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ABSTRACT

Generative AI excels in various tasks through advanced language modeling tech-
niques, with its performance heavily influenced by input prompts. This has driven
significant research into prompt optimization, particularly in commercial generative
AI platforms, where prompt optimization is treated as a black-box optimization
problem. Most existing research on black-box prompt optimization primarily
focuses on offline learning and overlooks the randomness in outputs. However,
in real-world applications, black-box prompt optimization typically operates in
an online learning setting, which remains largely unexplored, especially given
the noisy outputs. To address these challenges, we propose an Adaptive Online
Zeroth-order Prompt Tuning (AOZPT) approach which integrates zeroth-order
optimization with online learning in the non-convex setting. Specifically, we de-
veloped an uncertainty-scale-adjustment mechanism to mitigate the noise inherent
in generative AI and the high variance associated with zeroth-order estimates. We
conducted a comprehensive regret analysis of the AOZPT approach, and the results
indicate that sublinear regret convergence is achievable. Extensive generative ex-
periments demonstrate that AOZPT outperforms existing black-box prompt tuning
methods, particularly in terms of stability in online scenarios.

1 INTRODUCTION

Generative artificial intelligence (AI) leverages advanced contextual understanding and language
modeling techniques to excel across a wide range of tasks (Feuerriegel et al., 2024; Brynjolfsson
et al., 2023; Epstein et al., 2023). These capabilities facilitate the generation of high-quality text,
code, and multimodal content, with applications in financial analysis, medical diagnosis support, and
automated content creation (Li et al., 2023; Zhou et al., 2024; Ji et al., 2024). The generative process
is partially influenced by the model’s inherent randomness, which arises from random sampling,
non-deterministic training elements, and variations in random seed initialization (Das & Varshney,
2022; Liu et al., 2024a; Gandee et al., 2024). These mechanisms enhance flexibility, allowing the
model to generate diverse and creative content across various tasks and contexts.

Generative AI achieves diverse functionalities primarily through fine-tuning (FT) or prompt tuning
(PT). FT involves adjusting all model weights to optimize performance for specific tasks; however, it
demands substantial computational resources, large datasets, and often leads to reduced generalization
and increased deployment complexity (Kenton & Toutanova, 2019; Liu, 2019; Liu et al., 2021). In
contrast, PT updates only a small subset of parameters, significantly reducing computational and data
requirements while preserving the model’s inherent knowledge and adaptability (Lester et al., 2021;
Zhang et al., 2024; Gao et al., 2020). Traditional white-box prompt tuning methods rely on access to
a model’s intermediate representations (Liu et al., 2021; Li & Liang, 2021; Zhou et al., 2022), while
black-box prompt tuning becomes essential when intermediate representations are inaccessible (Sun
et al., 2022; Diao et al., 2022; Cheng et al., 2023; Liu et al., 2024b; Wu et al., 2024). Notably,
black-box prompt tuning enables the optimization of input prompts without requiring a detailed
understanding of the model’s internal mechanisms.

Current research on black-box prompt tuning predominantly focuses on offline scenarios using pre-
established datasets. For example, Sun et al. (2022) proposed BBT, an offline method that optimizes
continuous prompts in a low-dimensional subspace using random projection and derivative-free
optimization techniques. Similarly, Deng et al. (2022) introduced RLPROMPT, which employs
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reinforcement learning to optimize discrete text prompts within an offline framework. Furthermore,
Diao et al. (2022) presented BDPL, an offline method for adapting large pre-trained language models
through the optimization of discrete prompts without accessing model parameters. For gradient-
based optimization, Zhan et al. (2024) developed the Zeroth-Order Tuning algorithm, designed
for offline black-box prompt tuning using inference APIs exclusively. Additionally, Zhang et al.
(2024) proposed a zeroth-order prompt tuning framework that addresses high-dimensional prompt
optimization challenges in offline settings through subspace learning and selection strategies. Hu
et al. (2024) introduced the ZOPO method, designed for offline learning scenarios, which effectively
optimizes discrete prompts through input domain transformation, NTK-GP-enhanced derivative-free
optimization, and uncertainty-informed local exploration. Collectively, these methods demonstrate
flexibility and strong performance, providing effective solutions for offline black-box prompt tuning.

Offline black-box prompt tuning methods lack adaptability to dynamic data changes, posing a signifi-
cant limitation for applications that require real-time updates. For example, in real-time customer
support systems, online learning dynamically refines prompts based on ongoing user interactions,
improving response accuracy and relevance (Upadhyaya, 2024). Similarly, in e-commerce platforms,
online learning analyzes user browsing behavior in real time to adjust recommendation content,
providing more personalized and precise services (Nkwo et al., 2018). In such scenarios, which
demand real-time interaction or feedback, offline black-box prompt optimization is often ineffective
or impractical. In contrast, online learning continuously optimizes prompts by integrating streaming
data, enabling systems to dynamically adapt to evolving information. As a result, online black-box
prompt tuning is more suitable for real-time applications, particularly those requiring rapid responses
and dynamic adjustments, demonstrating substantial potential for practical implementation.

Nevertheless, implementing black-box prompt tuning for generative AI in online learning contexts
presents notable challenges. First, the inherent randomness in generative AI models, while
beneficial for enhancing content diversity, is often perceived as noise. This noise introduces output
uncertainty, complicating prompt optimization in online black-box scenarios. Second, conventional
black-box prompt optimization techniques, such as Bayesian optimization (Shahriari et al., 2015) or
evolutionary algorithms (Bartz-Beielstein et al., 2014), require frequent surrogate model updates
or the evaluation of a large number of samples. These requirements render them impractical for
online learning scenarios (Sun et al., 2022; Zhang et al., 2024; Chen et al., 2023; Zhao et al., 2023;
Guo et al., 2023; Lange et al., 2024). In contrast, gradient estimation-based methods, particularly
zeroth-order optimization (ZOO), offer a more efficient, flexible, and robust framework for online
black-box prompt tuning (Zhan et al., 2024; Hu et al., 2024; Zhang et al., 2024). However, ZOO
approximates gradients using a limited number of function evaluations, often leading to high variance
during the search process (Gu et al., 2016; Liu et al., 2018; Feng & Wang, 2023). This variance
further exacerbates uncertainty in optimization, increasing its complexity.

Reduce uncertainty Estimated gradient

 Variance 

 Noise

Increase uncertainty

Uncertainty scale adjustment Different uncertainty scales

Figure 1: The adaptive uncertainty scale adjust-
ment mechanism.

To address the challenges of noise from gener-
ative AI and high variance in zeroth-order es-
timates in online black-box prompt optimiza-
tion, we propose Adaptive Online Zeroth-order
Prompt Tuning (AOZPT), the first method to
combine black-box prompt tuning with online
learning. In simulated streaming data scenarios,
AOZPT continuously adjusts prompts for gen-
erative AI based on incoming data, maintaining
optimal performance throughout the learning
process. Furthermore, to mitigate uncertainties
arising from zeroth-order variance and genera-
tive AI noise, we incorporate an adaptive uncer-
tainty scaling mechanism (Figure 1) into the update process, effectively reducing gradient uncertainty.

The key contributions are summarized as follows:

• This paper proposes the AOZPT approach, the first to integrate black-box prompt tuning
with online learning. AOZPT dynamically optimizes prompts based on streaming data,
maintaining optimal performance throughout continuous learning.
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• The AOZPT approach incorporates an adaptive uncertainty scaling mechanism to mitigate
the noise in outputs of generative AI and the high variance arising from zeroth-order gradient
estimates.

• We present a formal regret analysis of AOZPT in non-convex settings, demonstrating that
sublinear regret convergence is achievable. Additionally, we evaluate the AOZPT method
on both text-to-text and text-to-image tasks, with results consistently showing that AOZPT
outperforms baseline models.

2 METHOD

2.1 ONLINE BLACK-BOX PROMPT OPTIMIZATION

Online black-box prompt tuning: In an online learning scenario, a stream sample ξt is received at
each round t = 0, ..., T − 1, comprising an input sentence xt and its corresponding true label yt, i.e.,
ξt = (xt, yt). Let G represent the black-box generative model and ℓ denote the loss function. The
online black-box prompt tuning task involves minimizing the objective function f t by optimizing the
prompt ϕ:

f t
(
ϕt
)
≜ ℓ

(
G
(
ϕt;xt

)
, yt
)
. (1)

Based on the preceding discussion, mainstream black-box optimization methods, such as Bayesian
and evolutionary algorithms, are impractical in online learning scenarios, necessitating gradient-based
methods. However, directly applying gradient-based methods to optimize ϕ presents challenges, as ϕ
represents a natural language sentence involving numerous discrete structures, rendering gradient-
based methods unsuitable.

In-context Learning Prompt Generator To address the challenge of optimizing discrete prompts
with gradient-based methods, we employ the INSTRUCTZERO framework for prompt genera-
tion (Chen et al., 2023). Within this framework, we optimize a low-dimensional continuous vector
zt ∈ Rd, referred to as a soft prompt, to generate a high-quality discrete semantic instruction ϕt,
known as a hard prompt. Specifically, we represent a frozen open-source LLM as F and use a random
projection matrix A ∈ RD×d (D ≫ d) to project the low-dimensional vector zt ∈ Rd into the
high-dimensional embedding space RD of F . The resulting concatenated embedding is then input
into F for generating semantic prompts. This process can be mathematically expressed as follows:

ϕt = F
(
Azt + ϕ0; ξ

t
)
. (2)

This approach simplifies the process and enhances flexibility by optimizing soft prompts, represented
as low-dimensional continuous vectors, instead of directly optimizing discrete hard prompts. Ad-
ditionally, it effectively leverages the LLM’s contextual understanding capabilities, facilitating the
generation of high-quality prompts.

2.2 ADAPTIVE UNCERTAINTY SCALE ADJUSTMENT MECHANISM

The implementation of black-box prompt tuning for generative AI in online learning scenarios poses
significant challenges. First, the intrinsic output noise of generative AI models generates unstable
outputs, introducing uncertainty into the optimization process. Second, zero-order methods rely on
limited function evaluations to approximate gradients, often resulting in high variance.

