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ABSTRACT

Existing reinforcement learning (RL) methods struggle with complex dynamical
systems that demand interactions at high frequencies or irregular time intervals.
Continuous-time RL (CTRL) has emerged as a promising alternative by replacing
discrete-time Bellman recursion with differentiable value functions defined as
viscosity solutions of the Hamilton–Jacobi–Bellman (HJB) equation. While CTRL
has shown promise, its applications have been largely limited to the single-agent
domain. This limitation stems from two key challenges: (i) conventional methods
for solving HJB equations suffer from the curse of dimensionality (CoD), making
them intractable in high-dimensional systems; and (ii) even with learning-based ap-
proaches to alleviate the CoD, accurately approximating centralized value functions
in multi-agent settings remains difficult, which in turn destabilizes policy training.
In this paper, we propose a CT-MARL framework that uses physics-informed
neural networks (PINNs) to approximate HJB-based value functions at scale. To
ensure the value is consistent with its differential structure, we align value learn-
ing with value-gradient learning by introducing a Value Gradient Iteration (VGI)
module that iteratively refines value gradients along trajectories. This improves
gradient accuracy, in turn yielding more precise value approximations and stronger
policy learning. We evaluate our method using continuous-time variants of standard
benchmarks, including multi-agent particle environment (MPE) and multi-agent
MuJoCo. Our results demonstrate that our approach consistently outperforms ex-
isting continuous-time RL baselines and scales to complex cooperative multi-agent
dynamics.

1 INTRODUCTION

RL has achieved remarkable success in a range of single- and multi-agent interaction tasks, including
robotic manipulation (Brunke et al., 2022), strategy games (Vinyals et al., 2019), wireless communi-
cations (Feriani & Hossain, 2021; Wang et al., 2023), and traffic coordination (Haydari & Yılmaz,
2020). Most existing RL methods model these interactions in discrete time, where Bellman backup is
computed at a fixed time interval. However, discrete-time RL (DTRL) is not well-suited for real-world
scenarios that often demand high-frequency decision-making or operate at arbitrary, non-uniform
time intervals (e.g., financial trading (Shavandi & Khedmati, 2022) and autonomous driving (Kiran
et al., 2021)). Specifically, DTRL methods tend to generalize poorly when deployed under time
resolutions that differ from training, leading to suboptimal control and stability issues (Wang et al.,
2020; Shilova et al., 2024). To address these limitations, CTRL has emerged as an alternative to
learn value functions in continuous time (Doya, 2000; Rubanova et al., 2019). However, existing
works only focus on single-agent settings and have not yet been widely explored for multi-agent
scenarios. In multi-agent domains, each agent must not only interact with the environment but also
coordinate with other agents, all while coping with the challenges like non-stationarity introduced
by simultaneously learning policies. Within this context, our paper investigates a novel approach
to solving CT-MARL problems. To better understand the limitations of DTRL and advantages
of CTRL for multi-agent scenarios, we present a didactic case as shown in Fig. 1. In this simple
continuous-time control task, DT-MARL fails to accurately approximate the true value functions,
leading to incorrect control actions, particularly for agent 2. In contrast, our CT-MARL algorithm
closely follows the ground-truth trajectory, maintains high returns, and generates accurate control
actions for both agents.
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Figure 1: The performance of CT-MARL and DT-MARL is compared on a continuous-time, two-
agent coupled oscillator task. In the discrete-time setting, DT-MARL trained with MADDPG can
achieve near-optimal performance. However, when transferred to the continuous-time domain,
MADDPG suffers from significant bias and error, resulting in poor approximations. In contrast,
CT-MARL yields smoother actions, higher rewards, and more accurate value approximations, closely
aligning with the analytical LQR ground truth.

Unlike Bellman operator-based DTRL (Bellman, 1966), CTRL leverages HJB PDEs to compute
differential value functions (Mukherjee & Liu, 2023; Shilova et al., 2024). However, solving HJB
PDEs through conventional approaches (e.g., dynamic programming or level set method (Osher et al.,
2004)) suffers from CoD in high-dimensional dynamical systems (Bellman et al., 1965), especially
where the computational complexity grows exponentially with the state dimension in multi-agent
systems. PINNs have emerged as a powerful tool to circumvent CoD (Weinan et al., 2021), and offer
convergence guarantees for problems with smooth solutions (Shin et al., 2020; Ito et al., 2021). To
approximate the solutions of HJB PDEs, PINNs translate the underlying physics law (e.g., PDEs)
along with boundary conditions into the loss functions to refine networks.

