
Under review as a conference paper at ICLR 2021

IMPACT-DRIVEN EXPLORATION WITH CONTRASTIVE
UNSUPERVISED REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Procedurally-generated sparse reward environments pose significant challenges
for many RL algorithms. The recently proposed impact-driven exploration method
(RIDE) by Raileanu & Rocktäschel (2020), which rewards actions that lead to
large changes (measured by `2-distance) in the observation embedding, achieves
state-of-the-art performance on such procedurally-generated MiniGrid tasks. Yet,
the definition of “impact” in RIDE is not conceptually clear because its learned
embedding space is not inherently equipped with any similarity measure, let alone
`2-distance. We resolve this issue in RIDE via contrastive learning. That is, we
train the embedding with respect to cosine similarity, where we define two obser-
vations to be similar if the agent can reach one observation from the other within
a few steps, and define impact in terms of this similarity measure. Experimental
results show that our method performs similarly to RIDE on the MiniGrid bench-
marks while learning a conceptually clear embedding space equipped with the
cosine similarity measure. Our modification of RIDE also provides a new per-
spective which connects RIDE and episodic curiosity (Savinov et al., 2019), a
different exploration method which rewards the agent for visiting states that are
unfamiliar to the agent’s episodic memory. By incorporating episodic memory
into our method, we outperform RIDE on the MiniGrid benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) algorithms aim to learn an optimal policy that maximizes expected
reward from the environment. The search for better RL algorithms is motivated by the fact that
many complex real-world problems can be formulated as RL problems. Yet, environments with
sparse rewards, which often occur in the real-world, pose a significant challenge for RL algorithms
that rely on random actions for exploration. Sparsity of the reward can make it extremely unlikely
for the agent to stumble upon any positive feedback by chance. The agent may spend a long time
simply exploring and not receiving a single positive reward.

To overcome this issue of exploration, several previous works have used intrinsic rewards (Schmid-
huber, 1991; Oudeyer et al., 2007; 2008; Oudeyer & Kaplan, 2009). Intrinsic rewards, as the name
suggests, are reward signals generated by the agent which can make RL algorithms more sample
efficient by encouraging exploratory behavior that is more likely to encounter rewards. Previous
works have used state novelty in the form of state visitation counts (Strehl & Littman, 2008) for
tabular states, pseudo-counts for high-dimensional state spaces (Bellemare et al., 2016; Ostrovski
et al., 2017; Martin et al., 2017), prediction error of random networks (Burda et al., 2019b), and
curiosity about environment dynamics (Stadie et al., 2015; Pathak et al., 2017) as intrinsic rewards.

Although such advances in exploration methods have enabled RL agents to achieve high rewards in
notoriously difficult sparse reward environments such as Montezuma’s Revenge and Pitfall (Belle-
mare et al., 2013), many existing exploration methods use the same environment for training and
testing (Bellemare et al., 2016; Pathak et al., 2017; Aytar et al., 2018; Ecoffet et al., 2019). As a re-
sult, agents trained in this fashion do not generalize to new environments. Indeed, several recent pa-
pers point out that deep RL agents overfit to the environment they were trained on (Rajeswaran et al.,
2017; Zhang et al., 2018; Machado et al., 2018), leading to the creation of new benchmarks con-
sisting of procedurally-generated environments (Cobbe et al., 2019; Risi & Togelius, 2020; Küttler
et al., 2020).

1

Under review as a conference paper at ICLR 2021

In practice, agents often have to act in environments that are similar, but different from the envi-
ronments they were trained on. Hence, it is crucial that the agent learns a policy that generalizes
across diverse (but similar) environments. This adds another layer of difficulty, the diversity of en-
vironment layout for each episode, to the already challenging sparse reward structure. To tackle this
challenge head-on, Raileanu & Rocktäschel (2020) focus on exploration in procedurally-generated
environments and propose RIDE, an intrinsic rewarding scheme based on the “impact” of a new
observation. Denoting the observation embedding function by φ, RIDE measures the impact of ob-
servation o′ by computing ‖φ(o′)− φ(o)‖2, where o is the previous observation. Similarly, Savinov
et al. (2019) propose episodic curiosity (EC), an intrinsic rewarding scheme which rewards visiting
states that are dis-similar to states in the agent’s episodic memory.

RIDE uses forward and inverse dynamics prediction (Pathak et al., 2017) to train the observation
embedding φ in a self-supervised manner. Hence, a question that one might ask is:

What is the `2-distance in this embedding space measuring?

We address this question by modifying the embedding training procedure, thereby changing the
definition of impact. That is, we modify RIDE so that impact corresponds to an explicitly trained
similarity measure in the embedding space, where we define two observations to be similar if they
are reachable from each other within a few steps. The original definition of “impact” in RIDE
is not conceptually clear because the learned embedding space is not inherently equipped with a
similarity measure, let alone `2-distance. It is still possible that RIDE’s measure of impact based on
`2-distance may implicitly correspond to some similarity measure in the embedding space, but we
leave this investigation for future work.

