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ABSTRACT

Dynamic feature transformation (the rich regime) does not always align with pre-
dictive performance (better representation), yet accuracy is often used as a proxy
for richness, limiting analysis of their relationship. We propose a computationally
efficient, performance-independent metric of richness grounded in the low-rank
bias of rich dynamics, which recovers neural collapse as a special case. The metric
is empirically more stable than existing alternatives and captures known lazy-to-
rich transitions (e.g., grokking) without relying on accuracy. We further use it to
examine how training factors (e.g., learning rate) relate to richness, confirming
recognized assumptions and highlighting new observations (e.g., batch normal-
ization promote rich dynamics). An eigendecomposition-based visualization is
also introduced to support interpretability, together providing a diagnostic tool for
studying the relationship between training factors, dynamics, and representations.

1 INTRODUCTION

In machine learning, feature learning is often viewed through two complementary perspectives:
improvement of representations and non-linear training dynamics. The representation perspective
emphasizes feature quality — how well it supports downstream tasks like classification and promotes
generalization (Bengio et al.| 2013)). The dynamics perspective — often called rich regime in rich
versus lazy training (Chizat et al.l|2019) — concerns the dynamic transformation of features beyond
linear models. While dynamical richness frequently correlates with representation usefulness, rich
dynamics reflect a preference (inductive bias) toward certain solutions, without necessarily benefiting
all tasks (Geiger et al.| [2020; |Goring et al.l [2025). For example, dynamic feature learning can impair
the performance on an image classification task (Fig.[I)).

The representation perspective of feature learning — central to deep learning’s success — remains
poorly understood. However, its dynamic aspects, often shaped in practice by initialization and
optimization, are well understood in the context of layerwise linear models (e.g., linear networks).
Greedy dynamics with low-rank biases (Saxe et al.,|2014; Mixon et al., 2020) explain neural collapse
(Papyan et al., 2020) in vision tasks; delayed saturation dynamics (Nam et al.,2024)) have been linked
to emergence (Brown et al., [2020) and scaling laws (Kaplan et al., [2020) in large language models;
and initialization-dependent dynamics (Kumar et al., 2024} [Kunin et al., 2024} |Lyu et al., [2024)
offer insights into grokking (Power et al., [2022) in arithmetic tasks. See Nam et al.| (2025) for a
comprehensive overview.

To better understand the link between rich dynamics and representation improvement, we need
independent metrics for dynamics and representations. However, prior dynamics metrics, while
insightful, are not optimized for practical richness measurement (Section [.1). In this paper, we
propose a dynamical richness that compares the activations before and after the last layer. The metric
(1) generalizes neural collapse, (2) is computationally cheap, (3) performance-independent, and (4)
operates in function space. We demonstrate that our metric empirically tracks dynamical richness
without referencing performance, and assess its robustness against existing metrics. Finally, we
experiment our metric, with complementary visualization, across various setups, highlighting its
potential as a tool for uncovering new empirical insights.
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Figure 1: Rich dynamics # better generalization. We trained a 4-layer MLP on label-encoded
MNIST. (a): The first 10 pixels are encoded with true labels in training and random labels in testing;
both the encoding and the image serve as valid features for training. (b): A full backpropagation
model (rich) biases toward the encodings and generalizes poorly, while a last-layer-only-trained
model (lazy) relies on the full image and generalizes better. Our low-rank-based metric Dy, r (Eq. @))
quantifies the dynamical richness (D g € [0, 1] where 0 is richest) independent of the performance.
(¢): Complementary visualization method (Eq. (E])): (i) Cumulative contribution of last-layer features
in expressing the target function — top 10 features are irrelevant in the rich model. (ii) Contribution
to the learned function — the rich model uses only the top 10 features, while the lazy model uses
all. (iii) Relative feature norms — rich model concentrates on the top 10; lazy model decays more
gradually. Test accuracies and Dy, values are shown in parentheses and square brackets, respectively.
See Section @for details, and Appendix E] for background and motivation.

Contributions:

* We introduce the Minimum projection operator 7a; p (Deﬁnition and define the dynamical
low-rank measure Dy, r (Eq. {@)), a light weight and performance independent metric.

* We show that Dy i reduces to neural collapse as a special case, connecting our formulation
to a well-studied phenomenon while extending it to settings without labels.

* We empirically confirm that Dy, captures known lazy-to-rich transitions such as grokking
and target downscaling (Table [2)), aligning with theoretical expectations while giving a
direct evaluation without referencing performance. We also empirically assess its robustness
against alternatives.

* We demonstrate the utility of our metric by showing how various training factors (e.g.,
architecture and learning rate) relate to richness and performance (Table [3). Our metric
explicitly confirms prior assumptions and uncovers new observations, such as batch nor-
malization shifting VGG-16 on CIFAR-100 from lazy to rich dynamics. We further adapt
eigendecomposition to visualize the metric for improved interpretability.

2 SET UP AND BACKGROUND

For analytical tractability, we use MSE loss and supervised settings where target function entries are
orthogonal and isotropic (e.g., balanced C-way classification or regression with scalar output).
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Notations. For the input space X, we train on n samples from ¢, the underlying true distribution
on the input space X'. The width of the last layer (or the linear model) is p. The dimension of
the output function (and the output of the neural network) is C. Denote f and f* as the learned
function (at any point in training) and the target function, respectively. We use bra-ket notation
(flg) := Eg~g[f(x)g(x)] to mean the inner product over the input distribution (Appendix [B). See
Appendix [A]for a glossary.

Empirical details. Full experimental details, link to the source code, and statistical significance for
the tables are provided in Appendix [H| All error bars represent one standard deviation.

Feature kernel operator. We define the feature map ® : X — RP as the map from the input to
the post-activations of the penultimate layer. For 1 < k < p, denote the k™" feature as the k*" entry
Py (z) of (z) = [@1(x),..., P, (x)]. We define the feature kernel operator T : L*(X) — L?(X),
generalization of self-correlation matrix in function space, as

TIf)(2') = Bang | D ®u(@)Pk(a) f(2) |, T =D [®k) (s, (D
k=1 k=1

where L?(X) is the Hilbert space of square-integrable functions on X’ (with distribution ¢). The sec-
ond expression is 7 in bra-ket notation. Using Mercer’s theorem (Mercer, [1909), we can decompose
the operator into eigenfunctions and eigenvalues

p
T .= Zpk ‘6}€> <6k| R T[ek] = Pk€k, <ek|el> = Okt @
k=1

where p;; € R is a non-negative eigenvalue and e, : X — R is the orthonormal eigenfunction. The
operator 7 and the eigenfunctions e; play a key role in kernel regression with feature map @ (i.e.
K(z,2") = ®(z)T ®(2')). The linear model (kernel) has inductive bias toward larger (eigenvalue)
eigenfunctions (Bordelon et al., [2020; Jacot et al., 2020; [Spigler et al., 2020; [Canatar et al., 2021}
Cui et al.} 2021} [El Harzli et al.| 2024)) and generalizes better when larger eigenfunctions (larger py,)
also better describe the target function (larger (ex|f*)) — also known as the task-model alignment
(Bordelon et al., 2020). See Appendix [C|for a gentle introduction.

Rich dynamics. |Chizat et al.[(2019) introduced rich dynamics as deviations from the exponential
saturation observed in linear models. Subsequent works (Kunin et al., [2024} |Dominé et al., 2025;
Nam et al.,|2025)) identified these dynamics as sigmoidal saturation or amplifying dynamics — arising
from gradient descent in layerwise models — and connected them to phenomena like neural collapse
(Mixon et al.,2020), feature emergence (Nam et al.| 2024), and grokking (Kunin et al.,[2024). See
Nam et al.| (2025) for a comprehensive overview.

Low-rank bias and neural collapse. Low-rank hidden representations naturally emerge in the rich
regime, as shown by studies across linear networks (Saxe et al., 2014; J1 & Telgarskyl, 2019; |Arora
et al}2019a; Lampinen & Ganguli, |2019; |Gidel et al.,2019; Tarmoun et al.| 2021)), unconstrained
feature models (Mixon et al.,[2020; [Fang et al.l2021)), and matrix factorization (Arora et al.,[2019b;
Li et al.l 2020). These works find that gradient dynamics decouple into a minimal number of modes,
governed by the rank of the input-output correlation matrix (often that of the output C'), causing
gradients to concentrate on those modes and produce low-rank representations. In practice, the
low-rank bias is observed as neural collapse (Papyan et al.| 2020), which consists of four conditions
NC1-4 stated in Appendix [D] Although often associated with improved representations, neural
collapse does not consistently imply better generalization (Zhu et al.,[2021}; Nguyen et al., 2022; Hui
et al.,|2022; Su et al.| [2023), remaining largely a dynamical phenomenon. See Kothapalli et al.| (2022)
for an overview.

Change in NTK as measure of rich dynamics. Beyond performance, changes in the Neural
tangent kernel (NTK, Jacot et al.| (2018])) before and after training are among the most commonly
used proxies for rich dynamics (Chizat et al., 2019} |Atanasov et al., 2021} |Kumar et al., [2024)).
Although theoretically well-founded, NTK-based measures scale with the total number of parameters
and are computationally infeasible even for moderate vision models. For this reason, we omit NTK
from our analysis and we focus only on the feature kernel of the last layer (Eq. (I))).
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3 RICHNESS MEASURE Dy

We introduce a dynamical richness measure that exploits the low-rank bias of rich dynamics and
show that it reduces to neural collapse as a special case.