However, even with PINNs to alleviate the CoD in CT-MARL, learning accurate centralized value
functions under the centralized training decentralized execution (CTDE) framework remains challeng-
ing. The inherent non-stationarity across agents makes value learning unstable (Yu et al., 2022), and
standard PINNs, which rely solely on PDE and boundary residuals, often yield biased or noisy value
gradients (Zhang et al., 2024b). These inaccuracies propagate into the value function, undermining
policy quality and stability. To address this limitation, we propose a novel learning approach that
combines PINN and VGI information, which is used to optimize the value learning. The PINN
component ensures the value approximations satisfy the HJB PDEs, while VGI iteratively propagates
and refines the value gradient approximations along the sampled trajectories. This integration yields
significantly more accurate value-gradient information, which enhances value approximation accuracy
and ultimately improves policy learning.

Our work makes the following contributions. (1) We leverage PINNs to approximate differential
value functions and apply them to solve cooperative continuous-time multi-agent reinforcement
learning problems, which have rarely been explored by previous studies. (2) We introduce a novel
value-gradient iteration term that dynamically refines the approximations of value gradients during
training. This setting improves the computational accuracy of the value gradients, accelerates learning
convergence, and leads to highly accurate value approximations, enabling efficient policy learning.
(3) We create continuous-time versions of two standard MARL benchmarks, the continuous-time
MPE and continuous-time multi-agent MuJoCo. The results demonstrate that our method consistently
surpasses other current CTRL baselines, highlighting the advantages of precise value-gradient learning
in high-dimensional multi-agent systems.

2 RELATED WORK

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

CTRL has received increasing attention in recent years, however, most existing works focus on the
single-agent settings. These studies aim to optimize policies in continuous-time domains, avoiding
time discretization and yielding more accurate control actions in robotics and navigation. For instance,
Bian & Jiang (2021) proposes a continuous-time value iteration algorithm for solving HJB equations
without the need for a stabilizing initial policy, while Faradonbeh & Faradonbeh (2023) introduces an
HJB-based actor-critic network with theoretical guarantees for the infinite-horizon case. Similarly,
Lee & Sutton (2021) develops two policy iteration algorithms that compute comprehensive solutions
to HJB equations. In contrast, Jia & Zhou (2022b) introduces a temporal–difference learning based
algorithm to deal with continuous-time problems via discretization. Building on this line, Jia &
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Zhou (2022a; 2023) uses rigorous algorithms and strong theoretical foundations to study single-agent
CTRL with stochastic dynamics. Other approaches include Yang et al. (2021), which develops
a robust actor–critic framework for nonlinear systems with unmodeled dynamics; Shilova et al.
(2024), which leverages PINNs with ϵ-scheduling to approximate value functions and empirically
outperforms discrete-time RL baselines; and Yildiz et al. (2021), which integrates neural ODEs
with Bayesian inference to model uncertainty in state evolution and proposes a continuous-time
actor–critic algorithm that mitigates challenges such as Q-function vanishing and poor discretization.
In contrast, CT-MARL remains relatively underexplored compared to the substantial studies for
single-agent settings. For example, Luviano & Yu (2017) solves the multi-agent pathfinding problem
using fuzzy Q-learning, while Jiang et al. (2023) proposes a model-based value iteration algorithm
tailored for continuous-time multi-agent systems. Beyond these examples, only a limited number of
studies have addressed CT-MARL, highlighting the importance of our contributions.

2.2 SOLVING HJB EQUATIONS VIA PINNS

In single-agent optimal control or multi-agent cooperative settings, value functions are characterized
as the viscosity solutions to HJB equations (Crandall & Lions, 1983), which are the first-order
nonlinear parabolic PDEs. However, solving HJB equations with conventional numerical methods
is computationally intractable in high-dimensional settings due to CoD (Osher et al., 2004; Osher
& Shu, 1991). Recent studies show that PINNs can mitigate CoD by leveraging their Monte Carlo
nature when PDE solutions are smooth (Weinan et al., 2021). PINNs approximate value functions
using trainable neural networks by minimizing PDE-driven loss functions, including boundary
residuals (Han & Long, 2020; Han et al., 2018), PDE residuals (Bansal & Tomlin, 2021; Zhang
et al., 2024a;b), and supervised data derived from numerical solvers (Nakamura-Zimmerer et al.,
2021). Notably, recent studies demonstrate that integrating HJB-based PINNs with Proximal Policy
Optimization (PPO) leads to improved performance over standard PPO in continuous-time single-
agent MuJoCo environments (Mukherjee & Liu, 2023). However, solving CT-MARL problems
through the integration of PINNs and RL remains an open and unexplored area of research.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In this paper, we focus on multi-agent cooperative settings. Following the continuous-time control
system framework (Yildiz et al., 2021; Lee & Sutton, 2021), we formulate the continuous-time
multi-agent problem as a tuple:

M =
〈
X , {Ui}Ni=1, N, f, r, {tk}k≥0, ρ

〉
. (1)

where X ⊆ Rn is the state space and U = U1 × · · · × UN ⊆ Rm represents the joint action space of
N agents. The global state and control input are represented by x ∈ X and u ∈ U . Agent interactions
occur over an infinite time horizon. The multi-agent system evolves according to time-invariant
nonlinear dynamics defined by ẋ = f(x, u), where f : X × U → X is the global dynamics function.
We define π : X → U as the decentralized joint policy π = (π1, . . . , πN ). All agents share a global
reward r : X × U → R. ρ ∈ (0, 1] is the discount factor or time-horizon scaling parameter. Unlike
standard formulations that assume a fixed time step, we consider a strictly increasing sequence of
decision times {tk}k≥0 with variable gaps τk = tk+1 − tk > 0. In this paper, we assume that Ui is
compact and convex; f is Lipschitz continuous; r is Lipschitz continuous and bounded.
Definition 1 (Value Function of Multi-agent Systems). Given u = (u1, . . . , uN ) as a joint control
input, the optimal global value function is defined as:

V (x) = max
u∈U

∫ ∞

t

e−ρ(τ−t)r(x(τ), u(τ)dτ (2)

3.2 HJB AND POLICY LEARNING

For CT-MARL problems, we build on HJB PDEs rather than discrete-time Bellman equations (Bell-
man, 1966), which are ill-suited to continuous-time settings. In this subsection, we explain how
the HJB equations are leveraged to solve the CT-MARL problems. Specifically, we define a value
network Vθ parametrized by a set of weights and biases θ, and describe how the global value function

3
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Vθ is trained and how each agent’s policy πϕi is updated, such that the overall procedure serves as
a continuous-time analogue of actor–critic policy iteration. The convergence of HJB-based PINNs
for learning Vθ has been established in Meng et al. (2024), providing theoretical support for our
approach.

3.2.1 CRITIC LEARNING WITH HJB

First, we present the following Lemma to show that the optimal value function V (x), as defined in
Eq. 2, is the optimal solution to HJB PDEs (Bertsekas, 2012) in the context of cooperative multi-agent
settings.
Lemma 3.1 (HJB for Multi-agent Systems). For all x ∈ X , the value function V (x) is the optimal
solution to satisfy the following HJB PDEs:

−ρV (x) +∇xV (x)⊤f
(
x, u∗

)
+ r

(
x, u∗

)
= 0, (3)

where optimal control input u∗ = argmaxu∈U H(x,∇xV (x)). The Hamiltonian H is defined as
H = ∇xV (x)⊤f

(
x, u

)
+ r

(
x, u

)
.

The proof is attached in Appendix A.1.

To approximate differentiable value functions, we solve the HJB PDEs in Eq. 3. Since conventional
numerical methods become intractable beyond six state dimensions (Bui et al., 2022), we instead
employ PINNs, which approximate value functions by minimizing PDE residuals. Specifically, we
define the HJB PDE residuals as

Rθ(xt) = −ρVθ(xt) +∇xVθ(xt)⊤f(xt, ut) + r(xt, ut). (4)

and minimize the residual loss Lres =
∥∥Rθ(xt)∥∥1 towards zero during model refinement.

3.2.2 POLICY LEARNING

While analytical optimal control laws can be derived in some cases by maximizing the Hamilto-
nian (Nakamura-Zimmerer et al., 2021; Shilova et al., 2024), such closed-form solutions are not
available in complex multi-agent systems like MPE or MuJoCo. To overcome this challenge, we use
an actor network to generate control inputs, replacing the need for analytical controls in the critic
network used to approximate value functions. The actor and critic networks are refined iteratively
until convergence, enabling the actor network to approximate optimal control policies. During train-
ing, we compute a continuous-time advantage function derived by residualRθ(xt). This advantage
function is used for policy gradient, where each agent’s decentralized policy πϕi(ui | xt) is optimized
to maximize long-term return.
Lemma 3.2 (Instantaneous Advantage). Assume the one-step Q-function over a short interval δt > 0
be

Q(xt, ut) = r(xt, ut) δt+ e−ρδtV
(
xt+δt

)
. (5)

Then the instantaneous advantage satisfies

A(xt, ut) = −ρV (xt) +∇xV (xt)
⊤ f(xt, ut) + r(xt, ut). (6)

The proof is attached at Appendix A.2.