Noise of generative AI output: The output of the generative AI is often accompanied by randomness,
even with fixed model parameters and inputs, the outputs may still vary. We define the randomness as
δ (zt), and the objective function with randomness can be defined as:

f t
δ

(
zt
)
≜ f t

(
zt
)
+ δ

(
zt
)
. (3)

High variance of zeroth-order optimization: ZOO estimates function gradients by sampling
random perturbations within the domain and analyzing the resulting changes in output, providing a
flexible framework for gradient estimation in black-box scenarios (Shamir, 2017). However, zero-
order methods, which rely on a limited number of function evaluations for gradient approximation,
often suffer from high variance during the search process (Liu et al., 2018). In the context of prompt
tuning for generative AI, the inherent noise in the model’s output renders this gradient estimation
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Streaming Data

Streaming Data

    Noisy Zeroth-order Optimization Oracle 

       Uncertainty  Scale Adjustment

AOZPTUpdate
 Soft Prompt 

      Open-source LLM          

 Semantically Prompt 

Figure 2: The architecture diagram of AOZPT model.

process a noisy zeroth-order approximation. To compute the partial derivative with respect to the soft
prompt z, we utilize the noisy central two-point random gradient estimator:

∇̂zf
t
δ

(
zt
)
=

f t
δ (z

t + µut)− f t
δ (z

t − µut)

2µ
ut, (4)

where µ is the smoothing parameter, and u is the direction vector sampled from the unit sphere
Sd :=

{
u ∈ Rd : ∥u∥2 = 1

}
.

Algorithm 1 AOZPT

Input: learning rate η, smooth parameter µ, the length of the sliding window w, weighting
parameter α and β, normalization parameter W and M , a small constant ϵ.
Output: {zt}Tt=1.
Initialize soft prompt z0.
for t = 0 to T − 1 do

Receive ξt = {xt, yt}.
Get ut by sampled from unit sphere Sd.
Compute: ϕt

+ = F (A (zt + µut) + ϕ0; ξ
t) and ϕt

− = F (A (zt − µut) + ϕ0; ξ
t).

Compute f t
δ (z

t + µut) and f t
δ (z

t − µut):

f t
δ

(
zt + µut

)
= ℓ

(
G
(
ϕt
+;x

t
)
, yt
)
+ δ

(
zt + µut

)
,

f t
δ

(
zt − µut

)
= ℓ

(
G
(
ϕt
−;x

t
)
, yt
)
+ δ

(
zt − µut

)
.

Compute the estimation gradient ∇̂zf
t
δ (z

t):

∇̂zf
t
δ

(
zt
)
=

f t
δ (z

t + µut)− f t
δ (z

t − µut)

2µ
ut

Compute mt ← 1
W

∑w−1
i=0 αi · ∇̂zf

t−i
δ

(
zt−i

)
and vt ← 1

M

∑w−1
i=0 βi ·

[
∇̂zf

t−i
δ

(
zt−i

)]2
.

Update zt+1 ← zt − η · mt√
vt+ϵ

.
end for

Adaptive uncertainty scale adjustment: To address the uncertainty caused by the noise in generative
AI and the variance in zeroth-order estimates, we introduce an adaptive uncertainty scaling mechanism.
This mechanism incorporates the exponentially weighted moving average of squared gradients into
the update process, effectively reducing gradient uncertainty. We define the gradient update as
follows:

zt+1 ← zt − η · mt√
vt + ϵ

. (5)
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Here, mt can be interpreted as a “momentum", incorporating the exponentially weighted moving
average of historical gradients to facilitate smoother and more stable gradient updates. The term mt

is defined as follows:

mt =
1

W

w−1∑
i=0

αi · ∇̂zf
t−i
δ

(
zt−i

)
, (6)

and vt can be regarded as an “adaptive term", incorporating the exponentially weighted moving
average of squared historical gradients. Including this term in the denominator enables the scaling
of estimated gradients across dimensions, effectively balancing gradient magnitudes and reducing
overall uncertainty. The term vt is defined as follows:

vt =
1

M

w−1∑
i=0

βi ·
[
∇̂zf

t−i
δ

(
zt−i

)]2
, (7)

where 0 < α, β < 1, and the superscript i of the αi and βi indicates the exponent to assign more
weights to the most recent values; W =

∑w−1
i=0 αi and M =

∑w−1
i=0 βi serve as the normalization

parameter for the exponential average, ensuring that 1
W

∑w−1
i=0 αi = 1 and 1

M

∑w−1
i=0 βi = 1;

f t
δ (z

t) = 0 for t ≤ 0.

2.3 ADAPTIVE ONLINE ZEROTH-ORDER PROMPT TUNING

The AOZPT approach optimizes prompts in online black-box scenario (Figure 2). During the prompt
generation phase, we utilize a frozen open-source LLM for instance optimization to refine the prompt
tuning. This approach capitalizes on the LLM’s robust capabilities in contextual learning and language
comprehension. Specifically, we leverage the model’s deep understanding of linguistic patterns and
context to generate high-quality, semantically rich prompts by optimizing its soft prompts. In the
prompt update phase, we introduce perturbations to the soft prompts to compute the differential of
the output loss function, thereby approximating the gradient using zeroth-order gradient estimation.
Additionally, we incorporate an adaptive uncertainty scale adjustment mechanism to address the
uncertainty of online black-box prompt tuning (Algorithm 1).

3 ANALYSIS

3.1 DEFINITIONS

Definition 3.1. Local regret for online non-convex optimization: The sliding window mechanism
provides an effective means of evaluating online learning algorithms by calculating the exponentially
weighted moving average of the loss, assigning greater weight to more recent losses (Hazan et al.,
2017). The exponentially weighted sliding-window average function defined as follows:

F t
w,α

(
zt
)
≜

1

W

w−1∑
i=0

αi · f t−i
(
zt−i

)
. (8)

The local regret for online black-box prompt tuning is formally defined by the accumulated squared
norm of the gradient of the exponentially weighted sliding-window average (Aydore et al., 2019):

R(T ) ≜
T∑

t=1

∥∥∇zF
t
w,α

(
zt
)∥∥2

2
, (9)

where ∇zF
t
w,α (zt) = 1

W

∑w−1
i=0 αi · ∇zf

t−i
(
zt−i

)
.

Definition 3.2. Temporal variability: Many researchers have imposed additional constraints on the
variation of the loss function between successive iterations, which is crucial for regret analysis in
the online nonconvex case. Drawing on the principle of hyper-regularity, the concept of variation is
defined as follows (Jadbabaie et al., 2015; Xu & Zhang, 2024):

V T =

T∑
t=2

∥ft(z)− ft−1(z)∥ , (10)

where we denote ∥g(z)− h(z)∥ ≜ supz∈Rd |g(z)− h(z)|.

5
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3.2 ASSUMPTIONS

Assumption 3.3. Lipschitz gradient of f t(zt): ∇zf
t is L-Lipschitz continuous, i.e., there exists a

constant L for ∀z1, z2 ∈ Rd, such that:∥∥∇zf
t (z1)−∇zf

t (z2)
∥∥
2
≤ L ∥z1 − z2∥2 . (11)

Assumption 3.4. Bounded of f(z): For all z ∈ Z , ft is bounded:

|ft(z)| ≤ H. (12)

Assumption 3.5. Bounded of noise: For all z ∈ Z , the following inequality is satisfied:

|δ(z)| ≤ ∆. (13)

Assumption 3.6. Bounded of gradient For all z ∈ Z , ∇̂zf
t
δ (z) and ∇zf

t (z) is bounded:∥∥∥∇̂zf
t
δ (z)

∥∥∥
∞
≤ G∞,

∥∥∇zf
t (z)

∥∥
2
≤ G. (14)

Assumption 3.3 and 3.4 are the basic assumptions for solving non-convex optimization prob-
lems (Ghadimi & Lan, 2013; Hazan & Kale, 2014; Xu et al., 2019; Liu et al., 2020). Assumption 3.5
is a common assumption just to claim the gap between the noisy function fδ(z) and the true function
f(z), such as random output, different data distributions, and adversarial perturbation (Berahas et al.,
2022; Gasnikov et al., 2023; Dvinskikh et al., 2022). In this study, we refer specifically to the noisy
output of the generative AI. Assumption 3.6 is critical in non-convex stochastic optimization, as it
ensures the fundamental effectiveness of the stochastic gradient (Duchi et al., 2011; Zhou et al., 2018;
Chen et al., 2018). Additionally, in experimental settings, it is common practice to impose constraints
on the gradients used for updates, such gradient clipping.

3.3 LEMMAS

Building on the above assumptions, we further constrain the uncertainty in noisy zeroth-order gradient
estimation. Unlike traditional zeroth-order methods (Ghadimi & Lan, 2013; Nesterov & Spokoiny,
2017), Lemma 3.7 and Lemma 3.8 account for the effects of noise in zeroth-order gradient estimation.
Specifically, Lemma 3.7 bounds the norm of the estimated gradient, while Lemma 3.8 limits the
discrepancy between the estimated and true gradients. This noise stems from the inherent randomness
in generative AI outputs, introducing additional variability into the objective function. These lemmas
are fundamental to the regret analysis of the subsequent AOZPT algorithm.

Lemma 3.7. Bound of the noisy zeroth-order gradient: If∇zf
t is L-Lipschitz continuous, and ut

is the direction vector sampled from the unit sphere Sd :=
{
u ∈ Rd : ∥u∥2 = 1

}
. Then, the noisy

zeroth-order gradient satisfies the following inequality:

Eut

[∥∥∥∇̂zf
t
δ

(
zt
)∥∥∥

2

]
≤ Lµ

2
(d+ 3)

3
2 + d

∥∥∇zf
t
(
zt
)∥∥

2
+

∆d
1
2

µ
. (15)

Lemma 3.8. Bound of the difference between the true gradient and noisy zeroth-order gradient:
If ∇zf

t is L-Lipschitz continuous, and ut is the direction vector sampled from the unit sphere
Sd :=

{
u ∈ Rd : ∥u∥2 = 1

}
. Then, the following inequality satisfies:∥∥∥Eut

[
∇̂zf

t
δ

(
zt
)]
−∇zf

t
δ

(
zt
)∥∥∥2

2
≤ 2d∆2

µ2
+

L2µ2(d+ 3)3

2
. (16)

3.4 THE REGRET ANALYSIS FOR AOZPT ALGORITHM

Theorem 3.9. Under Assumption 3.3 - Assumption 3.6, solving the online Black-box prompt learning
problem with Algorithm 1. For t = 1, . . . , T , we suppose γ = α

β1/2 ∈ (0, 1]. The following inequality
is satisfied:

R(T ) ≤ E1 + E2 + E3. (17)
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where

E1 =

(
4H + 2V T

)
G∞

η
, E2 =

TG∞

Wϵ
1
2

(
2d∆2

µ2
+

L2µ2(d+ 3)3

2

)
,

E3 =
LTηM

1
2 d

1
2G∞

2W (1− γ)ϵ
1
2

(
Lµ(d+ 3)

3
2

2
+ dG+

d
1
2∆

µ

)
.