3.1 LOW RANK BIAS AS RICHNESS MEASURE

We define the learned function space H = span{ fl, ceey fc} where fk : X — Ris the k*! entry
of the network’s learned function (at any given time). In an ideal rich dynamics scenario, only the
minimal number of features are learned throughout the dynamics and are sufficient to express (linearly
span) the learned function space. Leveraging this idea, we define the minimal projection operator
T p.

Definition 1 (Minimum Projection (MP) operator). For a neural network with learned function f
and features ®(x), the corresponding T is an MP-operator Ty p if it can be expressed as

Tap[u] = a1 (1u) 1+ aa Py (u)  forallu € L*(X), 3)
where a1, az > 0, 1 is a constant function, and Py, is the orthogonal projection onto .

Ignoring the constant function (setting a; = 0), whose discussion is deferred to Appendix [D] the
Tarp is (up to a constant scale) a projection operator P, that removes all components orthogonal to

H.If T is Tarp, the last-layer features span only a C'-dimensional space that matches the learned
function space, reflecting the low-rank structure characteristic of rich dynamics. We thus define the
low rank measure Dy, g as the similarity between the 7 — defined by the current features — and the
MP-operator Tj; p — defined by the current learned function — as a metric for richness:

[Drr=1-CKA(T, Tup), | “

where C'K A is the centered kernel alignment (Kornblith et al., 2019) with bounded value in [0, 1].
Because C'K A is normalized and uses centered (zero-mean) alignment, the metric remains consistent
for any a1 and a (Appendix [B.3). We subtract the C /K A measure from 1 so that lower values
indicate richer dynamics, consistent with more widely used metrics of richness. The novelty of our
metric Dy r lies in defining the minimum projection operator 73, p and comparing it to 7" to quantify
dynamical richness, not in using well-established CKA. Notably, CKA is primarily used to compare
the NTK before and after training (Chizat et al.| 2019} Kumar et al., 2024; |Baratin et al.| [2021).

Intuition. Our metric (Eq. (4)) compares the activations before (7)) and after (7, p) the last layer.
In rich dynamics, low-rank bias dictates that only the minimal necessary features are learned and
used (D r = 0). In this case, the final layer performs no additional processing since earlier layers
have already completed the task. Conversely, an excess of features indicates a bottleneck — such as
limited expressivity in earlier layers — that prevents the full manifestation of low-rank bias.

Time complexity. The algorithm is highly efficient. For n samples (from either train or test), it
requires n forward passes to record activations before and after the final layer, producing matrices of
size n X p and n x C, where p is the last-layer width and C' the number of classes. Dy y is then
computed in O(npC). Since typically n > p > C, setting n = O(p) suffices, reducing complexity
to (’)(p2 (). In standard models with p ~ 103, this is far cheaper than NTK-based methods, which
scale quadratically with the total number of parameters. See Appendix [E] for details.

3.2 CONNECTION TO NEURAL COLLAPSE

Suppose that the empirical distribution coincides with the true distribution and the neural network
perfectly classifies all labels with one-hot vectors. We show that if 7" is an MP-operator, then the
NC1 and NC2 conditions (Appendix D) of neural collapse hold. Let dagger 1 denote pseudo inverse,
A; the set of datapoints with class label 4, so the i*? learned function fl coincides with the one-hot
indicator function for A;. Following Papyan et al. (2020), we define the i*® class mean vector as

i := Egzea,[®(z)] and the global mean vector as ji :== C~* 210:1 i
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Proposition 1. If T is an MP-operator, then the NC1 condition (collapse of within-class variability)
ZEZW = 0 holds, where inter-class covariance matrix ¥y, and intra-class covariance matrix Xy are

c C
Lo = (— @)y — w7 and Sw =7 Esea, [(®() — p)(@(z) — ) "]

= i=1

Proposition 2. If T is an MP-operator, then the NC2 condition (convergence of features to a simplex
equiangular tight frame) holds:
_ _ 1
(i = )" (1 = 1) o 83 —

See Appendix [D|for proofs and further discussions.

Although the ideal criteria of 7 is 7y, p implies neural collapse criteria as a special case, they differ
in general: we measure how well features (random variables or functions) express the learned
function, while neural collapse concerns how training feature vectors represent class mean vectors.
Based on function space, our measure extends to test data, enables feature quality assessment (Eq. (3)),
and is more empirically robust (Tables[I]and [2), extending beyond neural collapse (see Appendix [D)).

4 EXPERIMENTS

Here, we share our empirical results. We first compare our metric with existing metrics of richness,
then we confirm that our measure empirically tracks known lazy-to-rich transitions. We further
conduct experiments on various training setup to explore the relationship between training factor,
rich dynamics, and performance (better representations).

4.1 COMPARISON TO PRIOR MEASURES OF RICH DYNAMICS

Three alternative metrics for richness measures are: (1) similarity to the initial kernel, S;,;; =
CK A(Kinit, Kieamea) € [0,1] (Yang & Hul [2021)), (2) the parameter norm [|0]|%, (Lyu et al.,[2024),
and (3) class separation from neural collapse, NC'1 = TT(EZZW) (Papyan et al., 2020; [Stevens
et al.,[2002; He & Sul 2023} [ Xu & Liul 2023} [Stkenik et al., [2024)), where >, and Xy are the inter-
and intra-class covariances (Proposition [I). Prior metrics depend on the initial kernel, parameter
norms, or class labels, which can constrain their use as independent measures of richness.

Table 1: Richness for weight decay Table 2: Richness metrics for target downscaling
Epoch 0 (init) 200 @ 2.1071 2-10° 210!

Train Acc.t 10.0% 10.2% Train Acc.t 100 % 100% 100%

Test Acc.t 9.85% 10.0% Test Acc.t 92.7% 92.4% 88.3%
Drrl 0.59 1.0 Drrl 49-1072 1.1-107' 56-101
Sinitd 1.0 0.20 Sinitd 6.8-1072 4.1-1072 5.2-1072
10]1%4 31100 221075 16]12 34103  3.2-103  3.2-103

NC1) 1.2-10° 7.5-10714 NC1| 2.3-10* 3.2-10° 8.1-102

Table[T|shows an extreme case of training an MLP on MNIST with large weight decay and a negligible
learning rate. Here, the dynamics are dominated by L2 weight decay, with little meaningful learning.
While existing metrics can sometimes misinterpret this as rich behavior (smaller after training), our
span-based measure correctly identifies the lack of dynamical richness (bigger after training).

Table [2] presents a more practical setting, where we tune laziness via target downscaling (i.e.,
y — y/ ). Prior works (Chizat et al., 2019} Geiger et al.|[2020) show that scaling targets by a factor
o induces lazier training where larger o implies greater laziness. A good metric should capture this.
Our measure aligns with o, while all other measures misalign with laziness. By not relying on initial
kernel, weight norm, or labels, our metric shows greater robustness in this setup. See Fig. [T1]in
Appendix [F for visualization of the dynamics in Table
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Kernel distance from initialization (S;,;;). Kernel deviation (Yang & Hul [2021)), albeit often
the comparison of NTKs, is a common measure of rich dynamics (Chizat et al., 2019)). However,
it measures the deviation from initial kernel, not how the kernel changed (e.g. weight decay alone
changes the kernel in Table[T). While theoretically appealing for near-lazy models, the metric can be
less accurate in deep, rich-training regimes where most practical training occurs.

Parameter norm (||0]|2.). Smaller parameter norms often correlate with rich dynamics in practice,
similar to how the authors of [Lyu et al.| (2024) used it in their study of grokking. However, small
weights promote rich dynamics (Kumar et al.,|2024; |Atanasov et al.,|2024; |Nam et al., 2025} Saxe
et al.,|2014}2019)), not the other way around. In fact, rich dynamics can occur for larger initialization
(Braun et al.,[2022; Dominé et al., 2025) and depends on broader factors such as layer imbalances
(Kunin et al.} [2024; | Dominé et al., [2025; |Nam et al., [2025).

Neural collapse measure (INC1). Separation-based metrics measure how training samples deviate
relative to class boundaries (Papyan et al., 2020} Stevens et al., [2002; He & Sul 2023} Xu & Liu,
2023 |Sukenik et al.,2024). While most similar to our metric, they are unbounded, sensitive to output
scaling, and can be empirically ill-conditioned. As shown in Table[l] these issues can lead to dramatic
value shifts and hinder interpretability.

Low-rank measure (D r). Our proposed metric evaluates the alignment between features and the
learned function, achieving its optimum when they span the same space isotropically (i.e., a scaled
projection operator). Our metric exploits the low-rank bias of rich dynamics through the alignment
and is normalized between [0, 1]. Crucially, it does so without relying on class labels, accuracy, or
the initial kernel, making the measure more appealing as an independent measure of richness.

