
Under review as a conference paper at ICLR 2023

FAST BAYESIAN UPDATES FOR DEEP LEARNING WITH
A USE CASE IN ACTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retraining deep neural networks when new data arrives is typically computationally
expensive. Moreover, certain applications do not allow such costly retraining due to
time or computational constraints. Fast Bayesian updates are a possible solution to
this issue. Therefore, we propose a Bayesian update based on Monte-Carlo samples
and a last-layer Laplace approximation for different Bayesian neural network types,
i.e., Dropout, Ensemble, and Spectral Normalized Neural Gaussian Process (SNGP).
In a large-scale evaluation study, we show that our updates combined with SNGP
represent a fast and competitive alternative to costly retraining. As a use case, we
combine the Bayesian updates for SNGP with different sequential query strategies
to exemplarily demonstrate their improved selection performance in active learning.

1 INTRODUCTION

Extending a dataset with new samples to train a deep learning model typically poses two problems.
Updating a trained model may cause catastrophic forgetting while retraining may require high
computational effort. Although the generalization performance typically justifies exhaustive retraining
procedures, in some applications, retraining is not possible due to, for example, (1) the high number
of retraining procedures in applications where data arrives sequentially and immediate updates are
beneficial, e.g., in active learning (Settles, 2009) or when working on data streams (Sahoo et al.,
2018), (2) the lack of computational power, e.g., for execution on embedded hardware (Taylor et al.,
2018), (3) privacy reasons, e.g., when new data cannot be sent to distributed computing units (Taylor
et al., 2018). Therefore, we suggest using Bayesian neural networks (BNNs, Fortuin, 2022) in
the above examples as they not only provide additional uncertainty estimates or out-of-distribution
detection capabilities but also allow updating the predictions with additional data without retraining
the network (Kirsch et al., 2022).

In this article, we develop a fast Bayesian update algorithm for BNNs. Figure 1 (left) shows the
idea of sampling an ensemble of probabilistic hypotheses, each representing a possible true solution

Figure 1: The left plot shows the predicted probabilities of the positive class for each ensemble
member (colored lines) drawn from a BNN as well as the mean (black solid line) and standard
deviation (black dashed line) of its predictive distribution. The right plot shows updated weights for
each ensemble member and the predictive distribution after observing additional samples (green).

1

Under review as a conference paper at ICLR 2023

for the learning task (white samples). When new data (green samples) comes in, we weigh each
ensemble member by its likelihood of explaining the new data and obtain an updated ensemble
without retraining the BNN. This results in an updated predictive distribution, as seen in bold in Fig. 1
(right). We apply this general idea for different BNN types, i.e., Monte-Carlo-based (MC-based)
Dropout, (Deep) Ensembles, and last-layer Laplace approximations (LA) (Ritter et al., 2018a) via
Spectral Normalized Neural Gaussian Process (SNGP, Liu et al., 2020). In contrast to Dropout and
Ensembles, SNGP allows for fast Bayesian updates without the need to sample ensemble members.

Active learning (Settles, 2009) provides an interesting use case for our Bayesian update approach.
Here, a query strategy iteratively selects unlabeled samples to be labeled by an oracle. This selection
is based on information provided by a model trained on the currently available labeled samples. The
goal is to maximize the model’s performance while minimizing the number of label acquisitions. In
deep learning settings, samples are typically chosen in batches to reduce the number of retraining
processes after the selection step (Kirsch et al., 2019). BNNs, together with our Bayesian updates, do
not require batch strategies and can immediately make use of use the new labels.

Our research question and contributions are as follows: How can we efficiently update BNNs, and
which aspects influence the quality of such updates?

• We propose a fast Bayesian update algorithm for BNNs based on MC sampling (Ensemble,
Dropout) and a last-layer LA (SNGP).

• We evaluate the investigated BNNs and their potential for Bayesian updates regarding their
generalization performance, probability calibration, and out-of-distribution detection, and
we hypothesize why SNGP outperforms its competitors.

• We show the effectiveness of using sequential Bayesian updates for selecting diverse sample
batches in an active learning use case with SNGP for several existing query strategies.

2 RELATED WORK

Here, we discuss related work regarding the two main parts of our proposed Bayesian update: BNNs
and corresponding update approaches. Furthermore, we briefly review deep active learning literature.

Bayesian neural networks (Wang & Yeung, 2020; Fortuin, 2022) induce a prior distribution over
their parameters, i.e., weights, and learn a posterior distribution for given training data. Predictions
are then made by marginalizing over this posterior distribution. BNN types differ mainly in their
assumed probabilistic model and the sampling of the posterior distribution (Jospin et al., 2022). Gal
& Ghahramani (2016) proposed (MC-)Dropout as one of the most prominent BNN types. Usually,
Dropout is a regularization technique performed during training. Using Dropout during evaluation,
we obtain a distribution for the predictions corresponding to a variational distribution in the parameter
space. Due to Dropout’s simplicity and efficiency, it is often used for comparison. However,
its predictions may not properly represent uncertainty estimates (Ovadia et al., 2019). (Deep)
Ensembles (Lakshminarayanan et al., 2017), another prominent BNN type, consist of multiple point-
estimate neural networks. Combined with regularization, these different point estimates approximate
modes of the parameters’ posterior distribution. Ensembles typically provide better uncertainty
estimates than Dropout but require significantly more computational capacity during training (Ovadia
et al., 2019). A BNN obtained via LA (Ritter et al., 2018b) can be seen as a trade-off between
Dropout and Ensembles regarding computational requirements. It specifies a Gaussian posterior
distribution, where the maximum a posteriori (MAP) estimate defines the mean and the inverse of the
negative log likelihood’s Hessian corresponds to the covariance matrix. As computing this Hessian
is expensive for large networks, LA is often used only in the last layer (Daxberger et al., 2021).
SNGP (Liu et al., 2020) follows this line of work together with random Fourier features (Rahimi &
Recht, 2007) and spectral normalization (Miyato et al., 2018) to approximate a Gaussian process
providing distance-aware uncertainty estimates.

Updating neural networks is closely related to online (Hoi et al., 2021) and continual learn-
ing (De Lange et al., 2021), where a model learns from sequentially arriving samples. Recent
approaches, such as elastic weight consolidation (Kirkpatrick et al., 2017) and online LA (Ritter et al.,
2018a), demonstrated how updates can be performed for BNNs. Due to the lack of a closed form for
updating the posterior over a BNN’s parameters, they use gradient-based methods. Our proposed
Bayesian update for SNGP is highly related to online LA. However, our update only considers the

2

Under review as a conference paper at ICLR 2023

last layer of SNGP. Therefore, we adapt the ideas of (Spiegelhalter & Lauritzen, 1990), which allow
fast updating via second-order optimization algorithms. Similar to Kirsch et al. (2022), we are not
only interested in overcoming catastrophic forgetting by achieving high accuracy on old and new
data samples but additionally investigate gains of updates regarding various performance types, e.g.,
out-of-distribution detection (Yang et al., 2021) and probability calibration (Guo et al., 2017).

Deep active learning strategies need to select batches of samples to reduce the number of networks’
retraining procedures (Ren et al., 2021). The most simple batch selection scheme, referred to as top-b
selection, employs a sequential query strategy for computing sample-wise utility scores and selects a
predefined number of samples with the highest scores. This way, we can directly transform sequential
strategies such as Uncertainty Sampling (US, Lewis & Catlett, 1994) and Query-by-Committee
(QBC, Seung et al., 1992) into batch strategies. For an improved information-theoretic selection,
these kinds of query strategies are mostly used in combination with BNNs, such as Dropout for
Bayesian Active Learning by Disagreement (BALD, Gal et al., 2017) and Ensemble for Variation
Ratio (Beluch et al., 2018). However, a top-b selection ignores the samples’ diversity in a batch.
Therefore, several other query strategies have been proposed, e.g., BatchBALD (Kirsch et al., 2019)
for BNNs or CoreSet (Sener & Savarese, 2018) for deterministic networks, explicitly modeling
sample diversity in a batch.

3 FAST BAYESIAN UPDATES FOR BAYESIAN NEURAL NETWORKS

Here, we present two approximations of Bayesian updates (MC- and LA-based) for Ensembles,
Dropout, and SNGP as three different BNN types to be employed in online learning tasks. For
detailed explanations of all models, we refer to Appendix C.

3.1 BAYESIAN UPDATES

In this section, we present the details of how to incorporate the information of new sample-label
pairs D⊕ = {(x1, y1), . . . , (xN , yN)} ⊂ X × Y into a BNN trained on a dataset D ⊂ X × Y via
Bayesian updates. We focus on classification problems with labels Y = {0, . . . ,K − 1}. Our goal
is to use this new data for updating the probabilistic predictions, i.e., computing p(y|x,D⊕ ∪ D).
Retraining the entire network on the extended data set D⊕ ∪ D results in high computational cost
for a large dataset D, even if only the last layer is retrained. Using the new data solely, catastrophic
forgetting can lead to overfitting and is challenging to be overcome (Ritter et al., 2018a).

We propose to employ techniques of Bayesian deep learning (Fortuin, 2022) in a new combination
with Bayesian online learning (Opper & Winther, 1999) as an efficient and effective alternative for
updating a BNN’s prediction. The main idea of Bayesian deep learning is to estimate a posterior
distribution p(ω|D) over a BNN’s parameters ω ∈ Ω given the observed training data D by using
Bayes’ theorem. The obtained posterior distribution over the parameters can then be used to specify
the predictive distribution over a new sample’s class membership via marginalization:

p(y|x,D) = E
ω|D

[
p(y|x,ω)

]
=

∫
p(y|x,ω)p(ω|D) dω. (1)

Thereby, the distribution p(y|x,ω) denotes the probabilistic output of a network with parameters ω:

p(y|x,ω) = [softmax(fω(x))]y =
exp([fω(x)]y)∑

y′∈Y exp([fω(x)]y′)
, (2)

where fω : X → RK represents a network as a function outputting class-wise logits1. Since the
probabilistic outputs in Eq. (2) are not directly dependent on the training data D, we only need
to update the distribution over the parameters for updating the BNN’s predictive distribution. As
samples in D and D⊕ are assumed to be independently distributed, we can simplify the likelihood in
Bayes’ theorem and reformulate the parameter distribution as follows2:

p(ω|D⊕ ∪ D) ∝ p(ω|D)p(D⊕|D,ω) = p(ω|D)p(D⊕|ω) = p(ω|D)
∏

(x,y)∈D⊕

p(y|x,ω). (3)

1We denote the i-th element of a vector b as [b]i = bi.
2For simplicity, we denote p(y1, . . . , yN |x1, . . . ,xN ,ω) with D = {(x1, y1), . . . , (xN , yN)} as p(D|ω).

3

Under review as a conference paper at ICLR 2023

As a result, the updated parameter distribution p(ω|D⊕∪D) is found by combining the current poste-
rior distribution p(ω|D) with the incoming likelihood p(y|x,ω) per sample-label pair (x, y) ∈ D⊕.
We refer to Eq. (3) as the Bayesian update and present approximations for specific BNNs next.

3.2 FAST APPROXIMATIONS OF BAYESIAN UPDATES FOR DEEP BNNS

In this section, we propose a general approximation of Bayesian updates based on MC sampling and
a more specific approximation for BNNs utilizing a last-layer LA (e.g., SNGP).