Our main contributions are 1) proposing a conceptually clear measure of impact by training ob-
servation embeddings explicitly with the cosine similarity objective instead of forward and inverse
dynamics prediction, 2) providing a new perspective which connects RIDE and EC, and 3) out-
performing RIDE via episodic memory extensions. We use SimCLR (Chen et al., 2020) to train
the embedding function and propose a novel intrinsic rewarding scheme, which we name RIDE-
SimCLR. As in EC, the positive pairs used in the contrastive learning component of RIDE-SimCLR
correspond to pairs of observations which are within k-steps of each other (referred to as “k-step
reachability” in their work).

Following the experimental setup of Raileanu & Rocktäschel (2020), we use MiniGrid (Chevalier-
Boisvert et al., 2018) to evaluate our method as it provides a simple, diverse suite of tasks that allows
us to focus on the issue of exploration instead of other issues such as visual perception. We focus
on the comparison of our approach to RIDE since Raileanu & Rocktäschel (2020) report that RIDE
achieves the best performance on all their MiniGrid benchmarks among other exploration methods
such as intrinsic curiosity (ICM) by Pathak et al. (2017) and random network distillation (RND)
by Burda et al. (2019b). We note that MiniGrid provides a sufficiently challenging suite of tasks for
RL agents despite its apparent simplicity, as ICM and RND fail to learn any effective policies for
some tasks due to the difficulty posed by procedurally-generated environments. Our experimental
results show that RIDE-SimCLR performs similarly to RIDE on these benchmarks with the added
benefit of having a conceptually clear similarity measure for the embedding space.

Our qualitative analysis shows interesting differences between RIDE and RIDE-SimCLR. For in-
stance, RIDE highly rewards interactions with controllable objects such as opening a door, which is
not the case in RIDE-SimCLR. We also observe that our episodic memory extension improves the
quantitative performance of both methods, which demonstrates the benefit of establishing a connec-
tion between RIDE and EC. The Never Give Up (NGU) agent by Badia et al. (2020) can be seen as a
close relative of our memory extension of RIDE since it uses `2 distance in embedding space trained
with the same inverse dynamics objective to compute approximate counts of states and aggregates
episodic memory to compute a novelty bonus.

Our work is different from EC because we do not explicitly sample negative pairs for training the
observation embedding network, and we use cosine similarity, instead of a separately trained neural
network, to output similarity scores for pairs of observations. We note that Campero et al. (2020)
report state-of-the-art results on even more challenging MiniGrid tasks by training an adversarially
motivated teacher network to generate intermediate goals for the agent (AMIGo), but we do not
compare against this method since their agent receives full observations of the environment. Both
RIDE and RIDE-SimCLR agents only receive partial observations.

2

Under review as a conference paper at ICLR 2021

ot

ψ-embed

φ-embed

ψt

φt

π at

ot+1 φ-embed φt+1

Rint

(a) RIDE computes intrinsic reward by taking the
`2 difference of the pair (φt, φt+1).

at

φt

φt+1

ffwd

finv

φ̂t+1

ât

(b) RIDE trains the observation embedding φ by
minimizing forward and inverse dynamics predic-
tion error.

Figure 1: RIDE rewards the agent for taking actions that lead to large impact, which is measured by
the change in the observation embedding φ.

2 BACKGROUND

We consider the standard episodic RL setting in which an agent interacts with the environment to
maximize its expected scalar reward for each episode. The interaction proceeds in discrete time steps
and terminates at some fixed time T unless the goal is achieved earlier. At time step t, the agent
receives observation ot and samples an action from its policy π(ot). The environment then provides
the agent with a scalar reward rt, the next observation ot+1, and an end-of-episode indicator. The
goal of the agent is to maximize the expected discounted reward R =

∑T
t=1 γ

trt, where rt is the
(extrinsic) reward given by the environment at time step t.

When extrinsic reward is sparse, standard RL algorithms such as PPO (Schulman et al., 2017) or
IMPALA (Espeholt et al., 2018) often fail to learn a good policy. To overcome this challenge,
previous works have proposed augmenting the reward function by r̂t = rt + wir

i
t, where rit is

the intrinsic reward and wi is a hyperparameter which controls the relative importance of rit. The
intrinsic reward rit is typically designed to be a dense reward function which pushes the policy
towards exploratory behavior more likely to encounter positive extrinsic rewards.

Note that intrinsic rewards can be used with any existing RL algorithms without altering their under-
lying network architecture or training procedure. It suffices to simply replace the extrinsic reward
rt with the augmented reward r̂t. The observation embedding used to compute intrinsic rewards
can be trained either 1) offline with respect to a uniformly random policy or 2) online with respect
to agent’s current policy. For a fair comparison with Raileanu & Rocktäschel (2020), we use the
embedding trained online for computing intrinsic rewards.

2.1 IMPACT-DRIVEN EXPLORATION (RIDE)

RIDE (Raileanu & Rocktäschel, 2020) is an intrinsic reward based on the magnitude of change in
the observation embedding produced by the agent’s action (See Figure 1). More precisely, RIDE is
defined as

RIDE ≡ rit(st, at) =
‖φ(ot+1)− φ(ot)‖2√

Nep(st+1)
, (1)

where φ is the observation embedding function and Nep(s) is the number of times state s is visited
within the current episode. The purpose of this discount by Nep(s) is to prevent the agent from
going back and forth a sequence of states with large `2 differences.