Futher, we can get:

R(T ) = O

(
T

W
+

TM
1
2

W

)
. (18)

Remark 3.10. The E1 captures the error associated with the standard first-order gradient in regret
analysis. The E2 represents the cumulative zeroth-order variance and generative AI noise encountered
during the update process of the AOZPT algorithm, which can be mitigated by adjusting the window
length w. E3 is a common term in adaptive algorithms, is similarly influenced by zeroth-order variance
and generative AI noise. This highlights the significant impact of these factors on convergence
performance. The AOZPT algorithm leverages the adaptive uncertainty scale adjustment to adjust
parameters such as α, β and w, effectively limiting their influence. For instance, by setting α, β → 1−

with β ≤ α ≤ β
1
2 , and w = T

1
2 , this term can be reduced to a sublinear with respect to T . Under

these conditions, the AOZPT algorithm can also achieve sublinear regret.

Proof skeleton of Theorem 3.9: We begin by establishing the Lipschitz smoothness of the true
objective function with respect to the parameters z (Assumption 3.3), a fundamental prerequisite
for analyzing the nonconvex optimization problem. In the online nonconvex setting, we further
consider the exponentially weighted sliding-window average function to facilitate local regret analysis.
Subsequently, we address two primary sources of uncertainty: the variance introduced by zeroth-order
gradient and the output noise of the generative AI, as analyzed in Lemmas 3.7 and 3.8. Building
upon these assumptions and lemmas, we establish the sublinear regret of the AOZPT algorithm. The
detailed proofs of Lemmas 3.7, 3.8, and Theorem 3.9 are provided in Appendix A.2.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset. We conducted experiments across a range of generative tasks, including text-to-text
generation tasks (CNN/DailyMail (Hermann et al., 2015) and GSM8K (Cobbe et al., 2021) datasets)
and text-to-image generation tasks (Anime and Painting datasets). For performance evaluation, we
selected 500 samples from the CNN/DailyMail and GSM8K datasets, and 150 samples from the
Anime and Painting datasets.

Baselines. The baselines consist of an online zeroth-order approach and four commonly used classical
baselines adapted from an offline setup. The online zeroth-order approach, referred to as “ZO-OGD”
for brevity, serves as the primary comparison method, was described in detail by Algorithm 2. For
text-to-text generation tasks, the classical baselines include MANUAL PROMPT (MP), In-Context
Learning (ICL) (Brown et al., 2020), BDPL (Diao et al., 2022), and RLPROMPT (Deng et al., 2022).
For text-to-image generation tasks, the classical baselines are MP, ICL, SFT (Hao et al., 2024),
and Promptist (Hao et al., 2024). Additional details regarding the baselines are provided in the
Appendix C.

Evaluation Metrics. For the text summarization task, the F1-score served as the primary evaluation
metric. For the mathematical problem-solving task, accuracy (inverting cumulative binary 0-1 losses)
metric was used. For the text-to-image generation task, aesthetic quality was evaluated using the
Aesthetic Score Predictor1, which utilizes CLIP embeddings as input and is trained on the Aesthetic
Visual Analysis dataset (Murray et al., 2012).

Implementation Details. The experiments are conducted on a machine equipped with a cluster
of NVIDIA RTX A6000 GPUs. For text-to-text generation tasks, the open-source model Vicuna-

1https://github.com/christophschuhmann/improved-aesthetic-predictor
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7B2 was used to generate semantically meaningful prompts. The Llama-3.1-8B3, GPT-3.5-turbo4,
Qwen2.5-14B5 and Qwen3-235B 6 models are then employed, with each experiment repeated three
times using different random seeds to ensure robustness. For text-to-image generation tasks, the open-
source model Vicuna-13B7 is utilized to produce semantically meaningful prompts. Subsequently,
the Dreamlike-photoreal-2.08 and Stable Diffusion v1.59 models are employed, with each experiment
similarly repeated three times using different random seeds for consistency. The implementation
code is publicly available at https://anonymous.4open.science/r/AOZPT-7CB7.

4.2 TEXT-TO-TEXT GENERATION TASKS

We report the average cumulative F1 scores for the text summarization task and the average cu-
mulative accuracy for the mathematical problem task using the Llama-3.1-8B, GPT-3.5-turbo and
Qwen2.5-14B models, based on experiments conducted with three random seeds (14, 42, 81). The
comparative results for each algorithm across different datasets and models are presented in Table 1.
Table 1 demonstrates that AOZPT outperforms four widely used classical algorithms in most cases,
highlighting its effectiveness in online settings. Moreover, AOZPT surpasses ZO-OGD, further
validating the advantages of its adaptive uncertainty scale adjustment mechanism. In addition, Table
A.4 includes the results of the Qwen3-235B model on the GSM8K dataset, which further demonstrate
the effectiveness of our method. We also conducted ablation experiments to demonstrate the necessity
of open-source LLMs in Table 9.

Table 1: The average cumulative F1 score / accuracy ± standard deviation using Llama-3.1-8B,
GPT-3.5-turbo and Qwen2.5-14B models for CNN/DailyMail, GSM8K Datasets. Each result is
reported based on three Monte Carlo experiments. The best results are in bold.

Dataset CNN/DailyMail GSM8K
Method Llama-3.1-8B GPT-3.5-turbo Qwen2.5-14B Llama-3.1-8B GPT-3.5-turbo Qwen2.5-14B

MP 24.253±0.079 34.269±0.035 22.068±0.038 60.533±0.471 69.200±2.209 80.200±0.589
ICL 23.500±0.601 32.364±0.259 23.064±0.028 60.667±0.250 69.933±0.806 86.733±0.416

BDPL 23.885±0.280 35.372±0.098 21.700±3.909 37.667±14.055 36.406±1.765 89.000±0.748
RLPROMPT 23.618±0.175 34.681±0.031 20.098±0.579 66.867±0.471 63.800±2.168 81.867±0.094

ZO-OGD 24.667±0.027 34.682±0.291 22.034±0.651 65.067±5.705 69.533±2.532 92.533±0.929
AOZPT(Ours) 24.707±0.047 35.399±0.297 24.767±0.502 69.733±1.514 78.133±3.583 92.933±0.822

Table 2: The average cumulative aesthetic ± standard deviation using Dreamlike-photoreal-2.0 and
Stable Diffusion v1.5 models for Anime, Painting Datasets. Each result is reported based on three
Monte Carlo experiments. The best results are in bold.

Dataset Anime Painting
Method Dreamlik-2.0 Stable Diffusion v1.5 Dreamlike-2.0 Stable Diffusion v1.5

MP 5.785±0.002 5.336±0.010 6.364±0.008 5.858±0.011
ICL 6.133±0.008 5.710±0.021 6.521±0.016 6.074±0.015
SFT 6.117±0.004 5.621±0.025 6.645±0.004 6.103±0.023

Promptist 6.093±0.010 5.579±0.006 6.552±0.004 6.011±0.022
ZO-OGD 6.263±0.024 5.892±0.039 6.602±0.053 6.287±0.013

AOZPT (Ours) 6.282±0.021 5.930±0.015 6.656±0.015 6.313±0.009

4.3 TEXT-TO-IMAGE GENERATION TASKS

We present the average cumulative aesthetic score for the Dreamlike-photoreal-2.0 and Stable
Diffusion v1.5 models on the text-to-image generation tasks (Anime and Painting datasets), based

2https://huggingface.co/lmsys/vicuna-7b-v1.5
3https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
4https://openai.com/index/openai-api/
5https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M
6https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507
7https://huggingface.co/lmsys/vicuna-13b-v1.3
8https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0
9https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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on experiments conducted with three random seeds. The comparative results for each algorithm
across different datasets and models are provided in Table 2. Table 2 shows that AOZPT outperforms
baseline methods in most cases, demonstrating its effectiveness in online scenarios. Table 5 presents
text-to-image experiments conducted under data drift conditions. The results indicate that under
varying levels of data drift (10, 50, 75, 150), the online black-box optimization algorithms achieve
higher aesthetic. In Table 6, ablation experiments are also included to illustrate the role of the
adaptive uncertainty scale adjustment mechanism and the online zero-order gradient method in
prompt optimization. Additionally, we provide a performance comparison between our adaptive
uncertainty scale adjustment mechanism and several widely-used adaptive gradient algorithms in
Table 10. Lastly, we present a case study of the Anime and Painting dataset in Table 11 and Table 12.

5 DISCUSSION

5.1 ONLINE LEARNING VS. OFFLINE LEARNING

Offline learning offers distinct advantages, particularly for fixed-task datasets, by enabling stable
training processes and achieving high accuracy. However, its primary application lies in developing
deployable model products, as it lacks adaptability to evolving data. When confronted with dynamic
data streams, offline learning requires retraining the model on the entire dataset, encompassing both
historical and newly acquired data. This process incurs substantial computational costs and training
inefficiencies. Each time the data changes, the model must be retrained from scratch, rendering
this approach unsuitable for scenarios demanding real-time responses and frequent updates. This
limitation stems not from the model itself but from the offline learning paradigm. By contrast, online
learning provides a more effective alternative. It incrementally processes streaming data and updates
the model in real time, enabling dynamic adaptation to data changes. Rather than retraining the
entire model, online learning continuously updates and optimizes it based on current inputs, thereby
reducing computational overhead and enhancing responsiveness.