4.2 EMPIRICAL FINDINGS REGARDING TRAINING FACTORS

Table 3: Richness measure and performance on various setups

Task Architecture Condition Train acc. Testacc. Dpr  Figure
Mod 2-layer Step 200 (before grokking) 100% 5.2% 0.51 Fig
97 transformer Step 3000 (after grokking) 100% 99.8% 0.11 ’
CIFAR- learn@ng rate = 0.005 100% 66.3% 0.053 .
100 ResNet18  learning rate = 0.05 100% 78.3% 0.025 Fig.
learning rate = 0.2 100% 74.5% 0.039
CIFAR- weight decay =0 100% 93.5% 0.05 .
10 ResNetl8 cight decay = 10— 100% ot1% oois Held
weight decay = 1073 100% 94.8% 0.003
CIFAR- ResNetl8  This experiment compares 100% 94.8% 0.026 Fig
10 MLP architectures only. 99.8% 55.4% 0.48 ’
CIFAR- no label shufﬂing 100% 95.0% 0.031 .
10 ResNet18  10% label shuffling 100% 66.1% 0.042 Flg.
full label shuffling 100% 9.5% 0.034
full backpropagation 100% 99.1% 0.043 .
MNIST ~ CNN last layerpon%)y %raining 99.7% 96.8% 0.51 Fig.
CIFAR- without batch nomralization  99.5% 21.7% 0.66 .
100 YOS 10 Githbatch normalization  100%  72.0% 0073 &

Table 3] demonstrates the practical usefulness of our performance-independent metric, summarizing
the correlation between training factor, performance, and richness in various setups. The visualization
of most experiments are provided in Appendix [F]

The first row empirically confirms that our metric is a richness metric, explicitly capturing known
lazy-to-rich transition of grokking (Kumar et al., 2024 Kunin et al., 2024} Lyu et al., [2024; Nam
et al., [2025).

Rows two to four confirm the assumptions that optimal learning rate (2" row), weight decay (3'4
row), and architecture (4*" row) achieves high performance through rich dynamics (Ginsburg et al.,
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2018; Liu et al.; 2022; |He et al., 2016). Indeed, our metric makes this link explicit by having a
smallest value for the optimal setting. Although such relationships are broadly recognized, they are
typically only addressed implicitly.

The fifth and sixth rows, like Fig. I} demonstrate that rich dynamics do not strictly correlate with
performance. ResNet18 on CIFAR-10 retains rich dynamics even when the labels are shuffled, and
convolutional neural network (CNN) on MNIST can achieve similar performance through both lazy
and rich dynamics.

The last row reveals a new observation: VGG-16 on CIFAR-100 is lazy without batch normalization
but rich with it, accompanied by a significant performance gap. While the performance effect of
batch normalization is empirically established, its underlying role remains debated. Our metric helps
clarify this by reframing generalization in terms of the more tractable problem of rich dynamics.

-+ data augmentation no data augmentation -+ Gaussian Process
100 0 100 E

1 ) 10 \*\ \Hﬂ’i\»
-
: £ 5107
7 ] ; |
= 10714 - 10-1 1072

102 103 104 107 103 104 10?2 103 104

n n n
(a) Test error (b) Test loss (c) Richness measure

Figure 2: Learning curve and feature learning metric. (a): Learning curves of ResNetl8 on
CIFAR-10. Both error (a) and loss (b) learning curves show a transition to a faster-decaying power law
with additional data near n ~ 103, correlating with the shift in decay of the richness measure Dy r
in (c). This agrees with theoretlcal study on phase transition (Rubin et al.,[2024) that a sufficiently
large number of data points is critical for rich dynamics — a promising observation toward better
understanding feature learning dynamics. A linear model (Gaussian process) was plotted in (a,b) to
highlight the transition into faster-decaying learning curve.

5 VISUALIZATION METHODS

While metrics provide quantitative summaries, component-wise visualization aids interpretation.
For instance, how significant is the contrast between VGG-16 trained with versus without batch
normalization (Fig. [3)? Or why does a small change in Dy correspond to large performance
differences under varying learning rates (Fig.[4)? Does the CIFAR-10 MLP begin in a lazy regime, or
transition into it during training (Fig. [I4]in Appendix [F)? To address such questions, we introduce a
complementary visualization based on widely used eigendecomposition of kernel (Eq. (IJ)).

5.1 VISUALIZATION THROUGH DECOMPOSED FEATURES

Bengio et al.| (2013) described feature learning as the process of learning better representations
for a downstream model, such as the classifier. Building on this idea, we view the earlier layers,
represented by the feature map ¢ : X — RP, as providing improved features for the final linear layer.
Combined with our 7 -dependent richness metric, this motivates a visualization method that extends
the linear model analysis of 7. See Appendix [C|for related works and a gentle overview.

Our visualizes quantifies three aspects (cumulative quality IT*(k), cumulative utilization II(k), and
relative eigenvalue py /p1) of the last-layer features through the eigenfunctions ey of 7

; 2 k e 2
() () = 30 Pl gy gy = O Gy,
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where H* = span{ff,..., f&} and H = span{fi,..., fc} are the target and learned function
spaces, and Py : H — H is the projection operator onto the space H. All cumulative measures
lie in [0, 1], reflecting how well the top k features span the respective space. Notably, IT*(k) is the
cumulative power in|Canatar & Pehlevan|(2022), quantifying the contribution of the top features in
expressing the target.

These three measures together capture complementary views of feature learning. The cumulative
quality (IT* (k)) reflects how well the features align with the task. The utilization (IT(k)) indicates how
many features are used by the final layer, while the relative eigenvalues (pg/p1) show their relative
magnitudes or importance. The latter two (IT and pk/p1) decompose the deviation from Dyp = 0
condition by visualizing how many features are used and how many are significant (non-negligible).

For computation, we approximate eigenfunctions with the Nystrom method (Baker & Taylor, 1979
Williams & Rasmussen, [2000) using a sufficiently large sample size (Appendix [E)). The function
approximation enables test-set evaluation of the quality measure in (i), analogous to using test loss
as a proxy for generalization, ultimately visualizing both performance (i) and the metric (ii, iii) in a
common basis. As eigendecomposition arises naturally in study of kernels, similar visualizations
have appeared in prior works (e.g., (Canatar et al., [2021)); see Appendix [G]for details.

Interpreting visualization In perfectly rich dynamics (e.g., blue line in Fig. , fI(C) =1lin
(ii), showing that only the first C' features are used by the last layer. Additionally, po ~ pc and
pc > pc+i in (iii), indicating that the features have only C' significant dimensions. The first
eigenvalue, corresponding to a constant function, is ignored because of the centering in CKA (see
Appendix @) If the performance is high, ﬁ(C’) ~ 1 in (i), showing that first C' features well express
the target. For the lazy regime, more eigenfunction will be used (slower capping in (ii)) and the
feature occupy higher dimensions (slower decay in (iii)).

5.2  VISUALIZATION RESULTS

-+ batchnorm (72.0%), [ 7.3e-2] no batchnorm (21.7%), [ 6.6e-1]
1.00 A H 1.00 A H
: ~
0.75 - : 0.75 -
) t =
Z 0507 = 0.50 1
0.25 A 0.25 A1
0.00 T + T 0.00 T + T 107° T t T
0 50 100 150 200 0 50 100 150 200 100 10* 102 10® 104
k k k
(i) Target projection (ii) Self projection (iii) Eigenvalue

Figure 3: Visualization of VGG16 on CIFAR-100 with and without batch normalization. We
visualize the last row of Table [3| where batch normalization shifts the model from the lazy to the rich
regime. The eigenvalue distribution (iii) highlights this difference: with batch normalization, only
100 features are significant, whereas without it the eigenvalues decay slowly.

Figs. [3|and ] illustrate how visualization complements the metric. In Fig.[3] the batch-norm included
model uses only 100 features (eigenfunctions) in (ii) and shows clear low-rank structure in (iii). The
batch normalization lacking model uses significantly more feature (4096 in total) in (ii) and show
power-law distribution in (iii): indicating significantly lazy dynamics. In Fig.[4[ii), the model with
the smallest learning rate uses over 100 features to express the learned function, unlike models with
larger learning rates, suggesting lazier dynamics and poorer performance.

Fig. 5| reveals another novel pattern in feature learning dynamics: feature quality correlates with
feature intensity during training, with larger features improving faster. While it is expected that
a generalizing model in the rich regime obtains a few high-quality features after training, the
correlation between quality and intensity during training has not been previously observed or studied.
Interestingly, it appears to contrast with the silent alignment (Atanasov et al.,[2021), which suggests
quality (dynamically) precedes intensity — highlighting a new direction for future research.
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=+ Ir=0.2 (74.5%), [ 3.9e-2] Ir=0.05 (78.3%), [ 2.5e-2] - Ir=0.005 (66.3%), [ 5.3e-2]
: 2 09 4 <
= 0.8 & 1073 A
071 .
t t 107> T t T

50 100 150 50 100 150 10 10' 102 10° 10*
k k k
(i) Target projection (ii) Self projection (iii) Eigenvalue

Figure 4: Visualization on the role of learning rate. We visualize the 2¢ row of Table where the
learning rates are varied (up to training instability) for ResNet18 on CIFAR-100. The second column
(i1) shows that smallest learning rate uses significantly more eigenfunctions (features), while other
models uses minimal 100 eigenfunctions, indicating a lazier dynamics.

=+ epoch 0 (1%) epoch 1(15%) -+ epoch 5 (34%) -~ epoch 30 (55%) -+ epoch 400 (78%)

1@; 1.00
\g 0.75
£ 050
~

*= 0.25
e

0.00 +
50 100 150 200 50 100 150 200
k k k
(i) Target Projection (ii) Self Projection (iii) Eigenvalue

Figure 5: Correlation among dynamics of feature quality, utilization, and intensity. We show
individual metrics (e.g., @* (k) := II*(k) — II*(k — 1)) instead of cumulative metrics (IT* (k) and
fI(k;)) at different epochs for ResNet18 on CIFAR-100, normalized for better presentation. Larger
intensity features exhibit higher quality and utilization during training.

