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Abstract— Soft robotic manipulators offer operational ad-
vantage due to their compliant and deformable structures.
However, their inherently nonlinear dynamics presents substan-
tial challenges. Traditional analytical methods often depend on
simplifying assumptions, while learning-based techniques can
be computationally demanding and limit the control policies
to existing data. This paper introduces a novel approach to
soft robotic control, leveraging state-of-the-art policy gradient
methods within parallelizable synthetic environments learned
from data. We also propose a safety oriented actuation space
exploration protocol via cascaded updates and weighted ran-
domness. Specifically, our recurrent forward dynamics model is
learned by generating a training dataset from a physically safe
mean reverting random walk in actuation space to explore the
partially-observed state-space. We demonstrate a reinforcement
learning approach towards closed-loop control through state-
of-the-art actor-critic methods, which efficiently learn high-
performance behaviour over long horizons. This approach
removes the need for any knowledge regarding the robot’s
operation or capabilities and sets the stage for a comprehensive
benchmarking tool in soft robotics control.

Index Terms— soft manipulator, reinforcement learning,
learned controllers, simulators

I. INTRODUCTION

Soft robotic manipulators are made of compliant material
and exhibit a low Young’s modulus that enables them to
be arranged in highly deformable geometries [1]. These
designs, inspired by biological organisms, can undergo large
elastic deformation throughout operations and facilitate safer
interaction with the environments compared to their tradi-
tional rigid counterparts [2]. The morphological dexterity
outsources parts of the solution computation to the compliant
material [3], but remains underactuated as the states of the
physical body are governed by highly nonlinear continuum
dynamics. Given the inherent challenges, the precise control
of soft robots remains an open problem.

The existing analytical methods for accurate dynamic
models in classical optimal control make reductive assump-
tions like constant-curvature and valve control heuristics
for trajectory optimization [2] while relying on the ma-
terial properties being unchanged or otherwise predictably
modeled. These methods strive to reduce the computational
complexity of the dynamic model while not suppressing
the modeling of the adaptive behavior that emerges through
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the soft robot’s interaction with the environment. Moreover,
parametric models fail to capture the computation embodied
in the morphology of the robot, making data-driven models
necessary for capturing the important insight from resulting
deformations [4].

Deep learning-based approaches utilize platforms with
internal sensory data like pressure and Inertial Measure-
ment Units (IMU) [5] and external sensory data like visual
trackers [6] from the robot’s interaction with the environ-
ment. This allows for the learned models to make use of
the morphological changes that occur in operation time.
However, the use of learned (black-box) mappings between
actuation and task space comes at an increased computa-
tional cost both during training and at test time. The most
commonly used architecture for such mapping is a non-linear
autoregressive network with exogenous inputs (NARX) with
one [6] to four [7], [8], [9] time delays. We also employ a
recurrent architecture in the form of long short-term mem-
ory (LSTM) [10] as implemented in [11] for faster training
and inference time. Both NARX and LSTM architectures are
designed to learn from distant interactions by overcoming the
gradient vanishing problem. While NARX networks tackle
this problem through delayed connection from distant past,
the contribution is small and scales the computation by
a factor equal to that of time-delayed connections [12].
Considering entire sequences of actuations and observations
is essential for learning closed loop control of soft robots
that is not privy to and limited by prior knowledge of their
dynamics.

Reinforcement Learning (RL) algorithms have been suc-
cessful in solving sequential decision making problems under
these limitations by learning through repeated interactions
with the environment which in this work is represented
as a recurrent model trained from collected data on the
robot. Popular success stories include Proximal Policy Opti-
mization (PPO) [13], which has been particularly successful
in continuous control [14], [15]. The adoption of deep
learning based methods in RL, their large computational
requirements, and algorithmic complexity has caused an
explosion of different frameworks. These frameworks aim
to balance high performance hardware utilization and ease-
of-use for rapid prototyping [16]. A recent breakthrough
is PureJaxRL [17], which uses JAX [18] to run agents
and environments jointly on the GPU, resulting in order of
magnitude speedup compared to prior approaches.

Previous work on the use of RL for the control of soft
includes value-based methods in [19], [20] and with early
attempts of actor-critic methods in [21]. The most recent



Fig. 1: The pipeline of the learned environment-based solution proposed in this work. The recurrent network to the left
represents the LSTM at the core of the synthetic environments.

work to date using closed loop policy gradients leverages
Cosserat Rod Models simulations to learn the forward dy-
namics [8]. These methods hinge on the limited number
of recorded interactions in the dataset, prior knowledge of
material heuristics [19] or of guiding trajectories for the
policy search [22], [6]. We propose a methodology based on
forward dynamic models learned in absence of simulations
or guiding trajectories.

This work seeks to bring together the advantages of
learning-based solutions to soft robotics control by utiliz-
ing SOTA PPO implementations [17] to learn closed loop
controllers inside environment models implemented via high-
performance computing libraries [23]. Our method bypasses
the need for any analytical models or prior information
regarding the robot’s operation. The forward dynamics model
is learned by training with the data collected on the robot
through a mean reverting random walk in actuation space.
Feedforward and recurrent control policies are learned by
interacting with the parameterized forward dynamics model
wrapped in a JAX-based environment.

In this paper, we first introduce the methods used to collect
that data from the robot with examples of the generated input
sequences. We then describe the architecture and training
process for the supervised learning of the forward dynamics
model through a sequence-to-sequence (seq2seq) prediction
model as well as the policy optimization procedure to train
the the actor-critic network. Finally, we present the training
results and inference examples of the closed-loop policies
conditioned on observations and tested in the forward dy-
namic model.

II. METHODS

Figure 1 shows the full pipeline implemented in this work
starting from the state space exploration to the left ( II-A),
the creation of the dataset (III-B) and the training of the
forward dynamic model (II-B) using a LSTM network. We
leverage JAX to generate parallel environments II-C from
the trained LSTM model and actor-critic network to simul-

taneously learn from multiple training trajectories sampled
directly from a task space distribution to update policies
without depending on previous example trajectories( II-D).
This method enables batching multiple goals for robust
policy learning. Finally consecutive goal learning is shown
by selecting a desired target position for which an action
sequence is generated.

A. State Space Exploration

The sequence-to-sequence (seq2seq) mapping from actu-
ation space to task space requires sufficient exploration to
reproduce a representative environment interaction for the
online actor-critic training. The exploration in this work
does not require any static workspace assumptions and is
exclusively in the actuation space.

The single constraint to this exploration policy is the maxi-
mum pressure Pmax allowed across the valves of the robot to
ensure the full functionality and structural integrity of the soft
robot. The protocol to cover a wide range of robot configu-
rations by applying pj actuation pressures within the safety
value uses a mean reverting random walk [24] with tunable
parameters, specifically a sigmoid scaling 1/(1 + e−x) with
two parameters α and β to account for the randomness and
the position of the sigmoid inflection point respectively. α
weights the previous input’s effect on the next one whereas
β modulates the average value of the total pressure. Each
generated term p∗i+1 of each valve is incrementally added
to the previous pressure p∗i with the generated terms being
normally distributed around the preloaded pressure value pb
of the robot in the resting state. Eq. 1 describes the cascading
update procedure to keep the sum of pj below Pmax in every
iteration i.

∀i ∈ {0, 1, . . . , N}, ∀j ∈ {0, 1, . . . , Nvalves}
p∗i+1,j = α pi,j + (1− α) N (pb, 1)

pi+1 = Pmax σ


β

∑

j

p∗i,j


 p∗i+1,j∑

j p
∗
i,j

(1)



• i indexes the iteration,
• j indexes the valves,
• N is the total number of iterations,
• Nvalves is the total number of valves.

B. Forward Dynamic Model Learning

We use an LSTM to learn the dynamic mapping between
the actuation and task space. This has been chosen to be able
to train for significantly longer sequences. To increase the
predictive versatility of the learned environment around the
LSTM latent states, the testing pairs are generated by using
a sliding window approach with a step of one in permuted
order. Each training pair in the dataset contains the three
actuation pressures and the corresponding robot reference
point in Cartesian coordinates. Each sequence consists of
512 steps. This number of steps was chosen as it is on
average 100 steps higher than the mean reverting random
walk procedure which allows to record the initial preload
pressure state and the return to that initial state upon the end
of the exploration. The length of these exploratory runs is
dependent on the limitations of physical platforms used in
section III-A.

This is illustrated in Fig. 2 for the x-direction and the
actuation pressure p1 where the training pairs are shown with
matched colors. The sliding sequence method effectively
places every data points in every possible context of the
sequence during training time which allows for context-
independent prediction of outputs and the learning of behav-
iors that were not seen in random exploration like reaching
unseen targets as the results in sec IV show.

The model was trained by dividing the dataset in training
and testing with a 75-25% split. To improve the generali-
sation capability of the model, we consider two approaches
for the order of passing the data to the model in training.
One is to feed the generated sequences as they appear in
the dataset to maintain as much of the history of the system
as possible. The other approach is to randomly permute the
order in which the sequences are passed through the network
meaning that temporally close sequences can be seen by the
training network at time steps that are further apart than
the time difference of their occurrence in the data. The
empirical observations in section IV-A show that the random
permutation of the sequence pairs performs better with test
sequences that were not seen during training.

C. Generation of Reinforcement Learning Environment

The RL agent only interacts with multiple instances of an
environment learned from an offline dataset. The environ-
ments in this paper are chosen as platforms to interface with
the learned dynamic model in a more structured way that
allows the policy network to be trained for different goals
in each episode that are sampled from the task space i.e.
Cartesian coordinates range of the collected data.

As mentioned in sec I, we leverage JAX [18] to achieve
high-performance training and inference from our learned
environment. JAX objects are compiled with XLA and
executed in parallel on GPU. This enables both our model
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Fig. 2: Training Pair Generation is shown through matched
colors. For illustration purposes we use a sequence length of
512 with step size of 200 on a subset of the data. In practice,
we use a step size of 1 and slide through the entire runs.

and policy to be trained entirely on GPU, leading to huge
speedups against CPU-based methods. We implement our
model in the Gymnax environment framework [23], allowing
existing agent implementations for online RL to be used
seamlessly with our model. The Gymnax frameworks imple-
ments environments as classes the instances of which can be
run in parallel and have different states allowing for different
training conditions and rewards.

D. Policy Optimization

We used a policy-gradient methods to train an actor-critic
network [16], [13]. Specifically, we use proximal policy
optimization (PPO) [13] for policy optimization. PPO uses a
trust region approach to stabilise the policy gradient update,
employing a clipped surrogate objective which prevents the
parameterized policy diverging too far from its original
value after it is updated. Policy methods are preferred over
value-based method for this robotics application due to the
constrained policy update when optimizing for an objective
function.