MC-based Bayesian Updates: BNNs such as Ensembles and Dropout allow drawing samples from
the posterior distribution p(ω|D). More precisely, Ensembles train multiple randomly initialized
networks, while Dropout randomly sets a predefined portion of parameters to zero for multiple
inference steps to obtain samples. For MC-based approaches, we assume that every ensemble member
ωm ∼ p(ω|D) is drawn with equal probability. Hence, we initialize the approximate distribution
over the drawn members by categorical distribution3 with parameters p̂ = (p̂1, . . . , p̂M)

T:

q(ωm|D) = Cat(m|p̂) = p̂m = 1/M, (4)

where M is the number of drawn ensemble members. We approximate the updated posterior
distribution, which includes our new dataset D⊕, by using Eq. (3) accordingly:

q(ωm|D⊕ ∪ D) = Cat(m|p̂upd) ∝ q(ωm|D)
∏

(x,y)∈D⊕

p(y|x,ωm) (5)

= p̂m
∏

(x,y)∈D⊕

[softmax(fωm(x))]y = ẑm, (6)

which is also a categorical distribution with parameters p̂upd = (p̂upd1 , . . . , p̂updM)
T

that we obtain
after normalizing ẑ = (ẑ1, . . . , ẑM)

T. Intuitively, the importance of each ensemble member is
determined by its likelihood of explaining the new dataset D⊕.

The discrete approximation q(ωm|D⊕ ∪ D) of the updated posterior distribution allows us to make
new predictions (see Eq. (1)) by evaluating

p(y|x,D⊕ ∪ D) = E
ω|D⊕ ∪D

[
p(y|x,ω)

]
≈

M∑
m=1

p(y|x,ωm) · q(ωm|D⊕ ∪ D) (7)

=

M∑
m=1

[softmax(fωm
(x))]y · p̂

upd
m . (8)

LA-based Bayesian Updates: In the following, we focus on binary classification with K = 2
and refer to Appendix A for an extension to multi-class classification. SNGP learns a distance
preserving hidden mapping via spectral normalization as the output of the penultimate layer. By
transforming these outputs with a random Fourier feature mapping (Rahimi & Recht, 2007), we
obtain a D-dimensional representation ϕ(x) ∈ RD (for a rationale see Appendix C.3). A last-layer
LA is then performed on ϕ(x) via a multivariate normal distribution over the parameters ω ∈ RD:

q(ω|D) = N (ω|µ̂, Σ̂) ∝ q(ω)
∏

(x,y)∈D

p(y|x,ω) with prior q(ω) = N (ω|0, λ−1I). (9)

SNGP computes the mean µ̂ ∈ RD as the MAP estimate on D with gradient optimization and weight
decay λ ∈ R>0. The covariance matrix Σ̂ = H−1(µ̂, λ−1I,D) ∈ RD×D can then be calculated as
the inverse Hessian matrix of the negative log posterior likelihood evaluated at the MAP estimate µ̂
given training data D and the covariance matrix of the prior λ−1I . For any mean µ, covariance matrix
Σ, and dataset A, we compute the inverse Hessian following Spiegelhalter & Lauritzen (1990):

H−1(µ,Σ,A) = Σ−
∑

(x,y)∈A

g
(
ϕ(x),µ

)
1 + ϕ(x)

T
Σϕ(x) g

(
ϕ(x),µ

)(Σϕ(x)
)(
Σϕ(x)

)T
(10)

with g(ϕ(x),µ) = σ(ϕ(x)
T
µ)(1− σ(ϕ(x)

T
µ)) and σ(x) = (1 + exp(−x))−1. (11)

3Generally, one can define the approximate distribution over all possible members via multiple Dirac deltas.

4

Under review as a conference paper at ICLR 2023

When observing new data, we follow the same idea as in Eq. 9 with q(ω|D) as our new prior:

q(ω|D ∪ D⊕) ∝ q(ω|D)
∏

(x,y)∈D⊕

p(y|x,ω) ≈ N (ω|µ̂upd, Σ̂upd). (12)

In accordance with Spiegelhalter & Lauritzen (1990), we implement the updates based on the
Gauss-Newton algorithm:

µ̂upd = µ̂−H−1(µ̂, Σ̂,D⊕)
∑

(x,y)∈D⊕

(
σ
(
ϕ(x)

T
µ̂
)
− y

)
ϕ(x), (13)

Σ̂upd = H−1(µ̂upd, Σ̂,D⊕). (14)

As we only update the last layer, we can use such a second-order algorithm that provides more robust
estimates than (first-order) stochastic gradient optimization and can also be repeated multiple times.
Following Liu et al. (2020), we make predictions by considering the mean-field approximation on the
updated normal distribution with c = π/8 (Bishop, 2006) according to:

p(y = 1|x,D ∪D⊕) ≈ σ

 ϕ(x)
T
µ̂upd√

1 + c · ϕ(x)T Σ̂upd ϕ(x)

 . (15)

4 BAYESIAN UPDATING EXPERIMENTS

In this section, we evaluate MC- and LA-based Bayesian updates in comparison to retraining a BNN.
Further, we identify concrete aspects influencing the quality of such updates.

4.1 EXPERIMENTAL SETUP

Our experimental design follows the work of Kirsch et al. (2022). First, we train a BNN on the
training dataset D (baseline). We then use this baseline BNN to perform Bayesian updates on
additional sample-label pairs D⊕ and compare these results to retraining the entire BNN from
scratch on the overall dataset D ∪ D⊕. We perform such an experiment for varying sizes of
the training dataset, i.e., |D| ∈ {16, 32, . . . , 320}, and a fixed size of new sample-label pairs,
i.e., |D⊕| = 32. Thus, we can evaluate the impact of Bayesian updates in different learning
stages. For reasons of reproducibility, we repeat each experiment 10 times and publish our code on
https://github.com/anonymous/.

Table 1: Overview of datasets.

Type Dataset Reference # classes # features

Tabular LETTER Frey & Slate (1991) 26 16PDIGITS Dua & Graff (2017) 10

Image MNIST LeCun & Cortes (1998) 10 28 × 28FMNIST Xiao et al. (2017)

The datasets D and D⊕ are randomly sampled
from real-world datasets. We use two tabular and
two image benchmark datasets from literature.
Table 1 summarizes further information. For visu-
alization, we experiment on the two-dimensional
toy dataset TWO-MOONS as shown in Fig. 2.

Typically, the selection of performance metrics
depends on the application at hand, whereas we aim to evaluate the Bayesian updates as generically
as possible here. For this reason, we investigate three performance aspects being of interest in several
applications: (1) generalization performance measured via accuracy (ACC, to be maximized ↑), (2)
uncertainty estimation capabilities measured via area under receiver operation characteristic (AUROC,
to be maximized ↑) curve in an out-of-distribution (OOD) detection scenario, and (3) probability
calibration measured via negative log-likelihood (NLL, to be minimized ↓). The ACC and NLL
scores are computed on a fixed test set obtained after a predefined train-test-split of the respective
dataset. For the OOD detection task, we need an OOD dataset which is PDIGITS for LETTER
(and vice versa) and FMNIST for MNIST (and vice versa). We compute two types of scores for
classifying samples as in- or out-of-distribution from which we calculate the AUROC, namely, the
entropy of the predictive distribution and the mean variance over the distribution of predicted class
membership probabilities. Both scores are expected to be high if a sample has a high likelihood of
being out-of-distribution. We refer to Appendix B for further details.

Our evaluation focuses on Ensemble, Dropout, and SNGP as three common BNN types. Ensemble
and Dropout can only be evaluated with the MC-based update and inference scheme. For SNGP,

5

https://github.com/anonymous/

Under review as a conference paper at ICLR 2023

we evaluate SNGP-MC in the same manner, while SNGP-LA uses the LA-based update and the
mean-field approximation for inference. Their network architectures and hyperparameters are
selected in dependence of the respective dataset. We implement a multilayer perceptron with two
residual blocks as base architecture for the two tabular datasets and the toy dataset, while we use a
ResNet-6 architecture for the two image datasets. An Ensemble consists of 20 independently trained
and randomly initialized base architectures. In each residual block of the Dropout networks, we
add a Dropout layer with a rate of 50% in the multilayer perceptron architecture and 20% in the
ResNet-6 architecture. For updating and inference, Dropout uses 1000 ensemble members. SNGP
is implemented for both architectures by applying spectral normalization to the hidden layers and a
random Fourier feature mapping to the penultimate layer’s outputs. Since SNGP-MC uses an efficient
last-layer LA, it uses 20000 ensemble members for its updates and inference. Appendix C summarizes
further hyperparameters and design choices for each BNN. The hyperparameters’ influence is
investigated in our ablation study in Appendix D.

4.2 RESULTS

The presentation of our results is threefold: (1) we visualize and discuss the behavior of our Bayesian
updates on the two-dimensional toy dataset, (2) we present performance difference curves for the
real-world datasets to get an understanding of the impact of Bayesian updates at different learning
stages, and (3) we give a compact tabular overview of all obtained results.

variance
low high

sample of blue class

sample of red class

70% probabilty for blue class

70% probabilty for red class
decision boundary

(a) Ensemble (b) Dropout (c) SNGP-MC (d) SNGP-LA

Figure 2: Visualization of the predictive distribution’s mean and variance for Ensemble, Dropout,
SNGP-MC, and SNGP-LA as BNNs after (re)training and Bayesian updating on a two-dimensional
toy dataset.

1. Behavior Visualization: Fig. 2 visualizes the results for the two-dimensional toy dataset TWO-
MOONS. There are samples of two classes represented by the blue and red colored circles. The
columns refer to the four evaluated BNNs. The upper row shows the baseline BNNs trained on D
consisting of two moons in the center. In the second row, we see the BNNs retrained on the moons
and four new clusters (corresponding to the extended training set D ∪D⊕). The third row gives an
overview of the BNNs obtained after applying the Bayesian updates for the new clusters in D⊕. The

6

Under review as a conference paper at ICLR 2023

predictive distribution of each of these BNNs is plotted as contour lines, where the red/blue lines show
70% probability for the red/blue class, while the black lines represent the 50% decision boundary.
Each plot’s background shows the mean variance over the predicted class membership probabilities
as proxies for the BNNs’ epistemic uncertainty. A high epistemic uncertainty corresponds to missing
knowledge of the BNN. The quality of this uncertainty is often evaluated via additional out-of-
distribution samples, for which the BNN should return high uncertainty estimates.

Comparing the four baseline BNNs, we observe that each BNN can accurately separate the two
moons. However, only SNGP-MC and SNGP-LA also model high variance, i.e., diverse probabilistic
hypotheses, in regions without observed training data. In contrast, Ensemble and Dropout only model
different probabilistic hypotheses close to their decision boundaries only. These observations are
still valid after retraining the BNNs on D ∪D⊕ (second row). Inspecting the BNNs with Bayesian
updates (third row), we see that the BNNs of Dropout and Ensemble cannot correctly adjust their
class predictions for the additional clusters due to missing diversity in the probabilistic hypotheses
(ensemble members). Moreover, we observe low variances in the entire feature space, which results
from assigning a weight near one to a single ensemble member. In comparison, Bayesian updating for
SNGP-MC and SNGP-LA works nearly as good as retraining: The predictions are correctly learned
for newly added data without any catastrophic forgetting regarding the original training data. Also,
the quality of the variance, which models epistemic uncertainty, is preserved. Thereby, the MC-based
Bayesian update is slightly less robust than the LA-based Bayesian update.