6 DISCUSSION AND CONCLUSION

Discussion. We introduced a performance-independent metric for dynamical richness, Dy, g, which
reduces to neural collapse as a special case (Propositions[T]and[2)) and empirically agrees with prior
studies on lazy-to-rich transitions (Tables [2]and 3).

Table 3] Fig. 2] are examples of how the metric can be used for the analysis. We confirm established
assumptions explicitly with an independent metric, while potentially challenging a few (Fig. ). We
also reveal new findings (Fig. [3), offering a direction for theoretical research.

Moreover, we provide a complementary visualization to extend these results for additional information,
also uncovering novel insights such as the alignment between representation quality and feature

intensity (Fig.[3).

Limitations. The current form of 7y, p is limited to orthogonal and isotropic target functions.
While this covers most classification tasks, a more general setup would be preferable. Additionally,
our metric is light-weight, but as a trade-off, focuses only on last-layer features, leaving the dynamics
of the entire network dynamics unexplored.

Conclusion. By offering a lightweight, robust, and performance-independent metric on rich dynam-
ics, we aim to lay the groundwork for future theoretical studies on their connection to representation
learning. More broadly, we see this work as a diagnostic tool toward bridging empirical observations
on representation learning (e.g., rule of thumb) and theoretical understanding of rich dynamics. In
future work, we plan to extend beyond the current focus on balanced tasks.
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REPRODUCIBILITY STATEMENT

As mentioned in the main text, full experimental details, link to the source code, and statistical
significance for the tables are provided in Appendix [H] All error bars represent one standard deviation.
The algorithm for approximating the metric and visualization are provided in Appendix [E]
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A  GLOSSARY

Symbol. Name Definition Ref
C Class count The number of classes. Section |2}
P Layer width The width of the last layer Section
n Sample count The number of training samples Section
X Input space Space of inputs Section
q Input distribution ~ The probability distribution that generates samples in the ~ Section
input space.
P Feature map A map from input to post-activation of the penultimate Section
layer (the activations fed to the last layer).
D(x) (Last layer) A p-dimensional random variable or the post-activation of Section
Features penultimate layer for x ~ q.
T (Feature kernel) A map from Hilbert space to Hilbert space that depends  Eq.
integral operator  on ®(x), = ~ ¢ (typically the last layer features)
Tamp Minimum projec- A special set of operators that depends on the learned Deﬁnition
tion operator function f.
ek kth eigenfunction The eigenfunction of 7. Eq. l)
Pk kM eigenvalue The eigenvalue of 7. Eq. li
f Learned function A C-dimensional vector output function f : X = R¢ Section
expressed by the neural network.
f* Target function A C-dimensional vector output function f* : X — R Section
with correct labels. The output is always a one-hot vector
(up to a scaling constant).
H* Target function Space linearly spanned by the entries of the target func- Section
space tion.
H Learned function Space linearly spanned by the entries of the learned func- Section
space tion
Py Projection opera- Projection operator onto . If . = span{e1, ez, ..., ep}, Section
tor where e;,’s are orthonormal, the the projection operator is
givenas Py = > 7_, |ex) (ex|.
« Downscale Prefactor that downscaling the target such that y — y/« Section
constant
> Inter-class covari- Covariance of class mean vectors for the training set. Eq.
ance matrix
Yw Intra-class covari- Covariance of training feature vectors within given class. Eq.

ance matrix

CKA(-,-) Centered kernel

1611%
Drr

Sinit
NC1

alignment
Parameter norm
low rank metric

Kernel deviation

Neural collapse
metric
Cumulative qual-
ity

Cumulative
utilization

Quality
Utilization

Alignment measure between two matrices or operators.
It is normalized between [0, 1] and ignores the mean (for
matrices) or constant function (for operators)

Norm of all parameters in the model. It was used as rich-
ness measure with smaller value meaning richer dynamics.

Our proposed metric of dynamical richness. Smaller is
richer.

The CKA measure between the learned and initial kernel.

The trace of Z‘,ZEW, measuring the training feature vectors
variance compared to class boundaries.

Measure of how well the first k£ eigenfunctions span the
target function space.

Measure of how well the first k£ eigenfunctions span the
learned function space.

Per-feature quality or IT* (k) —IT*(k—1) where IT*(0) = 0
Per-feature utilization or I1(k) —II(k—1) where I1(0) = 0

Eq. @
Section

Eq. H

Section

Proposition
Eq.
Eq.

Fig.
Fig.|5
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B TECHNICAL SUPPLEMENTARY MATERIAL

Here, we introduce technical terms used in the main text and the following appendices.

B.1 BRA-KET NOTATION

In physics, bra-ket notations are widely used to express the inner product in function space. In our
paper, we use them to avoid overload of expectations and to clarify that we are using functions. Note
that we use bra-ket notation for the expectation over the true input distribution only:

(f19) = Exnyglf (z)g(x)] .

The notation is also useful for expressing operators such as 7
p
TIA@) =D 1Pk) (@elf) = [B1(@1]f) ..., B (@ )].
k=1

Because 7 maps vector function f : X — RP? to a vector function, 7[f] : X — RP is also a vector
function with

Tlf1(@) = [@1(2) (Rulf) - -, Pp(@) (D[ £)],

where (®y|f) are scalars and @, : X — R are functions.

B.2 FEATURES ARE RANDOM VARIABLES AND (WELL-BEHAVED) RANDOM VARIABLES FORM
A HILBERT SPACE

In machine learning, textbooks often overlook the mathematical distinction between feature maps
and features, treating them as interchangeable. However, they are fundamentally different.

A feature map is a function f : X — )/, defined independently of any distribution. A feature, by
contrast, is a random variable induced by applying a feature map to inputs drawn from a distribution
q over X.

Features are therefore distribution-dependent: applying the same feature map to different input
distributions yields different features. For instance, a fixed neural network defines a feature map, but
the resulting features — such as last-layer activations — will differ between MNIST and Fashion-
MNIST due to changes in the input distribution. The distinction also applies to kernel operators
T : H — H (distribution dependent) and kernels K : X x X — R (distribution independent).

The distinction becomes more important when we wish to discuss Hilbert space. A Hilbert
space requires an inner product between functions (feature maps), which depends on the un-
derlying distribution. For example, sin(z) and sin(2x) are orthogonal for ¢ = wunif[0, 27]

where f02 "sin(z) sin(22)dx = 0, but not for unit Gaussian distribution ¢ = N(0,1) where
S5 sin(z) sin(2z)e~"/2dx # 0.

For an underlying probability distribution and a set of functions (feature maps), we can form a Hilbert
space. A common example of a Hilbert space will be the set of solutions expressed by a linear model

such as

f(z) = wiz + wor? + wsz®.

Assuming the features [z, 22, 2]
3-dimensional Hilbert space.

are linearly independent on input distribution ¢, they form a

B.3 CENTERED KERNEL ALIGNMENT

The centered kernel alignment (C' K A) (Kornblith et al.,[2019) measures the similarity between two
matrices or operators, and are commonly used for tracking the evolution of NTK (Baratin et al.| [2021;
Lou et al.,[2022):

 Te(e(A)e(B))
CEAAB) = @l rle®) [ ©
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where ¢(A) = (I —|1) (1|)A( —|1) (1]) is centering operator, where I is identity, |1) is the constant
function or constant vector, and || - || p is Frobenius norm. The centering operator removes the constant
shift. The analogy is measuring the similarity of two multivariate Gaussian random variables by
comparing their covariance matrices E[(X — E[X])(X — E[X])”] instead of their autocorrelation
matrices E[X X T].

For Ty p, if the learned function space # contains the constant function — which is empirically true
throughout the training for all our experiments and always true if it perfectly fits the training samples
(Appendix D) — ¢(Tarp)/||c(Tarp) || » becomes an orthogonal projection operator on the constant

complement of H, and is independent of the values of a; and as.

B.4 EFFECTIVE DIMENSION

A covariance matrix or an integral operator may be fully ranked, but their eigenvalues may decay fast
(e.g., by a power-law). The small eigendirections are often negligible, and researchers use various
effective dimensions to measure the number of significant dimensions. In this appendix, we will use
the exponent of entropy (Hill, [1973) to measure the effective dimension.

For a matrix or an operator with positive eigenvalues [p1, - - - , pp], the effective dimension is

P
Pi Pi
_ 1 : (N
P ( ; Z§:1 Pj ! <Z§—1 Pj >>

Note that the effective dimension, the exponential of Shannon entropy, is d when the eigenvalues
have d equal non-zero entries. A slower decay of entries of p (in non-increasing order of entries)
generally yields a higher effective dimension than a vector with a faster decay.

The effective dimension of a matrix (operator) can be interpreted as the number of linearly independent
vectors (functions) needed to effectively describe the matrix (operator). This is similar in spirit to
the principal component analysis (PCA) (Abdi & Williams,, [2010)) in that only the directions with
significant variance are considered.