The policy is trained by concatenating the final target to
the observations from the environment. If the target destina-
tion in task space has been reached within the measurement
error distance of 1 mm or if the episode terminates after
a predetermined number of steps, the environment resets
to the initial state and samples from a range within the
reachable dynamic space of the robot before starting the new
training episode steps. Note that this is not necessarily a
target included on the dataset.

The implementation of the goal perturbation is done via
the Algorithm 1. The algorithm takes in the Forward Dy-
namic Model, the parameters of the environment like starting
position, total time steps per episode as well as the training



configuration with the values of the relevant hyperparameters
like number of updates, batch size and learning rate. A new
goal is set every time the environment state is reset. The
output is the parameters of the conditional probability func-
tion of an action for a given observation, also referred to as
a policy π(·|observation) in reinforcement learning terms.
Policy π is obtained by training the actor-critic network
that learns to predict the actions and values of observations
or embedding of observations depending on whether the
network is feed-forward or recurrent respectively. Both these
networks are trained using PPO [13] implementations based
on PureJaxRL [17].

Algorithm 1 Policy Training with Goal Perturbation

Input:
1: Forward Dynamic Model,
2: Environment Parameters,
3: Training Configuration

Output: Parameters of control policy π(·|observation)
▷ Initialisation of network and environment parameters

4: env_params← Environment Parameters
5: π ← initialize actor-critic network parameters
6: train_config ← Training Configuration

▷ create parallel environment with Gymnax [23]
7: environment← Gymnax(env_params)

▷ Loop condition values from Training Configuration
8: for t < TOTAL_UPDATES or not converged do
9: if t = 0 then

10: observation← initial observation
11: perturbation← env_params
12: initial_pose← env_params
13: goal← N (0, 1) · perturbation+ initial_pose
14: end if
15: actions← π(observation)
16: observation← Forward Dynamic Model(actions)
17: reward← −∥goal − observation∥2
18: π ← PPO(reward, goal, train_config) [17]
19: t← t+ 1
20: end for
Output: π(·|observation)

III. EXPERIMENTAL SETUP

A. Robot

To validate our approach we use a soft a three chambers
bellow-shaped actuator connected to a rigid frame in Fig. 3.
The actuation is achieved with compressed air controlled by
three separate proportional Festo valves (VEAA-L-3-D2-Q4-
V1-1R1). The number of controllable inputs corresponds to
the number of chambers, therefore, Nvalves is 3 (see eq. 1
in section II-A). Reflective markers are integrated at the
top and bottom of the actuator to track its movements. The
position of the robot reference point in Cartesian coordinates
is estimated as the centroid of the triangle marked by the
bottom grey reflective markers in Fig. 3 using an Optitrack

Motive system equipped with four Flex 3 Cameras. The
valves are controlled within a ROS2 [25] environment.

Fig. 3: Robot at initial positions (a) no deformation at home
position with initial baseline pressure 2kPa, (b) Transverse
cross-section view of the root, pressure chambers A to C and
reflective markers O1 to O3

B. Dataset Preparation

The mean reverting random walk under the pressure
constraints from section II-A is implemented with a Pmax of
13 kPa, a pb of 2kPa, Nvalves of 3 and N of 50. Fig. 4 shows
the generated input pressure action sequences for different
values of α. An N of 50 iterations was chosen for clarity of
visualization to demonstrate that the inputs are independent
and diverse while not exceeding the safety limit of Pmax.

Fig. 4: Random Walk in actuation space for different explo-
ration hyperparameter α

Fig. 5 shows the resulting task space trajectories as a result
of the exploration method implemented for different α values
of randomness.

The control pressure data is collected through the ROS2
interface and the consecutive positions of the markers are
collected with the Optitrack. The Optitrack measurements
are acquired at a frequency higher than that of the pres-
sure measurements. To make sure every measured Cartesian
coordinate corresponds to a pressure measurement for the



Fig. 5: Resulting trajectories from a random walk in actuation
space various levels of randomness

training with the sequences of pairs described in II-B, we
match every pressure value to the nearest position in time
through a nearest neighbors search through the timestamps
of each Optitrack measurement. The rows in the Optitrack
measurements that do not get matched to a pressure value are
filled with the earliest possible pressure value as the pressure
in the robot remains the same before it is changed in a step-
like manner. The control frequency is kept at a constant of
2Hz to accommodate to the physical limitations of the setup
and enable the covering of the whole dynamic motion range
of the robot.

IV. RESULTS

A. Forward Dynamic Model

Fig. 6 shows the training and test results for the mapping
from actuation to cartesian positioning via the collected data.
The two approaches to passing the training dataset through
the model described in section II-B were implemented and
tested on the same set of sequences held out during training.
In 2 ·105 training steps, it becomes clear that the general ap-
proach of permuting the order of temporally close sequences
achieves higher train and test results than the sequential
training with the same sequences.

B. Task Space Reconstruction

From Fig. 6 we can see that both training and validation
losses for the randomly permuted case are low showing that
the model accurately predict the task space. However, it is
necessary to evaluate the ability of the forward dynamic
model to reconstruct a correct task space from exploratory
input sequences in test time as it is a core requirement for
the data efficient development of closed loop control policies
via learned environments.

We evaluate this aspect by qualitatively comparing the task
space reconstruction from data seen during the training and

Fig. 6: Training and Validation Losses for the Forward
Model. The plots are smoothed using an exponential moving
average with a factor of 0.025

data from previously unseen sequences. Fig. 7a shows a close
reconstruction of training data and Fig. 7b shows a close
reconstruction of an entire run that has not been used in
training. These results set the ground for the use of learned
models in RL environments.

(a) Reproduction of training data as seen on top left of Fig. 4

(b) Reproduction of unseen action space exploration sequence

Fig. 7: Predictive performance of the model on training and
testing datasets.

C. PPO on the Learned Environment

To evaluate the impact of the robots movements history in
the episode we implemented two different policies. Specif-
ically one conditioned to the latest observation and one
conditioned to the entire history of observations (recurrent).

Fig. 8 shows the rewards monotonically increase with the
number of episodes. This also further validates this result
as the rewards is monotonically increasing to convergence
within 3mm of the target. The mean with one standard de-



viation shaded region obtained by running with 20 different
random seeds is plotted for each policy type.

Fig. 8: Episodic return for Forward and Recurrent Policies
with one standard deviation shaded region for 20 different
random seeds

V. CONCLUSION

In this paper, we use a model-free approach to learn
the forward dynamics of a soft robotic arm. We develop a
protocol for state space exploration using random walks and
use the generated data to train our model. We demonstrate
the effectiveness of our approach in recreating tasks from
test sequences and show its potential for developing closed-
loop control policies in soft robotics. This general method-
ology for developing a closed loop control policies shows
great promise towards establishing new soft robotics control
benchmarks and bridging the physical advantages of soft
robotics with the most recent work in Machine Learning. The
demonstrated ability of synthetic environments to facilitate
planning on real-world data can provide a path towards future
work in data-driven emergence of complex behavior, learned
sim2real adaptation strategies and further testing of such
policies on physical robots with generated actuation regimes
beyond general exploration.
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ABSTRACT

Over the past decade, online reinforcement learning (RL) has made drastic im-
provements in a number of settings, such as video games and robotics. However,
despite these successes, the impact of RL on many real-world problems has re-
mained limited. Underlying this fact is that, in many settings, we are unable to
learn in an online fashion due to excessive cost and safety requirements or lack
of an accurate simulator. In principle, foundation world models trained on large-
scale uncurated offline data such as internet videos and other modalities could
provide a training paradigm for generalist AI agents which alleviates the need for
task specific simulation environments. Unfortunately, training inside world mod-
els is usually studied in the context of offline RL, where popular datasets have a
biased structure. This necessitates short roll-outs or other severely limiting mech-
anisms to prevent model exploitation. Here we probe under what circumstances
full roll-out training inside world models is possible without any penalties. We
find that on a non-adversarial offline dataset simply ensembling over a large num-
ber of independently trained world models is sufficient to ensure transfer to the
real world, even for datasets that are orders of magnitude smaller than is common
in offline RL. Interestingly, more sophisticated methods for level selection pro-
vide no advantage and standard offline RL underperform in this setting. We open
source all our code and data to facilitate further work in this direction.

1 INTRODUCTION

Exploiting large amounts of data has proven to be a crucial component of recent advancements in
machine learning. Generative models across multiple modalities—such as large language mod-
els (e.g., (OpenAI et al., 2024; Touvron et al., 2023)), text-to-image models (e.g., (Imagen-
Team-Google et al., 2024; Betker et al., 2023)), and text-to-video models (e.g., (Brooks et al.,
2024))—demonstrate that scale and coverage often outweigh the benefits of curation or the injection
of favorable biases.

Reinforcement Learning (RL) (Sutton & Barto, 2018) has shown great promise in solving complex
problems whenever fast and accurate simulation environments are available, such as in computer
games (Silver et al., 2016a) and, to a lesser extent, robotics. Unfortunately, reliance on simulators
has severely limited the applicability of RL to real-world problem settings. World models (Ha &
Schmidhuber, 2018) in principle offer a solution by learning approximate dynamics models from
state transitions data. These models are trained in a supervised manner, reducing reliance on task-
specific hand-coded simulators. However, while increasing the dataset size can improve the fidelity
of learned world models, they are rarely perfect recreations of the underlying environment. Ha
& Schmidhuber (2018) demonstrate how RL agents frequently learn to exploit discontinuities and
edge cases in learned dynamics to receive large spikes in simulated reward while learning unhelpful
behaviours for the true environment.

This is a common issue in offline RL, where the goal is to produce high-performing policies based
only on a static offline dataset without further interactions with the real environment. To address
this problem, offline RL methods have introduced a number of mechanisms to regularise the learning
process towards the offline data distribution and enforce conservatism Kumar et al. (2020). These
include severely truncating rollouts, which limits the consecutive number of steps an agent is al-
lowed to take inside a world model, and uncertainty penalties, which discourage the agent from
stepping into parts of the state space where the world model is not confident Kumar et al. (2020).
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These mechanisms are particularly relevant for current offline-RL benchmarks like D4RL (Fu et al.,
2020), since the datasets are structured to be adversarial in terms of data coverage.

However, these mechanisms are clearly limiting if the goal is to train generalist RL agents fully
inside a large-scale foundation generative world model, which has recently emerged as a possible
path towards agentic AI systems (Bruce et al., 2024). Crucially, this approach would allow RL to
take advantage of the rapid progress made on generative modeling on the back of large amounts of
uncurated data.