2. Performance Difference Curves: Fig. 3 shows the results of Bayesian updates, compared to re-
training with respect to the number of samples in D. Therefore, we start with |D| ∈ {16, 32, . . . , 320}
samples (x-axis) for training the baseline BNN, then add 32 randomly selected samples in D⊕ for
either updating with D⊕ or retraining with D ∪ D⊕, and compute their performance differences
regarding ACC, NLL, and AUROC (y-axis) to this baseline BNN (dashed line). In Fig. 3, we plot the
retrained BNNs as semi-transparent lines, and the Bayesian updated BNNs as solid lines with circles.
In general, we observe that retraining a BNN from scratch is superior to Bayesian updating in terms
of ACC improvement. Thereby, the impact of retraining and Bayesian updates decreases with an
increasing size of D. Comparing the individual BNNs, we further see that the Bayesian updates work
only for SNGP. Specifically, SNGP-LA improves the ACC compared to its baseline across all four
datasets, while SNGP-MC fails for the LETTER dataset. A possible explanation could be a more
complex space of probabilistic hypotheses due to a higher number of classes for this dataset. Another
observation is that the ACC improvements of Bayesian updates are higher for the tabular than the
image datasets. Likely, this observation results from the higher importance of feature learning in the
hidden layers for the image datasets. The other performance metrics AUROC and NLL, shown for
the MNIST dataset, confirm the improvements of Bayesian updates for SNGP. The other plots are
given in Appendix E.

3. Tabular Results: For a more compact overview, Table 2 summarizes the performance difference
curves in Fig. 3 through averaging over the different sample sizes in the baseline BNN’s training
dataset. For reference, we also report the averaged absolute performance of the baseline BNN for
each dataset, performance metric, and BNN type. The symbol ∗ indicates a significant performance
improvement between the baseline and its Bayesian updated/retrained BNN according to a one-sided
t-test conducted with a p-value of 0.01 over ten repetitions. We additionally report the computation
times (TIME [s]) of an NVIDIA GPU A100 for evaluating the efficiency of retraining, Bayesian
updates, and predictions with respect to the four evaluated BNNs.

Table 2 confirms our observations from Fig. 2 and Fig. 3. In particular, the Bayesian updates for
SNGP-LA improve the baseline performances across all datasets and performance metrics except for
the AUROC scores measured via the entropy on FMNIST. The AUROC measured via the variance
is always (slightly) improved for SNGP-LA. Comparing the OOD detection scores entropy and
variance, we observe that the absolute AUROC scores are majorly higher when using variance, except
for SNGP-MC. Inspecting the computation times for Bayesian updates, we see that Dropout and
Ensemble are fastest due to their low number of sampled ensemble members. The update time
of SNGP-LA is majorly influenced by the number of optimization steps and the dimension of the
computed covariance matrix as inverse Hessian matrix. Since the update of SNGP-LA preserves
the form of its approximate distribution, we can use the mean-field approximation such that the
prediction time is much lower than for the MC-based BNNs. For all BNNs, the Bayesian updates are
much faster than retraining, which is especially expensive for Ensembles.

7

Under review as a conference paper at ICLR 2023

Ensemble (retrained)

Ensemble (updated)

Dropout (retrained)

Dropout (updated)

SNGP-MC (retrained)

SNGP-MC (updated)

SNGP-LA (retrained)

SNGP-LA (updated)

50 100 150 200 250 300
samples in

0.02

0.00

0.02

0.04

0.06

0.08

0.10
AC

C

LETTER

50 100 150 200 250 300
samples in

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

AC
C

PDIGITS

50 100 150 200 250 300
samples in

0.000

0.025

0.050

0.075

0.100

0.125

0.150

AC
C

FMNIST

50 100 150 200 250 300
samples in

0.00

0.05

0.10

0.15

0.20

AC
C

MNIST

50 100 150 200 250 300
samples in

0.10

0.05

0.00

0.05

0.10

0.15

0.20

AU
RO

C
(v

ar
ia

nc
e)

MNIST

50 100 150 200 250 300
samples in

3.0

2.5

2.0

1.5

1.0

0.5

0.0

NL
L

MNIST

Figure 3: Performance difference curves for four benchmark datasets showing performance differ-
ences of retrained and updated BNNs compared to their respective baseline BNN for different training
set sizes and performance metrics.

Table 2: Overview of averaged absolute baseline performances, their relative performance differences
to Bayesian updates/retraining, and their computation times. A (∗) marks significant improvement.

Dataset Model ACC ↑ AUROC ↑ (entropy) AUROC ↑ (variance) NLL ↓ TIME [s] ↓
base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. upd. retr. pred.

LETTER

Ensemble .541 –.004 +.028∗ .681 –.048 +.004∗ .778 –.058 +.011∗ 2.882 +.141 –.406∗ .007 117.945 .107
Dropout .537 –.006 +.026∗ .629 –.014 +.004∗ .680 –.019 +.012∗ 2.718 +.161 –.353∗ .006 6.639 .204
SNGP-MC .542 –.006 +.029∗ .844 –.010 +.015∗ .589 +.027∗ +.015∗ 1.909 –.014∗ –.096∗ .105 8.709 3.895
SNGP-LA .543 +.015∗ +.029∗ .845 +.007∗ +.015∗ .833 +.002∗ +.015∗ 1.929 –.051∗ –.095∗ .141 8.727 .040

PDIGITS

Ensemble .892 +.001 +.019∗ .916 –.007 +.004∗ .915 –.005 +.007∗ .559 +.004 –.160∗ .007 119.301 .056
Dropout .890 –.000 +.021∗ .888 –.001 +.006∗ .823 +.002∗ +.011∗ .590 +.012 –.179∗ .003 6.631 .064
SNGP-MC .890 +.008∗ +.021∗ .941 +.002 +.008∗ .920 +.001 +.012∗ .505 –.049∗ –.071∗ .049 8.611 .884
SNGP-LA .890 +.013∗ +.021∗ .941 +.007∗ +.008∗ .940 +.004∗ +.009∗ .502 –.045∗ –.072∗ .144 8.724 .023

MNIST

Ensemble .908 –.003 +.022∗ .843 –.049 +.016∗ .891 –.032 +.010 .439 +.028 –.182∗ .048 849.398 3.044
Dropout .897 –.001 +.021∗ .745 –.005 +.025∗ .793 –.009 +.022∗ .426 +.012 –.136∗ .060 42.492 13.405
SNGP-MC .886 +.005∗ +.025∗ .920 +.000 +.005 .890 +.002 +.008∗ .424 –.029∗ –.087∗ .064 46.885 5.219
SNGP-LA .886 +.006∗ +.025∗ .920 +.003∗ +.006∗ .936 +.003∗ +.005∗ .423 –.028∗ –.086∗ .168 46.247 2.229

FMNIST

Ensemble .705 –.008 +.017∗ .713 –.054 –.001 .769 –.050 +.000 1.104 +.109 –.164∗ .048 844.109 3.073
Dropout .684 –.001 +.019∗ .649 –.005 +.001 .766 –.012 +.010∗ 1.081 +.018 –.150∗ .058 42.786 13.454
SNGP-MC .685 +.005∗ +.018∗ .764 –.009 –.001 .709 –.010 –.001 .922 –.030∗ –.067∗ .058 46.536 5.083
SNGP-LA .685 +.006∗ +.018∗ .764 –.005 +.001 .863 –.000 +.006∗ .924 –.034∗ –.066∗ .166 46.308 2.251

5 USE CASE: ACTIVE LEARNING WITH BAYESIAN UPDATES

The naive idea of using sequential query strategies for batch selection is to use the top-b samples. As
this might cause a lack of diversity between selected samples (Kirsch et al., 2019), batch methods
have been proposed to solve this problem. Our idea is to overcome the necessity of batch algorithms
by using Bayesian updates for sequential query strategies as a fast alternative to retraining (see also
Kirsch et al. (2022)). After acquiring b labels, we retrain the network similar to batch strategies. Our
hypothesis is that our idea achieves higher performance compared to selecting the top-b samples for
already well-performing non-batch strategies (Ren et al., 2021), which are: US (Lewis & Catlett,
1994), QBC (Seung et al., 1992), and BALD (Gal et al., 2017) (in each case top-b vs. Bayesian
updates). Moreover, we evaluate BatchBALD (Kirsch et al., 2019), which is a batch variant of BALD,
and random sampling (RAND). As BNN, we choose SNGP with LA-based updates as it is the most

8

Under review as a conference paper at ICLR 2023

reliable method as shown before. The label budget B is chosen according to the dataset’s complexity.
Appendix F gives more details on the setup.

Table 3: Overview of mean ACC over active learning cycles for ten repetitions. A (∗) marks significant
superior mean ACC to the respective top-b selection and a bold entry the best mean ACC per row.

Dataset RAND US QBC BALD
top-b update top-b update top-b update BatchBALD

LETTER .771 .798 .811∗ .795 .811∗ .746 .752∗ .754∗

PDIGITS .908 .912 .939∗ .902 .938∗ .903 .934∗ .931∗

MNIST .937 .944 .950∗ .944 .950∗ .936 .943∗ .945∗

FMNIST .755 .756 .758 .756 .759 .754 .757 .760∗

As results, we present learning curves in Appendix F, which show the accuracy with respect to the
number of acquired labels, and Table 3 that summarizes these plots by comparing the respective
areas under the learning curves. In general, the table confirms our hypothesis. All query strategies
with Bayesian updates outperform the respective top-b selection. For FMNIST, the results are not
significant and more experiments need to be conducted as the dataset is much more complex and
the performances are close together. Moreover, the results show that BALD with Bayesian updates
achieves comparable ACC to BatchBALD. The overall winner for any dataset is always a strategy
with Bayesian updates (except for FMNIST).

6 DISCUSSION AND CONCLUSION

Retraining deep neural networks with data is computationally expensive. As an efficient alternative
for many kinds of application scenarios including active learning, we presented a fast Bayesian update
for different types of BNNs based on MC sampling (Ensemble, Dropout, SNGP) or a last-layer LA
(SNGP). In a large evaluation study, we showed that the proposed updates require less time than
retraining and mostly lead to an improved performance combined with SNGP as BNN.

Based on these results, we outline three aspects considerably influencing the quality of Bayesian
updates to answer the second part of our introductory research question explicitly:

• Distance-awareness of the BNN is important. SNGP is distance-aware by working in
a Euclidean space and models realistic probabilistic hypotheses based on data sample
similarities, whereas Dropout and Ensemble only optimize the decision boundary.

• Diversity of probabilistic hypotheses in regions of the feature space where new data ar-
rives is important. For this purpose, sufficiently many ensemble members need to be
sampled (MC) or a sufficiently good parameterized approximation of the probabilistic
hypotheses’ distribution is necessary (LA).

• Complexity of the BNN architecture and the dataset is important. In their current form,
our Bayesian updates only address last-layer updates or reweighting ensemble members’
outputs. For large network architectures or complex datasets, such an update will have less
influence.

Initial experiments with Bayesian updates in the current form did not yet lead to significant per-
formance improvements for deeper network architectures (ResNet-18 (He et al., 2016)) and more
complex image datasets (CIFAR10 (Krizhevsky, 2009)). Therefore, future work needs to address this
issue, e.g., by applying LA to multiple layers (Ritter et al., 2018a) or using multi-modal LA (Eschen-
hagen et al., 2021).

