
	Generality of our metric beyond neural collapse

	Calculating the metric and visualization in practice
	Metric
	Visualization

	Examples of our visualization method
	Related works on visualization
	Empirical details
	Statistical significance
	Discussion on NC1 measure
	Dataset details
	Model details
	Encoded MNIST
	CIFAR-10/100

	Compute resources
	Use of LLMs