In this paper, we investigate to what extent it is possible to remove all of the mechanisms introduced
to offline RL and instead train agents on full-length roll-outs without any penalty terms inside learnt
models, while still achieving successful transfer to the real underlying environment. Specifically, we
probe two different axes: First off, we produce a dataset that has more uniform coverage (in terms
of task performance), since we believe this is more representative of a generalist world model. To
account for the fact that there might be limited amounts of task-specific data available, we probe how
our method performance scales across various offline-dataset sizes, ranging from a few thousand
transitions to millions. Secondly, we investigate whether Unsupervised Environment Design (UED)
(Dennis et al., 2020; Jiang et al., 2021b;a; Parker-Holder et al., 2022) can be used to improve real-
world transfer of models trained in simulation.

UED is a class of online RL methods that can address the need for zero-shot adaptations by train-
ing agents to be robust across varying train and test distributions. These methods seek to minimize
maximum regret over a space of levels (Dennis et al., 2020); however, they require convergence to a
Nash equilibrium—a guarantee that is not always achievable. Additionally, UED approaches often
necessitate specific domain knowledge for parameter tuning and can lead to learning stagnation once
regret bounds are met across all configurations (Beukman et al., 2024). Specifically, we indepen-
dently train a large number (100) of world models (deep neural networks) on our offline dataset and
treat each of these models as a given level in UED.

Surprisingly, we find that simply doing domain randomisation over this level space (i.e. picking
a different model each time step or episode) drastically improves the test-time performance across
different dataset sizes, while more advanced UED methods offer no significant advantage. Further-
more, “standard” offline RL methods perform poorly in our setting, since they rely heavily on the
offline dataset containing task specific high-quality demonstration data and on conservatism. Lastly,
while our random ensembling approach avoids catastrophic exploitation of the world model in the
popular D4RL benchmark, our method fails to perform well in this setting. Our analysis suggests
that this is due to insufficient coverage which was specifically designed to mirror the challenges of
offline RL (rather than a generalist world model).

We open-source all our code, including the new dataset, and hope that this line of work will not only
encourage practitioners to question some of the assumptions underlying the offline RL literature but
also present a first step towards training RL agents on full trajectories inside generative models.

2 PRELIMINARIES

2.1 CONTEXTUAL MARKOV DECISION PROCESS

We define a infinite-horizon, discounted contextual Markov decision process (CMDP) (Hallak et al.,
2015) by introducing a context variable θ ∈ Θ ⊆ Rd:

M(θ) := ⟨S,A, P0, PS(s, a, θ), PR(s, a, θ), γ⟩, (1)

where each θ indexes a specific MDP by parametrising a transition distribution PS(s, a, θ) : S×A×
Θ→ P(S) and reward distribution PR(s, a, θ) : S×A×Θ→ P(R). We denote the corresponding
joint conditional state-reward transition distribution as PR,S(s, a, θ). Partial observability can be
integrated into the contextual RL approach by making θ index a specific partially observable MDP
(POMDP). For simplicity, we only consider fully observable MDPs in this paper, although our
results hold in the more general partially observable setting too.

At timestep t, an agent follows a policy π : S × Θ → P(A), taking actions at ∼ π(st, θ). We
denote the set of all context-conditioned policies as ΠΘ := {π : S × Θ → P(A)}. The agent
is assigned an initial state s0 ∼ P0. As the agent interacts with the environment, it observes a
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history of data ht := {s0, a0, r0, s1, a1, r1, . . . at−1, rt−1, st} ∈ Ht where Ht is the corresponding
state-action-reward product space. We denote the context-conditioned distribution over history ht

as: Pπ
t (θ) with density pπt (ht|θ) = p0(s0)

∏t
i=0 π(ai|si, θ)p(ri, si+1|si, ai, θ).

In the infinite-horizon, discounted setting, the goal of an agent in MDPM(θ) is to find a policy that
optimises the objective:

Jπ(θ) = Eτ∞∼Pπ
∞(θ)

[ ∞∑

t=0

γtrt

]
. (2)

We denote an optimal policy as π⋆(·, θ) ∈ Π⋆
Θ(θ) := argmaxπ∈ΠΘ

Jπ(θ), where Π⋆
Θ(θ) is the set

of all optimal MDP-conditioned policies that are optimal forM(θ).

2.2 UNSUPERVISED ENVIRONMENT DESIGN

Unsupervised environment design (UED) is a class of autocurriculum methods for RL, where an
adversary proposes tasks for an agent to train on. Commonly (Dennis et al., 2020), environments are
modelled as a CMDPM(θ) (see Equation (1)) known as underspecified Markov decision process
where each context θ ∈ Θ is known as a level.

The recent approach of Minimax Regret (MMR) UED has emerged as a promising way to train
robust agents (Dennis et al., 2020; Jiang et al., 2021b;a; Parker-Holder et al., 2022). Here, the
adversary chooses levels that maximise the agent’s regret, defined as:

Regretθ(π) := Jπ⋆

(θ)− Jπ(θ). (3)

Dennis et al. (2020) posed the UED setting as a two-player, zero-sum game between the adversary
and the policy. This setting Furthermore, they showed that if the adversary aims to maximize regret,
and it is in Nash equilibrium with the policy, the policy satisfies the following equation:

πMinMax ∈ argmin
π∈ΠH

{max
θ∈Θ
{Regretθ(π)}}. (4)

Therefore, the policy’s minimizes its worst-case regret. This confers a degree of robustness to the
policy, as its regret in any level θ ∈ Θ must be below this bound. See Appendix A.1 for a more
detailed discussion.

2.2.1 PRIORITIZED LEVEL REPLAY

Prioritized Level Replay (Jiang et al., 2021b) is an empirically successful curriculum method that
relies on curating high-scoring levels. In practice, PLR maintains a buffer of previous high-scoring
levels, and either samples from this buffer, or samples new levels. The agent is rolled out on these
new levels, and they are scored depending on its performance. High-scoring levels are added to the
buffer, and the agent trains on the collected experience. It is not necessary to sample new levels,
however; in some cases, the level set may be predefined and fixed (Tzannetos et al., 2024).

The original PLR scores each level θi using a time-averaged L1 value loss of each agent’s last
trajectory on the level (Jiang et al., 2021b). In order to achieve minimax robustness, a scoring
function should account for regret as described in Section 2.2. Jiang et al. (2021a) propose different
scoring functions that more closely approximate the regret. Ultimately, the choice of a scoring
function is a design choice depending on the nature of the environment. We further elaborate on the
scoring function choices in section 3.

2.3 WORLD MODELS

As defined by Ha & Schmidhuber (2018), world models are compact representations of the dynam-
ics of an environment which are independent of the agent’s interactions with it; from the agent’s
perspective, a trained world model can be interacted with in the same way as the true environ-
ment. In this work, we assume the dynamics of the environment are Markovian and use a one-
step predictive world model. World models are generally represented using a neural network that
jointly parameterises the transition distribution PS and rewards distribution PR from Equation (1).
Therefore, one-step transition dynamics of the environment can be modelled by world model Fθ as
ŝt+1, r̂t+1 ← Fθ (ŝt, at) by predicting both the state transition and the reward of the agent.

3
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An agent trained entirely in a world model can also learn to take advantage of out-of-distribution or
discontinuous areas of the world model’s state space (Levine et al., 2020; Ha & Schmidhuber, 2018).
These discontinuities do not exist in the true underlying environment, and thus the agent learns a
policy which does not perform well in practice. Learned world models, much like other model-
based offline RL methods, are also subject to compounding error where the difference between the
world model outputs and the environment outputs diverge further as the episode proceeds (Saleh
et al., 2022). As a result, agents trained on fully offline long-horizon rollouts often lack robustness
in transfer to the real environment. Our methods uses an ensemble of world models trained on
the same data, and shows a path towards mitigating these issues by learning a transferable policy
through fully offline rollouts.

3 TRAINING WITH ENSEMBLES OF WORLD MODELS

We introduce a set of approaches aiming to leverage large datasets not curated for particular tasks
while still benefiting from methods with strong theoretical guarantees used in online RL methods.
As shown in Figure 1, we start by training a collection of world models consistent with the provided
data. We then treat these models as levels and select them based on different sampling methods to
train a robust, transferable policy.

...

Train

,Score( )

Trajectory-updated distribution

......

...

Uniform sampling  

Train

Train Multiple
World Models

on the same Data 

Figure 1: An overview of the two types of methods used to train on the world model ensembles

3.1 TRAINING MULTIPLE WORLD MODELS

Solving a planning problem for every conceivable history that an agent might encounter within
the CMDP is mostly intractable beyond the simplest examples (Martin, 1967; Duff, 2002; Guez
et al., 2012; 2013; Zintgraf et al., 2020; Fellows et al., 2024). In this work, we assume ac-
cess to a non-sequential offline dataset D of N state-action-state-reward transition observations:
D = {(si, ai, s′i, ri)}N−1

i=0 , all collected from a single MDP θ⋆. Therefore, we address this tractabil-
ity issue by learning a highly informative posterior distribution PΘ(D) using offline data, which
concentrates around a small region of the parameter space Θ containing the true dynamics θ⋆. By
doing so, we effectively reduce the hypothesis space to a manageable subset of Θ, enabling the
tractable evaluation of the RL objective.

Practically, we implement this by training multiple distinct world models, each initialized with dif-
ferent random weights and trained on different permutations of the data. The inherent variability
introduced by stochastic gradient descent during the training process causes each world model to
exhibit slightly different dynamics (Amari, 1993). However, an agent trained in any one of these
world models is not guaranteed to transfer well to the real environment, and it is this problem we
tackle by using the ensemble of world models.
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3.2 WORLD MODELS AS LEVELS

If we treat each world model θ as a level, we can apply standard minimax regret algorithms to
our setting. More formally, we consider the two-player game between an adversary G and stu-
dent policy π, such that the adversary generates a level (i.e., a world model) θ ∈ Θ that maxi-
mizes the agent’s regret, and the agent trains as normal on the provided levels. Note, we define
Θ=̇{θ : L2(θ,D) < ϵ} to be the set of all world models that have loss over the dataset D of less
than some threshold ϵ. At Nash equilibrium of this game, Dennis et al. (2020) showed that the policy
satisfies Equation (4). In other words, the policy’s maximum regret on any θ ∈ Θ is bounded by
W =̇minπ∈Π{maxθ∈Θ{Regretθ(π)}}. Since we have assumed that θ⋆ ∈ Θ, this bound further ap-
plies to the true environment dynamics. Moreover, since the adversary is constrained to only choose
levels within Θ, i.e., those that have loss less than a certain value, it cannot be overly adversarial and
provide totally unrealistic dynamics to train the agent on.

In order to make this procedure practical, we use the high-performing PLR algorithm as illustrated in
the right side in Figure 1, treating different world models θ as levels. Despite PLR not guaranteeing
convergence to a Nash equilibrium, it generally results in improved zero-shot generalisation to out-
of-distribution tasks. Since regret for a given world model is not always known, we use the standard
regret approximations of Positive Value Loss for level θi:

Si =
1

T

T∑

t=0

max

(
T∑

k=t

(γλ)k−tδk, 0)

)
. (5)

To ensure that the agent does not overfit to the training distribution of learned world models, we
implement the algorithm illustrated on the left side of Figure 1 where the agent experiences state
transitions from multiple world models within one single episode.