5.2 REAL-WORLD, NON-HYPOTHETICAL APPLICATION SCENARIOS

Emotion-responsive chatbots and intelligent tutoring systems—are not hypothetical constructs,
but are grounded in real product requirements. These systems must adapt their response styles
and content in real time based on user feedback, rendering long-cycle model fine-tuning or manual
prompt redesign impractical. Consequently, online black-box prompt optimization presents a broadly
applicable solution for real-world deployment. For instance, emotion-aware chatbots such as Replika
and Woebot adjust their tone in response to users’ emotional states, despite lacking access to
internal model weights. Similarly, language learning platforms like Duolingo Max and Socratic
dynamically tailor instructional content and tone based on student performance. In both cases,
real-time model adaptation is infeasible, necessitating input-side prompt adjustments to enable
responsive and personalized behavior. To further illustrate the practical applicability of our method,
we present additional examples from high-stakes domains such as healthcare, finance, and law in
Appendix C.5, where the feature distribution of input data is rarely stationary.

6 CONCLUSION

In this paper, we propose AOZPT, a novel approach that combines black-box prompt tuning with
online learning. This method utilizes a frozen open-source LLM for instance optimization, leveraging
the LLM’s advanced understanding of language patterns and context to optimize soft prompts for
generating high-quality, semantically rich prompts. During the prompt updating phase, AOZPT
dynamically adjusts prompts for generative AI based on streaming data, eliminating the need for
retraining on the entire dataset. To address the variance in zeroth-order gradient estimation and the
noise in generative AI, we introduce an adaptive uncertainty scaling mechanism. This mechanism
incorporates the exponentially weighted moving average of gradients into the update process, ef-
fectively reducing gradient uncertainty. To validate the effectiveness of AOZPT, we performed a
formal regret analysis in non-convex settings, demonstrating that sublinear regret convergence is
achievable. Furthermore, we evaluated AOZPT on both text-to-text (CNN/DailyMail and GSM8K)
and text-to-image (Anime and Painting) tasks in simulated online scenarios, with results consistently
indicating that AOZPT outperforms baseline models.
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A CONVERGENCE ANALYSIS

A.1 NOTATION

Table 3: Notations.

Symbolic Meaning

t = 1, ..., T Number of iterations
∥·∥p p-norm
δ Noise of model’s output
E Expectation
ξ = {x, y} Sample
F Open-source LLM
A ∈ RD×d Random projection matrix
zt ∈ Rd Optimized low-dimensional vector
ϕ0 The initial prompt
ϕt ∈ Φ The discrete prompt
G Generative model
ℓ Loss function
f Objective function
F Sliding-window average function
w Length of window
α Weight
∇zf The full gradient
∇̂zf The zeroth-order gradient
∇̂zfδ The noisy zeroth-order gradient
g ∇̂zfδ
V diag(v + ϵ)

Algorithm 2 Zeroth-order Online Gradient Descent (ZO-OGD)

Input: learning rate η, smooth parameter µ, number of samples Q.
Output: {zt}Tt=1.
Initialize z0.
for t = 0 to T − 1 do

Receive Dt = {xt, yt}.
Get

{
ut
q

}Q
q=1

by sampled uniformly from unit sphere Sd :=
{
u ∈ Rd : ∥u∥2 = 1

}
.

Compute f t
δ

(
zt + µut

q

)
and f t

δ

(
zt − µut

q

)
by (3).

Compute the estimation gradient ∇̂zf
t
δ (z

t):

∇̂zf
t
δ (z) =

1

Q

Q∑
q=1

f t
δ

(
zt + µut

q

)
− f t

δ

(
zt − µut

q

)
2µ

u, (19)

Update zt+1 ← zt − η · ∇̂zf
t
δ (z

t).
end for

A.2 PROOFS OF IMPORTANT LEMMAS AND THEOREMS

Proof of Lemma 3.7:

14
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Proof. According to the definition (4):

Eu

[∥∥∥∇̂zf
t
δ

(
zt
)∥∥∥

2

]
= Eu

[∥∥∥∥f t
δ (z

t + µut)− f t
δ (z

t − µut)

2µ
ut

∥∥∥∥
2

]
=

1

2µ
Eu

[∥∥(f t
δ

(
zt + µut

)
− f t

δ

(
zt − µut

))
ut
∥∥
2

]
(1)

≤ 1

2µ
Eu

[∥∥(f t
(
zt + µut

)
− f t

(
zt − µut

))
ut
∥∥
2

]︸ ︷︷ ︸
a)

+
1

2µ
Eu

[∥∥(δ (zt + µut
)
− δ

(
zt − µut

))
ut
∥∥
2

]︸ ︷︷ ︸
b)

,

(20)

where (1) use the inequality ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2 and definition (3).
Then, for a):

Eu

∥∥(f t
(
zt + µut

)
− f t

(
zt − µut

))
ut
∥∥
2

(1)

≤ Eu

∥∥(f t
(
zt + µut

)
− f t

(
zt
)
−
〈
∇zf

t
(
zt
)
, µut

〉)
ut
∥∥
2

+ Eu

∥∥(f t
(
zt − µut

)
− f t

(
zt
)
+
〈
∇zf

t
(
zt
)
, µut

〉)
ut
∥∥
2
+ Eu

∥∥2 〈∇zf
t
(
zt
)
, µut

〉
ut
∥∥
2

(2)

≤ 2Eu

∥∥∥∥L2 µ2
∥∥ut
∥∥2
2
ut

∥∥∥∥
2

+ 2Eu

∥∥〈∇zf
t
(
zt
)
, µut

〉
ut
∥∥
2

= Lµ2Eu

∥∥ut
∥∥3
2
+ 2µEu

∥∥〈∇zf
t
(
zt
)
, ut
〉∥∥

2

∥∥ut
∥∥
2

(3)

≤ Lµ2(d+ 3)
3
2 + 2µd

∥∥∇zf
t
(
zt
)∥∥

2
, (21)

where (1) use inequality ∥a+ b+ c∥2 ≤ ∥a∥2 + ∥b∥2 + ∥c∥2; (2) uses the Assumption 3.3; (3) use
the Lemma 1 in Nesterov & Spokoiny (2017).

Before proving (b), we first establish two inequalities that follow from Assumption 3.5.

Since δ(zt) is conditionally σ-sub-Gaussian given Ft−1, its conditional log-moment generating
function satisfies

logE
[
exp(λδ(zt)) | Ft−1

]
≤ λ2σ2

2
, ∀λ ∈ R.

It is well known (see, e.g., standard facts on sub-Gaussian random variables) that this implies a bound
on the second moment; more precisely,

E
[
δ(zt)2 | Ft−1

]
≤ σ2. (A.1)

Next, consider the two conditionally independent noise variables δ(zt + µut) and δ(zt − µut)
appearing in the two-point estimator at round t. By Assumption 3.5 and (A.1), both satisfy

E
[
δ(zt + µut)2 | Ft−1, u

t
]
≤ σ2, E

[
δ(zt − µut)2 | Ft−1, u

t
]
≤ σ2.

Using the elementary inequality (a− b)2 ≤ 2a2 + 2b2, we obtain

E
[
(δ(zt + µut)− δ(zt − µut))2 | Ft−1, u

t
]
≤ 2E

[
δ(zt + µut)2 | Ft−1, u

t
]

+ 2E
[
δ(zt − µut)2 | Ft−1, u

t
]

≤ 4σ2.

Taking expectation over ut and Ft−1 yields

E
[
(δ(zt + µut)− δ(zt − µut))2

]
≤ 4σ2. (A.2)

We will now use (A.1)–(A.2) to bound the noise term in (b).
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For (b), using Assumption 3.5 and the inequalities (A.1)–(A.2), we have

Eu,δ

[∥∥(δ (zt + µut
)
− δ

(
zt − µut

))
ut
∥∥
2

]
≤
(
Eu,δ

[(
δ
(
zt + µut

)
− δ

(
zt − µut

))2]) 1
2
(
Eu

[∥∥ut
∥∥2
2

]) 1
2

(1)

≤ 2σd
1
2 ,

where (1) follows from (A.2), and from Lemma 1 in Nesterov & Spokoiny (2017).

Finally, we take a) and b) into (20):

Eu

[∥∥∥∇̂zf
t
δ

(
zt
)∥∥∥2

2

]
≤ 1

2µ
·
(
Lµ2(d+ 3)

3
2 + 2µd

∥∥∇zf
t
(
zt
)∥∥

2

)
+

1

2µ
· 2σd 1

2

=
Lµ

2
(d+ 3)

3
2 + d

∥∥∇zf
t
(
zt
)∥∥

2
+

σd
1
2

µ
.

Proof of Lemma 3.8:

Proof. ∥∥∥Eu

[
∇̂zf

t
δ

(
zt
)]
−∇zf

t
(
zt
)∥∥∥2

2

≤ 2
∥∥∥Eu

[
∇̂zf

t
δ

(
zt
)]
− Eu

[
∇̂zf

t
(
zt
)]∥∥∥2

2
+ 2

∥∥∥Eu

[
∇̂zf

t
(
zt
)]
−∇zf

t
(
zt
)∥∥∥2

2

(1)

≤ 2Eu

[∥∥∥∥δ(zt + µut)− δ(zt − µut)

2µ
ut

∥∥∥∥2
2

]
+

L2µ2(d+ 3)3

2

(2)

≤ 2σ2d

µ2
+

L2µ2(d+ 3)3

2
.

where (1) uses Jensen’s inequality and Lemma 3 in Nesterov & Spokoiny (2017); (2) uses inequali-
ties (A.1)–(A.2) derived from Assumption 3.5.