With the critic’s instantaneous advantage

Aθ(xt, ut) = −ρVθ(xt) +∇xVθ(xt)⊤f(xt, ut) + r(xt, ut), (7)
we update each agent’s policy network πϕi(ui | xt) in a decentralized fashion. For agent i, we
minimize the negative expected advantage under the joint policy

Lpi = −Aθ
(
xt, ut

)
log πϕi

(
ui | xt

)
, (8)

Here, u = (ui, u−i) denotes the joint action, where ui ∼ πϕi is sampled from agent i’s policy, and
u−i represents the actions of all other agents, sampled as u−i ∼ πϕ−i .
Lemma 3.3 (Policy Improvement). Let πold be the current joint policy and πnew the updated policy
after one gradient step on the actor loss Lp with sufficiently small step size. Then:

Qπnew(xt, ut) ≥ Qπold(xt, ut). (9)

The proof can be found at Appendix A.3.
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3.3 VALUE GRADIENT ITERATION MODULE

The performance of continuous-time control policies depends critically on the accuracy of the value,
which in turn depends not only on the precision of its own approximation but also on the correctness
of the value gradient ∇xV (x). Recent studies have demonstrated that the accuracy of the value
directly affects the learned control policies (Zhang et al., 2024b). However, the gradients obtained
from standard PINN training are often noisy or misaligned with true trajectory behavior. Although
prior work (Zhang et al., 2024b) improves value gradient approximations using supervised data,
such ground-truth gradients are often inaccessible or prohibitively expensive to compute in complex,
high-dimensional multi-agent settings. To address this, we introduce the VGI module that iteratively
refines the value gradient approximations during training.
Definition 2 (VGI Gradient Estimator). Given a small time step ∆t, the VGI estimator of the value
gradient at (xt, ut) is defined by

∇xV (xt) = ∇xr(xt, ut)∆t+ e−ρ∆t∇xf(xt, ut)⊤∇xV (xt+∆t). (10)

The VGI target in Eq. 10 can be interpreted as a one-step unrolling of the Bellman equations in the
space of gradients. The first term captures the instantaneous contribution of the local reward gradient,
while the second term propagates the downstream value information through the Jacobian of the
system dynamics. This construction resembles a semi-discretized version of the value gradient flow
and provides a practical surrogate for supervised gradient learning in the absence of ground-truth
derivatives. The derivation process is posted at Appendix A.4.
Theorem 3.4 (Convergence of VGI). Let G : Rd → Rd be defined as

G(ζ) = ∇xr(xt, ut)∆t+ e−ρ∆t∇xf(xt, ut)⊤ζ, (11)
and assume the dynamics ∥∇xf(xt, ut)∥ is bounded . Then G is a contraction, and the sequence
ζ(k+1) = G(ζ(k)) converges to a unique fixed point ζ∗ ∈ Rd.

The proof is detailed at Appendix A.5

Rather than introducing a separate network to predict value gradients, we directly compute the
automatic derivative of the shared PINN critic Vθ(xt). This gradient is then trained to match the
VGI-generated target defined in Eq. 10. Specifically, we minimize the mean squared error between
the computed and target gradients:

Lvgi =
∥∥∇xVθ(xt)− ĝt∥∥22, (12)

where ĝt = ∇xrϕ(xt, ut)∆t + e−ρ∆t∇xfψ(xt, ut)⊤∇xVθ(xt+∆t). Here, rϕ(xt, ut) denotes a re-
ward models and fψ(xt, ut) represents a dynamics model, where ϕ and ψ are respective network
parameters.

3.4 IMPLEMENTATION DETAILS

While the previous sections introduced our continuous-time actor–critic framework and the VGI
module for value-gradient consistency, several practical considerations are essential to make the
overall method operational and effective.

3.4.1 DYNAMICS MODEL AND REWARD MODEL

In a continuous-time setting, the true dynamics are given by ẋ = f(x, u), but directly learning f
via xt+∆t−xt

∆t as a supervision target is pretty unstable in practice. Instead, we adopt a discrete-time
model-based approach (Sutton, 1991; Hafner et al., 2019) that we train a neural network fψ(xt, ut)
to predict the next state xt+∆t via

Ldyn =
∥∥fψ(xt, ut)− xt+∆t

∥∥2
2
. (13)

After learning fψ , we recover the continuous-time derivative by finite differences fψ(xt,ut)−xt
∆t .

Similarly, we fit a reward network rϕ(xt, ut) to the observed instantaneous reward rt:

Lrew =
∥∥rϕ(xt, ut)− rt∥∥22. (14)

Both fψ and rϕ are trained jointly, enabling us to compute the VGI module’s target.