4 EXPERIMENTAL SETUP

This section outlines our experimental setup, covering offline data collection, world model training,
RL process details as well as baseline descriptions.

4.1 DATASET CURATION

One key principle guiding our dataset curation strategy is the concept of state coverage. Relying
on a single behavior policy πb often results in exploration of only a limited subset of the entire
state space. To address this limitation, we employ multiple behavior policies to gather diverse data.
Specifically, we train an agent in the real environment using Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and periodically create checkpoints throughout the training process. These
checkpoints serve as distinct behavior policies, ensuring that our dataset encompasses a wide range
of behaviors—from those generated by randomly initialized policies to those that effectively solve
the task. This ensures that the world models fits a sufficient state support for the agent to plan
and explore. This approach is not informed by any algorithmic insight like pessimism (Kumar et al.,
2020) or behavior cloning regularization (Fujimoto & Gu, 2021). We note that our dataset is shuffled
in the level of state transitions and does not require sequences to train the world models.

The frequency of checkpointing and the number of trajectories collected at each checkpoint are de-
termined heuristically to optimize collection and world model training time, taking into account the
environment’s episode length and the performance metrics. Figure 2 demonstrates the schedule for
collecting behavior policy trajectories in the Hopper environment, illustrating how different stages
of the agent’s training are captured to reflect varying levels of proficiency.
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Figure 2: Data collection in the real environment using different πb checkpoints marked by the vertical lines
are used to collect trajectories for D

4.2 WORLD MODEL TRAINING

In order to test our method for different numbers of collected transitions, we uniformly subsample
the transitions dataset D to varying sizes. The world models are trained on the same data with
an L2 test loss but show different final test losses and slightly different dynamics. We train every
model to convergence. The world models in our experiments are implemented as fully connected
networks with a concatenated input of actions and observations and an output of the concatenated
next observations and reward. We then use different seeds to initialize the world model network,
and shuffle the order the data is passed through it. More training details and results can be found on
Table 3 in Appendix A.2.

At inference time, we add Gaussian Noise to the outputs equal to the square root of the L2 test loss,
to represent the fact that the world models are modelling a distribution over next states.

4.3 TRAINING THE REINFORCEMENT LEARNING AGENT

The agent is implemented as a recurrent actor-critic network following the template from Pure-
JaxRL (Lu et al., 2022). The agent’s actions depend on the current observation and episode trajec-
tory, implemented as the recurrent state of the actor-critic network. We use the recurrent state to test
the agent’s ability to perform system identification across the world models it is trained on. This is
also done to verify that the world models have distinct dynamics. Visualizations and analysis of the
hidden state can be found in A.4.

We implement a suite of methods to train using the world models ensemble:

PLR: Prioritized Level Replay as described in with an L1 value loss score function,

PLR PVL: PLR with a Positive Value Loss scoring as described in 3.2 to approximate regret,

DR: Domain Randomization implemented by randomly selecting a new world model θ from a uni-
form distribution over the world model buffer Θtrain

DR STEP where we change θi at every individual timestep of the agent in a fixed length episode
instead of only doing it at every reset.

DR PROB where we change θi at every individual timestep with probability p which is sampled
every step. The probability p could also serve as a classic UED parameter where it is varied based
on the episode’s score.

WM: a single world model without any adversity or curriculum curation as a baseline for the afore-
mentioned methods.

To address policy overfitting to the world models’ dynamics without querying the real environment,
we use holdout world models trained on transitions from the validation set that is also used to
validate the supervised world model training. We observe that when overfitting occurs, as indicated
by the decoupling of training and evaluation episodic rewards, the standard deviation of the policy’s
rollout episodic rewards across the holdout world models increases significantly. This phenomenon
serves as a reliable indicator for early stopping and helps prevent policy overfitting. We note that
our method and hyperparameters do not rely on online tuning.
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The PLR implementations are based on JaxUED (Coward et al., 2024). We evaluate the policies on
the same environment the world model training dataset was collected in and use RLiable library as
presented by Agarwal et al. (2021) to measure the performance. Every metric is plotted within a
shaded area the marking 95% confidence interval calculated over five seeds and 50 episodes on each
respective environment. The entire pipeline, from data collection to wold model and subsequent
policy training is implemented in the JAX Ecosystem (DeepMind et al., 2020) to leverage hardware
acceleration and speed up training.

4.4 BASELINES

We baseline our methods by training on a randomly sampled single world model (WM) and against
commonplace offline RL algorithms like CQL (Kumar et al., 2020) and SACN (An et al., 2021). We
implement these algorithms ourselves and verify that they achieve the documented performance on
the D4RL dataset (Fu et al., 2020), the benchmarks for which they were originally developed and
evaluated. To ensure a fair comparison, we structure our collected trajectories to match the format
and characteristics of the datasets the algorithms were designed for, utilizing the same trajectories
without shuffling them at the transition level. Each of the baselines is tuned by doing a grid search
of the ranges documented in their respective papers. The specific ranges can be found on Table 6
and Table 7.

5 RESULTS

In this section we show the most notable results that elucidate important aspect of our approach. A
complete compilation of the results can be found in the Appendix. We collect data from and evaluate
on environments from the Gymnax (Lange, 2022) and Brax (Freeman et al., 2021) suites. All the
evaluations are performed on full trajectories across five random seeds on the corresponding real
environments.

5.1 PREVENTING EXPLOITATION

Figure 3: Preventing reward hijacking of the learned model by using the ensemble training method

Training in world model ensembles prevents the agents from overfitting to the training distribution
and hacking the rewards. Figure 3 shows the results on a world models trained with 2·104 transitions,
only 20 episodes worth of transitions.

5.2 CLASSIC CONTROL

The suite of methods using world model ensembles outperforms naive world model training with
only a couple of episodes worth of transitions from dataset D. We illustrate the evaluation on the
Cartpole environment in Figure 6 to showcase the effectiveness of world model ensembles to reach
the highest episodic return possible in less than half the transition counts compared to using a single
world model. Training on multiple world models beats the single world models baseline in a simple
environment. Figure 5 shows our methods consistently outperform training on a single world model
for sparser data and even achieve returns higher than the behavior policy that was learned online.
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Figure 4: Mean of the evaluations on Cartpole Figure 5: Interquartile Mean (IQM), Mean, and Me-
dian of the world model ensemble trained policy eval-
uated on the real environment

5.3 ROBOTIC LOCOMOTION IN BRAX

We test our model on Hopper and HalfCheetah from the Brax suite of environment. We notice that
the methods that sample a new level uniformly at every step or with a probability p outperform every
method in sparser data regimes.

Figure 6: IQM for Hopper Figure 7: IQM for Half Cheetah Figure 8: IQM for Pendulum

5.4 RNN ANALYSIS

Table 1: Classification accuracy of 9 world models and the real environment

% of |D| DR PLR PLR PVL
1 0.68 0.11 0.47
5 0.41 0.65 0.67
10 0.62 0.68 0.40
20 0.67 0.67 0.09
50 0.76 0.66 0.36
70 0.68 0.58 0.37

100 0.54 0.85 0.79

Our claim is that the world models have sufficiently distinct dynamics and can therefore serve as
different contextual MDPs. If true, regret-based training should help the agent adapt to all these
dynamics. We demonstrate this by deploying our agent across multiple world models and on the
real environment. We then train a classifier on the recurrent states of said agent to identify its envi-
ronment and achieve an average of 62% accuracy on the DR, 60% on PLR and 45% on PLR PVL;
all above the 10% random prediction accuracy. More in A.5,A.4.
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6 RELATED WORK

Reinforcement Learning has achieved impressive results, some of the most notable ones being
Go (Silver et al., 2016b), Starcraft (Vinyals et al., 2019), Atari (Mnih et al., 2015) and more recent
advances focusing on multi-task generalizations (Bruce et al., 2024; Hafner et al., 2023). Despite
these impressive results, RL methods fail to generalize to settings even slightly different than the
training environments (Cobbe et al., 2019; Mediratta et al., 2023), indicating that the generalization
to real world settings remains an open challenge.

The generalization of an RL agent can be enhanced by ensuring it is exposed to a sufficiently diverse
set of environments in training time. The Unsupervised Environment Design (UED) (Dennis et al.,
2020; Jiang et al., 2021a) line of work achieves this by relaxing the definition of the environment
to a combinatorially large set of possible configurations captured by a set of parameters, commonly
referred to as levels. The choice of the parameter space is specifically tailored to the general task
domain also known as the underspecified environments (e.g. a maze environment is parameterized
by the placement of the walls, start and goal position whereas a one dimensional bipedal environment
is parameterized by the roughness of the terrain). UED uses Minimax regret (Savage, 1951) to make
the agent robust to the most challenging environment configurations without prior knowledge of
which set of parameters it will act in. While these approaches are meant to exemplify deployment
in challenging situations, they remain reliant on semantically informed choices of parameters that
capture useful levels of difficulty (the color of the background is not as useful in curating the training
of a bipedal walker as the roughness of the train). Jiang et al. (2021a) was very helpful in bridging
the intuitive algorithm of Prioritized Level Replay with new regret approximations that provide
minimax guarantees.

World models (Ha & Schmidhuber, 2018) propose a different approach where the agent is equipped
with a compact representation of the real environments trained using a dataset of transitions in
said environment. More recent work shows that world models can serve as task-agnostic Continual
Reinforcement Learning baselines (Kessler et al., 2023) or used in online RL to achieve human-level
performance on Atari (Hafner et al., 2020). In principles, world modelling does not hinge on task-
specific heuristics and only relies on increasing the robustness of the agent by tuning the uncertainty
inside the world model.

A recent combination of the world model and Minimax Regret approach by Rigter et al. (2023)
trains a world model that can derive robust policies. This is done through an exploration policy
seeking maximal model uncertainty, similar to the self-supervised world model methods by Sekar
et al. (2020). These are ultimately online methods and require sufficient exploration of states that
can be physically dangerous to the agent and disrupt operation altogether (Kumar et al., 2020; 2021).

Offline RL work has provided a useful signal on the importance of using offline datasets (Kumar
et al., 2020; 2021), the common challenges that arise form the distribution shift between the behavior
and learned policy (Levine et al., 2020) and model error (Saleh et al., 2022) alongside the most
common workarounds like truncated rollouts (Jackson et al., 2024). Model-based offline (Rigter
et al., 2022) and online (Chua et al., 2018) RL methods have served as useful blueprints to manage
uncertainty through multiple dynamic models.