Lemma A.1. For t = 1, . . . , T , α, β are the weight parameters, and γ = α/β1/2. To simplify the
expression, we denote ∇̂zf

t
δ (z

t) as gt. And we denote Vt = vt + ϵ. Suppose that γ ≤ 1, then we
have the following inequality for :

T∑
t=1

∥∥∥V− 1
2

t mt

∥∥∥2
2
≤ d1/2M

1
2

2W (1− γ)ϵ
1
2

T∑
t=1

∥∥gt∥∥
2
. (22)

Proof of Lemma A.1:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Recall that vt,j ,mt,j , gt,j denote the j-th coordinate of vt,mt and gt. We have

∥V− 1
2

t mt∥22 =

d∑
j=1

m2
t,j

v
1
2
t,j

·
v

1
2
t,j

vt,j + ϵ

(1)

≤
d∑

j=1

m2
t,j

v
1
2
t,j

·
v

1
2
t,j

2v
1
2
t,jϵ

1
2

=
1

2ϵ
1
2

d∑
j=1

m2
t,j

v
1
2
t,j

=
M

1
2

2W 2ϵ
1
2

d∑
j=1

(∑w−1
i=0 αigt−i,j

)2
(∑w−1

i=0 βig2t−i,j

) 1
2

, (23)

where (1) is use inequality a+ b ≥ 2
√
ab . Next we have

M
1
2 η2

2W 2ϵ
1
2

d∑
j=1

(∑w−1
i=0 αigt−i,j

)2
(∑w−1

i=0 βig2t−i,j

) 1
2

≤ M
1
2 η2

2W 2ϵ
1
2

d∑
j=1

(∑w−1
i=0 αi

)(∑w−1
i=0 αi|gt−i,j |2

)
(∑w−1

i=0 βig2t−i,j

) 1
2

=
M

1
2 η2

2Wϵ
1
2

d∑
j=1

∑w−1
i=0 αi|gt−i,j |2(∑w−1
i=0 βig2t−i,j

) 1
2

≤ M
1
2 η2

2Wϵ
1
2

d∑
j=1

w−1∑
i=0

αi|gt−i,j |2(
βig2t−i,j

) 1
2

=
M

1
2 η2

2Wϵ
1
2

d∑
j=1

w−1∑
i=0

(
α

β
1
2

)i|gt−i,j |

=
M

1
2 η2

2Wϵ
1
2

d∑
j=1

w−1∑
i=0

γi|gt−i,j |, (24)

where the first inequality holds due to Cauchy inequality. The last equality holds due to the definition
of γ. Telescoping (24) for t = 1 to T , we have:

T∑
t=1

∥V− 1
2

t mt∥22 ≤
M

1
2

2Wϵ
1
2

T∑
t=1

d∑
j=1

w−1∑
i=0

γi|gt−i,j |

(1)

≤ M
1
2

2Wϵ
1
2

T∑
t=1

d∑
j=1

t∑
i=0

γi|gt−i,j |

=
M

1
2

2Wϵ
1
2

d∑
j=1

T∑
t=1

|gt,j |
t∑

i=0

γi

(2)

≤ M
1
2

2W (1− γ)ϵ
1
2

T∑
t=1

d∑
j=1

|gt,j |

(3)

≤ M
1
2

2W (1− γ)ϵ
1
2

T∑
t=1

 d∑
j=1

g2t,j

1/2

· d1/2

=
d1/2M

1
2

2W (1− γ)ϵ
1
2

T∑
t=1

∥∥gt∥∥
2
, (25)
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where (1) is because f t
δ (z

t) = 0 for t ≤ 0; (2) is because γ ≤ 1; (3) holds due to Hölder’s
inequality.

Proof Theorem 3.9:

Proof. Since∇zf
t (zt) is L-Lipschitz continuous,∇zF

t
w,α (zt) is also L-Lipschitz continuous, then

we can get:

F t
w,α

(
zt+1

)
− F t

w,α

(
zt
)

≤
〈
∇zF

t
w,α

(
zt
)
, zt+1 − zt

〉
+

L

2

∥∥zt+1 − zt
∥∥2
2
. (26)

We take the expectation about {ur}tr=t−w+1 for both sides, then we simplify E{ur}t
r=t−w+1

to Eu:

Eu

[
F t
w,α

(
zt+1

)
− F t

w,α

(
zt
)]︸ ︷︷ ︸

a)

≤ Eu

[〈
∇zF

t
w,α

(
zt
)
, zt+1 − zt

〉]︸ ︷︷ ︸
b)

+
L

2
Eu

[∥∥zt+1 − zt
∥∥2
2

]
. (27)

For a):

Eu

[
F t
w,α

(
zt+1

)
− F t

w,α

(
zt
)]

= F t
w,α

(
zt+1

)
− F t

w,α

(
zt
)

= F t
w,α

(
zt+1

)
− F t+1

w,α

(
zt+1

)
+ F t+1

w,α

(
zt+1

)
− F t

w,α

(
zt
)
. (28)

For b):

Eu

[〈
∇zF

t
w,α

(
zt
)
, zt+1 − zt

〉]
=
〈
∇zF

t
w,α

(
zt
)
,−η · Eu

[
V

− 1
2

t ∇̂zF
t
δ,w,α

(
zt
)]〉

= Eu

[〈
∇zF

t
w,α

(
zt
)
,−η ·V− 1

2
t ∇zF

t
w,α

(
zt
)〉]

+ Eu

[〈
∇zF

t
w,α

(
zt
)
, η ·V− 1

2
t

(
∇zF

t
w,α

(
zt
)
−mt

)〉]
= Eu

[〈
∇zF

t
w,α

(
zt
)
,−η ·V− 1

2
t ∇zF

t
w,α

(
zt
)〉]

+ η · Eu

[〈
∇zF

t
w,α

(
zt
)
·V− 1

4
t ,V

− 1
4

t

(
∇zF

t
w,α

(
zt
)
−mt

)〉]
(1)

≤ Eu

[〈
∇zF

t
w,α

(
zt
)
,−η ·V− 1

2
t ∇zF

t
w,α

(
zt
)〉]

+ Eu

[〈
∇zF

t
w,α

(
zt
)
,
η

2
·V− 1

2
t ∇zF

t
w,α

(
zt
)〉]

+
η

2
Eu

[∥∥∥(∇zF
t
w,α

(
zt
)
−mt

)
·V− 1

4
t

∥∥∥2
2

]
= Eu

[〈
∇zF

t
w,α

(
zt
)
,−η

2
·V− 1

2
t ∇zF

t
w,α

(
zt
)〉]

+
η

2
Eu

[∥∥∥(∇zF
t
w,α

(
zt
)
−mt

)
·V− 1

4
t

∥∥∥2
2

]
,

(29)

where (1) is use inequality ⟨a, b⟩ ≤ ∥a∥2
2+∥b∥2

2

2 .

Organizing the (28) and (29) into (27), we can get:

F t
w,α

(
zt+1

)
− F t+1

w,α

(
zt+1

)
+ F t+1

w,α

(
zt+1

)
− F t

w,α

(
zt
)

≤ Eu

[〈
∇zF

t
w,α

(
zt
)
,−η

2
·V− 1

2
t ∇zF

t
w,α

(
zt
)〉]

+
η

2
Eu

[∥∥∥(∇zF
t
w,α

(
zt
)
−mt

)
·V− 1

4
t

∥∥∥2
2

]
+

Lη2

2
Eu

[∥∥∥V− 1
2

t mt

∥∥∥2
2

]
. (30)
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Because of Vt ≤ G2
∞I, refer to Lemma 6.4 in Zhou et al. (2018),we get:

F t
w,α

(
zt+1

)
− F t+1

w,α

(
zt+1

)
+ F t+1

w,α

(
zt+1

)
− F t

w,α

(
zt
)

≤ − η

2G∞
Eu

[∥∥∇zF
t
w,α

(
zt
)∥∥2

2

]
+

η

2
Eu

[∥∥∥(∇zF
t
w,α

(
zt
)
−mt

)
·V− 1

4
t

∥∥∥2
2

]
+

Lη2

2
Eu

[∥∥∥V− 1
2

t mt

∥∥∥2
2

]
. (31)

and for both sides take t = 1, ..., T in (31) gives:

η

2G∞

T∑
t=1

Eu

[
∇zF

t
w,α

(
zt
)]
≤

T∑
t=1

F t
w,α

(
zt+1

)
− F t+1

w,α

(
zt+1

)
+ F t+1

w,α

(
zt+1

)
− F t

w,α

(
zt
)

︸ ︷︷ ︸
a)

+
η

2

T∑
t=1

Eu

[∥∥∥(∇zF
t
w,α

(
zt
)
−mt

)
·V− 1

4
t

∥∥∥2
2

]
︸ ︷︷ ︸

b)

+
Lη2

2

T∑
t=1

Eu

[∥∥∥V− 1
2

t mt

∥∥∥2
2

]
︸ ︷︷ ︸

c)

. (32)

For (a):

T∑
t=1

F t
w,α

(
zt+1

)
− F t+1

w,α

(
zt+1

)
+ F t+1

w,α

(
zt+1

)
− F t

w,α

(
zt
)

=

T∑
t=1

(
F t
w,α

(
zt
)
− F t+1

w,α

(
zt+1

))
+

T∑
t=1

(
F t+1
w,α

(
zt+1

)
− F t

w,α

(
zt+1

))
=

1

W

w−1∑
i=0

αi ·
T∑

t=1

(
f t−i

(
zt−i

)
− f t+1−i

(
zt+1−i

))
+

1

W

w−1∑
i=0

αi ·
T∑

t=1

(
f t+1−i

(
zt+1−i

)
− f t−i

(
zt+1−i

))
(1)

≤ 2H + V T . (33)

where (1) use Assumption 3.4, Definition (10).
For (b):

η

2

T∑
t=1

Eu

[∥∥∥(∇zF
t
w,α

(
zt
)
−mt

)
·V− 1

4
t

∥∥∥2
2

]
(1)

≤ η

2ϵ
1
2

T∑
t=1

Eu

∥∥∥∇zF
t
w,α

(
zt
)
− ∇̂zF

t
δ,w,α

(
zt
)∥∥∥2

2

=
η

2ϵ
1
2

T∑
t=1

Eu

∥∥∥∥∥ 1

W

w−1∑
i=0

αi ·
[
∇zf

t−i
(
zt−i

)
− ∇̂zf

t−i
δ

(
zt−i

)]∥∥∥∥∥
2

2

(2)
=

η

2W 2ϵ
1
2

T∑
t=1

w−1∑
i=0

(αi)2 · Eut−i

∥∥∥∇zf
t−i
(
zt−i

)
− ∇̂zf

t−i
δ

(
zt−i

)∥∥∥2
2

(3)

≤ ηT

2Wϵ
1
2

(
2dσ2

µ2
+

L2µ2(d+ 3)3

2

)
. (34)
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where (1) is because Vt ≥ ϵI; (2) is because the sampling of ut−i is independent; (3) uses W =∑w−1
i=0 αi, 0 < α < 1 and Lemma 3.8.