5
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3.4.2 ANCHOR LOSS FOR CRITIC NETWORK

In addition to the HJB residual and terminal-condition losses, we incorporate a TD-style anchor loss
to improve both the stability and accuracy of value learning. While the residual loss enforces the
correctness of the value gradient, it does not constrain the value of V (x). Terminal-condition losses
can provide such supervision, but they often rely on access to well-defined terminal targets, which
may be unavailable in complex continuous control environments such as MuJoCo. In these cases,
the anchor loss offers an additional source of value landscape, helping the critic produce reasonable
value approximations even when terminal rewards are sparse, delayed, or difficult to specify. We
define the one-step return as

Rt = r(xt, ut)∆t+ e−ρ∆tVθ
(
xt+∆t

)
. (15)

The anchor loss then enforces the value network to match these returns

Lanchor =
∥∥Vθ(xt)−Rt∥∥22. (16)

The overall critic objective combines all four losses

Ltotal = Lres︸︷︷︸
HJB residual

+ λanchor Lanchor︸ ︷︷ ︸
TD anchor

+ λg Lvgi︸ ︷︷ ︸
VGI consistency

. (17)

Here λanchor, λg are tunable weights balancing PDE residuals, value-bootstrap anchoring, and gradient
consistency. In practice, we jointly train the reward model, dynamics model, and value network using
the data from the current trajectory. The detailed training process is listed in Appendix A.6.
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Figure 2: Performance across continuous-time multi-agent MuJoCo settings. The y-axis shows the
mean cumulative reward.

4 EXPERIMENTAL RESULTS

We evaluate our Value Iteration via PINN (VIP) method on two continuous-time multi-agent
benchmarks: MPE (Lowe et al., 2017b) and multi-agent MuJoCo (Peng et al., 2021). In addition,
we design a didactic benchmark, coupled oscillator (see details in Appendix B.1), to analyze value
gradient approximations. This case study is easy to follow and enables the numerical computation
of true values and their gradients, which provides a clear and interpretable setting to validate the
effectiveness of VIP. Our experiments are designed to answer the following four key questions: (1)
Overall efficacy: Does the proposed VIP model outperform existing continuous-time RL baselines
in these environments? (2) VGI ablation: How much does the VGI module contribute to final
performance and training stability? (3) PINN design choice: How does activation function choice
and loss term weighting in the critic network affect the performance of VIP? (4) Time discretization
impact: How well do discrete-time and continuous-time methods perform under arbitrary or unfixed
time intervals?
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Figure 3: V and ∇xV contour using VIP w/ VGI and w/o VGI in d1-d2 frame.

Benchmarks. We evaluate our method against competitive baselines across eight experimental
settings involving up to six agents and 113 state dimensions. We extend the MPE framework to
a continuous-time formulation by using a variable-step Euler integration scheme, where the time
interval ∆t is sampled from a predefined range at each step. Experiments are conducted on the
cooperative navigation and predator prey environments. Similarly, we adapt MuJoCo to continuous-
time settings and evaluate on a suite of multi-agent locomotion tasks, including ant (2 × 4, 2 × 4d, 4
× 2), walker, swimmer, and cheetah (6 × 1). Further implementation details of these benchmarks
are provided in Appendix B.2 and B.3. Lastly, we introduce a simple yet illustrative coupled
oscillator environment to highlight the behavior of exact value functions, value gradients, and
the relative performance of different methods under a controlled setting.

4.1 BASELINE METHODS

To evaluate our CT-MARL framework VIP, we compare against four continuous-time policy
iteration baselines and include an ablated variant of our method without VGI: CT-MBRL
(ODE) (Yildiz et al., 2021): A continuous-time model-based RL approach that learns
system dynamics via Bayesian neural ODEs. This method uses an actor-critic frame-
work to approximate state-value functions and derive the continuous-time optimal policies.
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Figure 4: Performance across continuous-time MPE settings. The y-axis
shows the mean cumulative reward.

Differential Policy
Iteration (DPI) (Lee
& Sutton, 2021): A
model-based method
with differential policy
iterations that alternates
between (i) solving the
HJB PDEs to approxi-
mate continuous-time
value functions and (ii)
updating the policy by
following the instantaneous gradient of value approximations. Integral Policy Iteration (IPI) (Lee
& Sutton, 2021): A partially model-free approach with integral policy iterations that reformulates the
value function as a continuous integral, avoiding explicit differentiation during policy improvement.
HJBPPO (Mukherjee & Liu, 2023): A recent method that employs a PINN-based critic to
approximate the HJB residual and leverages a standard PPO-style policy optimization scheme to
guide agent learning. In our experimental settings, we discretize the integral, roll out trajectories to
accumulate rewards, and fit a policy to minimize the resultant value functions. Ablation (w/o VGI):
An ablated version of VIP without VGI, which isolates the efficacy of value gradient refinement.
Besides, since the limitations of DTRL in continuous-time domains have already been extensively
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discussed in prior work (Tallec et al., 2019; Park et al., 2021; De Asis & Sutton, 2024), we do not
include DTRL in our comparison scope.