The embedding function φ(o) used in RIDE is parametrized by a neural network and trained by min-
imizing forward and inverse dynamics prediction error (Pathak et al., 2017). Note that the policy
network π has its own observation embedding network ψ, which is trained separately from φ. The
embedding φ is only used to compute the intrinsic reward and never used for control, and the oppo-
site holds for ψ. The purpose of using forward and inverse dynamics models to train the embedding
is to store information that is useful for predicting the agent’s action or effects actions have on the
environment. This leads to learning an action-focused embedding space.

3

Under review as a conference paper at ICLR 2021

RIDE builds upon the intrinsic curiosity module (ICM) by Pathak et al. (2017), which uses the for-
ward dynamics prediction error as intrinsic reward. The novelty in RIDE is using the `2 distance
between two different observations as a measure of qualitative change between the states. Indeed,
visualizations of RIDE by Raileanu & Rocktäschel (2020) show that RIDE assigns higher intrinsic
rewards for actions that qualitatively “change the dynamics”, such as opening doors or interact-
ing with objects in MiniGrid. However, RIDE introduces conceptual difficulties as the embedding
space is not explicitly trained with any similarity measure. That is, the forward and inverse dynam-
ics objective does not explicitly pull together or push apart embeddings of different observations.
In ICM, the `2 distance between φ(ot+1) and the prediction φ̂(ot+1) has a clear interpretation as
the forward prediction “error”, since the forward dynamics objective explicitly minimizes this `2
distance. RIDE, on the other hand, uses the `2 distance between different observations ot and ot+1

as the intrinsic reward. Yet, the forward and inverse dynamics prediction objective does not specify
which pairs of observation embeddings (oi,oj) should be pulled closer together and which should be
pushed apart (in `2 distance).

This does not mean that RIDE fails to capture qualitative changes in the dynamics. In fact, our vi-
sualizations (Figure 7) corroborate the findings of Raileanu & Rocktäschel (2020) by demonstrating
that RIDE assigns higher rewards for actions such as opening doors. However, it is difficult to pre-
cisely define what having ”different dynamics” means, let alone giving a quantitative definition of
it. Moreover, the question of why the `2 distance is larger for pairs of observations corresponding to
such actions is not well-understood, and thus, requires further investigation. Without understanding
why, we cannot guarantee that RIDE will always assign higher rewards to actions we perceive as
“significantly changing the dynamics”.

ot

Mt

ψ-embed

φ-embed

ψt

{φt′}t′∈Mt

π at

ot+1 φ-embed φt+1

Rint

(a) EC computes intrinsic reward by aggregating
individual novelty scores in the episodic memory
Mt.

(b) A state is k-step reachable (green) if it can be
reached within k steps from states in the current
episodic memory (blue).

Figure 2: EC rewards the agent for taking actions that lead to observations different from ones stored
in the current episodic memory.

2.2 EPISODIC CURIOSITY (EC)

EC (Savinov et al., 2019) is an intrinsic reward based on how “far” the next observation is from
observations in the agent’s current episodic memory (See Figure 2). More precisely, EC is defined
as

REC ≡ rit(st, at) = β − C(Mt, φ(ot+1)) , (2)

where β ∈ R is a scalar hyperparameter, C is a learned comparator network, and Mt is the agent’s
episodic memory at time t.

Intuitively, the comparator network C measures how “far” a given observation ot+1 is from the
agent’s current episodic memory Mt. The episodic memory Mt = {φ(ot′)}t′≤t is the set of obser-
vation embeddings previously encountered in the current episode.1 The comparator network C pre-
dicts whether o and o′ are reachable from each other within k steps, i.e., ŷ = C(φ(o), φ(o′)) ∈ [0, 1]
where the true label y = 1 if the agent can reach o′ from o in k steps and y = 0 otherwise. The
reachability threshold k is a hyperparameter. The parameters of C and φ are trained to minimize

1The definition of episodic memory used in Savinov et al. (2019) is more general. For memory efficiency,
they add φ(ot+1) to episodic memory only if it is sufficiently different from the observations already in Mt.

4

Under review as a conference paper at ICLR 2021

CrossEntropy(ŷ, y). The data used in the contrastive training is generated by taking a sequence of
the agent’s observations o1, . . . , oN , and labeling a pair (oi, oj) positive if |i− j| ≤ k and negative
if |i− j| ≥ γk. Here, γ is an additional hyperparameter needed to create a gap between positive and
negative examples.

With slight abuse of notation, we write

C(Mt, φ(ot+1)) = A(c1, . . . , c|Mt|) ∈ [0, 1] , (3)

where ci = C(φ(oi), φ(ot+1)) andA is an aggregation function. The aggregation function pools the
individual reachability scores ci and outputs an aggregate reachability score for ot+1 and Mt. One
simple example of the aggregation function is A = max.

