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Abstract

In nature, sensory inputs are often highly structured, and statistical regularities1

of these signals can be extracted to form expectation about future sensorimotor2

associations, thereby facilitating optimal behavior. To date, the circuit mechanisms3

that underlie these probabilistic computations are not well understood. Through4

a human electrophysiolgical experiment and a recurrent neural network (RNN)5

model, the present study investigates how the brain extracts, processes, and utilizes6

probabilistic structures of sensory signals to guide behavior. To achieve this goal,7

we first constructed and trained a biophysically constrained RNN model to perform8

a probabilistic decision making task similar to task paradigms designed for humans.9

Specifically, the training environment was probabilistic such that one stimulus10

was more probable than the others. We show that both humans and the RNN11

model successfully extract information about stimulus probability and integrate this12

knowledge into their decisions and task strategy in a new environment. Specifically,13

performance of both humans and the RNN model varied with the degree to which14

the stimulus probability of the new environment matched the formed expectation.15

In both humans and RNNs, this expectation effect was more prominent when the16

strength of sensory evidence was low. These findings suggest that both humans17

and our RNN model placed more emphasis on prior expectation (top-down signals)18

when the available sensory information (bottom-up signals) was limited. Finally,19

by dissecting the trained RNN model, we demonstrate how competitive inhibition20

and recurrent excitation form the basis for neural circuitry optimized to perform21

probabilistic information processing.22

1 Introduction23

The brain contains billions of neurons, each connecting with up to 10,000 other neurons. Together,24

these neurons continually produce electrical signals to represent and relay information about the25

sensory environments. Notably, this task is made more challenging by the fact that sensory inputs are26

highly dynamic and often ambiguous, especially as animals traverse novel environments. In addition,27

naturalistic sensory environments are inherently probabilistic and certain stimuli are subsequently28

encountered more frequently than others. To optimize sensory processing, the brain needs to extract29

the statistics of the sensory environments to form expectation against which incoming signals30

are compared [1]. This expectation captures the inherent probabilistic structures of the sensory31

environments and can be used to fine-tune and adapt behavioral responses as the animals encounter32

novel environments. For example, knowledge of statistical regularities in the environment can lead33

to faster recognition of objects when they are encountered in an expected context (e.g., a bird in a34

backyard) than when they are encountered in an unlikely context (e.g., a bird in a washing machine;35

[2, 3]). While certain aspects of probabilistic information processing have been investigated through36
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human psychophysics, neuroimaging, and lesion studies, the circuit mechanisms that underlie this37

complex cognitive function is not well understood.38

Recent work in patients with bilateral damage to the hippocampus demonstrates that an ability39

to learn stimulus probability and use this knowledge to perform cognitive tasks circumvents the40

main hippocampal pathway which mediates various other kinds of learning [4]. In addition, human41

electrophysiological and pyschophysical studies have shown that learned expectation based on42

stimulus probability improved behavior by primarily modulating post-perceptual processes including43

the selection and execution of motor responses rather than directly sharpening sensory signals in44

the primary visual areas [5, 6]. To investigate the circuitry that underlies probabilistic information45

processing, the present study examines how humans and recurrent neural network (RNN) model46

process and utilize information about stimulus probability in a perceptual decision making task.47

We show that both humans and the RNN model extract and use probabilistic information of the48

sensory stimuli to improve their performance in an environment where the stimulus probability49

closely aligns with the learned expectation. In addition, we show that the enhanced processing of the50

highly probable (expected) stimulus can be attributed to a combination of decreased inhibition and51

increased recurrent excitation within a neuronal subgroup selective for the expected stimulus. This52

unique circuit mechanism gives rise to a sub-population of neurons with enhanced neural activity53

which has been previously observed in experimental studies.54

2 Human behavioral data55

Expectation based on stimulus regularities exert a powerful influence on human perception and56

decision making. To examine how humans process and use probabilistic information to guide57

behavior, we tested human participants on a perceptual decision making task where the stimulus58

probability and the amount of sensory strength were manipulated. On each trial, participants59

monitored a display of flickering randomly-oriented red and blue bars and reported a brief target60

display which was either red or blue bars coherently oriented at 0◦ (horizontal) or 90◦ (vertical;61

Figure 1a). Electroencephalography (EEG) was concurrently measured as the participants performed62

this task. Stimulus probability was manipulated on a block-to-block basis such that within each block63

of trials, one target feature (e.g., horizontal orientation) was more prevalent (70%) than the other64

feature (i.e., vertical orientation; 30%). In addition, experimental blocks where the target features65