4.2 RESULTS ANALYSIS

Model Performance. We evaluate all RL methods in MPE and MuJoCo environments using five
random seeds and report the mean cumulative reward curves in Fig. 2 and 4. The results show that
VIP with VGI consistently converges fastest and achieves the highest final return across all tasks,
which empirically validates the efficacy of integrating PINNs with RL. As traditional time-dependent
HJB equations are PDEs with a single boundary condition at terminal time, PINN may struggle
to backpropagate the correct physics information when relying solely on boundary values, often
resulting in poor value approximations (Krishnapriyan et al., 2021). This limitation becomes even
more severe in the infinite-horizon setting, where the HJB formulation is time-independent and
terminal losses are no longer available. To address this limitation, we incorporate the anchor and VGI
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Figure 5: VIP performance with ReLU and Tanh activation functions in MuJoCo and MPE settings.
loss terms in Eq. 17, which capture the landscape of value and its gradient so that PINNs converge
to the true values. Ablation results further confirm the importance of VGI: removing VGI leads
to significantly lower cumulative rewards across all experiments. This observation is consistent
with the conclusion in the previous studies (Zhang et al., 2024a), which further strengthens that
accurate value gradient approximation is crucial for effective PINN training and policy improvement.
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Figure 6: Ablation study of different loss terms in
critic network for cooperative predator prey.

To further demonstrate the importance of VGI,
we revisit the didactic example, generate 400
rollouts from sampled initial states, and com-
pute the average value using models with and
without VGI. As shown in Fig. 3, the value
contour projected onto the d1–d2 frame re-
veals that the model with VGI closely matches
the ground truth in both structure and scale,
while the model without VGI produces signif-
icantly biased approximations. These results
confirm that adding VGI is necessary to im-
prove the accuracy of value approximations.
A detailed comparison of the corresponding
value gradients is also illustrated in Fig. 3. Furthermore, we evaluate the sensitivity of each loss term
for the critic network by measuring the minimum distance to prey in Fig. 6, which highlights the
critical role of PINN in refining value and policy networks.

Choice of PINN Design. We first examine the impact of activation function choice when incorporat-
ing PINN-based losses into critic network refinement. Specifically, we train VIP using ReLU and
Tanh activations in both MuJoCo and MPE environments and report the accumulated rewards in Fig. 5
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and Fig. 10 (Appendix C.2). The results show that the VIP with Tanh consistently achieves higher ac-
cumulated rewards than the one with ReLU across all tasks. This experiment indicates the importance
of activation function choice when using PINN-based losses to refine the critic network and has a con-
sistent conclusion with the previous studies (Bansal & Tomlin, 2021; Zhang et al., 2024b). The good
performance of Tanh can be attributed to its smoothness and differentiability, which are particularly im-
portant when using PINNs to solve PDEs. PINNs typically use fully-connected network architectures
and rely on auto-differentiation to compute value gradients for PDEs. The PINN residuals including
PDEs, are further optimized using gradient descent. Smooth activation functions like Tanh support
stable and accurate gradient flow throughout training, enabling more effective value approximations.
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Figure 7: VIP performance with different weight settings in critic losses.

In contrast, VIP with
ReLU often encoun-
ters zero-gradient re-
gions during backpropa-
gation, which results in
gradient explosion for
deeper network archi-
tectures or degrades the
learning of value func-
tions due to insufficient
nonlinearity. Therefore,
the choice of a smooth
activation function like Tanh is better suited for physics-informed learning, thereby ensuring more
accurate approximations of the value functions. We also investigate the impact of weight param-
eters for PINN loss terms during VIP training. Specifically, we evaluate three configurations in
Eq. 17: 1) balanced weights for all loss terms; 2) a large weight for anchor loss while keeping the
others balanced; 3) a large weight for HJB residual with balanced weights for the remaining terms.
As shown in Fig. 7, the best accumulated reward performance is achieved when all loss terms are
properly balanced.
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Figure 8: CT-MARL and DT-MARL perfor-
mance under different time intervals.

Imbalanced weight settings yield stiffness in the
training dynamics of PINNs (Wang et al., 2021),
which makes the dominant loss term (with the largest
weights) converge faster than the others (Wang et al.,
2022). In our experiments, such an imbalance causes
VIP only to satisfy the PDEs residuals or anchor loss
during training, ultimately leading to poor value ap-
proximations.

Time discretization impact. Lastly, we evaluate
the robustness of VIP and a well-trained MADDPG
model (Lowe et al., 2017a) by generating rollouts
with varying time intervals in the didactic environ-
ment and computing the average return across these
rollouts. Notably, in the original discrete-time training setting with a 4-dimensional state and 1-
dimensional action space, MADDPG can already achieve near-optimal performance. Fig. 8 illustrates
that VIP maintains a nearly constant return across different time intervals, whereas MADDPG’s
performance degrades significantly as the interval increases. This result highlights the advantage of
VIP in continuous-time multi-agent scenarios.