The experiments in our active learning use case showed that Bayesian updates for SNGP can improve
conventional active learning query strategies such as US, QBC, and BALD probably due to a more
diverse selection. With Bayesian updates, it now becomes possible to apply (decision theoretic)
query strategies in deep active learning that rely on many retraining iterations, e.g., expected error
reduction (Roy & McCallum, 2001) and probabilistic active learning (Kottke et al., 2021), which is
planned for future work. Moreover, performing Bayesian updates after every label acquisition may
allow an adaptive batch size since we can check if the impact by our updates is still large enough. If
this is not the case, we can retrain the entire BNN.

9

Under review as a conference paper at ICLR 2023

REFERENCES

William H. Beluch, Tim Genewein, Andreas Nürnberger, and Jan M. Köhler. The power of ensembles
for active learning in image classification. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9368–9377, 2018.

Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless Bayesian deep learning. Advances in Neural Information
Processing Systems, 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2021.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of Laplace
approximations for improved post-hoc uncertainty in deep learning. In Bayesian Deep Learning
Workshop at NeurIPS, 2021.

Vincent Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022.

Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers. Machine
Learning, 6(2):161–182, 1991.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050–1059,
2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
In International Conference on Machine Learning, pp. 1183–1192, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Marius Hobbhahn, Agustinus Kristiadi, and Philipp Hennig. Fast predictive uncertainty for clas-
sification with Bayesian deep networks. In Uncertainty in Artificial Intelligence, pp. 822–832,
2022.

Steven C H Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
Neurocomputing, 459:249–289, 2021.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun.
Hands-on Bayesian neural networks – A tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29–48, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. BatchBALD: Efficient and diverse batch
acquisition for deep Bayesian active learning. In Advances in Neural Information Processing
Systems, 2019.

Andreas Kirsch, Jannik Kossen, and Yarin Gal. Marginal and Joint Cross-Entropies & Predic-
tives for Online Bayesian Inference, Active Learning, and Active Sampling. arXiv preprint
arXiv:2205.08766, 2022.

10

Under review as a conference paper at ICLR 2023

Daniel Kottke, Marek Herde, Christoph Sandrock, Denis Huseljic, Georg Krempl, and Bernhard Sick.
Toward optimal probabilistic active learning using a Bayesian approach. Machine Learning, 110
(6):1199–1231, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, 2017.

Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits, 1998.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Machine Learning Proceedings, pp. 148–156, 1994.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshminarayanan.
Simple and principled uncertainty estimation with deterministic deep learning via distance aware-
ness. In Advances in Neural Information Processing Systems, 2020.

Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zack Nado, Jasper
Snoek, Dustin Tran, and Balaji Lakshminarayanan. A Simple Approach to Improve Single-Model
Deep Uncertainty via Distance-Awareness. arXiv preprint arXiv:2205.00403, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

Zhiyun Lu, Eugene Ie, and Fei Sha. Mean-field approximation to Gaussian-softmax integral with
application to uncertainty estimation. arXiv preprint arXiv:2006.07584, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

Manfred Opper and Ole Winther. A Bayesian approach to on-line learning. In On-line Learning in
Neural Networks, Publications of the Newton Institute, pp. 363–378, 1999.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
Evaluating predictive uncertainty under dataset shift. Advances in Neural Information Processing
Systems, 2019.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems, 2007.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM Computing Surveys, 54(9):1–40, 2021.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured Laplace approximations
for overcoming catastrophic forgetting. In Advances in Neural Information Processing Systems,
2018a.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation for neural
networks. In International Conference on Learning Representations, 2018b.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling estimation
of error reduction. In International Conference on Machine Learning, 2001.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: learning deep neural
networks on the fly. In International Joint Conference on Artificial Intelligence, pp. 2660–2666,
2018.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

11

Under review as a conference paper at ICLR 2023

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009.

Hyunjune S Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Workshop on
Computational Learning Theory, pp. 287–294, 1992.

David J Spiegelhalter and Steffen L Lauritzen. Sequential updating of conditional probabilities on
directed graphical structures. Networks, 20(5):579–605, 1990.

Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. Adaptive deep learn-
ing model selection on embedded systems. In ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems, pp. 31–43, 2018.

Hao Wang and Dit-Yan Yeung. A survey on Bayesian deep learning. ACM Computing Surveys, 53
(5):1–37, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. arXiv preprint arXiv:2110.11334, 2021.

12

Under review as a conference paper at ICLR 2023

A MULTI-CLASS LAST-LAYER LAPLACE-BASED UPDATE FOR SNGP

Here, we outline three different options for performing the update step for SNGP-LA in a multi-class
setting with K > 2. While the parameters of SNGP’s last layer build a vector ω ∈ RD in the binary
setting, we have for each class y ∈ Y such a parameter vector ωy in the multi-class setting. In the
literature, several approximations haven been proposed to model these parameter vectors’ distribution.

The most complex approximation would be to concatenate these vectors and model them through a
multi-variate normal distribution:

q (ω|D) = N (ω|µ̂, Σ̂) with ω, µ̂ ∈ RK·D, Σ̂ ∈ R(K·D)×(K·D). (16)

This approximation can estimate a covariance between each pair of parameters. However, this
expressiveness comes at the cost of a large covariance matrix Σ̂ to be estimated. This is in particular
costly for a high number of classes combined with a high-dimensional random Fourier feature
mapping, such that corresponding updates via second-order optimization would no longer be efficient.

Spiegelhalter & Lauritzen (1990) presented a more efficient approximation in which the class-wise
parameter vectors are arranged column-wisely as a matrix. Their joint distribution is then modeled
through a matrix normal distribution:

q (ω|D) = MN (ω|µ̂, Γ̂, Σ̂) with ω, µ̂ ∈ RD×K , Σ̂ ∈ RD×D, Γ̂ ∈ RK×K . (17)

This approximation enables to capture a covariance between each pair of parameter vectors via
the matrix Γ̂ and each pair of random Fourier features via the matrix Σ̂. Both matrices have to be
iteratively recomputed while updating. We refer to Spiegelhalter & Lauritzen (1990) for more details.

Liu et al. (2020) presented an even faster approximation and showed its effectiveness in combination
with SNGP for supervised learning. Therefore, we adopt this approximation as basis for our proposed
updates in the multi-class setting. The idea is to determine an upper-bound covariance matrix shared
by all class-wise parameter vectors in their respective multivariate normal distribution, which is then
defined for class y ∈ Y as:

q(ωy|D) = N (µ̂y|Σ̂) with ωy, µ̂y ∈ RD, Σ̂ ∈ RD×D. (18)

This upper-bound covariance matrix Σ̂ = H−1(µ̂, λ−1I,D) ∈ RD×D corresponds to the inverse
Hessian matrix of the negative log posterior likelihood evaluated at the MAP estimate µ̂ given
training data D and a prior covariance matrix λ−1I . For any mean µ ∈ RD×K , covariance matrix
Σ ∈ RD×D, and dataset A ⊂ X × Y , we compute the inverse Hessian following Liu et al. (2020) as

H−1(µ,Σ,A) = Σ−
∑

(x,y)∈A

g
(
ϕ(x),µ

)
1 + ϕ(x)

T
Σϕ(x) g

(
ϕ(x),µ

)(Σϕ(x)
)(
Σϕ(x)

)T
, (19)

g(ϕ(x),µ) = (1− p⋆(ϕ(x))p⋆(ϕ(x)), p⋆(ϕ(x)) = max
y∈Y

(p(y|ϕ(x),µ)) , (20)

p(y|ϕ(x),µ) =
[
softmax

(
ϕ(x)

T
µ
)]

y
. (21)

Analog to the updates for binary classification in Eq. (13) and Eq.(14), we implement the updates of
the mean parameter vector for class y and covariance matrix given a new dataset D⊕ based on the
Gauss-Newton algorithm:

µ̂upd
y = µ̂−H−1(µ̂, Σ̂,D⊕)

∑
(x,y′)∈D⊕

(
p(y|ϕ(x),µ)− δ(y = y′)

)
ϕ(x), (22)

Σ̂upd = H−1(µ̂upd, Σ̂,D⊕), (23)

where δ is the Dirac delta function returning δ(c) = 1 if the condition c is true and otherwise 0.
Making predictions via mean-field approximation (Lu et al., 2020) on the updated normal distribution
with c = π/8 yields:

p(y|x,D ∪D⊕) ≈

softmax

 ϕ(x)
T
µ̂upd√

1 + c · ϕ(x)T Σ̂upd ϕ(x)

y

. (24)

13

Under review as a conference paper at ICLR 2023

B OUT-OF-DISTRIBUTION DETECTION

For the out-of-distribution detection, we employ two types of scores, i.e., the predictive distribution’s
entropy and the mean variance over the distribution of predicted class membership probabilities.

The predictive distribution’s entropy is often employed in out-of-distribution tasks (Lakshmi-
narayanan et al., 2017; Liu et al., 2020) due to its robustness and its information-theoretical motivation.
Thereby, the entropy is computed regarding a sample’s x class membership distribution as

H[y|x,D] = −
∑
y′∈Y

p(y′|x,D) ln(p(y′|x,D)), (25)

where we determine the predictive distribution p(y|x,D) via sampling according to Eq. (7) for
Ensemble, Dropout, and SNGP-MC, while we use the mean-field approximation following Eq. (15)
for SNGP-LA. The entropy is maximum if the predictive distribution corresponds to a discrete,
uniform distribution with ∀y ∈ Y : p(y|x,D) = 1/K. A major drawback of entropy is the lack
of differentiation between epistemic and aleatoric uncertainty. For example, maximum entropy
in a binary classification problem with Y = {1, 2} occurs when all ensemble members predict
p(y = 1|x,ωm) = .5, which corresponds to a high aleatoric setting. However, the entropy is also
maximum when 50% of the ensemble members predict p(y = 1|x,ωm) = 1 while the other 50%
of the ensemble members predict p(y = 1|x,ωm) = 0, which corresponds to a high epistemic
uncertainty setting.

In contrast, the mean variance over the distribution of predicted class membership probabilities
is able to capture the variability in the predictions across ensemble members. Thereby, the mean
variance over the classes is high if the ensemble members strongly disagree in their predicted class
membership probabilities. For Ensemble, Dropout, and SNGP-MC, there are finite many ensemble
members with parameters ω1, . . . ,ωM such that we can determine the variance of their predicted
probabilities py ∈ [0, 1] regarding class y for a sample x according to

V [py|x,D] =
1

M

M∑
m=1

((p(y|x,ωm)− p(y|x,D))
2
, (26)

where we compute the probability p(y|x,ωm) via Eq. (2) and the predictive distribution p(y|x,D)
via Eq. (7). For SNGP-LA, sampling is not required because we directly use the parameters’ posterior
distribution q(ω|D) to estimate the variance. Therefor, we employ the Laplace bridge that maps a
normal distribution in the logit space onto a Dirichlet distribution in the probability space (Hobbhahn
et al., 2022). As a result, we obtain for each sample x a Dirichlet distribution

Dir(p|α(x|D)) with p ∈ RK
≥0,α(x|D) ∈ RK

>0, (27)

where p denote the random variable of possible class membership probabilities and the concentration
parameters α(x|D) are sample-wise estimates depending on the training data. Such a Dirichlet
distribution captures now the uncertainty in the class-membership probabilities for a sample. As
proxy of this uncertainty, we can compute the variance in Eq. (26) via a closed-form expression:

V [py|α(x|D)] =
[α(x|D)]y(1− [α(x|D)]y)

||α(x|D)||1
, (28)

where || · ||1 denotes the Manhattan norm. The final score for out-of-distribution detection is then
computed by taking the average over the classes y ∈ Y in Eq. (26) and Eq. (28), respectively.