3 OUR METHOD

We propose a modification of RIDE to remedy the lack of a conceptually clear similarity measure in
the embedding space. Instead of forward and inverse dynamics prediction, we use SimCLR (Chen
et al., 2020) to train the observation embeddings with respect to a cosine similarity objective. This
has the benefit of equipping the embedding space with a natural similarity measure. We present
this direct modification of RIDE in Section 3.1. Our modification opens up a perspective through
which we can view RIDE as a special case of EC. From this viewpoint, it is natural to extend RIDE
with episodic memory. We present this extension in Section 3.2. A summary of all the methods
considered in this work can be found in Table 1.

3.1 RIDE WITH CONTRASTIVE UNSUPERVISED REPRESENTATIONS

We propose RIDE-SimCLR, which modifies RIDE by replacing the embedding training involving
forward and inverse dynamics models with SimCLR. Denote by φ the embedding network learned
via SimCLR. We define RIDE-SimCLR as

RSimCLR ≡ rit(st, at) =
1− cos(φ(ot), φ(ot+1))

2
√
Nep(st+1)

∈ [0, 1] . (4)

o

õi õj

zi zj

Contrastive loss

t← [k] t′ ←
[−k]

φ(·) φ(·)

Figure 3: Two time steps t and t′

are independently sampled from the set
{0, . . . , k}, and the input observation
is perturbed temporally to generate two
correlated views. The embedding net-
work φ(·) is trained to maximize agree-
ment.

SimCLR trains representations by maximizing agreement
between different perturbations of the same sample (re-
ferred to as the “anchor” sample). Given a sequence of
consecutive agent observations o1, . . . , oN , we perturb
each state in two different ways by taking random number
of steps sampled from {1, . . . , k} into the future and past
(See Figure 3). This gives us 2N samples o′1, . . . , o

′
2N

among which there are N positive pairs. Note that reach-
ability is dependent on the current behavior policy π. Un-
like EC, however, SimCLR does not explicitly sample
negative pairs. Instead, the 2(N − 1) remaining sam-
ples are treated as negative examples. The loss function,
referred to as NT-Xent (normalized temperature-scaled
cross entropy) in Chen et al. (2020), for a positive pair
(o′i, o

′
j) is defined as

`(i, j) = − log
exp(cos(φ(o′i), φ(o

′
j))/τ)∑

m 6=i exp(cos(φ(o
′
i), φ(o

′
m))/τ)

,

where τ is the hyperparameter temperature. The total contrastive loss is

L =
1

2N

N∑
m=1

`(2m− 1, 2m) + `(2m, 2m− 1) .

We minimize L with respect to the parameters of φ online. Because φ is explicitly trained to max-
imize the cosine similarity between positive pairs, cosine similarity becomes a natural similarity

5

Under review as a conference paper at ICLR 2021

measure for the learned embedding space. We set the temperature scale τ = 0.1, the reachability
parameter k = 2, and batch size N = L/(4k) where L is the unroll length of the policy gradient
algorithm used to train the policy π.

3.2 EPISODIC MEMORY EXTENSIONS

RIDE-SimCLR can be seen as a special case of EC by settingC(oi, oj) = (1−cos(φ(oi), φ(oj)))/2,
A(c1, . . . , ct) = ct/

√
Nep(st+1) in Eq. (3).2 Note that Nep(st+1) = |{i ∈ [t] | ci = 0}|. This

perspective allows us to consider variations of RIDE and RIDE-SimCLR that use different aggrega-
tion methods on the episodic memory. Hence, we propose RIDE-MinAgg and EC-SimCLR which
aggregate values from the episodic memory with A = min instead of the discount by visitation
count. RIDE-MinAgg is RIDE with A(c1, . . . , ct) = mini∈[t] ci, and φ trained with forward and
inverse dynamics prediction, and EC-SimCLR is RIDE-SimCLR with A(c1, . . . , ct) = mini∈[t] ci.

Method φ trained via Aggregator A(c1, . . . , ct)

RIDE Forward/inverse dynamics ct/
√
Nep(st+1)

RIDE-MinAgg Forward/inverse dynamics mini∈[t] ci
RIDE-SimCLR SimCLR ct/

√
Nep(st+1)

EC-SimCLR SimCLR mini∈[t] ci

Table 1: Summary of intrinsic rewarding schemes considered in this work.

4 EXPERIMENTS

We evaluate our methods on procedurally-generated environments from MiniGrid. We compare
our methods against RIDE, which achieves previous state-of-the-art performance on the MiniGrid
benchmarks. We report the median and max/min of the average episode return across 3 random
seeds. The average episode return is computed as a rolling mean of the previous 100 episodes.
We also evaluate RIDE and RIDE-SimCLR on the first level of Mario (Kauten, 2018) using only
intrinsic rewards.

4.1 ENVIRONMENT

Figure 4: MultiRoomN12S10. The
agent (red) has to reach the goal
(green) by passing through multi-
ple rooms.

In all our MiniGrid environments, the dynamics is determin-
istic and agent observation is partial. The agent’s view (the
highlighted part in Figure 4) is limited to a 7 × 7 square cen-
tered at the current location, and the agent cannot see through
walls or closed doors. There are seven actions the agent can
choose from: turn left or right, move forward, pick up or drop
an object, toggle, and done.