Finally, we can get:

η

2

T∑
t=1

Eu

[∥∥∇zF
t
w,α

(
zt
)
−mt

∥∥2
2

]
≤ ηT

2Wϵ
1
2

(
2dσ2

µ2
+

L2µ2(d+ 3)3

2

)
. (35)

For (c):

Lη2

2

T∑
t=1

Eu

[∥∥∥V− 1
2

t mt

∥∥∥2
2

]
(1)

≤ Lη2

2

d1/2M
1
2

2W (1− γ)ϵ
1
2

T∑
t=1

Eu

[∥∥gt∥∥
2

]
(2)

≤ LTη2d
1
2M

1
2

4W (1− γ)ϵ
1
2

(
Lµ

2
(d+ 3)

3
2 + d

∥∥∇zf
t
(
zt
)∥∥

2
+

σd
1
2

µ

)
(3)

≤ LTη2d
1
2M

1
2

4W (1− γ)ϵ
1
2

(
Lµ(d+ 3)

3
2

2
+ dG+

d
1
2σ

µ

)
, (36)

where (1) uses Lemma A.1 ; (2) uses Lemma 3.7; (3) uses Assumption 3.6.
We take a), b) and c) into (32):

η

2G∞

T∑
t=1

Eu

[∥∥∇zF
t
w,α

(
zt
)∥∥2

2

]
≤ 2H + V T +

ηT

2Wϵ
1
2

(
2dσ2

µ2
+

L2µ2(d+ 3)3

2

)
+

LTη2M
1
2 d

1
2

2W (1− γ)ϵ
1
2

(
Lµ(d+ 3)

3
2

2
+ dG+

d
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B RELATED WORKS

B.1 WHITE-BOX AND BLACK-BOX PROMPT TUNING

Prompt tuning, a powerful paradigm originating in natural language processing, has recently gained
significant attention. This approach focuses on designing and optimizing prompts to adapt models
for diverse downstream tasks. Early efforts in prompt tuning relied on manually crafted prompts
to guide language models toward desired outputs (Petroni et al., 2019). However, this method
is both time-intensive and resource-demanding (Jiang et al., 2020). To address these challenges,
researchers developed automatic prompt tuning techniques, which optimize prompts by learning
effective representations (Shin et al., 2020). Automatic prompt tuning can be broadly categorized
into two types: white-box and black-box prompt tuning. White-box prompt tuning assumes full
access to the model, enabling direct interaction with its parameters and gradients (Li & Liang, 2021;
Liu et al., 2021; Lester et al., 2021). Conversely, when access to a model’s internal mechanisms
is restricted—such as when a language model is provided as a service through an API—black-
box prompt tuning becomes necessary. Recent advancements in black-box prompt tuning have
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introduced methods such as reinforcement learning (Deng et al., 2022), policy gradient (Diao et al.,
2022), and genetic algorithms (Zhang et al., 2024; Sun et al., 2022). These methods are highly
versatile, accommodating a wide range of tasks and models without requiring any modifications to
the underlying model architecture.

B.2 ONLINE NONCONVEX LEARNING

Online learning is a paradigm where models are continuously updated in response to new data,
as opposed to being trained in batch mode on static datasets. Traditional approaches to online
learning have primarily relied on shallow models to address convex optimization problems. However,
recent research has increasingly focused on non-convex scenarios. For instance, Hazan et al. (2017)
introduced the concept of local regret as an alternative to traditional regret analysis in non-convex
online learning. Unlike the standard regret used in online convex optimization, local regret is confined
to a sliding window, making it "local" in nature. Aydore et al. (2019) extended this concept by
proposing dynamic local regret to address concept drift in data streams. Their method incorporates
an exponential average over the sliding window of local regret and leverages past gradients within
the window, enhancing computational efficiency. Gao et al. (2020) presented an online normalized
gradient descent algorithm for cases where gradient information is available and a bandit online
normalized gradient descent algorithm for scenarios where only loss function values can be accessed.
Additionally, Roy et al. (2019) explored the application of Gaussian Bandit Gradient Descent to
online non-convex optimization. Kaya et al. (2023) proposed a communication-efficient zeroth-
order distributed online optimization algorithm, which integrates an error feedback mechanism
with a federated learning framework to enable multi-agent target tracking and optimization in
communication-constrained environments. Most recently, Hua et al. (2024) proposed a residual
feedback-based single-point distributed online non-convex optimization algorithm.

C EXPERIMENTAL SUPPLEMENTATION

To more accurately emulate real-world online scenarios, the data are streamed from the download
URL to the local environment rather than preloaded. This streaming setup more faithfully reflects the
conditions under which online prompt optimization methods operate. The learning rate is selected
from the set {0.01, 0.05, 0.1, 0.2, 0.5} and the zeroth-order parameter from {0.01, 0.05, 0.1}, both
determined through grid search. For the INSTRUCTZERO parameters, we set the intrinsic dimension
to 10 and the prompt token length to 5, and initialize the random projection matrix using a uniform
distribution, following the original paper (Chen et al., 2023). In the adaptive uncertainty scaling
mechanism, the window size is selected from the set {10, 30, 50, 70, 100}, with α selected from
{0.8, 0.9, 0.95} and β from {0.9, 0.95, 0.99}.
We report all decoding and generation configurations used in our experiments. Vicuna-7B and
Vicuna-13B use greedy decoding by default (dosample = false), and although they include sampling
values such as temperature = 0.6, top − p = 0.9, and top − k = 50, these values do not take effect
under greedy decoding. GPT-3.5-turbo is used with its default sampling configuration (temperature =
1.0, top− p = 1.0). For Llama-3.1-8B, Qwen2.5-14B, and Qwen3-235B, we follow each model’s
default settings. For Dreamlike-Photoreal-2.0 and Stable Diffusion v1.5, which do not provide unified
global defaults, we follow commonly adopted Diffusers settings, using classifier-free guidance (CFG)
= 7.0, 50 sampling steps, and Euler/Euler-A samplers.

For all baseline models, we use the default parameter settings provided in their official implementa-
tions without modification.

MANUAL PROMPT: directly use the initial prompt without optimizing it during the process.

ICL (Brown et al., 2020): directly inputs the selected examples into the LLM to rewrite the original
prompt, providing AOZPT with an unoptimized initial performance point.

BDPL (Diao et al., 2022): uses a policy gradient method to estimate the gradients of the prompt
token probability distributions and employs a variance-reduced policy gradient estimator to improve
training stability.

RLPROMPT (Deng et al., 2022): proposes a reinforcement learning-based method for optimizing
discrete text prompts by training a small policy network (MLP) to generate optimized discrete
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prompt sequences that maximize downstream task rewards, while enhancing training stability and
effectiveness through reward normalization and piecewise reward design.

SFT (Hao et al., 2024): performs supervised fine-tuning of a pretrained language model using 360k
source-target prompt pairs (original inputs and manually optimized prompts), enabling the model to
learn to generate high-quality optimized prompts from user inputs.

Promptist (Hao et al., 2024): builds upon SFT by further training the prompt generation policy using
reinforcement learning (PPO algorithm), maximizing a reward function that combines the relevance
and aesthetic scores of generated images, thereby enabling automatic exploration and generation of
higher-quality prompts that better align with user intentions to improve text-to-image generation.

C.1 LARGER LLM

Table 4: The experiments with the Qwen3-235B model for GSM8K dataset

Model Method Cumulative Accuracy

Qwen3-235B

MP 83.267 ± 0.987
ICL 88.133 ± 0.833
BDPL 83.446 ± 1.453
RLPROMPT 83.600 ± 0.200
ZO-OGD 88.733 ± 0.998
AOZPT 90.800 ± 0.993

C.2 DATA DRIFT EXPERIMENTS

To further emphasize this need, we have incorporated a text-to-image experiment under data-drift
conditions. Specifically, we simulated a dynamic data stream by arranging samples from the Anime
and Painting categories in the text-to-image task at intervals of 15, 50, 75 and 150 for Stable Diffusion
v1.5 model, the results demonstrate that under varying degrees of data drift (L = 10, 50, 75, 150),
the online black-box optimization algorithm, ZO-OGD and AOZPT, consistently achieves higher
accuracy than traditional baselines, including MP, ICL, SFT, and Promptist.

Table 5: Data drift experiments with multiple intervals (L) for Stable Diffusion v1.5 model.

Method Average aesthetic quality Method Average aesthetic quality
MP 5.597 ± 0.007 ZO-OGD (L=50) 6.134 ± 0.015
ICL 5.892 ± 0.013 AOZPT (L=50) 6.143 ± 0.014
SFT 5.862 ± 0.016 ZOOGD (L=75) 6.115 ± 0.007

Promptist 5.795 ± 0.011 AOZPT (L=75) 6.126 ± 0.014
ZO-OGD (L=10) 6.092 ± 0.015 ZO-OGD (L=150) 6.037 ± 0.080
AOZPT (L=10) 6.110 ± 0.024 AOZPT (L=150) 6.117 ± 0.010

C.3 ABLATION STUDY

We added ablation experiments in Table 6 and Table 7: The results show that due to the high
variance of zero-order optimization and the output uncertainty of generative models, the performance
improvement of online zero-order prompt tuning is limited. However, after incorporating our proposed
Adaptive Uncertainty Scale Adjustment mechanism, the performance improvement becomes more
pronounced. ∆1 denotes the Adaptive Uncertainty Scale Adjustment mechanism and ∆2 denotes
online zero-order prompt tuning.
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Table 6: Ablation Study for Anime and Painting datasets. ∆1 denotes the Adaptive Uncertainty Scale
Adjustment mechanism and ∆2 denotes online zero-order prompt tuning.

Datasets Anime Painting
Method Dreamlike-2.0 Stable Diffusion v1.5 Dreamlike-2.0 Stable Diffusion v1.5

AOZPT w/o ∆1 & ∆2 5.855±0.011 5.601±0.006 6.179±0.002 5.902±0.011
AOZPT w/o ∆1 5.861±0.005 5.613±0.016 6.173±0.020 5.930±0.013
AOZPT 6.282±0.021 5.930±0.015 6.656±0.015 6.313±0.009

Table 7: Ablation Study for CNN/DailyMail and GSM8K datasets for Llama-3.1-8B model. ∆1

denotes the Adaptive Uncertainty Scale Adjustment mechanism and ∆2 denotes online zero-order
prompt tuning.