Our motivation for testing both out-of-distribution detection scores is two-folded. On the one hand, we
aim to inspect whether BNNs are unbiased toward particular classes in their predictive distributions
(corresponding to high entropy) for out-of-distribution data. On the other hand, we aim to study
whether the diversity of ensemble members (corresponding to variance) is high for out-of-distribution
data.

14

Under review as a conference paper at ICLR 2023

C NETWORK ARCHITECTURES AND HYPERPARAMETERS

Architecture for tabular datasets: We build a ResNet variant of a multilayer perceptron (MLP)
with only fully-connected (FC) layers for the classification experiments with tabular data. The first
layer extends the feature dimension to 128, and after that, we use two residual blocks with the same
dimensionality. The residual block is depicted in Fig. C.1a, where the Dropout layer is not used
in SNGP and Ensembles. As the output layer, we use an FC-layer, where the number of neurons
corresponds to the number of classes.

Architecture for image datasets: We use a small ResNet architecture with six layers for the image
classification experiments. Similar to the original ResNet variants (He et al., 2016), it starts with a
convolutional (Conv) layer, continues with two residual blocks, and ends with an FC-layer. A residual
block consists of two 3× 3 convolutions with a Dropout layer (not used in SNGP and Ensembles) in
between as depicted in C.1b.

Optimization: We use stochastic gradient descent with momentum and Nesterov momentum.
The weight decay and learning rate combined with cosine annealing (Loshchilov & Hutter, 2017)
as scheduler are individually defined for each dataset, and their concrete values can be found in
our implementation at https://github.com/anonymous/. Each BNN was trained for 200
epochs.

(a) Dropout MLP residual block. (b) Dropout ResNet residual block.

Figure C.1: Overview of residual blocks.

C.1 (DEEP) ENSEMBLES

Deep Ensembles is a popular technique to obtain a BNN (Lakshminarayanan et al., 2017). Each
member is a randomly initialized deterministic neural network with the same architecture and
parameters are optimized by maximizing the log posterior, i.e., cross-entropy with weight decay. As
each optimized member can be seen as a mode of the posterior distribution, we can interpret each
ensemble member as a parameter sample of the true posterior distribution.

For Ensembles, we investigate the following hyperparameter in our ablation study:

• Number of ensemble members: 5, 10, 20 (default).
This hyperparameter describes the number of parameter samples. A high value leads
to better approximations of the underlying posterior distribution at the cost of increased
computational complexity.

C.2 DROPOUT

Using Dropout during evaluation leads to a distribution for the predictions corresponding to a
variational distribution in the parameter space (Gal et al., 2017). Due to Dropout’s simplicity and
efficiency, it is often used for comparison.

For Dropout, we investigate the following hyperparameters in our ablation study:

• Number of ensemble members: 100, 500, 1000 (default)
This hyperparameter describes the number of parameter samples, i.e., forward passes with
Dropout. A high value leads to better approximations of the underlying posterior distribution
at the cost of increased computational complexity.

15

https://github.com/anonymous/

Under review as a conference paper at ICLR 2023

• Dropout rate: 0.25, 0.5 (default), 0.75
This hyperparameter describes the probability of dropping out a neuron during a forward
pass.

C.3 SPECTRAL NORMALIZED NEURAL GAUSSIAN PROCESS (SNGP)

SNGP (Liu et al., 2020) is a BNN using last-layer LA in combination with spectral normaliza-
tion (Miyato et al., 2018) and random Fourier features (RFF) (Rahimi & Recht, 2007) to improve
the distance-awareness of neural networks. Adding spectral normalization leads to a distance-aware
feature space, whereas the composition of RFF and the last-layer LA can be interpreted as an approxi-
mate Gaussian process with a Gaussian kernel. A comparison to a typical neural network architecture
is depicted in Fig. C.2.

(a) Typical neural network architecture.

(b) SNGP architecture.

Figure C.2: Comparison of typical neural network and SNGP architecture inspired by the visualization
of Liu et al. (2022).

For SNGP-MC and SNGP-LA, we investigate the following hyperparameters in our ablation study:

• Number of ensemble members (MC-only): 1000, 10000, 20000 (default)
This hyperparameter describes the number of parameter samples drawn from the normal
distribution obtained via the last-layer LA.

• Number of optimization steps (LA-only): 1 (default), 2, 5
This hyperparameter describes the number of optimization steps to update the covariance
matrix and mean vectors of the normal distribution estimated via LA.

• Norm bound scale (MC and LA): 1.0, 6.0 (default), 12.0
This hyperparameter describes the upper bound used for spectral normalization of the
weight matrices.

• Number of inducing points (MC and LA): 256, 1024 (default), 2048
This hyperparameter describes the number of random features used for the approximation
of the Gaussian kernel.

• Kernel scale (MC and LA): 1.0, 8.0 (default), 256.0
This hyperparameter describes the width of the Gaussian kernel in the random Fourier
feature space.

16

Under review as a conference paper at ICLR 2023

D ABLATION STUDY

For an extended discussion of suitable BNN architectures and hyperparameters and as a guide for
the usage of Bayesian updates in practice, we present an ablation study in the following. There, we
compare the different BNNs regarding their hyperparameters in a one-variable-at-a-time approach.
Detailed descriptions of each BNN’s hyperparameters are given in Appendix C.

Table D.1: Ablation study for Ensemble (MC-based updates and inference) as an overview of averaged
absolute baseline performances, their relative performance differences to Bayesian updates/retraining,
and their computation times. A (∗) marks a significant performance improvement compared to the
respective baseline, and a bold entry indicates the default value for the respective hyperparameter.

Hyper-
parameter Value ACC ↑ AUROC ↑ (entropy) AUROC ↑ (variance) NLL ↓ TIME [s] ↓

base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. upd. retr. pred.

LETTER
Number of
ensemble
members

5 .539 –.005 +.026∗ .675 –.044 +.001 .754 –.033 +.007∗ 2.916 +.144 –.388∗ .002 29.368 .047
10 .542 –.004 +.028∗ .675 –.041 +.003∗ .762 –.046 +.009∗ 2.928 +.148 –.416∗ .004 57.509 .062
20 .541 –.004 +.028∗ .681 –.048 +.004∗ .778 –.058 +.011∗ 2.882 +.141 –.406∗ .007 117.945 .107

PENDIGITS
Number of
ensemble
members

5 .891 +.000 +.021∗ .909 –.008 +.005∗ .904 –.003 +.008∗ .611 +.008 –.185∗ .002 29.444 .024
10 .887 +.000 +.019∗ .915 –.007 +.004∗ .914 –.005 +.007∗ .644 +.003 –.183∗ .004 59.344 .035
20 .892 +.001 +.019∗ .916 –.007 +.004∗ .915 –.005 +.007∗ .559 +.004 –.160∗ .007 119.301 .056

MNIST
Number of
ensemble
members

5 .906 –.004 +.021∗ .746 –.047 +.012∗ .781 –.020 +.007 .444 +.037 –.172∗ .023 212.947 2.397
10 .909 –.003 +.023∗ .813 –.045 +.018∗ .857 –.024 +.012∗ .464 +.031 –.209∗ .031 418.265 2.603
20 .908 –.003 +.022∗ .843 –.049 +.016∗ .891 –.032 +.010 .439 +.028 –.182∗ .048 849.398 3.044

FMNIST
Number of
ensemble
members

5 .710 –.008 +.016∗ .710 –.053 –.005 .743 –.027 –.003 1.176 +.114 –.185∗ .023 211.435 2.369
10 .712 –.009 +.016∗ .666 –.044 –.003 .711 –.034 –.000 1.117 +.125 –.160∗ .031 422.343 2.622
20 .705 –.008 +.017∗ .713 –.054 –.001 .769 –.050 +.000 1.104 +.109 –.164∗ .048 844.109 3.073

Table D.2: Ablation study for Dropout (MC-based updates and inference) as an overview of averaged
absolute baseline performances, their relative performance differences to Bayesian updates/retraining,
and their computation times. A (∗) marks a significant performance improvement compared to the
respective baseline, and a bold entry indicates the default value for the respective hyperparameter.

Hyper-
parameter Value ACC ↑ AUROC ↑ (entropy) AUROC ↑ (variance) NLL ↓ TIME [s] ↓

base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. upd. retr. pred.

LETTER
Number of
ensemble
members

100 .537 –.008 +.026∗ .629 –.019 +.004∗ .679 –.024 +.012∗ 2.725 +.207 –.353∗ .006 5.543 .040
500 .537 –.007 +.026∗ .629 –.016 +.004∗ .680 –.018 +.012∗ 2.719 +.172 –.353∗ .003 6.751 .109
1000 .537 –.006 +.026∗ .629 –.014 +.004∗ .680 –.019 +.012∗ 2.718 +.161 –.353∗ .006 6.639 .204

Dropout
rate

0.25 .535 –.004 +.026∗ .622 –.007 +.004∗ .658 –.011 +.011∗ 2.933 +.103 –.393∗ .011 6.397 .229
0.5 .537 –.006 +.026∗ .629 –.014 +.004∗ .680 –.019 +.012∗ 2.718 +.161 –.353∗ .006 6.639 .204
0.75 .532 –.002 +.026∗ .605 –.001 +.000 .652 –.003 +.009∗ 2.532 +.070 –.263∗ .012 6.036 .261

PENDIGITS
Number of
ensemble
members

100 .890 –.001 +.021∗ .888 –.003 +.006∗ .823 +.003∗ +.011∗ .591 +.021 –.179∗ .004 5.249 .019
500 .890 –.001 +.021∗ .889 –.002 +.006∗ .823 +.002∗ +.011∗ .590 +.017 –.179∗ .003 6.875 .042
1000 .890 –.000 +.021∗ .888 –.001 +.006∗ .823 +.002∗ +.011∗ .590 +.012 –.179∗ .003 6.631 .064

Dropout
rate

0.25 .889 –.000 +.021∗ .886 –.000 +.006∗ .824 +.001∗ +.010∗ .620 +.006 –.188∗ .003 6.553 .064
0.5 .890 –.000 +.021∗ .888 –.001 +.006∗ .823 +.002∗ +.011∗ .590 +.012 –.179∗ .003 6.631 .064
0.75 .889 –.000 +.020∗ .886 –.001 +.006∗ .810 +.002 +.011∗ .554 +.018 –.149∗ .003 6.685 .065

MNIST
Number of
ensemble
members

100 .897 –.002 +.021∗ .743 –.016 +.025∗ .786 –.020 +.021∗ .427 +.024 –.136∗ .020 40.775 3.318
500 .897 –.001 +.021∗ .745 –.008 +.025∗ .792 –.014 +.021∗ .426 +.011 –.136∗ .039 42.347 7.766
1000 .897 –.001 +.021∗ .745 –.005 +.025∗ .793 –.009 +.022∗ .426 +.012 –.136∗ .060 42.492 13.405