As discussed in Appendix [D] the first eigenfunction is always a constant function, which is irrelevant
for our measure Dy, r and dynamical interpretation. Because the first eigenvalue is often much larger
than other significant eigenvalues, we use

p
pi Pi
D, =1+ - 1 . 8
£7(p) exp ( ; > o pi ! <Z§=2 pj)) .
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C LINEAR MODELS, FEATURES, AND THEIR INDUCTIVE BIAS

Here, we will introduce the recent findings on the inductive bias of linear models and demonstrate
the significance of eigenvalues and eigenfunctions of 7. Linear regression or kernel regression is a
rare case where its inductive bias is analytically calculable (Bordelon et al.,[2020; Jacot et al., 2020;
Spigler et al.| 2020; (Canatar et al., 2021} |Cui et al.; 2021} [El Harzli et al., [2024} |Simon et al., [ 2023)).
For a given feature map ® : X — RP? or kernel K (x,2’) = ®(x)? ®(2’), the model is expressed as
the p dimensional (p can be infitnite) linear model

P
w) = Zwkq)k(x). ©)
k=1

The objective of (ridgeless) regression is to minimize the following empirical loss

Eemp(f) = %Z

i=1

A~ . : 2
f(x(z)) _ f*(x(l))’ + ;\%AHWH%? (10)

where z(") denotes the i*" sample in the training set. The second term is the regularization which

we take the limit so the solution is unique (pseudo inverse solution) for an overparameterized setup
(n <p).

C.1 EIGENFUNCTIONS - ORTHONORMALIZED FEATURES

In many cases, [®1(z), ®2(z), -, ®,(x)] are not orthonormal. For example, the features [z, z%] of
f(x) = wiz + wax? for ¢ = uni f[0, 1] are not orthonormal:

1 1 1
<m|a:2>=/0 x3dx # 0, <x|a:>=/0 w?dx # 1, <x2|x2>=A zidr # 1. (11)

The diagonalization into the eigenfunctions returns the orthonormal basis of the hypothesis (Hilbert)
space H = span{®1(z), P2(z),- - , ®,(x)}, more formally known as Reproducing Kernel Hilbert
Space (RKHS). The eigenvalue now shows the norm of the feature along the direction of eigenfunction

as the features [®,(x), Po(x), - - -, ®,(2)] are not normalized (Fig.[6).
= [wy, o] Vp2e: o F=101,05]
N
Figure 6: Diagonalization of features Since the features [®(z), P2(z), -, Pp(x)] span a vec-

tor space, each function ®; : X — R can be represented as a vector. The overlap among
®.’s (non-zero linear correlation) and differing norms of ®’s result in diagonalized features

[V/P1€1,\/P2€2, -, /Ppep| to have distinct intensities (norms) py, - - , pp.

The transformation between the eigenfunction basis and the feature basis is
1
¥) =Y 0iypiei(r), Oy =—(Dile;), (12)
- VP

J

where O € RP*P is an orthogonal matrix (follows trivially from Eq. ). Using Eq. , the model
can be reparameterized in the eigenfunction basis

Zwk@k ZG}N/ ek ) (13)
Note that because § = Ow, the norm of the parameters is conserved (i.e. ||0||r = ||w]||r), indicating

that weighted basis [\/p1e1, /p2€2, - - , /Ppep) instead of normalized basis [e1, e, - - - , €] must
be used to represent the ‘intensity’ or norm of the features [®1(z), - -, ®,(z)].
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C.2 INDUCTIVE BIAS TOWARD LARGE FEATURES FOR MINIMUM NORM SOLUTION

For overparameterized linear models, the inductive bias determines the returned function as many
functions can express the training set. Here, we brief the linear models’ inductive bias toward larger
(significant) features or eigenfunctions (Bordelon et al.||2020; Jacot et al., 2020} |Spigler et al., 2020
Canatar et al.| 2021} Cui et al., 2021} [E1 Harzli et al., [2024; Simon et al., [2023)).

The inductive bias is quantified through learnability L; (Simon et al.|[2023) or the expectation ratio
between the learned coefficient and true coefficient for ey :

<f|€k> _ _ Pk where - Pk —n (14)
(f*lex) | prt+r’ '

kt+ K
The learnabilities always sum to n — the number of training datapoints — and constant & is the
constant that satisfies the equality.

L}C = ESNqn [ p
k=1

We can understand the inductive bias from the (vanishing) regularization on L? norm (\||w||% in
Eq. (I0)) and parameterization in Eq. (I3). If different eigenfunctions can equally express the training
set, eigenfunction with larger eigenvalue often requires smaller coefficient 6 to express the samples.
Because ||w||% = ||0]|%, expressing the data with larger (eigenvalue) eigenfunctions minimizes the

norm, creating an inductive bias toward larger features.

Instead of the derivation found in the references (Bordelon et al.,[2020; Jacot et al.| [2020; |[Spigler
et al.,|2020; (Canatar et al., 2021 |Cui et al., |2021} |[EI Harzli et al., [2024) — which requires random
matrix theory or replica trick — we show an example of the inductive bias in Fig.

3
10° 4 — a=-4.0

24

1072 a=4 1: \ // ¢
1073 4 B / \

104 4

-

pr/maz(pr)
f(x)
o

10° 10t 0.0 0.2 0.4 06 08 1.0
k X

(a) Eigenvalues (b) Bias by the eigenvalues

Figure 7: Different inductive biases by the eigenvalues (intensity). Two 10-parameter linear

models are trained on 4 datapoints (overparmaterized) with gradient flow. Both linear models use

sin basis functions such that f(x) = ,160 wyk®V/2sin(2mkz) — spanning an identical function

space — but differ in the eigenvalues with o = —4 (blue) and o = 4 (orange), leading to different
inductive biases. (a): The blue model has a greater intensity for lower-frequency sin functions, while
the orange model shows the opposite. (b): The learned functions show that the blue model used
lower-frequency functions while the orange used higher-frequency functions to express the training
samples.

Fig. [7| shows that two linear models with same hypothesis space but different eigenvalues learn
dramatically different functions. The blue model has large eigenvalues for low-frequency functions
and fits the datapoints using low-frequency functions. The orange model with opposite eigenvalue
distribution fits the training set with high-frequency functions — a clear example of an inductive bias
toward large (intensity) features.

In the references, the generalization loss is

= 1 2 2 x| ¥2
fa= -y (Z(l = Ly)” (ex|f7) > : (15)

k
The equation formalizes the task-model alignment: the alignment between large features (large py,
thus large L) and high quality (large {(ej|f*)) leads to better generalization.
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C.3 DYNAMICAL INDUCTIVE BIAS TOWARD LARGE FEATURES

Here, we review how gradient descent introduces the dynamical inductive bias toward larger features.
For a linear model with feature map ® and kernel integral operator 7, the gradient flow dynamics
under MSE loss with infinite training datapoints and zero initialization becomes

df .

G=TU=r1 (16)
The derivation is trivial with
af , ;= dwy NN~ 0L ,
E(l’)— . Wék(m)_g ka(bk(m) (17)
B @) - @)Y L) @0 (8)
T - d’UJk k

p
=-E, |(f(z) - f*(2)) Z‘bk(l‘)] Py (z) (19)

k
=-TIlf-f], (20)

where in the second line, we used Eq. (@[) on infinite datapoints so L., = L. In the last line, we
used the definition of integral operator (Eq. (I))).

Using the eigenvalues py and eigenfunctions ey, of the kernel integral operator 7, we obtain the
dynamics for each (e | f) by inner producting e, on both sides of Eq. (16),

d{ex|f) df

dell) g, [eku') i @/)} By [T — 7] @) @
= el Tl £ (22)
= pel{exlf) — {exl ), 3)

where we use the definition of eigenfunction in the last line (Eq. (Z)). Expanding f in the eigenfunction
basis and plugging in Eq. (2I)), the function f at time ¢ is a sum of p independent modes that saturate
faster for larger eigenvalues:

(exlf*) (1 —e e (x), (24)

NE

f@)le =

k=1

where we assumed f is a zero function at initialization. Eq. shows that gradient flow decouples
the dynamics of linear models into p modes, where each mode corresponds to the evolution of
(er|f) having a saturation speed governed by pj, — thus the dynamical inductive bias toward larger
eigenfunction.

C.4 APPLICATION TO OUR METHOD

Here, we detail the intuition of our visualization methods. As described in Bengio et al.| (2013)),
feature learning (of representation) is providing better features for a simpler learner. The analogy
allows us to describe a neural network as (1) feature map ® providing better features for (2) the last
layer — the simple learner (Fig.[§). Yet, better features for the last layer is ill-defined.

The last layer interacts with rest of the network only through the features. While the exact dynamics
differs from linear models, the last layer maintains the dynamical inductive bias (Appendix
toward larger features. Furthermore, the quality ({(e;|f*)), utilization ({e|f)), and intensity py
formalisms readily extend to the last layer features, motivating our visualization method.