5 CONCLUSION

We propose a novel approach that integrates PINNs into the actor-critic framework to solve CT-MARL
problems. Specifically, we approximate value functions using HJB-based PINNs and introduce VGI to
improve value approximations, thus mitigating the adverse impact of inaccurate value approximations
on policy learning. We validate our VIP across continuous-time variants of MPE and MuJoCo
environments and empirically demonstrate that VIP converges faster and achieves higher accumulated
reward compared to baselines of SOTA. Furthermore, we investigate the importance of activation
function choice and loss term weighting for VIP performance. In summary, our proposed VIP offers
a promising approach to solve CT-MARL problems.
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A MATHEMATICAL PROOF

A.1 PROOF OF LEMMA 3.1

Proof. Given all x ∈ X with a small horizon ∆t > 0, we apply a Taylor expansion to the definition
of V (x) in Eq. 2 to derive the HJB PDE as follows:

V (x) = max
u∈U

∫ ∞

t

e−ρ(τ−t)r(x, u)dτ

= max
u∈U

∫ t+∆t

t

e−ρ(τ−t)r(x(τ), u(τ))dτ +max
u∈U

∫ ∞

t+∆t

e−ρ(τ−t)r(x(τ), u(τ))dτ

= max
u∈U

∫ t+∆t

t

e−ρ(τ−t)r(x(τ), u(τ))dτ +max
u∈U

∫ ∞

t

e−ρ(s+∆t−t)r(x(s+∆t), u(s+∆t))ds

= max
u∈U

∫ t+∆t

t

e−ρ(τ−t)r(x(τ), u(τ))dτ + e−ρ∆tmax
u∈U

∫ ∞

t

e−ρ(s−t)r(x(s+∆t), u(s+∆t))ds

≈ max
u∈U

∫ t+∆t

t

e−ρ(τ−t)r(x(τ), u(τ))dτ + e−ρ∆tmax
u∈U

∫ ∞

t+∆t

e−ρ(τ−t)r(x(τ), u(τ))dτ

= max
u∈U

r(x, u)∆t+ e−ρ∆tmax
u∈U

V (x(t+∆t))

= max
u∈U

r(x, u)∆t+ (1− ρ∆t+ o(∆t))max
u∈U

(V (x) +∇xV (x)⊤f(x, u)∆t+ o(∆t))

By canceling out V (x) on both sides of the above equality, we obtain that

−ρV (x)∆t+max
u∈U

(∇xV (x)⊤f(x, u) + r(x, u))∆t+ o(∆t) = 0

Dividing by ∆t and letting ∆t→ 0, we have that

−ρV (x) + max
u∈U

(∇xV (x)⊤f(x, u) + r(x, u)) = 0.

Therefore, the V (x) is the optimal solution to the following HJB PDEs:

−ρV (x) +∇xV (x)⊤f(x, u∗) + r(x, u∗) = 0,

Here optimal control input is u∗ = argmaxu∈U H(x,∇xV (x)), whereH is the Hamiltonian defined
asH = ∇xV (x)⊤f(x, u) + r(x, u).

A.2 PROOF OF LEMMA 3.2

Proof. Recall the one-step Q-function over a short interval δt > 0, where u is the optimal control
input.

Q(xt, ut) = r(xt, ut) δt+ e−ρδt V
(
xt+δt

)
.

For small δt we have the first-order Taylor expansion in state:

V
(
xt+δt

)
= V (xt) +∇xV (xt)

⊤f(xt, ut) δt+ o(δt).

Similarly, e−ρδt = 1− ρ δt+ o(δt).

Plugging both expansions into Q(x, t, u) gives

Q(xt, ut) = r(xt, ut) δt+
(
1− ρ δt+ o(δt)

)[
V (xt) +∇xV (xt)

⊤f(xt, ut) δt+ o(δt)
]

= r(xt, ut) δt+ V (xt) +
[
∇xV (xt)

⊤f(xt, ut)− ρV (xt)
]
δt+ o(δt).

Subtract V (xt) and discard the higher-order term:

Q(xt, ut)− V (xt) = [−ρV (xt) +∇xV (xt)
⊤f(xt, ut) + r(xt, ut)]δt+ o(δt).

Dividing by δt and letting δt→ 0 yields the instantaneous advantage density

A(xt, ut) = lim
δt→0

Q(xt, ut)− V (xt)

δt
= −ρV (xt) +∇xV (xt)

⊤f(xt, ut) + r(xt, ut).