(e.g., orientation) was counterbalanced (50% each) were also interleaved throughout the experiment66

and were used as a neutral testing context to evaluate if stimulus probability was learned on the67

previous (training) block. Finally, sensory strength was manipulated through the frequency at which68

the red and blue bars were being rendered. In this study, we considered two strength values: low69

flicker frequency at 33 Hz and high frequency at 50 Hz.70

Together, this behavioral paradigm incorporates three comparison conditions by varying the stimulus71

probability on a block-to-block basis: (1) ‘expected’ condition where two adjacent blocks shared72

the likely target stimulus (e.g., coherently horizontal bars presented as targets more often in two73

adjacent blocks), (2) ‘unexpected’ condition where two adjacent blocks did not share the likely target74

stimulus (e.g., coherently horizontal bars presented as targets more likely in one block and coherently75

vertical bars as targets more likely in the next block), and (3) ‘neutral’ condition where the coherently76

horizontal and coherently vertical bars were presented as targets equally likely in each block. Finally,77

the manipulation of the flicker frequency allowed us to investigate the probabilistic information78

processing under different levels of sensory strength.79

3 RNN model80

Recurrent neural network (RNN) models have recently been used to investigate various components81

of neural computations such as perceptual inference and working memory [7, 8]. Because RNN82

models allow an experimenter to manipulate many aspects of the sensory environment and learning83

processes–including the network architecture, the task, and the stimulus set–these models offer a84

complementary approach to in-vivo methods. To date, RNN models have been primarily trained in an85

environment where a stimulus space is counterbalanced and unbiased to ensure that each stimulus86

is equally represented and accounted for by the neural dynamics of the trained models. However,87

naturalistic sensory environments are inherently probabilistic and certain stimuli are subsequently88

encountered more frequently than others.89
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Figure 1: Task paradigms for humans and RNN model. a. Probabilistic decision making task. Human
participants reported an orientation (horizontal or vertical) of coherently oriented red or blue bars. In
this task paradigm, vertically oriented bars (green bar in the histogram) were more likely to be the
targets as compared to horizontally oriented bars (red bar in the histogram) during training. After
training, the participants were tested on three different ‘environments’ (right panel). b. Probabilistic
decision making task used to train and test the RNN model. c. Network input and output from a
sample RNN model on a trial where the presented stimulus was highly probable (i.e., Stimulus 1).

In order to model more realistic and biased sensory environments, we developed a simple training90

paradigm that resembled the one used in human studies (Figure 1b). In this paradigm, one input91

stimulus (out of 6 possible stimuli) was over-represented and presented to our RNN model more often92

than the rest of the stimuli during training. More specifically, the ‘expected’ stimulus was present in93

80% of the training trials, while the other five ‘unexpected’ stimuli were equally represented (4%94

each). On each trial, one out of 6 possible stimuli was presented for 125 ms. The stimulus signals95

were modeled as white-noise signals (drawn from the standard normal distribution) with a constant96

offset value added during the stimulus window (Figure 1c, top panel). The offset value was varied to97

model the sensory strength and coherence (i.e., flicker frequency in the human data). The offset value98

of 0.6 and 0.7 were used to simulate the low and high flicker frequency, respectively. In total, we99

trained 30 RNNs of 200 units (80% excitatory and 20% inhibitory units) to perform this task.100

Using this paradigm, we trained a continuous rate RNN model to produce an output signal approaching101

+1 when the expected stimulus was shown and 0 when an unexpected stimulus was given (Figure 1c).102

The RNN model employed in this study was similar to the one used in [9], and we used a gradient-103

descent method to train the model.104

4 Results105

In the human dataset, stimulus probability influenced behavioral performance such that accuracy was106

higher in the expected context than in the neutral and unexpected context in both low and high flicker107

frequency conditions (Figure 2a). Accuracy was also higher on trials where stimuli were rendered at108

a high flicker frequency (strong sensory strength) compared to the trials with a low flicker frequency.109

In addition, improvement in accuracy from the unexpected to expected context was more prominent110

in the low flicker frequency condition, suggesting that participants relied on their formed expectation111

more when the available sensory information was limited. This finding illustrates an interplay of112
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top-down (e.g., expectation) and bottom-up (e.g., sensory strength) signals and is in line with several113

theoretical and empirical work [10–13].114
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Figure 2: Performance on the probabilistic decision making task across contexts and testing environ-
ments as a function of the strength of sensory evidence. a. In humans, accuracy was higher in the
expected context than in the neutral and unexpected context in both low and high flicker frequency
conditions. Accuracy was also higher on trials where stimuli were presented at a high compared to a
low flickering frequency. b. The RNN models exhibited similar performance trends as the human
participants where performance was highest when the stimulus probability of the testing environment
matched the learned expectation for both levels of sensory strength.