In the rich regime, features evolve during training, and Fig.[9(a-c) demonstrates an example of change
in features for 4-layer MLP trained to fit the Heaviside step function. The eigenfunctions are difficult
to visualize in practice as the input space is high dimensional. Fig. [0(d-f) shows our visualization,
capturing the evolution of features by measuring properties natural to linear regression.
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last
linear layer feature,/prex ®i(z) = Oijv/pjej(z)

feature map
input e d:X — RP @ class 1 target f* Feature Metrics
data ’ : a Quality : cosa
B Utilization : cos 3

class C 1 Intensit
A ntensity :
learned f yiopr

last layer features

Figure 8: A neural network decomposed into a feature map and a linear last layer. (left):An
abstract diagram depicting a DNN architecture as a combination of the feature map ¢ : X — R?
from the input space X to the p post activations of the penultimate layer, and final linear classifier for
C-way classifcation. Most neural networks share this abstract structure and mainly vary in how they
create their feature maps. (right): Illustration of the visualization methods in function space.

el == e s — |
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(d) Target Projection () Self Projection (f) Eigenvalue

Figure 9: Toy model demonstrating feature learning. A 4-layer MLP with width 1000 and scalar
input and output is trained to learn the Heaviside step function f* over the domain [—1, 1]. (a): The
first three eigenfunctions (dashed) are shown at initialization, resembling orthogonal polynomials.
(b,c): During training, features evolve such that a single feature (red) fits both the target and learned
functions (grey and green). (d,e,f): Our visualization metrics defined in Eq. (§) at different epochs.
(d) and (e) show that fewer features can express the target/learned function, and (f) shows that only a
few features are significant after training.
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D THE RELATIONSHIP BETWEEN THE MP-OPERATOR Tpip AND NEURAL
COLLAPSE

Neural collapse (Papyan et al.| [2020) (NC) refers to a state of a DNN when the feature vectors of the
training set and last layer weights form a symmetric and clustered structure at the terminal phase of
training (TPT) or when trained past the point where the training error vanishes. The structure has
been studied mainly in the Unconstrained Feature Model (UFM) (Mixon et al.|[2020) and has sparked
theoretical studies. See [Kothapalli et al.| (2022)) for a review.

NC is defined by the emergence of four interconnected phenomena upon TPT: NC1) collapse of
within-class variability, NC2) convergence of features to a rigid simplex equiangular tight frame
(ETF) structure, NC3) alignment of the last layer and features, and NC4) simplified decision by
nearest class:

1. Within class variance tends to 0
SwEi =0, (25)

2. Convergence to simplex ETF

(wi — )" (n; — 1) Céij —1

T = el — s~ C =1 2o
3. Convergence to self duality
Wi MR g 27
lwilla [[(1i = 2)]l2
4. Simplification to nearest class center
argm?xwiq)(x) +b; — argmiin |®(z) — psll2- (28)

D.1 PROOFS OF PROPOSITION 1 AND 2

For completeness, we restate the conditions. We assume the true distribution ¢ equals the empirical
distribution of the training set — the expectation E, (and bra-ket notation) is over the training
samples. We assume balanced classification and define A; as the set of training samples with class
label ¢. We assume the learned function is a perfectly classifying indicator function, giving

o JO rxd Ay
filw) = {1 cx € A (29)
The feature class mean vector for label 7 is
C .
i = Brea,[0@)] = = 3 (@) = C (fi®). (30)
TEA;

Note that (f;|®) € R is a vector with (f;|®) = [(fi|®1),..., (fi|®,)].

The global mean vector is

1 R
i=g D mi=(®)_ fi)=(1[e). 31)
i i=1
The feature intra (within)-class covariance Xy € RP*P is
c
Swi=Y Eeea, [(B(x) — p)(®(z) — p)"] . (32)

K3

The feature inter (between)-class covariance X, € RP*P is

C
1
=5 (i — ) (s — )" (33)

22



Under review as a conference paper at ICLR 2026

Lemma 1. For the conditions given above, if T[f](z') = ®(a/) T Egzny [®(x) f ()] is Tarp, then
o7 (2") (i — 1) = a2(Cila") = 1), (34)

Proof. By the definition of indicator functions of equal partitions,

| ° . |
(filf;) = 551‘3‘, y fi=1, (1lf;) = rok (35)
i=1
It follows that C' fj — 1 is orthogonal to 1:
alcfi—1) =o. (36)
We can express the function ®(2')T (y; — ji) : X — R in terms of T
(@) (i — i) = @(@)" ((@ICf) ~ (@[1)) 37
= 0(2) "E,[2(2)(Cfi(z) — 1)] (38)
= TICf: - ("), (39)

where we used the definition of the means (Egs. and (31)) in the first line and the definition of 7~
(Eq. (T)) in the last line. As T is Tasp, we obtain

O(2')" (i — 1) = TarplC fi — 1](2) (40)
= ay(Cfi(z') — 1), 41)
where we used Eq. (36) and the definition of 7y p (Definition|[I]). O

Corollary 1. In the setup of Lemmal(l] we have
wi (pj — ) = az(Cy5 — 1).

Proof. From the definition of class mean (Eq. (30)) and Lemmal[T}

15 (i — 1) = Eqr [ij(w’)q)(w’)T(ui - ﬂ)} (42)

— E./ [Cf;(0)ax(Cila’) ~ 1)] 43)

= GQ(C(SU‘ - 1), (44)

where we used that E,/ [f2(a')] = Ey[f;(2')] = CL. O

Proposition 1. If T is an MP-operator, then the NC1 condition (collapse of within-class variability)
E}:ZW = 0 holds, where inter-class covariance matrix X3y, and intra-class covariance matrix Yy are

C C
S = (j— ) — )" and Lw = Baca, [(®(2) — 1) (®(z) — )" .

j=1 i=1

Proof. We will show that T (3,2 ) = 0, which automatically proves the proposition as covariance
matrices are positive semi-definite. We have

Tr(XXw) =Tr Z(Nj — ) (uj — )" Z Epea, (®(z) — i) (P(x) — pi)" (45)
=% EA (@) - m)T(u;— )] (46)
- EJ:EGA {a% (Cli@) —1- oy +1 )2] (47)
_ a;cz S (H0-a)]. (@8)
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where we used linearity of trace, sum, expectation in the first line and Lemmaﬂ] in the second line.

Expanding Eq. (8,

Tr(SySw) = aC2 Y Eeea, (1 - 20i5) f5(2) + 8] (49)
%,
=a3C Y (6;5(2 - 203)) (50)
,J
=0, (51
where we used that learned functions are indicator functions in the second line. O

Proposition 2. [f T is an MP-operator, then the NC2 condition (convergence of features to a simplex
equiangular tight frame) holds:

_ _ 1
(i — )" (pj — 1) o< &35 — Yok

Proof. From the definition of global mean (Eq. (31)) and Lemmal[I]

B (i — i) = Egr [D(2")T (115 — )] (52)
—E, [ag(c fila') — 1)] (53)
= 0. (54)
Using Corollary [T|and Eq. (54),
1
(i — )" (y — ) = Cas(3ij — o) (55)

O

D.2 THE FIRST EIGENFUNCTION, THE CONSTANT FUNCTION, THE ANALOG OF GLOBAL MEAN
VECTOR IN SIMPLEXT ETF

Here, we discuss the constant function, which, by definition of 7j;p (Definition , is the largest
eigenfunction if 7 is 7/ p. In all experiments except Fig.[J] the largest eigenfunction is the constant
function throughout training, with (1|e;) > 0.95. For our visualization, we ignore the first eigenvalue
from analysis as the constant function is removed in CKA (Eq. @).

In the NC2 condition, the k-simplex ETF structure is a set of k orthogonal vectors projected on k — 1

dimensional space along the compliment of the global mean vector. For example, projecting [0, 0, 1],

[0,1,0], and [1,0, 0] onto the orthogonal complement of [, £, 3] (the global mean vector) gives three
1 1 2]’ [ 12 1 ]’ [2 1 2

vertices [~ 3, —3, 5 £, —35, —3] which forms an (ordinary plane) equilateral triangle.

3)3>7 3
Our operator Tsp (Definition[I)) has an analogous structure, where it is a (scaled) projection operator
(a2 Py;) except along the constant function. The C'K A (Eq. (6)) also measures the alignment except
along the mean direction (for matrices) or the constant direction (for operators). This allows neural
networks to have any arbitrary eigenvalue for the constant function, yet perfectly align with Dy = 0.

When 7 is Tsp, the definition of T3, p (Definition E]) trivially shows that the largest eigenfunction is
the constant function. A peculiar observation is that the first eigenfunction of 7 remains the constant
function ((1|e1) > 0.95) throughout training in all our experiments (except Fig.[9). This pattern
also appears in hierarchical datasets (Saxe et al.,[2022), suggesting that natural data may consistently
prioritize the constant function as the dominant mode — warranting further investigation.

D.3 GENERALITY OF OUR METRIC BEYOND NEURAL COLLAPSE
As discussed in the main text, our metrics are defined in terms of functions (random variables) while

neural collapse is defined by the feature vectors of the training set. Working in the function space, we
can measure the quality Eq. (5)), which is inaccessible from formalism using training feature vectors.
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Another important difference is that we focus on the learned function instead of mean class label
vectors. This allows more independence beyond neural collapse, allowing the method to be applied
on broader set of tasks: tasks with orthogonal and isotropic target functions form a broader class than
balanced classification tasks. Regression task with scalar output is an example.

In Fig. we train ResNet18 on MNIST as a regression task with scalar output (f* : X — R),
where a digit ¢ is correctly predicted if i« — 0.5 < f(z) < ¢ + 0.5. Unlike C-way classification,
which typically uses C' features, the regression model reaches the rich regime with just two — one of
which is constant. Neural collapse formalism, focusing on class labels, does not readily extend to
regression tasks, demonstrating that our function-based formalism is more general, label-independent,
and applicable beyond classification.