We evaluate our methods on the following 5 benchmarks. Key-
CorridorS3R3, KeyCorridorS4R3, KeyCorridorS5R3, Mul-
tiRoomN7S8, MultiRoomN12S10, and MultiRoomN7S4-
NoisyTV. The NoisyTV variant implements a “noisy TV” in
the MultiRoom environment with a ball that changes color
whenever the special “switch channel” action is executed by
the agent. Noisy TVs are known to cause problems for
curiosity-based exploration methods by turning the agent into
a “couch potato” (Burda et al., 2019a). The purpose of this
task is to demonstrate that our methods do not suffer from this
issue. Further details on the MiniGrid tasks can be found in
Appendix B.

2Here, we are considering a slightly more general formulation of EC where the comparator network C
“absorbs” the constant hyperparameter β and the negative sign in Eq. (2). In this case, the value output by C is
proportional to dis-similarity rather than similarity.

6

Under review as a conference paper at ICLR 2021

Figure 5: Performance of exploration methods on diverse MiniGrid tasks. Note that EC-SimCLR,
the episodic memory extension of RIDE-SimCLR, performs the best on all tasks.

4.2 EVALUATION

We evaluate the following four methods: RIDE, RIDE-SimCLR, RIDE-MinAgg, and EC-SimCLR.
We use torchbeast (Küttler et al., 2019), an open-source implementation of IMPALA (Espeholt et al.,
2018), as the base RL algorithm common to all the methods we evaluate and RMSProp (Tieleman &
Hinton, 2012) as the optimizer. All methods we evaluate use the same policy and value network ar-
chitecture. Their only difference is the intrinsic reward. More details about our network architecture
and hyperparameter settings can be found in Appendix A and C.

5 RESULTS

5.1 QUANTITATIVE RESULTS

Figure 5 shows our results on the MiniGrid benchmarks. RIDE-SimCLR performs similarly to
RIDE on all the tasks except MultiRoomN12S10, in which it requires more frames to learn the op-
timal policy. We note that other exploration methods such as ICM and RND fail to learn any useful
policies on this task (Raileanu & Rocktäschel, 2020). Hence, RIDE-SimCLR retains the quantitative
performance of RIDE while having a conceptually clear measure for “impact”. Moreover, RIDE-
MinAgg and EC-SimCLR are more sample-efficient than RIDE on more challenging tasks such as
MultiRoomN7S8 and MultiRoomN12S10. In fact, EC-SimCLR is the only method that learns a
good policy for KeyCorridorS4R3 and KeyCorridorS5R3. Note, however, that we only run EC-
SimCLR on KeyCorridorS5R3 since all other methods have failed in the easier KeyCorridorS4R3
environment and Campero et al. (2020) report that RIDE fails to learn any useful policy on Key-
CorridorS4R3 and KeyCorridorS5R3. This demonstrates the benefit of establishing a connection
between RIDE and EC. Viewing RIDE through the lens of episodic memory leads to variants of the
intrinsic reward that are more sample-efficient.

5.2 LEARNED EMBEDDING SPACE

We compare the observation embeddings learned using RIDE-SimCLR and RIDE. Denote by
d(oi, oj) the dis-similarity measure used in each method. d corresponds to the `2 distance between
φ(oi) and φ(oj) in RIDE, and to the cosine dis-similarity 1− cos(φ(oi), φ(oj)) in RIDE-SimCLR.
We analyze how predictive d(oi, oj) is for the temporal distance between these two observations.
To this end, we generate a balanced labelled dataset consisting of close observation pairs (≤ k
steps) and far pairs (> γk steps) by running the trained RIDE agent policy for 100 episodes. The
parameters were set to k = 2 and γ = 5. More details on the dataset can be found in Appendix D.

7

Under review as a conference paper at ICLR 2021

Figure 6: The ROC curves show that the cosine similarity in RIDE-SimCLR is predictive of temporal
distance between states, as expected. Unsurprisingly, the `2 distance in RIDE is not.

Figure 6 shows the ROC curve of RIDE-SimCLR and RIDE. From the figure, we can see that the
cosine similarity measure in RIDE-SimCLR is predictive of the temporal distance between observa-
tions. On the other hand, the `2 distance between representations from RIDE is not aligned with the
temporal distance. This is not surprising since the embedding space in RIDE-SimCLR is explicitly
trained to respect temporal distance between observations and RIDE is not. However, this shows
that the structure of learned embeddings in RIDE-SimCLR is conceptually clear: temporally close
observation are closer in cosine distance. Furthermore, it demonstrates that the intrinsic rewarding
schemes of RIDE and RIDE-SimCLR, despite its apparent similarity, are qualitatively different.

Open Door Turn Left / Right Move Forward

Model Mean Std Mean Std Mean Std
RIDE 0.0163 0.0025 0.0064 0.0039 0.0047 0.0022

RIDE-SimCLR 0.0721 0.0107 0.0883 0.0158 0.0545 0.0174

Table 2: Mean intrinsic reward per action over 100 episodes of MultiRoomN7S8.