Dataset Method F1 score / accuracy

CNN/DailyMail
AOZPT w/o ∆1 & ∆2 23.500 ± 0.601
AOZPT w/ ∆1 25.089 ± 3.884
AOZPT 27.966 ± 0.153

GSM8K
AOZPT w/o ∆1 & ∆2 69.267 ± 0.462
AOZPT w/ ∆1 74.000 ± 5.415
AOZPT 75.533 ± 0.643

We also conducted ablation studies on the single-point gradient estimation method in the text-to-image
generation task to analyze the contribution of each component. As shown in Table 8, removing
the Adaptive Uncertainty Scale Adjustment mechanism leads to a noticeable performance drop,
while the full model (with consistently achieves the highest aesthetic scores on both the Anime and
Painting datasets. These results indicate that the performance gains primarily come from our Adaptive
Uncertainty Scale Adjustment mechanism rather than from the gradient estimation alone.

Table 8: Experimental results of the single-point method on the Anime and Painting datasets using
the Stable Diffusion v1.5 model. ∆1 denotes the Adaptive Uncertainty Scale Adjustment mechanism
and ∆2 denotes online zero-order prompt tuning.

Datasets Methods Aesthetic
Anime AOZPT (single-point method) w/o ∆1 & ∆2 5.710 ± 0.021

AOZPT (single-point method) w/o ∆1 5.815 ± 0.026
AOZPT (single-point method) 5.872 ± 0.021

Painting AOZPT (single-point method) w/o ∆1 & ∆2 6.074 ± 0.015
AOZPT (single-point method) w/o ∆1 6.184 ± 0.028
AOZPT (single-point method) 6.219 ± 0.016

We project optimized soft prompts onto the vocabulary via nearest-neighbor search in the embedding
space. Retaining the soft-prompt configuration described in the manuscript, we replace the discrete
prompts generated by the frozen open-source LLM with these projected tokens; results for LLama3.1-
8B and Qwen2.5-14B models on CNN/DailyMail dataset are reported in the Table 9.

C.4 AOZPT VS. ADAPTIVE GRADIENT ALGORITHM

To overcome this limitation of Adam-like algorithms with all historical gradients, we introduce a
forgetting window mechanism. This approach uses an adjustable sliding window to focus on the most
recent data, enabling better adaptation to dynamic input streams. Theoretically, the proposed AOZPT
algorithm exhibits sublinear regret convergence. In experiments, we compare the performance of
Adam, Nadam, RMSProp with AOZPT across various window sizes (w = 10, 20, 50) using the
Anime and Painting dataset under a new experimental setup. The experimental results ( Table 10
) demonstrate that by appropriately adjusting the sliding window size, the performance of AOZPT
consistently outperforms the Adam, Nadam, and RMSProp algorithms. Moreover, in the majority of
cases, the AOZPT algorithm with the sliding window configuration yields optimal performance.
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Table 9: Directly mapping experiments for LLaMA3.1-8B and Qwen2.5-14B models. “without
open-source LLMs” means directly mapping the soft prompts onto the vocabulary instead of using an
open-source LLM.

Model Method Cumulative F1 score

LLaMA3.1-8B

ICL without open-source LLMs 9.890 ± 0.028
ICL 23.500 ± 0.601
AOZPT without open-source LLMs 9.911 ± 0.023
AOZPT 24.707 ± 0.047

Qwen2.5-14B

ICL without open-source LLMs 21.67 ± 0.015
ICL 23.064 ± 0.028
AOZPT without open-source LLMs 21.84 ± 0.152
AOZPT 24.767 ± 0.502

Table 10: Performance comparison across adaptive gradient algorithms and AOZPT with varying
window size.

Datasets Anime Painting
Method Dreamlike-2.0 Stable Diffusion v1.5 Dreamlike-2.0 Stable Diffusion v1.5

Adam Kaya et al. (2023) 5.866 ± 0.007 5.609 ± 0.023 6.179 ± 0.011 5.927 ± 0.025
Nadam Diederik (2014) 5.863 ± 0.005 5.594 ± 0.015 6.168 ± 0.009 5.929 ± 0.005
RMSProp Zou et al. (2019) 5.860 ± 0.007 5.608 ± 0.024 6.168 ± 0.013 5.924 ± 0.022
AOZPT (w = 10) 5.879 ± 0.016 5.616 ± 0.026 6.140 ± 0.034 5.928 ± 0.011
AOZPT (w = 20) 5.881 ± 0.005 5.617 ± 0.012 6.180 ± 0.013 5.938 ± 0.012
AOZPT (w = 50) 5.871 ± 0.008 5.621 ± 0.003 6.181 ± 0.017 5.935 ± 0.011

C.5 ADDITIONAL EXAMPLES OF ONLINE BLACK-BOX PROMPT OPTIMIZATION

To further illustrate the practical applicability of our method, we present additional examples from
high-stakes domains such as healthcare, finance, and law, where the feature distribution of
input data is rarely stationary. Instead, it evolves continuously due to external factors.

In healthcare, for example, the emergence of new diseases, viral mutations, and updates to clinical
guidelines can shift the statistical properties of diagnostic data. In finance, market volatility, policy
changes, and geopolitical events may rapidly alter user behavior and transaction patterns. In the
legal domain, regulatory revisions, judicial reinterpretations, and evolving precedent can significantly
affect document analysis and compliance workflows. Collectively, these dynamic factors contribute
to data drift—a phenomenon where previously effective prompts become misaligned with current
data distributions.

Data drift poses a substantial challenge for prompt-based language models: prompts that once yielded
reliable outputs may no longer meet evolving task requirements, leading to degraded performance or
even high-risk errors. To maintain model reliability in such non-stationary environments, prompts
must be continually adapted to reflect changes in user needs and input characteristics. This necessitates
online learning capabilities during deployment.

However, many real-world applications—such as clinical decision-support systems, enterprise com-
pliance tools, and mobile-edge devices—operate in resource-constrained settings that lack the com-
putational capacity for backpropagation-based fine-tuning. In such environments, traditional gradient-
based methods are impractical.

To address this limitation, we propose online black-box prompt optimization as a lightweight yet
effective alternative. This approach does not require access to model gradients or internals. Instead,
it leverages expert feedback to iteratively refine prompts. For example, physicians can assess the
accuracy of generated diagnoses, auditors may flag anomalous transactions, and legal professionals
can evaluate or correct machine-generated legal advice. These expert feedback signals serve as a
supervisory signal, enabling models to adapt prompts in real time—without backpropagation—to
maintain robustness in the presence of streaming, non-stationary data.
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C.6 CASE STUDY

Table 11: Case study of the images generated by Dreamlike-photoreal-2.0 model, where these images
are generated based on the original and optimized prompts. We generate 3 images for each prompt.

Original Prompt Optimized Prompt

There is an image that represents the balance
between yin and yang.

There is an image that represents the balance
between yin and yang, harmonious,

balanced, complementary, contrasting, dynamic,
equilibrium, opposing forces, yin-yang symbol,
balance of nature, yin-yang theory, traditional

Chinese art, digital painting, artstation,
concept art, smooth, sharp focus, illustration.

Portrait of Herzl as a florist.

A floral portrait of Herzl, with a focus on his botanical
interests and the beauty of nature. The image is

highlydetailed and intricate, with a smooth and sharp
focus on Herzl’s face and the flowers he is holding.

The background is soft and subtle, with a hint of hdri
lighting to create a sense of depth and dimension.

The overall style is elegant and sophisticated,
with a touch of fantasy and imagination.

A group of fairies playing cards on a
table in a moonlit forest next to a pond

filled with water lilies, artwork by Ida Rentoul
Outhwaite.

A group of fairies playing cards on a
table in a moonlit forest next to a

pond filled with water lilies, digital painting,
artstation, concept art, soft light, hdri, smooth, sharp
focus, illustration, fantasy, inspired by the artwork of

Ida Rentoul Outhwaite.

A serene landscape depicting a garden of Eden
with lake reflections, fruit trees, and animals,

captured in vivid and psychedelic style.

A serene landscape depicting a garden of Eden
with lake reflections, fruit trees, and animals,

captured in vivid and psychedelic style, digital
painting, artstation, concept art, soft light, hdri,

smooth, sharp focus, illustration, fantasy.
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Table 12: Case study of the images generated by Stable Diffusion v1.5 model, where these images
are generated based on the original and optimized prompts. We generate 3 images for each prompt.

Original Prompt Optimized Prompt

Young wizard practicing a spell while holding a
spell book and a black ball in a

large room, wearing intricate leather armor, in a
comic cover art style with a plain background.

A young wizard is practicing a spell while
holding a spell book and a black ball in a

large room, wearing intricate leather armor,
in a comic cover art style with a plain background

, digital painting, artstation, concept art, soft
light, hdri, smooth, sharp focus,illustration, fantasy.

A neoclassic painting of a box of radiation
featured on ArtStation.

A neoclassic painting of a box of radiation, digital art,
ArtStation, featuring a unique and intricate design,
with smooth and sharp focus, creating a sense of

depth and dimension. The painting is highly detailed
and elegant, showcasing the artist’s creativity and skill.

The use of soft light and HDRi creates a sense of
realism and atmosphere, transporting the viewer into

the world of the painting.

Description, An artistic rendering of a cosmic portal
with a beach at dusk on the other side.

A cosmic portal with a beach at dusk on the other side,
digital painting, artstation, concept art, soft light, hdri
, smooth, sharp focus, illustration, fantasy, surrealism.

A movie poster featuring chicken, cow, capybara,
and pig in an epic cinematic style.

A movie poster featuring chicken, cow, capybara, and
pig in an epic cinematic style, digital painting,
artstation, concept art, highly detailed, smooth,

sharp focus, illustration, fantasy, bold colors, dynamic
composition, inspired by classic movie posters.