— regression (98.7%), [ 4.9e-2] classification (99.7%), [ 4.4e-3]

1.00 A r 1.00 A f—
_0.751 0.75 -
= H = : g
= 0.50 1 : £ 0.501 =
= : S

0.25 0.25

0.00 ; ; ; 0.00 ; ; ; 1075 ; ;

0 5 10 15 20 0 5 10 15 20 10° 10t 10? 103
k k k
(a) Target projection (b) Self projection (c) Eigenvalue

Figure 10: Rich dynamics for regression problem with scalar output. ResNet18 was trained on
MNIST via regression (blue) and classification (orange). For regression, the target/learned functions
are scalar output functions, and an image = with digit i is correctly classified if i — 0.5 < f(z) <
1+ 0.5. It can be seen that both models are in the rich regime, using the minimum number of features.

Finally, the independence from the class labels allows another benefit of being applicable during
training. Neural collapse is defined only during the terminal stage of training and assumes 100%
classification. A measure without perfect classification can lead to unstable values, typically rising
from the pseudo-inverse of ;, (See also Appendix [H). The NC1 measure shows a dramatic change in
logarithmic scale for experiments in Fig.[[T|a,b) while our measure is more robust to such differences.
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E CALCULATING THE METRIC AND VISUALIZATION IN PRACTICE

E.1 METRIC

In the main text, we used function and operator formalism. In practice, we must use finite approxima-
tion. We can use the CKA equation Eq. (6)
Tr(c(A)e(B))

CRAAB) = @l le®) [ (56

but use 7 x n feature matrices for A and B instead of operators. Let A'/2 € RP*™ be feature vectors
(of the penultimate layer) of n samples and B'/2 € R°*™ be output vectors (of the network) for n
samples. We can then approximate CKA by inserting A = (A'/2)TA'/2 and B = (B'/?)T B'/?
into the above equation. Because we already have the square root matrices, the computation cost of
CKA is O(npc).

Recall that n can be any number, and can be sampled from both train and test set. As A and B are
at most rank p and c respectively, n > p suffices in practice. Because p ~ 103 in many models, we
can expect O(p?c) computation. In an author’s laptop, it can be computed in less than a minute for
all experiments. For NTK, p is no longer the width of the last layer, but total number of parameters,
quickly becoming infeasible.

E.2 VISUALIZATION

To calculate the eigenvalues and eigenfunctions (and thus the quality, utilization, and intensity) for a
feature map @ : X — RP, we need the true input distribution ¢, which is inaccessible. However, we
can use Nystrom method (Baker & Taylor,|1979;Williams & Rasmussenl [2006) for a sufficiently large
sample size of n > p to approximate the eigenfunctions and eigenvalues of interest. We can create a
p x p empirical self-covariance matrix ¥ from n samples of ®(z). By diagonalizing ¥ = USUT,
we can obtain the empirical eigenvectors and eigenvalues, which can be used to approximate the true
eigenvalues and eigenfunctions:

Pk = Sk, ex(x) = () up/ /5 (57

The algorithm is summarized in Algorithm 1]

Algorithm 1 Empirical eigenfunctions and eigenvalues

1: @, Dy, (Prepare a feature map ® and D;,.: n samples of training set)
¢ + ®(Dy,.) (forward transform the input samples to feature vectors)
U, S, UT « SV D(¢¢™) (perform singular value decomposition)
[u1, ug, ..., up| < U (find the column vectors of U)
forkinl,2,...,pdo

pPr < sk (approximate eigenvalues)

ex(z) + ®(x)Tuy/ /sy (approximate eigenfunctions)
end for

A A ol

Functions not vectors. Note that eigenfunctions e} s are defined beyond the training samples
used to compute ¢ and differ from the eigenvectors of the empirical self-covariance matrix. This
enables us to evaluate feature quality — via inner products with the target function — on the test set
rather than the training set, a capability not available for empirical eigenvectors.

Time complexity. The algorithm is computationally efficient in practice. The main cost in comput-
ing Eq. is the SVD, typically with time complexity O(p®). A good approximation requires only
n = O(p) datapoints—more than the last layer width. Performing SVD on ¢ instead of ¢¢*" yields U
and v/S with O(p?) cost. Because last layers are typically narrow (e.g., p ~ 10?) and the algorithm
requires just n = O(p) forward passes, the overall computation is lightweight. In an author’s laptop,
the computation for all experiments takes less than a few minutes.
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F EXAMPLES OF OUR VISUALIZATION METHOD

In this section, we report additional findings made with our visualization tools.

— a=2-10"1(92.7%), D;p=[ 4.9e-2] a=2-10°(92.4%), Drr=[ 1.1e-1] — a=2-10' (88.3%), D z=[ 5.6e-1]
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Figure 11: Lazy/rich transition in target downscaling, illustrating how lazier dynamics (ii) use
more features and (iii) show a slower decay of eigenvalues (ignoring p; of constant function, see

Appendix D).
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Figure 12: Lazy/rich transition in grokking. A 2-layer transformer is trained on the modular p
division task. The inset in the middle shows the training and test accuracies, where green and red
vertical lines indicate before and after grokking (steps 200 and 3000). Our metric in square brackets
shows the transition into the rich regime, while our visualization shows a clear difference in the use
of features.

Low rank bias. Table E| shows that low-rank inductive bias is strong in vision tasks, where the
number of significant features always equals C' (the number of orthogonal functions). See Eq. () in
Appendix [B.4{for the D, s(p) expression. We also observe that our measure Dy, is small in these
setups.

Table 4: Metrics of ResNet18 and VGG16 trained on image datasets

model dataset Desr(p)  Deps(Q) DLr test accuracy (%)
ResNet18 MNIST 10.1 10.0 4.4-1073 99.7
VGG16 MNIST 10.0 10.0 1.8-1072 994
ResNet18 CIFARI10 104 10.0 3.1-1073 94.8
VGG16 CIFAR10 10.0 10.0 1.1-1073 93.3
ResNet18 CIFAR100 99.9 99.7 2.5-1072 78.3
VGG16 CIFAR100 95.8 99.4 7.4-1072 71.9

Weight decay is not the source of inductive bias. Fig. [I3]shows that weight decay indeed aids
low-rank representation and smaller Dy, . However, the model without any weight decay already
shows sufficiently low-rank representations, suggesting that dynamical inductive bias, not the weight
decay is the main driving cause of low-rank representations.
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— wd=1e-3 (94.8%), [ 3.1e-3]

— wd=1e-4 (94.1%), [ 1.5e-2]

— no wd (93.5%), [ 5.0e-2]
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Figure 13: Effect of weight decay on rich dynamics. ResNet18 trained on CIFAR10 with varying
weight-decay (shown relative value to the fixed learning rate of 0.05). Larger weight decay leads to

richer dynamics with smaller Dy, g, but the dynamics is already rich without the weight decay.
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(a) ResNet18 on CIFAR10
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(b) MLP on CIFAR10

Figure 14: Role of architecture in the richness of the dynamics. ResNetl18 (a) and a 4-layer MLP
of width 512 (b) are trained on CIFAR10, and their metrics are shown at different epochs. ResNet18
concentrates the metrics on the first 10 features after just one epoch, which persists until the end of
training. In contrast, MLP shows a less dramatic concentration on the first 10 features and deviates
from the rich dynamics around epoch 30 when it begins to use more features.
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Role of architecture. As studied in|Saxe et al.[(2022)), the architecture and dataset pair can influence
the performance even when dynamics are greedy (race toward shared representation). In Fig. [T4]
we examine the dynamics of ResNet18 and a 4-layer MLP trained on CIFAR-10. In Fig.[T4|a), the
training dynamics is restricted to the first 10 significant features, consistent with theoretical work in
linear neural networks. In Fig.[T4|b), the training is mainly focused on the first 10 features, but we
observe that more features are used as training progresses, more similar to the dynamics of linear
models. We speculate that the lack of ability to feature learn in the earlier layers leads to the use of
additional features and thus leads to lazier training dynamics.

Rich dynamics # generalization. In Fig.[T] we showed an example where rich dynamics led to
poorer performance. Fig. [I6]shows a similar experiment in which both rich and lazy models achieve
near-perfect performance (> 95% test accuracy). Our visualization clearly shows the different usages
of features even when the performances are similar.

Rich dynamics without underlying data structure. Fig.[I5]illustrates that rich dynamics can occur
independently of representation enhancement or underlying data structure. We trained ResNet18 on
CIFAR-10 with varying levels of label shuffling and observed that even with fully randomized labels,
the model enters the rich regime. This suggests that the dynamical low-rank bias is strong enough
to collapse expressive networks into minimal representations, consistent with prior observations of
neural collapse under random labeling (Zhu et al., 2021; Hui et al., [2022)).

— no shuffle (95.0%), [ 3.1e-3] 10% shuffle (66.1%), [ 4.2e-2] — random labels (9.5%), [ 3.4e-2]
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Figure 15: ResNet18 on 10* CIFAR-10 datapoints with shuffled labels. Models are trained with
0% (blue), 10% (orange), and 100% (green) label shuffling. As shown in the square brackets, all
exhibit rich dynamics with D r < 0.1. Visualizations in (ii) and (iii) confirm the use of the top
10 significant features, but varying feature qualities (i) lead to varying test accuracies, shown in
parentheses.
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Figure 16: Generalization does not imply rich regime. A CNN with width p = 1024 is trained on
the full MNIST dataset using two dynamics: last-layer-only training (lazy) and full backpropagation
(rich). Although both dynamics achieve test accuracy above 95%, they lead to dramatically different
use/significance of features: the metrics concentrate on the first 10 features for the rich regime, and
they are more evenly spread for the lazy regime.
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Cross entropy loss. Fig.|17|shows that our method extends to models trained on cross-entropy loss,
while the mathematical interpretation is less straightforward.