5.3 INTRINSIC REWARD VISUALIZATION

To understand the qualitative difference between RIDE-SimCLR and RIDE, we analyze which
actions are encouraged by each method. We take RIDE-SimCLR and RIDE agents trained on
procedurally-generated MultiRoomN7S8 environments and roll-out the learned policies on a fixed
environment. Table 2 shows the average intrinsic reward received by each action and Figure 7 shows
a heatmap of how the actions were rewarded in the agents’ trajectories. We also plot how the average
intrinsic rewards change during training in Figure 10 of Appendix G. In Figure 11 of Appendix H,
we provide a heatmap that shows how actions were rewarded after RIDE was trained on KeyCorri-
dorS4R3 for 30M frames. Note that RIDE failed to learn a good policy for this hard environment.
Hence, Figure 11 visualizes a failure mode of RIDE’s embedding training.

The results in Table 2 and Figure 7 demonstrate qualitative differences between RIDE-SimCLR
and RIDE. As observed by Raileanu & Rocktäschel (2020), RIDE gives higher intrinsic reward
for interaction with objects such as opening doors, whereas RIDE-SimCLR gives higher rewards
for turning left or right. An intuitive explanation for RIDE is that actions such as “open door”
significantly change the dynamics, which in turn leads to a substantial change in RIDE’s action-
focused embedding. On the other hand, RIDE-SimCLR rewards agents for moving away from
where it has been, so actions that move the agent into a new room (which substantially changes
the ego-centric partial view of the agent), are given higher rewards. Further investigations into why
RIDE and RIDE-SimCLR assign high rewards to these actions is an interesting direction left for
future work.

8

Under review as a conference paper at ICLR 2021

Figure 7: Intrinsic reward heatmaps for opening doors (green), moving forward (blue), or turning
left/right (red) on a random instance of MultiRoomN7S8. The top row corresponds to RIDE and the
bottom corresponds to RIDE-SimCLR. A is the agent starting position, G is the goal position and
D are doors.

5.4 EXPLORATION WITH NO EXTRINSIC REWARD

We analyze the exploration behavior of the RIDE-SimCLR agent in the absence of extrinsic reward.
We train a RIDE-SimCLR agent on procedurally-generated MultiRoomN10S6 environments for
50M frames with only intrinsic reward as the signal. The agent is allowed to take 200 steps in every
episode. We observe that even without any extrinsic reward, the RIDE-SimCLR agent learns a
policy which explores all the rooms in the map, similar to the RIDE agent. Other agents trained with
intrinsic rewards such as Count, ICM and RND are known to fall short of reaching the final room
within the given amount of steps (Raileanu & Rocktäschel, 2020). The state visitation heatmap on a
random instance of MultiRoomN10S6 can be found in Appendix E.

Moreover, we compare RIDE-SimCLR to RIDE on the first level of Mario without extrinsic reward
to determine its relative performance on environments different from MiniGrid. The results can be
found in Appendix F. Our results show that RIDE-SimCLR matches the performance of RIDE on
Mario. Note, however, that this singleton environment is not very challenging since even vanilla
IMPALA is able to learn similarly good policies without any intrinsic rewards, although IMPALA
does use extrinsic rewards (Raileanu & Rocktäschel, 2020).

6 CONCLUSION AND FUTURE WORK

We identify a conceptual issue in RIDE and remedy it by learning an observation embedding space
naturally equipped with the cosine similarity measure. By training embeddings with SimCLR, we re-
tain the strong performance of RIDE on procedurally-generated MiniGrid benchmarks while getting
a conceptually clear similarity measure for the embedding space. Moreover, we make a connection
between RIDE and EC. As a result, we outperform both RIDE and RIDE-SimCLR by changing the
episodic memory aggregation function, which demonstrates the benefit of this novel perspective.

Despite the apparent similarity between RIDE and RIDE-SimCLR, our analysis shows that these
methods are qualitatively different. The `2 distance in RIDE, perhaps unsurprisingly, is not predic-
tive of temporal distance between observations, unlike the cosine similarity in RIDE-SimCLR. In
addition, actions that are encouraged by each intrinsic rewarding scheme is different. It is possi-
ble that `2 distance in the embedding space learned with forward and inverse dynamics prediction
corresponds to some notion of similarity. An interesting future work would be to theoretically and
empirically investigate what the `2 distance captures in this embedding space. For instance, what
does a large `2 distance in this space correspond to? Other interesting directions include making
intrinsic reward computation from episodic memory time and space efficient using techniques such
as k-nearest neighbors, as was done in Badia et al. (2020), and proposing variants of EC by training
embedding networks with an objective that implicitly trains a known similarity measure.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. In Advances in Neural Information Processing
Systems, pp. 2930–2941, 2018.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
Sye57xStvB.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019a. URL https:
//openreview.net/forum?id=rJNwDjAqYX.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random net-
work distillation. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019b. URL https://openreview.net/forum?id=
H1lJJnR5Ym.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv
preprint arXiv:2006.12122, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.07289.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1406–1415, 2018. URL http:
//proceedings.mlr.press/v80/espeholt18a.html.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Christian Kauten. Super Mario Bros for OpenAI Gym. GitHub, 2018. URL https://github.
com/Kautenja/gym-super-mario-bros.