D USE OF LLMS

In this work, LLMs are employed solely for polishing or grammar checking text that is originally
written by us.
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E SUPPLEMENTARY MATERIALS FOR THE REBUTTAL

E.1 SUPPLEMENTARY ALGORITHM FOR THE REBUTTAL

Algorithm 3 The revised AOZPT algorithm, with details of the adaptive scaling mechanism provided

Input: learning rate η, smooth parameter µ, the length of the sliding window w, weighting
parameter α and β, normalization parameter W and M , a small constant ϵ, initialize w-dimensional
zero-initialized gradient vector Λ.
Output: {zt}Tt=1.
Initialize soft prompt z0.
for t = 0 to T − 1 do

Receive ξt = {xt, yt}.
Get ut by sampled from unit sphere Sd.
Compute: ϕt

+ = F (A (zt + µut) + ϕ0; ξ
t) and ϕt

− = F (A (zt − µut) + ϕ0; ξ
t).

Compute f t
δ (z

t + µut) and f t
δ (z

t − µut):

f t
δ

(
zt + µut

)
= ℓ

(
G
(
ϕt
+;x

t
)
, yt
)
+ δ

(
zt + µut

)
,

f t
δ

(
zt − µut

)
= ℓ

(
G
(
ϕt
−;x

t
)
, yt
)
+ δ

(
zt − µut

)
.

Compute the estimation gradient ∇̂zf
t
δ (z

t):

∇̂zf
t
δ

(
zt
)
=

f t
δ (z

t + µut)− f t
δ (z

t − µut)

2µ
ut

Update gradient vector:

Λ =
[
∇̂zf

t−w+1
δ

(
zt−w+1

)
, ∇̂zf

t−w+2
δ

(
zt−w+2

)
, ..., ∇̂zf

t
δ

(
zt
)]

Compute mt ← 1
W

∑w−1
i=0 αi · ∇̂zf

t−i
δ

(
zt−i

)
and vt ← 1

M

∑w−1
i=0 βi ·

[
∇̂zf

t−i
δ

(
zt−i

)]2
.

Update zt+1 ← zt − η · mt√
vt+ϵ

.
end for

E.2 SUPPLEMENTARY EXPERIMENTS FOR THE REBUTTAL

We conducted a parameter sensitivity analysis of the AOZPT algorithm on the text-to-image gener-
ation task, examining key hyperparameters including the learning rate (η), smooth parameter (µ),
sliding window (w), weighting parameter (α and β). As shown in Figure 3, although the curves
exhibit some local fluctuations across different parameter ranges, the overall performance consis-
tently remains at a high level without any significant degradation. These results demonstrate that
AOZPT exhibits strong robustness to hyperparameter variations, maintaining high-quality generation
performance across a wide range of configurations without requiring precise parameter tuning.

We evaluate the training and inference latency as well as memory consumption for text-to-text tasks
on the Llama-3.1-8B model, as summarized in Table 13. During the training phase, AOZPT and
ZO-OGD exhibit higher latency and memory usage due to the cost of performing zero-order gradient
estimation. However, during inference, our AOZPT approach does not require additional computation.
The semantic-rich prompts generated by the open-source LLM can be directly concatenated with the
input sequence and fed into the target model, resulting in no additional inference latency or memory
consumption. In summary, although AOZPT introduces higher cost during training, it maintains
efficient inference with negligible overhead, making it practical for real-world deployment.

We conduct experiments on the text-to-image generation task using different open-source LLMs,
including WizardLM-13B and OpenChat-3.5-0106, to evaluate the generality of AOZPT. As shown
in Table 14, AOZPT consistently achieves the best or near-best aesthetic scores across all LLM
configurations, outperforming baseline methods such as MP, SFT, Promptist, ICL, and ZO-OGD.
These results demonstrate that AOZPT performs robustly and effectively across various open-source
LLMs, highlighting its strong adaptability and general applicability.
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Figure 3: Parameter sensitivity experiments using Stable Diffusion v1.5 in Anime dataset: learning
rate (η), smooth parameter (µ), sliding window (w), weighting parameter (α and β).

Table 13: The inference latency and memory of the AOZPT algorithm on the Llama-3.1-8B model
for text-to-text tasks.

Datasets Methods
Train

Latency
(s)

Train
Memory

(MiB)

Inference
Latency

(s)

Inference
Memory

(MiB)
CNN/DailyMail MP - - 6.8668 16592

ICL 4.8849 42108 6.7638 15595
ZO-OGD 16.8986 41972 6.8645 16542
AOZPT 17.6268 42324 6.9658 15492

GSM8K MP - - 4.9864 15902
ICL 7.6808 41824 4.7865 15904

ZO-OGD 24.6097 41828 4.9987 15933
AOZPT 24.4819 41826 4.8687 15722

Table 14: Experiments on the Anime dataset are conducted using the Stable Diffusion v1.5 model,
with WizardLM-13B and OpenChat-3.5-0106 serving as the open-source LLMs.

Non-LLM WizardLM-13B openchat-3.5-0106

Method Aesthetic Method Aesthetic Method Aesthetic

MP 5.336 ± 0.010 ICL 5.515 ± 0.017 MP 5.479 ± 0.003
SFT 5.621 ± 0.025 ZO-OGD 5.635 ± 0.053 ZO-OGD 5.710 ± 0.081
Promptist 5.579 ± 0.006 AOZPT 5.734 ± 0.028 AOZPT 5.828 ± 0.064
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We conduct experiments on text-to-text generation tasks using the GPT-4o-mini model and compare
AOZPT with several baseline methods. As shown in Table 15, AOZPT achieves the best performance
on both the CNN/DailyMail dataset (F1 score) and the GSM8K dataset (accuracy), outperforming all
baselines including MP, ICL, BDPL, RLPROMPT, and ZO-OGD. These results demonstrate that
AOZPT consistently delivers superior performance across different text generation and reasoning
tasks.
Table 15: Performance comparison of different methods on CNN/DailyMail and GSM8K datasets
using GPT-4o-mini model.

Method CNN/DailyMail (F1 score) GSM8K (Accuracy)

MP 25.424 ± 0.171 86.400 ± 1.587
ICL 29.254 ± 0.187 91.048 ± 0.641
BDPL 26.246 ± 0.184 90.314 ± 0.116
RLPROMPT 27.363 ± 0.059 89.867 ± 1.206
ZO-OGD 30.308 ± 0.142 90.533 ± 1.007
AOZPT 31.016 ± 0.058 91.667 ± 0.757

We additionally evaluate the methods on the English-to-German (De–En) translation task using both
GPT-4o-mini and Llama-3.1-8B, evaluated with the BLEU score. As shown in Table 16, AOZPT
achieves the highest BLEU scores across both models, outperforming MP, ICL, and ZO-OGD. These
results indicate that AOZPT delivers the best performance on the machine translation task as well.

Table 16: Experiments on the WMT/WMT14 De–En translation task using the GPT-4o-mini and
Llama-3.1-8B models, evaluated with the BLEU score.

Model MP ICL ZO-OGD AOZPT
GPT-4o-mini 37.651 ± 0.172 37.929 ± 0.349 37.697 ± 0.253 38.975 ± 0.195
Llama-3.1-8B 30.498 ± 0.221 30.728 ± 1.110 30.722 ± 1.629 32.510 ± 0.334

To further contextualize AOZPT’s performance, we additionally evaluated it against ACING Kharrat
et al. (2025), a recently proposed reinforcement-learning–based instruction-optimization method,
and adapted it to our online interaction setup for a consistent comparison. The results (Table 17)
show that AOZPT achieves superior performance on text-generation tasks under this online setting,
demonstrating its effectiveness in dynamic, real-time scenarios. We plan to incorporate more state-of-
the-art online baselines in future work.
Table 17: The supplementary baseline experiments conducted with GPT-3.5-turbo on the
CNN/DailyMail and GSM8K datasets.

Method CNN/DailyMail (F1 score) GSM8K (Accuracy)
ACINGKharrat et al. (2025) 28.632 ± 2.225 72.746 ± 2.376
AOZPT (Ours) 35.399 ± 0.297 78.133 ± 3.583
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E.3 SUPPLEMENTARY THEORETICAL FOR THE REBUTTAL

Sub-Gaussian noise: At each round t, the learner observes a noisy function value

f̃ t
δ(z

t) = f t(zt) + δ(zt),

where δ(zt) denotes the observation noise at round t. We assume that {δ(zt)}t≥1 forms a martingale
difference sequence and is uniformly σ-sub-Gaussian: there exists a constant σ > 0 such that for all
t ≥ 1 and all λ ∈ R,

E
[
δ(zt) | Ft−1

]
= 0, E

[
exp

(
λ δ(zt)

) ∣∣∣Ft−1

]
≤ exp

(λ2σ2

2

)
,

where {Ft} denotes the filtration generated by all randomness and observations up to round t− 1.

Although this modification alters the statements and proofs of Lemma 3.7 and Lemma 3.8 and affects
the final regret bounds, it does not compromise the convergence guarantees of the proposed algorithm.
We now proceed to provide a detailed analysis of the specific adjustments required in the theoretical
derivations. Proof of Lemma 3.7:

Proof. According to the definition (4):

Eu

[∥∥∥∇̂zf
t
δ
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]
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2
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2
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b)

,

(37)

where (1) use the inequality ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2 and definition (3).
Then, for a):
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where (1) use inequality ∥a+ b+ c∥2 ≤ ∥a∥2 + ∥b∥2 + ∥c∥2; (2) uses the Assumption 3.3; (3) use
the Lemma 1 in Nesterov & Spokoiny (2017).
For (b), using Assumption 3.5 and the inequalities (A.1)–(A.2), we have
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where (1) follows from (A.2), and from Lemma 1 in Nesterov & Spokoiny (2017). Finally, we take a)
and b) into (20):
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Proof of Lemma 3.8:
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where (1) uses Jensen’s inequality and Lemma 3 in Nesterov & Spokoiny (2017); (2) uses inequali-
ties (A.1)–(A.2) derived from Assumption 3.5.

Proof of Lemma 3.8:
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where (1) uses Jensen’s inequality and Lemma 3 in Nesterov & Spokoiny (2017); (2) uses inequali-
ties (A.1)–(A.2) derived from Assumption 3.5. Combining the above bounds, we obtain the following
result:
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