Dropout
rate

0.1 .901 –.001 +.021∗ .748 –.007 +.024∗ .795 –.010 +.023∗ .428 +.015 –.144∗ .054 42.740 13.358
0.2 .897 –.001 +.021∗ .745 –.005 +.025∗ .793 –.009 +.022∗ .426 +.012 –.136∗ .060 42.492 13.405
0.5 .867 –.001 +.025∗ .714 –.005 +.022∗ .795 –.012 +.012∗ .496 +.013 –.129∗ .061 42.346 13.435

FMNIST
Number of
ensemble
members

100 .684 –.001 +.019∗ .649 –.012 +.001 .764 –.023 +.010∗ 1.082 +.022 –.150∗ .020 41.548 3.306
500 .684 –.001 +.019∗ .648 –.008 +.001 .765 –.012 +.010∗ 1.081 +.024 –.150∗ .036 42.818 7.744
1000 .684 –.001 +.019∗ .649 –.005 +.001 .766 –.012 +.010∗ 1.081 +.018 –.150∗ .058 42.786 13.454

Dropout
rate

0.1 .689 –.001 +.018∗ .646 –.004 +.001 .745 –.009 +.008 1.131 +.021 –.158∗ .061 42.548 13.443
0.2 .684 –.001 +.019∗ .649 –.005 +.001 .766 –.012 +.010∗ 1.081 +.018 –.150∗ .058 42.786 13.454
0.5 .665 –.001 +.019∗ .617 –.001 +.001 .781 –.007 +.012∗ 1.041 +.015 –.138∗ .056 43.270 13.456

17

Under review as a conference paper at ICLR 2023

Table D.3: Ablation study for SNGP-MC (MC-based updates and inference) as an overview of
averaged absolute baseline performances, their relative performance differences to Bayesian up-
dates/retraining, and their computation times. A (∗) marks a significant performance improvement
compared to the respective baseline, and a bold entry indicates the default value for the respective
hyperparameter.

Hyper-
parameter Value ACC ↑ AUROC ↑ (entropy) AUROC ↑ (variance) NLL ↓ TIME [s] ↓

base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. upd. retr. pred.

LETTER
Number of
ensemble
members

1000 .542 –.023 +.029∗ .844 –.029 +.015∗ .591 +.013 +.016∗ 1.909 +.034 –.096∗ .019 8.735 .231
10000 .542 –.009 +.029∗ .844 –.013 +.015∗ .589 +.025∗ +.016∗ 1.909 –.004 –.096∗ .056 8.684 2.005
20000 .542 –.006 +.029∗ .844 –.010 +.015∗ .589 +.027∗ +.015∗ 1.909 –.014∗ –.096∗ .105 8.709 3.895

Norm
bound
scale

0.5 .542 –.002 +.029∗ .843 –.006 +.016∗ .609 +.015∗ +.015∗ 1.899 –.025∗ –.096∗ .104 8.446 3.784
1.0 .542 –.006 +.029∗ .844 –.010 +.015∗ .589 +.027∗ +.015∗ 1.909 –.014∗ –.096∗ .105 8.709 3.895
2.0 .540 –.007 +.029∗ .841 –.011 +.015∗ .588 +.030∗ +.016∗ 1.914 –.013∗ –.096∗ .104 8.457 3.638

Number of
inducing

points

256 .535 –.010 +.029∗ .844 –.012 +.016∗ .501 +.056∗ +.012∗ 1.953 –.004 –.094∗ .083 8.385 3.987
1024 .542 –.006 +.029∗ .844 –.010 +.015∗ .589 +.027∗ +.015∗ 1.909 –.014∗ –.096∗ .105 8.709 3.895
2048 .552 –.006 +.029∗ .838 –.007 +.014∗ .601 +.021∗ +.017∗ 1.881 –.019∗ –.096∗ .168 8.996 4.053

Kernel
scale

1.0 .246 –.099 +.017∗ .627 –.072 +.010∗ .463 +.031∗ –.004 3.017 +.105 –.024∗ .105 8.821 4.054
8.0 .542 –.006 +.029∗ .844 –.010 +.015∗ .589 +.027∗ +.015∗ 1.909 –.014∗ –.096∗ .105 8.709 3.895

256.0 .491 +.010∗ +.030∗ .738 +.010∗ +.020∗ .576 +.022∗ +.020∗ 1.994 –.051∗ –.117∗ .101 8.881 4.051
PENDIGITS

Number of
ensemble
members

1000 .890 +.003∗ +.021∗ .941 –.003 +.008∗ .920 –.014 +.012∗ .505 –.039∗ –.071∗ .012 8.853 .037
10000 .890 +.007∗ +.021∗ .941 +.001 +.008∗ .920 –.005 +.012∗ .506 –.048∗ –.072∗ .029 8.784 .453
20000 .890 +.008∗ +.021∗ .941 +.002 +.008∗ .920 +.001 +.012∗ .505 –.049∗ –.071∗ .049 8.611 .884

Norm
bound
scale

0.5 .887 +.008∗ +.021∗ .937 +.003∗ +.008∗ .910 +.002 +.011∗ .514 –.047∗ –.071∗ .047 8.952 .871
1.0 .890 +.008∗ +.021∗ .941 +.002 +.008∗ .920 +.001 +.012∗ .505 –.049∗ –.071∗ .049 8.611 .884
2.0 .890 +.008∗ +.021∗ .941 +.003∗ +.008∗ .920 +.002 +.012∗ .505 –.049∗ –.072∗ .047 8.759 .863

Number of
inducing

points

256 .895 +.008∗ +.020∗ .954 +.000 +.008∗ .924 +.004 +.014∗ .487 –.048∗ –.069∗ .031 8.211 .870
1024 .890 +.008∗ +.021∗ .941 +.002 +.008∗ .920 +.001 +.012∗ .505 –.049∗ –.071∗ .049 8.611 .884
2048 .897 +.009∗ +.021∗ .943 +.003 +.010∗ .926 –.005 +.011∗ .491 –.049∗ –.072∗ .075 8.829 .864

Kernel
scale

1.0 .800 –.035 +.032∗ .886 –.023 +.018∗ .769 –.013 +.021∗ 1.042 –.025∗ –.088∗ .047 8.883 .873
8.0 .890 +.008∗ +.021∗ .941 +.002 +.008∗ .920 +.001 +.012∗ .505 –.049∗ –.071∗ .049 8.611 .884

256.0 .862 +.011∗ +.029∗ .888 +.011∗ +.016∗ .806 +.025∗ +.024∗ .575 –.049∗ –.093∗ .042 8.775 .844
MNIST

Number of
ensemble
members

1000 .886 +.002∗ +.025∗ .920 –.001 +.006 .890 –.004 +.009∗ .424 –.022∗ –.087∗ .029 46.322 2.340
10000 .886 +.005∗ +.025∗ .919 –.001 +.005 .890 +.007 +.009∗ .425 –.030∗ –.087∗ .049 46.046 3.715
20000 .886 +.005∗ +.025∗ .920 +.000 +.005 .890 +.002 +.008∗ .424 –.029∗ –.087∗ .064 46.885 5.219

Norm
bound
scale

1.0 .887 +.005∗ +.025∗ .923 +.001 +.005 .894 +.005 +.008∗ .424 –.031∗ –.088∗ .064 46.287 5.226
6.0 .886 +.005∗ +.025∗ .920 +.000 +.005 .890 +.002 +.008∗ .424 –.029∗ –.087∗ .064 46.885 5.219
12.0 .886 +.005∗ +.025∗ .919 +.000 +.005 .889 +.002 +.009∗ .424 –.030∗ –.087∗ .058 47.607 5.157

Number of
inducing

points

256 .891 +.004∗ +.024∗ .919 –.000 +.009∗ .895 +.003 +.011∗ .408 –.028∗ –.084∗ .054 46.628 5.239
1024 .886 +.005∗ +.025∗ .920 +.000 +.005 .890 +.002 +.008∗ .424 –.029∗ –.087∗ .064 46.885 5.219
2048 .885 +.005∗ +.025∗ .910 –.000 +.009∗ .887 +.006∗ +.010∗ .430 –.028∗ –.088∗ .096 47.102 5.338

Kernel
scale

1.0 .886 +.005∗ +.025∗ .920 +.000 +.005 .890 +.002 +.008∗ .424 –.029∗ –.087∗ .064 46.885 5.219
8.0 .883 +.005∗ +.027∗ .909 +.003 +.009 .894 +.006 +.007∗ .435 –.032∗ –.095∗ .058 47.591 5.222

256.0 .810 +.006∗ +.036∗ .842 +.001 +.020∗ .845 +.007∗ +.011∗ .641 –.032∗ –.119∗ .065 46.441 5.210
FMNIST

Number of
ensemble
members

1000 .685 +.002 +.018∗ .764 –.009 –.001 .709 –.027 –.001 .922 –.016∗ –.067∗ .028 46.862 2.281
10000 .685 +.004∗ +.018∗ .764 –.013 –.001 .709 –.013 –.001 .922 –.024∗ –.067∗ .048 46.718 3.733
20000 .685 +.005∗ +.018∗ .764 –.009 –.001 .709 –.010 –.001 .922 –.030∗ –.067∗ .058 46.536 5.083

Norm
bound
scale

1.0 .685 +.005∗ +.019∗ .771 –.010 –.001 .715 –.009 –.001 .923 –.030∗ –.067∗ .060 46.920 5.169
6.0 .685 +.005∗ +.018∗ .764 –.009 –.001 .709 –.010 –.001 .922 –.030∗ –.067∗ .058 46.536 5.083
12.0 .685 +.005∗ +.018∗ .764 –.009 –.001 .709 –.010 –.001 .922 –.030∗ –.067∗ .065 47.333 5.135

Number of
inducing

points

256 .684 +.006∗ +.019∗ .742 –.005 +.006 .688 +.002 +.005 .941 –.030∗ –.065∗ .047 47.339 5.138
1024 .685 +.005∗ +.018∗ .764 –.009 –.001 .709 –.010 –.001 .922 –.030∗ –.067∗ .058 46.536 5.083
2048 .689 +.005∗ +.018∗ .756 –.007 –.004 .699 –.003 –.004 .918 –.027∗ –.063∗ .091 47.148 5.194

Kernel
scale

1.0 .685 +.005∗ +.018∗ .764 –.009 –.001 .709 –.010 –.001 .922 –.030∗ –.067∗ .058 46.536 5.083
8.0 .686 +.005∗ +.018∗ .740 –.014 –.001 .684 –.004 –.001 .925 –.035∗ –.073∗ .059 46.468 5.078

256.0 .651 +.006∗ +.024∗ .683 –.002 –.003 .519 +.022∗ +.013∗ .981 –.031∗ –.088∗ .063 47.568 5.109

18

Under review as a conference paper at ICLR 2023

Table D.4: Ablation study for SNGP-LA (LA-based updates and inference via mean-field approx-
imation) as an overview of averaged absolute baseline performances, their relative performance
differences to Bayesian updates/retraining, and their computation times. A (∗) marks a significant
performance improvement compared to the respective baseline, and a bold entry indicates the default
value for the respective hyperparameter.

Hyper-
parameter Value ACC ↑ AUROC ↑ (entropy) AUROC ↑ (variance) NLL ↓ TIME [s] ↓

base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. base ∆upd. ∆retr. upd. retr. pred.