10

https://openreview.net/forum?id=Sye57xStvB
https://openreview.net/forum?id=Sye57xStvB
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://github.com/maximecb/gym-minigrid
http://arxiv.org/abs/1511.07289
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros

Under review as a conference paper at ICLR 2021

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar,
Tim Rocktäschel, and Edward Grefenstette. TorchBeast: A PyTorch Platform for Dis-
tributed RL. arXiv preprint arXiv:1910.03552, 2019. URL https://github.com/
facebookresearch/torchbeast.

Heinrich Küttler, Nantas Nardelli, Alexander H Miller, Roberta Raileanu, Marco Selvatici, Ed-
ward Grefenstette, and Tim Rocktäschel. The nethack learning environment. arXiv preprint
arXiv:2006.13760, 2020.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based explo-
ration in feature space for reinforcement learning. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, pp. 2471–2478, 2017. doi: 10.24963/ijcai.2017/344. URL https://doi.org/
10.24963/ijcai.2017/344.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2721–2730. JMLR. org, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frederic Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Pierre-Yves Oudeyer, Frederic Kaplan, et al. How can we define intrinsic motivation. In Proc. of
the 8th Conf. on Epigenetic Robotics, volume 5, pp. 29–31, 2008.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rkg-TJBFPB.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, pp. 6550–6561, 2017.

Sebastian Risi and Julian Togelius. Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence, pp. 1–9, 2020.

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. In International Conference
on Learning Representations (ICLR), 2019.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

11

https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast
https://doi.org/10.24963/ijcai.2017/344
https://doi.org/10.24963/ijcai.2017/344
https://openreview.net/forum?id=rkg-TJBFPB

Under review as a conference paper at ICLR 2021

Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its
recent magnitude. coursera: Neural networks for machine learning. Tech. Rep., Technical report,
pp. 31, 2012.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018.

A NETWORK ARCHITECTURE

All models have the same architecture for the policy and value network. The policy and value
network share the same observation embedding network ψ. The embedding network consists of
3 convolutional layers with 3x3 kernels, stride of 2, padding of 1, 32 channels, and uses ELU
non-linearity (Clevert et al., 2016). The output of ψ is then fed into an LSTM cell (Hochreiter &
Schmidhuber, 1997) with 256 units. Two separate fully-connected layers are used on top of the
LSTM output to predict the value and action, respectively.

The other embedding network φ uses the same architecture as ψ. Note that φ is only used to compute
the intrinsic reward and its output is never given as an input to the policy network. The opposite is
true for ψ.

B MINIGRID

MiniGrid is a simple and lightweight gridworld gym environment. For all the tasks considered in this
work, the dynamics is deterministic and agent observation is partial. The agent’s view is limited to
a 7x7 square centered at its current location, and the agent cannot see through walls or closed doors.
An observation is given as a 7x7x3 tensor. Note that these values are not pixels. It is a partially
observable view of the environment using a compact encoding, with 3 input values per visible grid
cell. There are seven actions the agent can choose from: turn left or right, move forward, pick up
or drop an object, toggle, and done. The agent can pick up and carry exactly one object (e.g., ball
or key). To open a locked door, the agent has to be carrying a key matching the door’s color. The
extrinsic reward given by the environment when goal is reached is rt = 1 − 0.9 · (t/tmax), where
the maximum episode length tmax depends on the task.

The following are descriptions of MiniGrid tasks we use for experiments.

• KeyCorridorSXRY: the agent has to pick up an object behind a locked door. The key is
hidden in another room and the agent has to explore the map to find it. The maximum
episode length is tmax = 30 ·X2.

• MultiRoomNXSY: the agent must navigate through a procedurally-generated map consist-
ing of X many rooms, each of size at most Y , to reach the goal. The maximum episode
length is tmax = 20 ·X .

• MultiRoomNXSY-NoisyTV: the agent must navigate through a procedurally-generated map
consisting of X many rooms, each of size at most Y , and a “noisy TV” to reach the goal.
The “noisy TV” is implemented with a ball that changes color whenever the special “switch
channel” action is executed by the agent. The maximum episode length is tmax = 20 ·X .

C HYPERPARAMETERS

The hyperparameters in Table 3 are common to all the experiments with one exception. For RIDE-
SimCLR on MultiRoomN12S10, we used learning rate 0.00005 because the network did not learn
any useful policies with learning rate 0.0001. We decay the learning rate linearly so that it becomes
0 after the final epoch.

RIDE/RIDE-MinAgg We used the same set of hyperparameters for RIDE and RIDE-MinAgg.
As was done in Raileanu & Rocktäschel (2020), we used an intrinsic reward coefficient 0.1 and en-
tropy coefficient 0.0005 for MultiRoomN7S4-NoisyTV and KeyCorridorS3R3. We used an intrinsic
reward coefficient 0.5 and entropy coefficient 0.001 for MultiRoomN7S8 and MultiRoomN12S10.
For all tasks, we used a batch size of 32.

12

Under review as a conference paper at ICLR 2021

Parameter Value

Learning Rate 0.0001
Unroll Length 100
Discount 0.99
RMSProp Momentum 0.0
RMSProp ε 0.00001
Clip Gradient Norm ε 40.0

Table 3: Common hyperparameters

RIDE-SimCLR/EC-SimCLR For both methods, we ran a grid search over intrinsic reward co-
efficient ∈ {0.5, 0.1, 0.05, 0.025, 0.01} and entropy coefficient ∈ {0.001, 0.0005, 0.0001} for all
tasks. We used a batch size of 8 for both methods on all tasks.