We observed similar task performance trends in our RNN model. When the stimulus probability115

was identical during the testing phase (i.e., Stimulus 1 was over-represented), our RNN model116

performed the task with high accuracy (Figure 2b) in both coherence conditions. When the stimulus117

environment was dramatically changed (i.e., one of the unexpected stimuli was over-represented),118

the model task performance significantly decreased (Figure 2b). The model performance for the119

‘neutral’ environment, where all 6 stimuli were equally represented, was significantly higher than the120

performance from the ‘unexpected’ testing environment but lower than the one from the ‘expected’121

condition. Overall, our RNN model findings are closely aligned with the results from the human122

behavioral data.123

Although the exact circuit mechanisms underlying probabilistic information processing are not124

known, a recent experimental study revealed that probabilistic learning led to a group of neurons125

in the mouse primary visual cortex responding more robustly to expected or likely stimuli [14]. In126

order to investigate if such subgroup of neurons also exists in our RNN model, we first classified all127

the neurons in each trained RNN model based on their firing patterns in response to the six stimuli.128

For example, if a neuron fired more often when Stimulus 1 was presented, the neuron was assigned129

to the ‘Stimulus 1’ cluster. Using this method, we identified 6 subgroups of neurons in each RNN.130

For each subgroup, we then characterized its connectivity patterns to the rest of the subgroups. The131

resulting connectivity patterns revealed that the subgroup corresponding to the expected stimulus132

(i.e., Stimulus 1) had significantly stronger within-group excitation than across-group excitation133

for both coherence levels (Figure 3). In addition, the subgroup also exhibited significantly weaker134

within-group inhibition than across-group inhibition (Figure 3). Interestingly, the low coherence135

condition accentuated these differences in excitation and inhibition (Figure 3 d–f). Therefore, training136

our RNN model using a biased set of stimuli led to emergence of a subgroup of neurons that were137

more likely to stimulate themselves and inhibit other neurons resulting in enhanced neural responses138

at baseline.139

5 Conclusions and future directions140

In the present study, we employed a biophysically constrained RNN model to investigate the circuit141

mechanisms that underlie probabilistic information processing. By devising an RNN paradigm that142

resembles the perceptual tasks used to study probabilistic learning in humans, we validated and143

compared model performance to that of humans. Specifically, the model and humans both displayed144
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Figure 3: Network connectivity of the RNN models trained on an environment where stimulus 1 was
highly probable (i.e., expected). Strength of pairwise inhibitory (left panel) and excitatory signals
(middle panel) between neuron subgroups selective for each of the 6 stimuli were plotted. Ii and Ei

represent the inhibitory and excitatory subgroup selective for stimulus i, respectively. a. In the low
coherence condition, the neuron subgroup selective for the expected stimulus displayed a weaker
within-group inhibition than across-group inhibition. b. The subgroup selective for the expected
stimulus also exhibited a stronger within-group excitation than across-group excitation. c. A summary
diagram of the pairwise inhibitory and excitatory strength in the low coherence condition. d-f. In
the high coherence condition, the RNN models exhibited similar network connectivity patterns as
observed in the low coherence condition. Boxplot central lines, median; gray circles, mean; bottom
and top edges, lower and upper quartiles; whiskers, 1.5*interquartile range; outliers not plotted.
**P < 0.01, ***P < 0.001, *****P < 0.00001 by Kruskal-Wallis, Dunn’s multiple comparisons
post hoc.

similar performance trends such that task accuracy increased with the degree of similarity between the145

stimulus probability of the testing and training environment or context. In addition, this expectation146

effect on behavior was accompanied by a combination of decreased within-group inhibition and147

increased within-group excitation of the neuronal subgroup selective for the expected stimulus.148

Future works include comparing the RNN model connectivity results with animal electrophysiological149

data such as EEG and local field potentials (LFP). In particular, the behavioral improvement in the150

expected context reported in our human study was accompanied by changes in the pattern of parietal151

alpha and frontal theta oscillatory signals, previously used to index task effort and cognitive control.152

Specifically, parietal alpha power showed a sustained decrease in the unexpected context condition.153

This is consistent with the notion that violations of expectation require greater and prolonged task154

engagement [15]. Further, we observed an increase in frontal theta power when the target appeared155

in the unexpected context. This pattern is consistent with the hypothesis that unexpected contexts156

require greater executive control during later stages of decision-making including preparation and157

execution of motor responses [16]. Further analyses of the RNN network structures could shed light158

on the circuitry that gives rise to these oscillatory differences as a basis for probabilistic information159

processing in the human cortex.160
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Broader Impact161

By analyzing both human and model data, the present study proposes an experimentally testable162

neural circuit mechanism important for decision making. Elucidating circuit mechanisms required for163

decision making will help better understand how such mechanisms are disrupted in neuropsychiatric164

disorders such as Alzheimer’s disease and schizophrenia. We believe that the present study poses no165

negative ethical or societal issues.166
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