The work of Li & Liang (2018) and the foundational work of Amari (1993) have paved the intu-
ition that shuffling the data and most importantly, changing the initializations, would be effective in
training sufficiently distinct models on a shared offline dataset.

7 DISCUSSION

7.1 DATASET DISTRIBUTIONS

While our method achieves competitive results in world models trained on our dataset with wide
state coverage, we do not match the same full rollout performance in D4RL datasets. We present the
following investigation into why that is the case and why we think this points out to inherent biases
in the field of offline RL that stand in the way of making use of data on the larger scale, similar to
the fields mentioned in the introduction of this work.
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Figure 9: Observation Distribution in Hopper-full-
replay datasets from D4RL and in ours

Figure 10: Action Distribution in Hopper-full-
replay datasets and in ours

Previous work by Li et al. (2024) has shown that offline RL methods are susceptible to implicit
biases in the data collection practice. Figure 9 offers a succinct qualitative analysis by showing that
more than half of the Hopper dimensions from D4RL have narrower coverage and bias the agent
towards healthy behavior; a helpful addition for hopper as the unhealthy state flag can cause an
early termination and vastly affect evaluation. A method that includes a Behavior Cloning term
like TD3+BC (Fujimoto & Gu, 2021) is at a clear advantage since it is directly biased away from
unhealthy states that would otherwise be explored more in the online environment (as our dataset
distribution shows in Figures 9 through 11. The state of offline RL and its benchmarks has positively
reinforced a direction of methods that does not account for the type increasingly available large scale
datasets.

Figure 11: Reward Distribution in Hopper-full-
replay datasets and in ours

Moreover, this work would benefit from a more prin-
cipled and interpretable method of sampling the pos-
sible world models from Θ set – as defined in 3.2 –
other than simply changing the shuffling and initial-
ization seeds. A natural extension is that of level
generation to have an expanding buffer of available
levels during the adversarial training. Our method
also offers a way to generate an RL training curric-
ula by abstracting away hand-crafted heuristics and
using data to generate different levels directly. Such
tools should not be exclusive to offline RL.

Finally, the results in physical engines like Brax
should be extended to real physical platforms and
address the engineering challenges posed by the
sim2real gap, especially in sensitive settings where
online training can be physically hazardous.

8 CONCLUSION

In this work we present a novel way to guarantee transfer robustness to the real environment over
world models fitted on offline data. To the best of our knowledge, this is the first work that performs
adversarial training under this specific fully parametric constraint. Our method naturally lends itself
to other architectures and hopefully will help blaze the trails towards meaningful deployment of
state-of-the-art RL algorithms into the real world based on training inside large scale generative
models.
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A APPENDIX

A.1 UED DISCUSSION

In this section we revisit the main principles of UED and their connection to Bayesian RL. Our
derivation reveals that minimax UED is equivalent to learning a Bayes-optimal policy under a
least favourable prior. As Bayesian RL is a more general framework that allows for optimality
under different priors, we now discuss the relative advantages and disadvantages of choosing a least
favourable prior. The benefits of choosing a least favourable prior include:

I. Policies are robust to changes in prior A key advantage of the least favourable prior is that
policies can be robust to changes in belief. When the minimax theorem (Neumann, 1928) holds,
a Nash equilibrium to the two-player game exists with solution (πMinMax,Θ

πMinMax
max ) and it follows

(Buening et al., 2023):

min
π∈ΠH

max
θ∈Θ

[Regretθ(π)] = min
π∈ΠH

max
P∈P

Eθ∼P [Regretθ(π)] = max
P∈P

min
π∈ΠH

Eθ∼P [Regretθ(π)] , (6)

which implies that the minimax policy is robust to any change in the prior.

II. Protection against worst case MDPs The set ΘπMinMax
max indexes MDPs where policies have

the worst possible regret. This ensures that the agent following πMinMax at test time is protected
against situations where the return has the potential to be very low. From a safety perspective,
this can protect an agent from behaving in a way that is dangerous towards itself or others in an
environment; in particular, if an agent is at a Nash equilibrium, the regret across all MDPs is bounded
by minπ∈ΠH maxθ∈Θ [Regretθ(π)].

There are also several drawbacks to choosing a least favourable prior. Many of these stem from the
restriction of the prior to ΘπMinMax

max , and include:

I. Inability to exploit prior knowledge The least favourable prior excludes the ability to integrate
pre-existing beliefs into the Bayes-optimal policy. If prior knowledge about the set of environments
is available, for example from and offline dataset or known skills that are common across all envi-
ronments, this information cannot be exploited by a least favourable prior. This is most pertinent if
the true distribution over context variables is known a priori, as using this as the prior results in the
greatest regret reduction according to the frequency in which MDPs are encountered in practice.

II. Inability to learn optimal policies For proper priors with support over Θ, provided θ⋆ ∈ Θ, a
key property of Bayes-optimal policies is that they tend towards the optimal policy π(st, θ

⋆) in the
limit of t→∞. If the index θ⋆ of true MDP allocated to the agent at test time lies outside of the set
of worst regret parameters, that is θ⋆ /∈ ΘπMinMax

max , then the posterior under the least favourable prior
cannot collapse to place its support on θ⋆ and the corresponding policy will never be optimal for
M(θ⋆). As ΘπMinMax

max is typically a very small subset of Θ and the whole of ΘπMinMax
max is never learned

in practice, we expect this situation to be frequently encountered. This point has been observed
empirically as the inability to generalise to out of distribution tasks (Jiang et al., 2021a).

III. Issues with learning Nash equilibria The conditions needed to prove the existence of the
minimax solution - a finite state-action space, a finite horizon, known reward, a finite set of MPDs
(see Buening et al. (2023) for details) - rarely hold in a CMDP in practice. Whilst it is currently
unknown whether the minimax theorem can be generalised to more realistic CMDPs, empirical
evidence suggests this is not the case (Buening et al., 2023). MDPs where the Nash equilibrium
does not exist present a convergence issue when learning a minimax policy. Moreover, even if the
Nash equilibrium exists, algorithms rarely learn the entirety of ΘπMinMax

max required for the minimax
policy (Beukman et al., 2024). In particular, if the algorithm collapses to a prior with support over
single context variable, we cannot expect the minimax policy to learn anything useful at test time.

IV. Inherent pessimism A least favourable prior encodes the most pessimistic belief possible -
that an agent will always be faced with a set of MDPs that have the potential for the highest regret.
The agent does not consider any hypothesis outside of ΘπMinMax

max when reasoning about its beliefs,
despite the fact these MPDs may be more typical of the environments encountered at test time. This
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prevents exploration of alternative hypotheses and is not a universally appropriate belief for every
CMDP.

V. Loss of admissibility A key benefit of Bayes-optimal policies is that, given a proper prior, they
are guaranteed to be admissible - they cannot be Pareto improved upon in terms of expected return
Jπ(θ) across Θ (Wald, 1947; 1950). Least favourable priors are not guarenteed to be proper and
there exist known counterexamples where inadmissible decisions are taken under a minimax policy.

VI. Amplifying effects of model misspecification In most learning settings, it is not reasonable
to assume that the practitioner can specify a CMPD that contains the exact space of MDPs that
an agent could encounter. We must account for some degree of misspecification where there exist
subsets of context variables Θ′ ⊂ Θ that do not correspond to a realisable model. By restricting the
prior to have support over ΘπMinMax

max , it may occur that the prior only has support over MDPs in Θ′,
hence the corresponding minimax policy will only account for MDPs that do not exist in practice.

Like any prior, we see that choice of using a least favourable prior is subjective, and its justification
depends on weighing up the relative advantages and disadvantages by a practitioner on a case-by-
case basis. Either way, the least favourable prior and minimax solution is by no means a universally
appropriate method.

A.2 WORLD MODEL TRAINING RESULTS

Table 2: Transition Counts for each dataset

Environment Transition Count

Acrobot 1.02 · 105
Cartpole 1.02 · 105
Mountaincar 1.03 · 105
Pendulum 1.92 · 105
Hopper 2 · 106
HalfCheetah 2 · 106

A.3 HYPERPARAMETERS

A.4 HIDDEN STATES VISUALIZATION

The PCA for RNN states of different agents trained with different algorithms

Each row illustrates the episodic progression, with Figure 12 depicting the 2-dimensional Principal
Component Analysis (PCA) of the 256-dimensional hidden states. These hidden states are collected
from 10 differently initialized rollouts of the same agent. The rollouts are performed across 9 differ-
ent world models and the real environment, ensuring a fair and balanced classification dataset. No-
tably, no pattern of stability emerges with the DR-trained agent. However, the PLR and PLR PVL
agents exhibit stabilization midway through the episode, within a smaller range on the principal
components compared to the PCA of their initial state. While this warrants further investigation,
we can intuitively infer that the agent learns to act optimally across all world models, and that this
optimal behavior tends to become increasingly similar—though still distinct—across the different
world models and environments.

A.5 HIDDEN STATES CLASSIFICATION

The confusion matrix for the classification of the world model using the agent’s recurrent state from
all the steps of the episode.
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Table 3: L2 loss in world model training results for different D ratios across environment

Environment % of |D| Train Loss Mean Train Loss Median Test Loss Mean Test Loss Median