LETTER
Number of

optimization
steps

1 .543 +.015∗ +.029∗ .845 +.007∗ +.015∗ .833 +.002∗ +.015∗ 1.929 –.051∗ –.095∗ .141 8.727 .040
2 .543 +.026∗ +.029∗ .845 +.013∗ +.015∗ .833 +.003∗ +.015∗ 1.929 –.085∗ –.095∗ .293 9.070 .041
5 .543 +.037∗ +.029∗ .845 +.022∗ +.015∗ .833 +.006∗ +.015∗ 1.929 –.136∗ –.095∗ .699 8.679 .040

Norm
bound
scale

0.5 .542 +.015∗ +.029∗ .844 +.007∗ +.016∗ .827 +.002∗ +.015∗ 1.917 –.052∗ –.095∗ .146 8.445 .040
1.0 .543 +.015∗ +.029∗ .845 +.007∗ +.015∗ .833 +.002∗ +.015∗ 1.929 –.051∗ –.095∗ .141 8.727 .040
2.0 .540 +.015∗ +.029∗ .841 +.007∗ +.015∗ .832 +.002∗ +.015∗ 1.933 –.051∗ –.095∗ .147 8.801 .041

Number of
inducing

points

256 .535 +.013∗ +.029∗ .843 +.006∗ +.016∗ .816 +.002∗ +.015∗ 1.973 –.046∗ –.093∗ .017 8.032 .039
1024 .543 +.015∗ +.029∗ .845 +.007∗ +.015∗ .833 +.002∗ +.015∗ 1.929 –.051∗ –.095∗ .141 8.727 .040
2048 .552 +.016∗ +.028∗ .838 +.007∗ +.014∗ .821 +.002∗ +.014∗ 1.900 –.052∗ –.095∗ .877 8.939 .039

Kernel
scale

1.0 .247 +.013∗ +.017∗ .628 +.006∗ +.010∗ .570 +.000∗ +.007∗ 3.032 –.013∗ –.023∗ .147 8.908 .041
8.0 .543 +.015∗ +.029∗ .845 +.007∗ +.015∗ .833 +.002∗ +.015∗ 1.929 –.051∗ –.095∗ .141 8.727 .040

256.0 .491 +.014∗ +.030∗ .740 +.011∗ +.020∗ .661 +.002∗ +.022∗ 1.999 –.054∗ –.114∗ .146 8.728 .040
PENDIGITS

Number of
optimization

steps

1 .890 +.013∗ +.021∗ .941 +.007∗ +.008∗ .940 +.004∗ +.009∗ .502 –.045∗ –.072∗ .144 8.724 .023
2 .890 +.020∗ +.021∗ .941 +.010∗ +.008∗ .940 +.007∗ +.009∗ .502 –.069∗ –.072∗ .269 8.619 .023
5 .890 +.025∗ +.021∗ .941 +.012∗ +.008∗ .940 +.011∗ +.009∗ .502 –.101∗ –.072∗ .688 8.826 .023

Norm
bound
scale

0.5 .887 +.013∗ +.021∗ .937 +.007∗ +.008∗ .933 +.005∗ +.009∗ .511 –.045∗ –.071∗ .146 8.519 .023
1.0 .890 +.013∗ +.021∗ .941 +.007∗ +.008∗ .940 +.004∗ +.009∗ .502 –.045∗ –.072∗ .144 8.724 .023
2.0 .890 +.013∗ +.021∗ .941 +.007∗ +.008∗ .940 +.004∗ +.009∗ .501 –.045∗ –.072∗ .145 8.700 .022

Number of
inducing

points

256 .895 +.014∗ +.020∗ .954 +.006∗ +.008∗ .949 +.005∗ +.010∗ .484 –.044∗ –.069∗ .017 8.171 .022
1024 .890 +.013∗ +.021∗ .941 +.007∗ +.008∗ .940 +.004∗ +.009∗ .502 –.045∗ –.072∗ .144 8.724 .023
2048 .898 +.015∗ +.021∗ .942 +.008∗ +.010∗ .944 +.004∗ +.010∗ .488 –.047∗ –.072∗ .737 9.173 .022

Kernel
scale

1.0 .801 +.025∗ +.032∗ .886 +.012∗ +.018∗ .841 +.006∗ +.021∗ 1.043 –.045∗ –.089∗ .148 8.903 .023
8.0 .890 +.013∗ +.021∗ .941 +.007∗ +.008∗ .940 +.004∗ +.009∗ .502 –.045∗ –.072∗ .144 8.724 .023

256.0 .862 +.012∗ +.029∗ .887 +.014∗ +.016∗ .843 +.010∗ +.026∗ .570 –.044∗ –.093∗ .138 8.833 .023
MNIST

Number of
optimization

steps

1 .886 +.006∗ +.025∗ .920 +.003∗ +.006∗ .936 +.003∗ +.005∗ .423 –.028∗ –.086∗ .168 46.247 2.229
2 .886 +.009∗ +.025∗ .922 +.003∗ +.006∗ .937 +.004∗ +.005∗ .423 –.040∗ –.086∗ .305 46.527 2.286
5 .886 +.011∗ +.025∗ .923 +.001 +.005∗ .937 +.003∗ +.005∗ .423 –.053∗ –.086∗ .716 46.615 2.268

Norm
bound
scale

1.0 .886 +.007∗ +.025∗ .921 +.003 +.005 .934 +.003∗ +.004∗ .423 –.029∗ –.087∗ .169 46.243 2.243
6.0 .886 +.006∗ +.025∗ .920 +.003∗ +.006∗ .936 +.003∗ +.005∗ .423 –.028∗ –.086∗ .168 46.247 2.229

12.0 .886 +.006∗ +.025∗ .922 +.003∗ +.005∗ .936 +.003∗ +.005∗ .422 –.029∗ –.086∗ .166 45.674 2.242
Number of
inducing

points

256 .889 +.006∗ +.025∗ .920 +.002 +.008∗ .930 +.002∗ +.008∗ .410 –.028∗ –.084∗ .040 47.838 2.291
1024 .886 +.006∗ +.025∗ .920 +.003∗ +.006∗ .936 +.003∗ +.005∗ .423 –.028∗ –.086∗ .168 46.247 2.229
2048 .885 +.006∗ +.026∗ .909 +.003∗ +.009∗ .922 +.005∗ +.007∗ .427 –.027∗ –.087∗ .783 46.486 2.262

Kernel
scale

1.0 .886 +.006∗ +.025∗ .920 +.003∗ +.006∗ .936 +.003∗ +.005∗ .423 –.028∗ –.086∗ .168 46.247 2.229
8.0 .883 +.006∗ +.027∗ .908 +.004∗ +.008 .922 +.005∗ +.006 .434 –.030∗ –.093∗ .158 46.756 2.289

256.0 .809 +.007∗ +.036∗ .845 +.002 +.018∗ .882 +.004∗ +.012∗ .639 –.029∗ –.118∗ .169 46.819 2.263
FMNIST

Number of
optimization

steps

1 .685 +.006∗ +.018∗ .764 –.005 +.001 .863 –.000 +.006∗ .924 –.034∗ –.066∗ .166 46.308 2.251
2 .685 +.008∗ +.018∗ .763 –.010 +.000 .862 –.002 +.006∗ .925 –.045∗ –.066∗ .304 45.951 2.260
5 .685 +.007∗ +.018∗ .764 –.020 –.001 .862 –.009 +.005 .925 –.045∗ –.066∗ .709 46.525 2.274

Norm
bound
scale

1.0 .685 +.006∗ +.018∗ .758 –.004 –.001 .859 +.000 +.004 .928 –.035∗ –.066∗ .168 46.380 2.269
6.0 .685 +.006∗ +.018∗ .764 –.005 +.001 .863 –.000 +.006∗ .924 –.034∗ –.066∗ .166 46.308 2.251

12.0 .685 +.006∗ +.018∗ .764 –.005 –.001 .861 –.001 +.006 .924 –.035∗ –.066∗ .168 45.763 2.246
Number of
inducing

points

256 .683 +.007∗ +.019∗ .743 –.000 +.004 .835 +.001 +.011∗ .944 –.036∗ –.065∗ .040 46.016 2.265
1024 .685 +.006∗ +.018∗ .764 –.005 +.001 .863 –.000 +.006∗ .924 –.034∗ –.066∗ .166 46.308 2.251
2048 .689 +.006∗ +.017∗ .751 –.002 –.002 .849 +.000 +.005 .920 –.031∗ –.062∗ 1.045 45.600 2.252

Kernel
scale

1.0 .685 +.006∗ +.018∗ .764 –.005 +.001 .863 –.000 +.006∗ .924 –.034∗ –.066∗ .166 46.308 2.251
8.0 .686 +.006∗ +.018∗ .730 –.009 –.001 .844 –.001 +.005 .927 –.039∗ –.072∗ .169 45.481 2.240

256.0 .650 +.007∗ +.024∗ .683 –.003 –.001 .774 +.000 +.022∗ .980 –.030∗ –.087∗ .170 46.289 2.277

19

Under review as a conference paper at ICLR 2023

E PERFORMANCE CURVES

50 100 150 200 250 300
samples in

0.2

0.4

0.6

AC
C

LETTER: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.2

0.3

0.4

0.5

0.6

0.7

AC
C

LETTER: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.2

0.4

0.6

AC
C

LETTER: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.2

0.4

0.6

AC
C

LETTER: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.02

0.00

0.02

0.04

0.06

0.08

0.10

AC
C

LETTER

50 100 150 200 250 300
samples in

0.6

0.7

0.8

0.9

AC
C

PDIGITS: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.6

0.7

0.8

0.9

AC
C

PDIGITS: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.6

0.7

0.8

0.9

AC
C

PDIGITS: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.6

0.7

0.8

0.9

AC
C

PDIGITS: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

AC
C

PDIGITS

50 100 150 200 250 300
samples in

0.5

0.6

0.7

0.8

0.9

AC
C

MNIST: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.6

0.7

0.8

0.9

AC
C

MNIST: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.5

0.6

0.7

0.8

0.9

AC
C

MNIST: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.5

0.6

0.7

0.8

0.9

AC
C

MNIST: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.00

0.05

0.10

0.15

0.20

AC
C

MNIST

50 100 150 200 250 300
samples in

0.5

0.6

0.7

AC
C

FMNIST: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.4

0.5

0.6

0.7

AC
C

FMNIST: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.4

0.5

0.6

0.7

AC
C

FMNIST: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.4

0.5

0.6

0.7

AC
C

FMNIST: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.000

0.025

0.050

0.075

0.100

0.125

0.150

AC
C

FMNIST

Figure E.1: ACC curves of four BNNs for four datasets showing absolute ACC (left, center column)
and ACC differences (right column) between the baseline BNN and the retrained respectively
Bayesian updated BNN.