— init (10.5%), [ 5.6e-1] — epoch 1 (45.3%), [ 4.0e-1] — epoch 5 (78.8%), [ 2.6e-1] epoch 200 (95.1%), [ 2.9e-2]
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(i) Target Projection (ii) Self Projection (iii) Eigenvalue

Figure 17: Training with cross-entropy loss. We apply our visualization method to a ResNet18
trained on CIFAR-10 with cross-entropy loss. Similar to the MSE-trained model, it achieves small
value of Dy r and shows concentration of feature usage and significance. Insets display all 512
features rather than just the top 25.
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G RELATED WORKS ON VISUALIZATION

Eigendecomposition has long been a standard tool in science and engineering (Golub et al., {1996
Buckley & Xul[1990;|Amadei et al., 1993 te Vrugt & Wittkowskil 2020), demonstrating its value
for visualization. Building on this, related empirical works have appeared (Raghu et al., 2017}
Morcos et al., [2018; [Kornblith et al., |2019). For example, Singular vector canonical correlation
analysis (Raghu et al.,[2017) resembles eigendecomposition but focuses on performance along leading
directions rather than on the number of features used to represent the learned function (i.e., lacking
f[). (Morcos et al., 2018} [Kornblith et al., 2019) compare different networks, whereas our focus
is on before- and after-last-layer activations. Importantly, these approaches were not developed as
visualization tools for analyzing rich dynamics.

Similarly, visualizations related to neural collapse use eigendecomposition (Papyanl 2020), but
are inherently class-dependent, whereas our metric and visualization are class-independent. See

Appendix and Fig.

The closest line of work is kernel-based visualization (Bordelon et al.| [2020; |Canatar et al., 2021},
Simon et al.,[2023)), especially (Canatar & Pehlevan, |[2022). However, their visualization focuses
on cumulative power and the eigenvalue spectrum, whereas ours additionally separates dynamics
from performance, providing a complementary perspective. Additionally, the rich dynamics in the
literature refers to change in NTK, not the collapse (low-rank bias) of feature kernel.

While visualization is part of our contribution, our main contribution lies in introducing Dy, r as a met-
ric of richness and presenting supporting empirical results. Visualization serves as a complementary
tool to illustrate the dynamics and facilitate future studies.
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H EMPIRICAL DETAILS

Here, we share information on our practical setups and their statistical significance. The code can be
found athttps://anonymous.4open.science/r/RDRFL-0DBA/.

H.1 STATISTICAL SIGNIFICANCE

We reproduce tables from the main text but with the addition of one standard deviation values. In the
main text, all error bars in the plots represent one standard deviation over at least three runs.

Table 5: Statistical significance of Figure 1(b)

Full backprop (Rich) Last layer only (Lazy)
Train acc. 1 100 (+0)% 98.7 (£0.11) %
Test acc. 1 10.0 (£4.3-1072)% 74.4 (£0.19) %

Drr | 8.7-1073 (£4.0-107%)  6.3-107! (£3.2-1073)

Table 6: Statistical significance of Table 1

Epoch 0 (init) 200

Train Acc.t 10.0 (£0.8)% 10.2(+0.27)%

Test Acc.t 9.85 (£1.0)% 10.0(£0.33)%
Drrl 0.59 (+1.6 - 1072) 1.0 (£6.4-1079)
Sinitd 1.0 (40) 0.20 (£1.1-1072)
16]1%4 3.1-10% (£3.5 - 102) 221075 (£2.5-1079)
NC1| 1.2-10% (£7.2-10?) 7.5-10714 (£1.5- 107 14)

Tr(Sw)l 15.6 (£1.4) 7.1-10718 (£1.1-10718)

Table 7: Statistical significance of Table 2

o 21071 2-10° 210!
Train Acc.t 100 (+0)% 100 (+£0)% 100 (£0)%
Test Acc.t 927 (+£3.4-1072)% 92.4 (£5.2 - 102)% 88.3 (+£3.7- 10" 1)%

Drrl 49-1072 (+4.4-107%) 1.1-107' (£94-1073) 5.6-10"! (£6.1-1072)
Sinitd 6.8-1072 (£2.1-1073)  4.1-1072 (£4.5-1073) 5.2-1072 (£1.8-1072%)

16]1%-+ 3.4-10% (£1.1-10Y) 3.2-10% (+4.4) 3.2-10° (+2.0)
NC1| 2.3-10% (£4.1-10%) 3.2-10% (£4.3-10%) 8.1-102 (£1.4-102)
Tr(Sw)l 2.0 (40.25) 31-1071 (£2.3-1072)  1.2-107' (£1.2-1072)

H.2 DiscuUsSION ON NC1 MEASURE

In Tables [6]and [7, the NC1 measure is numerically unstable due to the pseudo-inverse of X;. For

stability, We used ZZ ~ (Xp + 10741)1. In addition to NC1, we consider a similar measure 7' ()
Papyan et al.| (2020) for collapse of within class variability, which is also reported in Tables[6]and
The measure T (Xyy ) also shows a similar trend to NC1.

H.3 DATASET DETAILS
We use publicly available datasets, including MNIST |Deng| (2012)) and CIFAR-10/100 Krizhevsky,

et al.[|(2009) from Pytorch [Paszke et al.|(2019), and mod p division task from https://github,
com/teddykoker/grokkingl
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Table 8: Statistical significance of Table 3

Task Architecture Condition Drr
Mod 2-layer Step 200 (before grokking) ~ 0.51 (£0.04)
97 transformer  Step 3000 (after grokking) ~ 0.11 (£0.01)
CIFAR- learning rate = 0.005 0.053 (£0.01)
100 ResNetl8  learning rate = 0.05 0.025 (£0.004)
learning rate = 0.2 0.039 (£0.007)
CIFAR- weight decay =0 0.05 (£0.003
10 ResNetl8  eight decay = 10— 0.015( (10.00;)
weight decay = 1073 0.003 (£0.001)
CIFAR- ResNetl8 0.026 (£0.003)
10 MLP ' 0.48 (40.07)
CIFAR- no label shuffling 0.031 (£0.004)
10 ResNetl8  10% label shuffling 0.042 (£0.003)
full label shuffling 0.034 (£0.004)
MNIST CNN full backpropagat.io'n 0.043 (£0.005)
last layer only training 0.51 (£0.008)
CIFAR-  y-6 16 without batch nomralization  0.66 (£0.01)
100 with batch normalization 0.073 (£0.002)

H.4 MODEL DETAILS

Our model implementations are based on publicly available code assets, including VGG16 from
PyTorch Paszke et al.[(2019), ResNet18 from Nakkiran et al. [Nakkiran et al.|(2021), and the modular
division task from https://github.com/teddykoker/grokkingl

As described in the main text, we only trained ours models on MSE loss where the targets are one-hot
vectors (up to scaling constant). The constant « is used to scale the output y — y/«.

Table 9: Dataset details

Figure dataset training «  Dbatch size
sample count
Encoded MNIST 60,000 (all) 1/3 128
(Appendix [HL.4.1)

MNIST 60,000 (all) 1 128
CIFAR-10 : 1/3 128
CIFAR-100 50,000 (all)  1/10 128
CIFAR-100 50,000 (all)  1/10 128

MNIST 1,000 . 128

mod-p division 4,656 1 512
CIFAR-10 10,000 1/3 128

H.4.1 ENCODED MNIST

In Fig.[I] we encoded the labels as one-hot vectors on the first 10 pixels of the MNIST dataset. For
the training set, we encoded the true labels, but for the test set, we encoded random labels.

33


https://github.com/teddykoker/grokking

Under review as a conference paper at ICLR 2026

H.4.2 CIFAR-10/100

For CIFAR-10/100, we use standard augmentation using randomcrop 32 with padding 4 and
random horizontal flip with probability 0.5. We also use standard normalization with mean
[0.4914,0.4822,0.4465] and standard deviation [0.2023, 0.1994, 0.2010] for each channels.

Table 10: Training details

Figure  optimizer learning momentum weight epochs learning rate scheduling
rate / beta decay
Adam 1-1073 [0.9,0.999] 0 100 None
SGD 1-1076 0 1-1073 200 None
SGD 5-1072 0.9 5-107° 200 x0.2 per 60 epochs
SGD 1-1072 0.9 1-107° 400 None
SGD 5-1072 0.9 5-107° 400 x 0.2 per 60 epochs
Adam 1-1073 [0.9,0.999] 0 100 None
Adam 1-1073 [0.9,0.98] 0 4000 None
SGD 5-1072 0.9 5-107° 200 x 0.2 per 60 epochs

H.5 COMPUTE RESOURCES

The models ran on GPU cluster containing RTX 1080 (8GB), RTX 2080 (8GB), RTX3060 (12 GB),
and RTX3090 (24GB). The typical time to train a model is 2 hours, but it varies from 10 minutes to 6
hours depending on the experiment. The evaluation metrics take less than 5 minutes and may need up
to 2GB of CPU memory.

H.6 USE oF LLMSs

Large language models (LLMs) were used to polish writing to make the paragraphs more concise.
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