For RIDE-SimCLR, we used intrinsic reward coefficient 0.01 and entropy coefficient 0.0005 for
MultiRoomN7S4-NoisyTV and KeyCorridorS3R3, intrinsic reward coefficient 0.05 and entropy co-
efficient 0.0005 for MultiRoomN7S8, and intrinsic reward coefficient 0.01 and entropy coefficient
0.0001 for MultiRoomN12S10. For KeyCorridorS4R3, we used intrinsic reward coefficient 0.025
and entropy coefficient 0.0005.

For EC-SimCLR, we used intrinsic reward coefficient 0.01 for MultiRoomN7S4-NoisyTV and Key-
CorridorS3R3, 0.05 for MultiRoomN7S8, 0.025 for MultiRoomN12S10, KeyCorridorS4R3, and
KeyCorridorS5R3. We used entropy coefficient 0.0005 for all tasks.

D ROC CURVE DATA GENERATION

We first construct a balanced dataset of size 2000 by sampling 20 pairs per policy roll-out for a total
of 100 roll-outs. where each roll-out is performed on a random instance of MultiRoomN7S8. We
set hyperparameters k = 2 and γ = 5, and use a policy trained with RIDE on MultiRoomN7S8. We
repeat the following procedure 10 times for each roll-out.

1. Given a roll-out τ = {o1, . . . , oT }, randomly sample an anchor observation ot.

2. Generate a positive pair (ot, op) by randomly sampling op where p ∈ [t− k, t+ k].

3. Generate a negative pair (ot, on) by randomly sampling on where n /∈ [t− γk, t+ γk].

4. Compute data points xp = d(ot, op) and xn = d(ot, on). Assign label 0 to xp and 1 to xn.

We note that this positive/negative pair generation procedure was used by Savinov et al. (2019) to
train their reachability network in EC. The parameter γ in Step 3 can be thought of a gap which
separates the positive samples and negative samples.

E NO EXTRINSIC REWARD HEATMAP

RIDE-SimCLR is able to efficiently explore the state space without any extrinsic reward. Note the
stark contrast with purely random exploration, which fails to even leave the first room within the
given amount of time steps.

F NO EXTRINSIC REWARD ON MARIO

We also compare RIDE-SimCLR to RIDE on the first level of Mario without extrinsic reward to
see if RIDE-SimCLR can match RIDE’s performance on environments different from MiniGrid.
As we can observe from Figure 9, RIDE-SimCLR matches the performance of RIDE on Mario.
Note, however, that this singleton environment is not very challenging since even vanilla IMPALA
is able to learn similarly good policies without any intrinsic rewards, although it does use extrinsic
rewards (Raileanu & Rocktäschel, 2020).

13

Under review as a conference paper at ICLR 2021

Random RIDE-SimCLR

Figure 8: Heatmap of state visitation count on the MultiRoomN10S6 task with a random policy and
policy trained with RIDE-SimCLR in the absence of any extrinsic reward.

Figure 9: Performance on level 1 of Mario with intrinsic reward only.

The common hyperparameters we used for Mario are the same as ones reported in Table 3, except
for the unroll length which we set to 20. For both RIDE and RIDE-SimCLR, we used intrinsic
reward coefficient of 0.05 and entropy coefficient of 0.0001.

G MEAN INTRINSIC REWARD DURING TRAINING

Figure 10 shows the changes in mean intrinsic rewards during training for MultiRoomN7S8, Multi-
RoomN12S10, KeyCorridorS3R3, KeyCorridorS4R3.

H VISUALIZATION OF RIDE ON KEYCORRIDORS4R3

We visualize the intrinsic reward per action of RIDE for KeyCorridorS4R3 in Figure 11. Note that
RIDE failed to learn a useful policy for this environment (See Figure 5). The purpose of Figure 11
is to visualize the embeddings learned via forward and inverse dynamics when the policy is far
from optimal. We can see that the “open door” actions are rewarded less compared to Figure 7
(when RIDE learned a good policy for the environment), and unnecessary turning actions are highly
rewarded.

14

Under review as a conference paper at ICLR 2021

Figure 10: Intrinsic reward during training on diverse MiniGrid tasks.

Figure 11: RIDE intrinsic reward heatmaps for opening doors (green), moving forward (blue), or
turning left/right (red) on a random instance of KeyCorridorS4R3. A is the agent starting position,
G is the goal position and D are doors.

15

	Introduction
	Background
	Impact-driven exploration (RIDE)
	Episodic curiosity (EC)

	Our Method
	RIDE with contrastive unsupervised representations
	Episodic memory extensions

	Experiments
	Environment
	Evaluation

	Results
	Quantitative results
	Learned embedding space
	Intrinsic reward visualization
	Exploration with no extrinsic reward

	Conclusion and Future Work
	Network Architecture
	MiniGrid
	Hyperparameters
	ROC Curve Data Generation
	No Extrinsic Reward Heatmap
	No Extrinsic Reward on Mario
	Mean Intrinsic Reward during Training
	Visualization of RIDE on KeyCorridorS4R3