20

Under review as a conference paper at ICLR 2023

50 100 150 200 250 300
samples in

0.600

0.625

0.650

0.675

0.700

AU
RO

C
(e

nt
ro

py
)

LETTER: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.58

0.60

0.62

0.64

0.66

0.68

AU
RO

C
(e

nt
ro

py
)

LETTER: Dropout
Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.6

0.7

0.8

0.9

AU
RO

C
(e

nt
ro

py
)

LETTER: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.7

0.8

0.9

AU
RO

C
(e

nt
ro

py
)

LETTER: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.06

0.04

0.02

0.00

0.02

0.04

0.06

AU
RO

C
(e

nt
ro

py
)

LETTER

50 100 150 200 250 300
samples in

0.84

0.86

0.88

0.90

0.92

0.94

AU
RO

C
(e

nt
ro

py
)

PDIGITS: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.80

0.85

0.90

AU
RO

C
(e

nt
ro

py
)

PDIGITS: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.80

0.85

0.90

0.95

AU
RO

C
(e

nt
ro

py
)

PDIGITS: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.80

0.85

0.90

0.95

AU
RO

C
(e

nt
ro

py
)

PDIGITS: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

AU
RO

C
(e

nt
ro

py
)

PDIGITS

50 100 150 200 250 300
samples in

0.5

0.6

0.7

0.8

0.9

AU
RO

C
(e

nt
ro

py
)

MNIST: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.4

0.5

0.6

0.7

0.8

0.9

AU
RO

C
(e

nt
ro

py
)

MNIST: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.80

0.85

0.90

0.95

AU
RO

C
(e

nt
ro

py
)

MNIST: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.850

0.875

0.900

0.925

0.950

AU
RO

C
(e

nt
ro

py
)

MNIST: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.10

0.05

0.00

0.05

0.10

0.15

AU
RO

C
(e

nt
ro

py
)

MNIST

50 100 150 200 250 300
samples in

0.60

0.65

0.70

AU
RO

C
(e

nt
ro

py
)

FMNIST: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.62

0.64

0.66

0.68

AU
RO

C
(e

nt
ro

py
)

FMNIST: Dropout
Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.725

0.750

0.775

0.800

0.825

AU
RO

C
(e

nt
ro

py
)

FMNIST: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.72

0.74

0.76

0.78

0.80

AU
RO

C
(e

nt
ro

py
)

FMNIST: SNGP-LA
SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.100

0.075

0.050

0.025

0.000

0.025

0.050

AU
RO

C
(e

nt
ro

py
)

FMNIST

Figure E.2: AUROC (entropy) curves of four BNNs for four datasets showing absolute AUROC (left,
center column) and AUROC differences (right column) between the baseline BNN and the retrained
respectively Bayesian updated BNN.

21

Under review as a conference paper at ICLR 2023

50 100 150 200 250 300
samples in

0.60

0.65

0.70

0.75

0.80

AU
RO

C
(v

ar
ia

nc
e)

LETTER: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.55

0.60

0.65

0.70

0.75

AU
RO

C
(v

ar
ia

nc
e)

LETTER: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.5

0.6

0.7

AU
RO

C
(v

ar
ia

nc
e)

LETTER: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.7

0.8

0.9

AU
RO

C
(v

ar
ia

nc
e)

LETTER: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

AU
RO

C
(v

ar
ia

nc
e)

LETTER

50 100 150 200 250 300
samples in

0.80

0.85

0.90

0.95

AU
RO

C
(v

ar
ia

nc
e)

PDIGITS: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.70

0.75

0.80

0.85

AU
RO

C
(v

ar
ia

nc
e)

PDIGITS: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.7

0.8

0.9

AU
RO

C
(v

ar
ia

nc
e)

PDIGITS: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.80

0.85

0.90

0.95

AU
RO

C
(v

ar
ia

nc
e)

PDIGITS: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

AU
RO

C
(v

ar
ia

nc
e)

PDIGITS

50 100 150 200 250 300
samples in

0.7

0.8

0.9

AU
RO

C
(v

ar
ia

nc
e)

MNIST: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.5

0.6

0.7

0.8

0.9

AU
RO

C
(v

ar
ia

nc
e)

MNIST: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.70

0.75

0.80

0.85

0.90

AU
RO

C
(v

ar
ia

nc
e)

MNIST: SNGP-MC

SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.86

0.88

0.90

0.92

0.94

0.96

AU
RO

C
(v

ar
ia

nc
e)

MNIST: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.10

0.05

0.00

0.05

0.10

0.15

0.20

AU
RO

C
(v

ar
ia

nc
e)

MNIST

50 100 150 200 250 300
samples in

0.64

0.66

0.68

0.70

0.72

0.74

AU
RO

C
(v

ar
ia

nc
e)

FMNIST: Ensemble

Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0.6

0.7

0.8

AU
RO

C
(v

ar
ia

nc
e)

FMNIST: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.66

0.68

0.70

0.72

0.74

0.76

AU
RO

C
(v

ar
ia

nc
e)

FMNIST: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.775

0.800

0.825

0.850

0.875

0.900

AU
RO

C
(v

ar
ia

nc
e)

FMNIST: SNGP-LA

SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

0.05

0.00

0.05

0.10

0.15

0.20

AU
RO

C
(v

ar
ia

nc
e)

FMNIST

Figure E.3: AUROC (variance) curves of four BNNs for four datasets showing absolute AUROC (left,
center column) and AUROC differences (right column) between the baseline BNN and the retrained
respectively Bayesian updated BNN.

22

Under review as a conference paper at ICLR 2023

50 100 150 200 250 300
samples in

2

4

6

8

10

NL
L

LETTER: Ensemble
Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

2

4

6

8

NL
L

LETTER: Dropout
Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

1.5

2.0

2.5

3.0

NL
L

LETTER: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

1.5

2.0

2.5

3.0

NL
L

LETTER: SNGP-LA
SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

NL
L

LETTER

50 100 150 200 250 300
samples in

1

2

3

4

NL
L

PDIGITS: Ensemble
Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

1

2

3

4
NL

L
PDIGITS: Dropout

Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.5

1.0

1.5

NL
L

PDIGITS: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.5

1.0

1.5

NL
L

PDIGITS: SNGP-LA
SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

2.5

2.0

1.5

1.0

0.5

0.0

NL
L

PDIGITS

50 100 150 200 250 300
samples in

0

1

2

3

4

NL
L

MNIST: Ensemble
Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

0

1

2

3

NL
L

MNIST: Dropout
Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.5

1.0

1.5

NL
L

MNIST: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.5

1.0

1.5

NL
L

MNIST: SNGP-LA
SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

3.0

2.5

2.0

1.5

1.0

0.5

0.0

NL
L

MNIST

50 100 150 200 250 300
samples in

1

2

3

4

NL
L

FMNIST: Ensemble
Ensemble (baseline)
Ensemble (update)
Ensemble (retrain)

50 100 150 200 250 300
samples in

1

2

3

4

NL
L

FMNIST: Dropout
Dropout (baseline)
Dropout (update)
Dropout (retrain)

50 100 150 200 250 300
samples in

0.75

1.00

1.25

1.50

1.75

2.00

NL
L

FMNIST: SNGP-MC
SNGP-MC (baseline)
SNGP-MC (update)
SNGP-MC (retrain)

50 100 150 200 250 300
samples in

0.75

1.00

1.25

1.50

1.75

2.00

NL
L

FMNIST: SNGP-LA
SNGP-LA (baseline)
SNGP-LA (update)
SNGP-LA (retrain)

50 100 150 200 250 300
samples in

2.0

1.5

1.0

0.5

0.0

NL
L

FMNIST

Figure E.4: NLL curves of four BNNs for four datasets showing absolute NLL (left, center column)
and NLL differences (right column) between the baseline BNN and the retrained respectively Bayesian
updated BNN.

23

Under review as a conference paper at ICLR 2023

F DETAILS ABOUT THE ACTIVE LEARNING USE CASE

In this appendix, we will describe the experimental setup for our active learning use case and
complement Section 5 by accuracy (i.e., learning) curves.

We start the active learning process with 16 labeled samples which are randomly selected. In each
active learning cycle, a subset of 1000 data samples is randomly selected as label candidates from the
unlabeled dataset. The top-b strategies (and BatchBALD) select the top 32 most valuable candidates
at one time. In contrast, the Bayesian update variants of these strategies will select only one sample
from the candidates for labeling and then perform LA-based Bayesian updates for each. In this case,
the updating process will be executed 31 times (b = 31). In any case, a retraining is performed after
an active learning cycle in which 32 labels are obtained. We perform 15 active learning cycles on the
datasets PDIGITS, 30 on MNIST and FMNIST, and 50 on LETTER, respectively. We also repeat
each experiment 10 times.

0 100 200 300 400
samples in

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

PDIGITS

RAND
US
US (update)
BALD
BALD (update)
QBC
QBC (update)
BatchBALD

0 200 400 600 800
samples in

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

AC
C

MNIST

RAND
US
US (update)
BALD
BALD (update)
QBC
QBC (update)
BatchBALD

0 200 400 600 800 1000 1200 1400 1600
samples in

0.40

0.50

0.60

0.70

0.80

0.90

AC
C

LETTER

RAND
US
US (update)
BALD
BALD (update)
QBC
QBC (update)
BatchBALD

0 200 400 600 800
samples in

0.60

0.65

0.70

0.75

0.80

AC
C

FMNIST

RAND
US
US (update)
BALD
BALD (update)
QBC
QBC (update)
BatchBALD

Figure F.1: Accuracy curves for the four benchmark datasets. The results are averaged over 10
repetitions. All query strategies using Bayesian updates perform superior to their respective top-b
counterpart by reaching a higher accuracy with less labeled samples.

As a result, we present learning curves in Figure F.1, which show the accuracy with respect to the
number of acquired labels. The accuracy curves on the FMNIST dataset can not show the apparent
differences between query strategies in the figure, and for detail, please check Table 3. We mainly
discuss the accuracy curves of the other three benchmark datasets in the following. During the early
active learning phase, the top-b strategies likely select uninformative instances and perform poorly,
and even random sampling performs better. However, Bayesian update strategies likely select more
diverse samples and surpass random sampling much earlier than top-b. BatchBALD and Bayesian
updated BALD perform similarly well and their performance difference is never significant. The
combination of Bayesian updates with US and QBC yields similar performance, and both perform
better than BatchBALD on different datasets (except FMNIST but the differences are not significant).
The performance of BatchBALD depends on the dataset. For example, on the LETTER dataset, the
area under the accuracy curve of BatchBALD is even lower than random sampling. In contrast, the
conventional active learning strategies such as US and QBC with Bayesian updates show consistently
high performance on different datasets, especially in the early stage of active learning.

24

Under review as a conference paper at ICLR 2023

We suppose that our proposed method SNGP with LA-based Bayesian updates addresses two problems
in applying deep active learning: (i) our idea selects more diverse samples than the top-b approach; (ii)
Bayesian updates will significantly reduce the cost of retraining, which is shown in Table 2. Moreover,
the performance of our method is comparable to or even higher than BatchBALD on different data
sets. This method can also be applied to some strategies unsuitable for active deep learning, such as
expected error reduction (Roy & McCallum, 2001) and probabilistic active learning (Kottke et al.,
2021), which require retraining the model for each selection candidate. Nevertheless, Bayesian
updates limit the possible model choices to those that are appropriate such as SNGP.

25

	Introduction
	Related Work
	Fast Bayesian Updates for Bayesian Neural Networks
	Bayesian Updates
	Fast Approximations of Bayesian Updates for Deep BNNs

	Bayesian Updating Experiments
	Experimental Setup
	Results

	Use Case: Active Learning with Bayesian Updates
	Discussion and Conclusion
	Multi-class Last-Layer Laplace-based Update for SNGP
	Out-of-distribution Detection
	Network Architectures and Hyperparameters
	(Deep) Ensembles
	Dropout
	Spectral Normalized Neural Gaussian Process (SNGP)

	Ablation Study
	Performance Curves
	Details about the active learning use case