Pendulum-v1 1 1.201 · 10−7 1.19 · 10−7 5.87 · 10−4 5.83 · 10−4

5 2.20 · 10−6 2.19 · 10−6 5.93 · 10−5 5.91 · 10−5

10 4.28 · 10−6 4.39 · 10−6 3.02 · 10−5 3.01 · 10−5

20 6.85 · 10−6 6.90 · 10−6 1.87 · 10−5 1.86 · 10−5

50 9.35 · 10−6 9.34 · 10−6 1.33 · 10−5 1.34 · 10−5

70 3.99 · 10−1 1.02 · 10−5 4.08 · 10−1 1.28 · 10−5

100 3.99 · 10−1 1.11 · 10−5 4.08 · 10−1 1.23 · 10−5

Acrobot 1 8.86 · 10−7 9.11 · 10−7 1.20 · 10−2 1.20 · 10−2

5 7.53 · 10−6 7.35 · 10−6 2.55 · 10−3 2.57 · 10−3

10 1.71 · 10−5 1.69 · 10−5 1.17 · 10−3 1.18 · 10−3

20 3.37 · 10−5 3.37 · 10−5 5.05 · 10−4 5.05 · 10−4

50 7.60 · 10−5 7.60 · 10−5 3.01 · 10−4 3.02 · 10−4

70 9.14 · 10−5 9.09 · 10−5 2.67 · 10−4 2.66 · 10−4

100 1.40 · 10−4 1.39 · 10−4 2.81 · 10−4 2.81 · 10−4

Cartpole 1 1.95 · 10−8 1.86 · 10−8 3.57 · 10−5 3.60 · 10−5

5 2.97 · 10−7 2.89 · 10−7 4.20 · 10−6 4.15 · 10−6

10 4.86 · 10−7 4.85 · 10−7 2.22 · 10−6 2.23 · 10−6

20 6.49 · 10−7 6.47 · 10−7 1.52 · 10−6 1.52 · 10−6

50 8.05 · 10−7 8.03 · 10−7 1.15 · 10−6 1.14 · 10−6

70 8.61 · 10−7 8.61 · 10−7 1.08 · 10−6 1.08 · 10−6

100 8.98 · 10−7 8.98 · 10−7 1.05 · 10−6 1.04 · 10−6

Hopper 0.1 3.42 · 10−3 3.41 · 10−3 1.51 · 10−2 1.51 · 10−2

0.5 2.71 · 10−3 2.58 · 10−3 1.19 · 10−2 1.19 · 10−2

1.0 1.88 · 10−3 1.98 · 10−3 1.04 · 10−2 8.79 · 10−3

5.0 1.47 · 10−3 1.01 · 10−3 9.09 · 10−3 8.05 · 10−3

10.0 1.21 · 10−3 2.30 · 10−4 8.15 · 10−3 7.40 · 10−3

25.0 1.08 · 10−3 3.21 · 10−4 7.41 · 10−3 6.24 · 10−3

50.0 9.71 · 10−4 3.32 · 10−4 6.82 · 10−3 5.10 · 10−3

75.0 8.87 · 10−4 3.16 · 10−4 6.31 · 10−3 4.79 · 10−3

100.0 8.20 · 10−4 3.02 · 10−4 5.91 · 10−3 4.36 · 10−3

HalfCheetah 0.1 8.9 · 10−3 8.8 · 10−3 3.6 · 10−2 3.6 · 10−2

0.5 6.3 · 10−3 5.9 · 10−3 2.8 · 10−2 2.8 · 10−2

1.0 4.3 · 10−3 3.8 · 10−3 2.3 · 10−2 2.0 · 10−2

5.0 3.4 · 10−3 1.9 · 10−3 1.9 · 10−2 1.6 · 10−2

10.0 2.8 · 10−3 5.6 · 10−4 1.6 · 10−2 1.3 · 10−2

25.0 2.4 · 10−3 5.2 · 10−4 1.3 · 10−2 9.2 · 10−3

50.0 2.1 · 10−3 4.9 · 10−4 1.2 · 10−2 5.5 · 10−3

75.0 1.9 · 10−3 4.7 · 10−4 1.1 · 10−2 4.6 · 10−3

100.0 1.7 · 10−3 4.2 · 10−4 9.5 · 10−3 3.8 · 10−3

Table 4: Hyperparameters for the world model training

Hyperparameter Value

Learning Rate 1 · 10−4

Batch Size 64
Hidden Size 256
Epochs 400
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Table 5: Hyperparameters for Each RL Environment

Hyperparameter Acrobot CartPole Hopper HalfCheetah Pendulum

Learning Rate 5 · 10−4 2.5 · 10−4 3 · 10−4 1 · 10−3 1 · 10−3

Number of Environments 16 4 512 16 32
Total Timesteps 5 · 105 5 · 105 5 · 107 5 · 107 1 · 107
PPO Update Epochs 4 4 4 64 4
Number of Minibatches 4 4 32 4 4
Gamma 0.99 0.99 0.99 0.99 0.99
GAE Lambda 0.95 0.95 0.95 0.95 0.95
Clip EPS 0.2 0.2 0.2 0.2 0.2
Entropy Coefficient 0.01 0.01 0.0 0.003 0.01
Value Function Coef 0.5 0.5 0.5 0.5 0.5
Max Grad Norm 1 0.5 0.5 1 1.0
Activation Function tanh tanh tanh tanh tanh
Anneal Learning Rate true true false true true
Number of Eval Envs 1 1 1 1 1
Eval Frequency 4 4 100 4 4

Table 6: Hyperparameter range sweep for SAC N

Hyperparameter Values
polyak step size [0.004, 0.006]
gamma 0.99, 0.999
lr 5× 10−5, 1× 10−4, 2× 10−4, 3× 10−4

num of critics 200, 300, 500
batch size 128, 256, 512

Table 7: Hyperparameter range sweep for CQL

Hyperparameter Values
polyak step size [0.004, 0.006]
gamma 0.99, 0.999
lr 5× 10−5, 1× 10−4, 3× 10−4

num critics 200, 300, 500
batch size 128, 256, 512
seed 1, 2, 3
cql target actions gap [0.5, 2.0]
cql temperature [0.5, 2.0]
cql min q weight [1.0, 10.0]
cql n actions 5, 10, 15

Table 8: Comparison of Methods and 100-step Rewards

Method 100-step Reward
Behavior Cloning 222.23
Randomly Initialized Policy 97.47
DR-step 148.17
DR 149.20
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Figure 12: PCA of the hidden recurrent state for agents trained on different algorithms

Figure 13: Classification accuracy of the hidden states from agents trained with DR, PLR, and PLR PVL for
a dataset of trajectories from 9 world models and the real environment. The dashed black line is the random
prediction accuracy for the 10 classes.
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(a) DR on 5% of |D| (b) DR on 50% of |D| (c) DR on 100% of |D|

(d) PLR on 5% of |D| (e) PLR on 50% of |D| (f) PLR on 100% of |D|

(g) PLR PVL on 5% of |D| (h) PLR PVL on 50% of |D| (i) PLR PVL on 100% of |D|

Figure 14: Confusion Matrix for classifying 10 different levels or training environments using the RNN
hidden states. Label 0 corresponds to the real Pendulum environment. Every row is a different training method
where, DR is Domain Randomization, PLR is Prioritized Level Replay with an L1 value loss score function
and PLR PVL refers to Prioritized Level Replay with an Positive Value Loss score function.
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1
Introduction

This report documents my progress as a probationary research student and demon-

strates my readiness to transfer to DPhil status. My research aims to make

Reinforcement Learning more applicable to real-world scenarios. The initial

inspiration came from soft robotics challenges, but my work has evolved to address

fundamental Machine Learning questions about learning from limited real-world

data and ensuring reliable transfer of learned policies to physical systems.

My first research contribution was accepted at the Robosoft 2024 confer-

ence [Berdica et al., 2024a] and presented a novel approach using a limited dataset

collected from a pneumatically actuated soft manipulator to develop a recurrent

dynamics model. This model served as a Reinforcement Learning environment

for training a goal-conditioned policy. While the dynamics model proved unstable

and required separate policies for different regions of the manipulator’s Cartesian

space, with rewards computed as a function of goal distance, the work received

valuable feedback. Specifically, reviewers at the Robosoft conference highlighted the

innovative use of fully offline rollouts with state-of-the-art online learning algorithms.

Although limited in scope, this initial work served as an important learning

experience in offline Reinforcement Learning and environmental modeling, building

on the foundational World Models framework introduced by Ha and Schmidhuber

[2018]. This experience naturally led to deeper investigation of offline rollouts

1



2 1. Introduction

in World Models and methods for ensuring successful policy transfer to real

environments. The results of this investigation appeared in my NeurIPS workshop

paper on Robust Offline Learning using World Models Berdica et al. [2024b], with

an expanded version currently under review at The International Conference of

Learning Representations, as detailed on page ix in Part I of this report.

Beyond my first-author work, I contributed as a middle author to DARE: The

Deep Adaptive Regulator for Control of Uncertain Continuous-Time Systems Waldon

et al. [2024], which was accepted at the ICML Workshop on Foundations of

Reinforcement Learning and Control. As the paper received a borderline rejection

from NeurIPS, we are currently implementing reviewer suggestions and testing

more challenging environments before an arxiv release and planned resubmission

to ICML 2025.

To support the broader research community, I am preparing to release a

completed JAX implementation of a one-step predictive dynamic model along

with standalone data collection scripts like I did with https://github.com/

uljad/DaJax [Berdica, 2024].

November 14, 2024
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2
Literature Review

Contents
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . 3

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . 3
2.1.2 Offline Reinforcement Learning . . . . . . . . . . . . . . 4
2.1.3 World Models . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Unsupervised Environment Design . . . . . . . . . . . . 5
2.1.5 Prioritized Level Replay . . . . . . . . . . . . . . . . . . 6

2.2 Soft Robotics . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Modeling Challenges . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Reinforcement Learning Controllers . . . . . . . . . . . 8

Here, I outline the relevant literature underpinning the soft robotics work and

the Reinforcement Learning (RL) contributions. These sections are extension of

the literature review conducted for the papers in Part I.

2.1 Reinforcement Learning

2.1.1 Markov Decision Process

A finite horizon Markov Decision Process (MDP) forms the mathematical foundation

for reinforcement learning. The MDP is defined by the tuple ⟨S0,S,A, T,R, I,O⟩,

where S represents the state space, A is the action space, and T : S ×A → ∆ (S)

defines the transition dynamics as a distribution over next states given an initial

3



4 2.1. Reinforcement Learning

state and action.∆ (X ) is the set of all probability distributions over the set X . The

initial state distribution is denoted by S0. The reward function R : S × A → R

outputs scalar rewards, where rt = R(st, at) represents the reward at time t

for action at taken in state st.

The observation function I : S → ∆(O) maps states to observations. In fully

observable environments, states and observations are equivalent. At time t, an

agent observes ot and takes action at, building an action-observation history τt =

⟨o0, a0, ..., ot−1, at−1, ot⟩. A policy π maps observations in O to action distributions

in A. For recurrent policies, actions are conditioned on the entire history: at ∼ π(τt).

The policy is trained to maximize the discounted episodic return Jπ
M for MDP

M with fixed episode length T :

Jπ
M := Ea0:T ∼π,s0∼S0,s1:T ∼T

[
T∑

t=0
rt

]
. (2.1)

2.1.2 Offline Reinforcement Learning

Offline reinforcement learning methods aim to maximize Jπ using a dataset D

containing transition tuples {(sn, an, rn, sn+1)}N
n=1 with initial states s0 ∼ S0. This

dataset is collected by deploying a behavior policy πb in the environment. While

πb may have varying levels of expertise and exploration, resulting in potentially

incomplete state coverage, offline RL algorithms are designed to produce policies

that achieve meaningful results in the true environment.

2.1.3 World Models

World models, as defined by Ha and Schmidhuber [2018], provide compact repre-

sentations of environment dynamics independent of agent interactions. A one-step

predictive world model assumes Markovian dynamics, represented by a neural

network Fθ with parameters θ. The model predicts transitions as ôt+1, r̂t+1 ←

Fθ (ôt, at), generating both observations and rewards.

Agents trained exclusively in world models may exploit out-of-distribution

states or discontinuities absent in real environments [Levine et al., 2020, Ha

November 14, 2024
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and Schmidhuber, 2018]. Like other model-based RL methods, these models

can accumulate compounding errors where predictions increasingly diverge from

reality Saleh et al. [2022]. However, with proper implementation, agents can

achieve strong performance even when training on full-length episodes entirely

within world models.

2.1.4 Unsupervised Environment Design

Unsupervised environment design (UED) represents a class of autocurriculum

methods where an adversary proposes tasks (or levels) for agent training. A

common approach [Dennis et al., 2020] models environments as an Underspecified

Partially Observable Markov Decision Process (UPOMDP) ⟨S0,S,A, T,R, I,O, Θ⟩.

In this framework, Θ represents the set of free parameters that can adjust

environment characteristics, with θ denoting a specific level. For example, Θ might

define possible block placements in a grid [Chevalier-Boisvert et al., 2023], while

θ specifies exact locations. Each θ creates a concrete POMDP.

Recent work has shown Minimax Regret (MMR) UED as an effective approach

for training robust agents [Dennis et al., 2020, Jiang et al., 2021b,a, Parker-Holder

et al., 2022]. The adversary selects levels that maximize agent regret, defined

as Uθ(π∗
θ)− Uθ(π), where U represents discounted returns for a policy on level θ,

and π∗
θ is the optimal policy for that level.

Dennis et al. [2020] formulated UED as a two-player, zero-sum game between

adversary and policy. When the adversary maximizes regret and reaches Nash

equilibrium with the policy, the policy satisfies:

π ∈ arg min
π∈Π
{arg max

θ∈Θ
{Regretθ(π)}}. (2.2)

This equation shows that the policy minimizes its worst-case regret, providing

robustness by bounding regret across all levels θ ∈ Θ.

November 14, 2024
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2.1.5 Prioritized Level Replay

Prioritized Level Replay (PLR) [Jiang et al., 2021b] offers an empirically successful

curriculum method based on curating high-scoring levels. PLR maintains a buffer

of previous high-scoring levels and alternates between sampling from this buffer

and sampling new levels. After rolling out the agent on these levels, they are

scored based on agent performance. High-scoring levels are added to the buffer

for future training. While sampling new levels is common, some applications may

use a predefined, fixed level set [Tzannetos et al., 2024].

The original PLR implementation scores each level θi using a time-averaged

L1 value loss from the agent’s last trajectory. To achieve minimax robustness,

scoring functions should consider regret as described in the UED section. Jiang

et al. [2021a] propose various scoring functions that better approximate regret,

though the final choice depends on environment characteristics.

2.2 Soft Robotics

Soft robotic manipulators are made of compliant (i.e. flexible) material and exhibit

a low Young’s modulus that enables them to be arranged in highly deformable

geometries Laschi et al. [2016]. These designs, inspired by boneless biological

organisms, can undergo large elastic deformation throughout operations and fa-

cilitate safer interaction with the environments compared to their traditional

rigid counterparts George Thuruthel et al. [2018]. The morphological dexterity

outsources parts of the solution computation to the compliant material Hauser

et al. [2011], but remains underactuated as the states of the physical body are

governed by highly nonlinear continuum dynamics resulting in infinite degrees

of freedom (DOF) being controlled by a finite number of actuators Laschi et al.

[2023]. Given the inherent challenges, making use of the unique properties of

soft robotics remains an open problem.

The existing analytical methods for accurate dynamic models in classical optimal

control make reductive assumptions like constant-curvature and valve control
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heuristics for trajectory optimization George Thuruthel et al. [2018] while relying on

the material properties being unchanged or otherwise predictably modeled. These

methods strive to balance the trade-off between reducing the complexity of the

continuum dynamics and suppressing the undermodeled adaptive behavior that

emerges through the soft robot’s interaction with the environment.

Deep learning-based approaches do away with such reductions by utilizing

the sensory data from the robot’s interaction with the environment and directly

modeling a nonlinear system. This allows for the learned models to make use of the

morphological changes occurring in operation time. However, the use of learned

(black-box) mappings between actuation and task space comes at an increased

computational cost both during training and at test time. Learned control policies

approaches that seek to map desired task space results to required inputs are

either open loop due to the computational overhead Satheeshbabu et al. [2019],

Thuruthel et al. [2017] or employ trajectory optimization and supervised learning

with Guided Policy Search Levine and Koltun [2013] to derive the control policies

from learned recurrent representations of the dynamic space Thuruthel et al. [2019].

The most recent work to date using closed loop policy gradients leverages Cosserat

Rod Models simulations and short recurrence horizon for the learned forward

dynamics Alessi et al. [2023]. Furthermore, these methods hinge on the limited

number of recorded interactions in the dataset and existing prior knowledge of

material heuristics Satheeshbabu et al. [2019] or of how to reach defined goals

in the task space Rolf et al. [2010].

2.2.1 Modeling Challenges

Soft robotics controllers need to account for how robots adapt when interacting

with complex environments, along with any behaviors that emerge from these

interactions Hauser et al. [2011]. Traditional methods using parametric curve

reconstructions don’t consider the computational aspects inherent in the robot’s

physical form. This limitation makes data-driven models essential for understanding

important insights from the resulting deformations Laschi et al. [2023].
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For dynamic mapping, Thuruthel et al. [2019] uses a closed-loop guided policy

search with a recurrent neural network (RNN) on discretized state transitions. Such

mappings typically use non-linear autoregressive networks with exogenous inputs

(NARX), with time delays ranging from one Thuruthel et al. [2019] to four Thuruthel

et al. [2017], Alessi et al. [2023], Piqué et al. [2022]. We instead use a long short-term

memory (LSTM) Hochreiter and Schmidhuber [1997] architecture through Heek

et al. [2023] for faster performance. While both NARX and LSTM handle long-term

dependencies, NARX networks use delayed connections that increase computational

cost DiPietro et al. [2017] and make assumptions about actuation history’s influence.

2.2.2 Reinforcement Learning Controllers

Reinforcement Learning (RL) has emerged as a powerful approach for sequential

decision-making under uncertainty, particularly valuable when dealing with com-

plex dynamic systems. Through repeated interactions with an environment, RL

algorithms can learn effective control policies without requiring complete prior

knowledge of system dynamics.

Early applications of RL to control problems relied heavily on value-based

methods. For instance, Satheeshbabu et al. [2019] combined a Cosserat rod model

with Deep Q-Learning for open-loop control policies. Similar Q-Learning approaches

operating on discretized state spaces were explored by several researchers You et al.

[2017], Satheeshbabu et al. [2019], Ansari et al. [2017]. The field then progressed

toward actor-critic methods Ansari et al. [2017], with later work exploring different

objectives such as minimizing control effort Thuruthel et al. [2019] and using PPO

controllers with dynamic model simulations Alessi et al. [2023].

A significant advancement came with Proximal Policy Optimization (PPO) Schul-

man et al. [2017], which has proven particularly effective for continuous control

problems Lillicrap et al. [2015], Van Hasselt [2012]. However, the increasing

complexity of deep learning-based RL methods created new computational challenges.

This led to the development of specialized frameworks focused on balancing hardware

performance with user accessibility Hessel et al. [2021]. A notable recent innovation
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is PureJaxRL Lu et al. [2022], which leverages JAX Bradbury et al. [2018] to

execute both agents and environments on GPUs, achieving significant performance

improvements over previous approaches.
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3.1 Bigger Picture Planning

The time to ideate and realize ground-breaking research is quite limited. At the

start of the PhD, there is more time to learn and explore building workflows with

close to no additional commitments. This setup changes as secondary authorship

side projects become available due to the concentration of time and expertise

overlapping with what the project in progress needs. The exploration and learning

11
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time is further reduced by rebuttals preparations, the writing of this report and

reviewing paper for different venues.

3.1.1 Reflecting on the past year

I believe that this medium is a suitable for a short reflection on areas of improvement.

Providing a short analysis on the suboptimal aspect of my research conduct so far

will help guide more efficient choices for the remainder of my time.

Working alone helps if the scope is well-defined. An insufficiently scoped work

can expand over multiple conference cycles and isolate me from participating in

larger and more ambitious collaborations or even starting new projects on my own.

The lack of scope should be compensated by an airtight and conservative

addition of collaborators. An external researcher’s interest in the project is as

good as the interest in defining and being accountable for the assigned level of

engagement ranging from method design, code writing and down to experimentation

tracking and paper writing.

Clear and clean code is everything. The multi-year impact of a lot of machine

learning contributions relies on the clarity and availability of the implementation.

That matters as much as the paper getting accepted. I appreciate that this is not

the case in many communities but it certainly is a good signal with the emergence

of scale-enabling search methods as an acceptable contribution.

3.1.2 Project Selection

In my first year, I wanted to become a more well-rounded researcher and software

engineer and willingly leaned into implementing my own pipelines and workflows

which lead to exploring new methods under new constraints. I am also aware

that a lot of publication success relies on coding in pairs and exploiting existing

code bases. Reflecting on the limitation on my work last year, I am outlining

the criteria in how I will choose my projects.

Expand my capacity as a developer A project should help me understand

a new field better and create tools that will help me validate and shorten the
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development time on immediate follow-up work, whether led by me or students

in the same academic supervision circle.

Understand a potentially relevant field better Finding connections new in

fields that are sparsely connected at best can be a very interesting source of novelty

and pioneering work. For examples, growing my expertise in an LLM project can

not only lead to a good scientific contribution published at a fitting venue, but

also provide me with the tools and understanding to address questions closer to

other field of interest in Reinforcement Learning.

Exploit existing tools A measured period of exploration and tinkering with

existing tools and experimental pipelines may not always leads to pioneering and

paradigm-shifting work but it is certainly a risk-averse way to contribute to the

field and do an outer loop evaluation on the state-of-the-art and how it came to be.

3.2 Unified Offline RL Implementations

Offline RL is a very dispersed field of RL with a lot of benchmarks being either

deprecated, saturated or both. The principle behind offline RL is that of training

a policy from past trajectories collected by a behavior policy without any signal

from the real environment in training time.

The field has recently stagnated with opaque hyperparameter sweeping protocols,

implementations that are very different from each-other and make comparisons

difficult and – with the exception of RAMBO by [Rigter et al., 2022] – pivotal

implementation tricks that are not fully mentioned in the original paper. I aim to

implement the most important model-free and model-based algorithms in a shared

single-file format using JAX. Notable considerations include:

3.2.1 Termination Functions

Unified implementations like the one by Sun [2023] use hard-coded termination

functions for each environment which assumes knowledge of the environment beyond

the dataset. While the research community seems open to this trick, a more

principled approach of either not terminating during unhealthy transitions Berdica
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et al. [2024b] or training a binary classifier with an artificially balanced dataset

would be a more principled approach that opens offline RL to broader use.

3.2.2 Hyperparameter Search

Hyperparameter sweep is literally swept under the rug and there are hyperparameters

for every single environment and dataset. In classic model-based methods like

MOPO, most implementations delegate entire algorithmic choices to hyperpa-

rameters like the reward standard deviation penalty between ensemble members,

number of ensemble members and different methods of performing inference via

the ensemble e.g. greedy, elites or random choice.

3.2.3 Related Work

There are three main efforts that aim to tackle the similar challenge.

OfflineRL-Kit by Sun [2023] implements a wide array of model-based and

model-free algorithms but the implementation is on PyTorch, every evironment

has carefully tuned hyperparameters and the implementation for each algorithm

is spread across several files. This library does not feature more recent methods

diffusion methods generating on-policy [Rigter et al., 2023] and off-policy [Jackson

et al., 2024] trajectories.

CORL [Tarasov et al., 2022] containes single file implementation of only model-

free algorithms in the style of CleanRL [Huang et al., 2022]. JAX-CORL [Nishimori,

2024] is a line by line conversion of CORL’s PyTorch operations to JAX which

does underutilizes JAX functionalities.

3.2.4 Current Progress

At the time of writing, the finished implementations with scores matching and

exceeding the reported values include the entirety of model-free methods SAC

with a diverse ensemble of Q-networks [An et al., 2021], Conservative Q-Learning
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(CQL) [Kumar et al., 2020], Behavior Cloning (BC), Twin Delayed Deep Determinis-

tic policy gradient algorithm (TD3) [Fujimoto et al., 2018] and TD3+BC [Fujimoto

and Gu, 2021].

Model-based additions that are fully implemented but are yet to match the

reported results from other implementations are Model-Based Offline Policy Op-

timization (MOPO) [Yu et al., 2020] and the halting function addition used in

MOREL Kidambi et al. [2020]. My collaborator will also add the very recent yet

well-received Policy-Guided Diffusions (PGD) algorithm Jackson et al. [2024].

My fully method using fully offline rollouts on World Models trained by shuffled

transitions lends itself easily to this implementation paradigm as everything in

implemented in JAX, including the data collection code from any environment

outside common benchmark datasets like D4RL [Fu et al., 2020] and its potential

successor, Minari [Younis et al., 2024].

Once we verify these implementations and ensure every useful addition is

transparently marked by simply comparing the files line by line, the unified library

of Unified Offline RL Implementations (Unifloral) will be made public for the

wider community. I plan to add RAMBO [Rigter et al., 2022] after the ICML

deadline as it is the highest performing and more robust one to date, including

the original implementation.

Additional publication plans include a position paper for ICML and then

proposing a fair evaluation methodology between the methods that takes into

account all the resources used to train the model and tune the hyperparameters.

The latter would most likely be a better fit for the Reinforcement Learning

Conference (RLC) or NeurIPS.

3.3 Intent Factored generation using LLMs

Intent Factored Generation is a novel approach to controlling language model

outputs by separating semantic content from stylistic variation. The method first

extracts semantic control tokens from desired responses using a pretrained LLM,

then finetunes another LLM to generate these tokens before producing the final
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text. By using different sampling temperatures for the control tokens versus the

response generation, this two-stage process enables the creation of responses that

maintain semantic diversity while adhering to the original prompt’s intent.

3.3.1 Connection to RL

I want to use the knowledge and the expertise built by working on this LLM project

to conduct experiments on the unified implementation outlined in 3.2. I am very

interested in making different parts of the algorithms and see how trivial each

algorithmic improvement is or if other symbolic improvement can be made.

I am very interested in disambiguating scientific insights, algorithmic novelty

and engineering prowess. The opaque interplay between these factors can create

confusion regarding the long-term contributions of each work and guide the field

in states of catastrophic forgetting or stagnant learning.

3.4 Useful Representations in RL

Ingebrand et al. [2024] introduced a zero-shot reinforcement learning approach

that encodes task reward functions into a latent space used by the policy. Their

functional encoder represents reward functions as linear combinations of learned

neural network basis functions. Specifically, given a set of functions F , the encoder

learns basis functions gθ1 , ..., gθK by minimizing:

θ∗ ∈ arg min
θ

∑
f∈F

∫ ∣∣∣∣∣f(x)−
K∑

k=1
ck(f)gθ

k(x)
∣∣∣∣∣
2

dx (3.1)

s.t.ck(f) =
∫

f(x)gθ
k(x)dx (3.2)

Let cf = (c1(f), ..., cK(f)) where c1:K are the coefficients for the basis functions.

In Ingebrand et al. [2024], F corresponds to a set of transition (or reward) functions,

and the agent is given a dataset of samples of each function. After training the

encoder, an RL agent is trained on environments f ∈ F , learns a policy π := π(s; cf ).

One drawback of this method, which is acknowledged by the authors, is that "a

small change in the [reward] function can sometimes lead to abrupt and discontinuous
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changes in the optimal policy." Hence, a good latent representation E(f) should

have the property that if for f1, f2 ∈ F with πf1 , πf2 the optimal policies:

πf1 ≈ πf2 =⇒ E(f1) ≈ E(f2) . (3.3)

Motivated by the description of scalable zero-short RL by Touati and Ollivier

[2021], I want to implement a policy-informed functional encoding which learns a

latent representation reward functions that depends on the policy which optimizes

the given reward function. This will be achieved through an auto-encoder f θ,

which is trained through following loss:

L(f ; θ) = R(f ; θ) + C(f ; θ) , (3.4)

where R(f ; θ) denotes the reconstruction loss of a function f and C(πf ; θ) is a

contrastive loss defined in the following way. Let E(f) denote the encoding of f .

For each πf such that f ∈ F , say that f ′ ∈ F is a positive example if d(πf , πf ′) < ϵ

for some distance metric (e.g. KL) and a negative example otherwise. Then we take

C(f ; θ) = max
(
0, |E(f)− E(f+)|2 − |E(f)− E(f−)|2 + ϵ

)
, (3.5)

for some positive and negative examples f+ and f−.

This addresses the problem outlined in Ingebrand et al. [2024] where a small

change in the reward function can lead to very different policies. Similar work

by Frans et al. [2024] introduces a Functional Reward Encodings approach where

they use a transformer to learn latent representations of real trajectories and random

reward functions. These representations are used to train a general policy which

can perform well in real environment with the non-random reward function not

included in the supervised training of the encoder.

Given the existing clear implementation and my familiarity with the supervised

learning methods used in this body of work, I expect to make a submission to

an ICLR workshop and then to NeurIPS. Given the reviewers’ requirement for

the rebuttals, it is withing the realm of possibility to finalize the first batch of

experiments and consider an ICML submission in February.
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3.5 Deploying on Soft Robots

The challenge stands in writing code to load the JAX weights on a ROS-compatible

interface that will allow the controllers to run in real-time and even train in a safe

way using the methods in the Berdica et al. [2024a,b].

3.6 Planned Timeline

My timeline is summarized in Figure 3.1 as a Gantt chart. This is used to visualize

how different projects and papers will overlap and a tentative timeline to ensure

well-documented contributions, complete code releases and accepted papers in

peer-reviewed, high-impact venues.

The time from the submission of this report until the end of December 2024

will be dedicated to finalizing the camera-ready version of the ICLR submission for

arxiv, independent of the final acceptance decision. I will also continue the ICML

projects outlined in the charts below and open-source the tools I have developed in

my first year with proper announcements and social network campaigns.

Due to the page dimensions and the cyclical nature of the robotics and ma-

chine learning review cycles, I have separated the chart in multiple parts for

better legibility.
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The NeurIPS and the following year is less detailed due to their dependence

on the results leading up to the NeurIPS mobilization.
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2025

Jan Feb Mar Apr

01 06 13 20 27 03 10 17 24 03 10 17 24 31 07 14 2128

Unifloral Release

Finalize MOPO

Develop MOREL on top of MOPO

Code Formatting and final measurements

Documentation finalization and release
Unifloral v1 release

ICML - Intent Factored Generation

Semantic Entropy Results

Baselines: Diverse Beam Search

Experiments on diversity

Paper Writing
ICML Submission

ICML - Policy Weighted Functional Encoding

Policy Guided Encoder

Baselines with the recent paper and their failure cases

Experiments and Ablations

Paper Writing and Proofreading
ICML Submission

Resubmission of the ICLR paper in case of rejection

MuJoCo results with dense rewards

Experiments with Sparse Rewards and AntMaze

Polish the paper and ensure ICML compatibility
ICML Submission

Unifloral Additions

Add compatiblity with new benchmarks like Minari or D5RL

Implement RAMBO

Re-Implement my World Models method in the single-file stule

Evaluation Methodology for Offline RL

Submit Methodology or Benchmark to RLC
Unifloral v1.1 & RLC Submission

Exploration and Side Projects

Bayesian UED - grounding in Bayesian Rigor

Using Unifloral to test efficient hyperparameter tuning projects

Exploring Diffusion for World Models design

Diffusion with temporally correlated timeseries using LoRA

Intent Guided Generation for code synthesis

Figure 3.1: Gantt Chart leading up to the NeurIPS focus

November 14, 2024



3. Proposal 21

2025

May Jun Jul Aug Sep Oct Nov Dec

01 05 12 19 26 02 09 16 23 30 07 14 21 28 04 11 18 25 01 08 15 22 29 06 13 20 27 03 10 17 24 01 08 15 2229

NeurIPS Preparation

Final experiments and ablations

Paper writing and polishing
NeurIPS Submission

Unifloral Work

Integration with crowd-sourced methods

Documentation and Examples
Unifloral v2.0

Real Robot Experiments

Setup Robot Infrastructure

Initial Data Collection

Offline RL on Real Robot

Analysis and Documentation

ICRA Paper Preparation

Real Robot Results Analysis

Comparison with Simulation

Paper Writing
ICRA Submission

Side Projects

Neuroevolution Exploration

Multi-Agent literature review

Multi-Agent and Agentic LLMs experiments

Collaboration Projects

Figure 3.2: Gantt Chart for the Second Half of 2025
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2026

Jan Feb Mar Apr

01 05 12 19 26 02 09 16 23 02 09 16 23 30 06 13 20 27

Confirmation Report Writing

Introduction and Background

Literature Review Update

Methods and Results Compilation

Future Work and Timeline

Report Revisions and Polishing

Presentation Preparation
Confirmation Presentation

Architecture Search Deep Dive

Review of Classical SSMs and Control Theory

Deep SSMs Architecture Study

Implementation of Key SSM Papers

Comparative Analysis with World Models

Evaluation of Previous Work

Analysis of Unifloral Impact

Real Robot Results Documentation

Benchmark Comparisons

Publication Impact Assessment

Figure 3.3: Gantt Chart for Confirmation Preparation Period
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