This completes the proof.
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A.3 PROOF OF LEMMA 3.3

Policy Improvement via State-Action Value Function. We consider the standard policy improvement
step, where the new policy is obtained by maximizing the state-action value function:

πnew(xt) = argmax
u∈U

Qπold(xt, ut),

where the one-step Q-function with a small δt > 0 is defined as:

Q(xt, ut) = r(xt, ut) δt+ e−ρδtV
(
xt+δt

)
= r(xt, ut) δt+ e−ρδtEu′∼π(·|x′)

[
Q(x′t+δt, u

′
t+δt)

]
,

Since we assume the goal state function stays invariant, we only define the Qπ =
∫ T
0
e−ρtrtdt.

Because the new policy πnew yields equal or higher value in expectation:

Eu∼πnew [Q
πold(xt, ut)] ≥ Eu∼πold [Q

πold(xt, ut)] .

Then we can have:

Qπold = rt0 δt+ e−ρδt(Eut1∼πold [Q
πold(xt1 , ut1)])

≤ rt0 δt+ e−ρδt
(
Eut1∼πnew [Q

πold(xt1 , ut1)]
)

= rt0 δt+ e−ρt1rt1 δt+ e−ρδt (Eu2∼πold [Q
πold(xt2 , ut2)])

≤ rt0 δt+ e−ρt1rt1 δt+ e−ρδt
(
Eut2∼πnew [Q

πold(xt2 , ut2)]
)

= rt0 δt+ e−ρt1rt1 δt+ e−ρt2rt2 δt+ e−ρδt
(
Eut3∼πold [Q

πold(xt3 , ut3)]
)

...

≤
∫ ∞

t

e−ρtrtdt

= Qπnew .

.

A.4 DERIVATION OF DEFINITION 2

Proof. We consider the value function defined in Eq. 2 and follow the Proof of Lemma 3.1 to write
out the dynamic programming principle of V (xt) as:

V (xt) = r(xt, ut)∆t+ e−ρ∆tV (xt+∆t).

where ut is the optimal control input. Taking the gradient with respect to x on both sides using the
chain rule:

∇xV (xt) = ∇xr(xt, ut)∆t+ e−ρ∆t∇xf(xt, ut)⊤∇xV (xt+∆t).

which matches the estimator proposed in Definition 2.

A.5 PROOF OF THEOREM 3.4

Proof. From the definition of VGI in Definition 2, applying a first-order Euler step gives

xt+∆t = xt + f(xt, ut)∆t+ o(∆t).

This yields the first-order VGI approximation

∇xV (xt) = ∇xr(xt, ut)∆t+ e−ρ∆t
[
I +∇xf(xt, ut)∆t

]⊤∇xV (xt+∆t).

We can rewrite this approximation as an affine map

ζ = G(ζ)

where
b = ∇xr(xt, ut)∆t, A = e−ρ∆t

[
I +∇xf(xt, ut)∆t

]⊤
, ζ = ∇xV (·, ·).
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In Section 3.1, the dynamics function f(x, u) is assumed time-invariant, which implies its Jacobian
∇xf is also time-independent. Consequently, the matrix A is time-invariant, and the update map can
be written as a single contraction map

G(ζ) = b+Aζ,
rather than a family of time-indexed maps Gt. Assuming the dynamics have a bounded Jacobian,

∥∇xf(xt, ut)∥ ≤ Lf ,
we obtain the bound

∥A∥ ≤ e−ρ∆t(1 + Lf∆t) = β.

Because we study high-frequency settings, ∆t is chosen sufficiently small, which makes Lf∆t→ 0,
so that β < 1. For any ζ1, ζ2 ∈ Rd,

∥G(ζ1)−G(ζ2)∥ = ∥A(ζ1 − ζ2)∥ ≤ β∥ζ1 − ζ2∥,
Hence, G is a contraction. Banach’s fixed-point theorem guarantees a unique fixed point ζ∗ and
linear convergence ∥ζ(k) − ζ∗∥ ≤ β k∥ζ(0) − ζ∗∥. Therefore, the value-gradient iteration converges,
completing the proof.

A.6 TRAINING ALGORITHM

We present the training algorithm for our proposed approach, Value Iteration via PINN (VIP), as
follows:

Algorithm 1 Value Iteration via PINN (VIP)

1: Init: value net Vθ, policy nets {πωi}Ni=1, dynamics f̂ψ , reward r̂ϕ
2: for l = 1, . . . , T do
3: ▷ Collect one rollout:
4: x← env.reset()
5: for k = 1, . . . ,K do
6: sample decision time t ∼ T ▷ t is arbitrary time
7: for each agent i = 1, . . . , N do
8: ui ∼ πωi(ui | x)
9: end for

10: set joint action u = (u1, . . . , uN )
11: (x′, r)← env.step(u)
12: append (x, u, r, x′) to local rolloutR
13: x← x′

14: end for
15: ▷ Dynamics and Reward Model learning onR
16: update ψ, ϕ as per the Eq. 13 and 14.
17: ▷ Critic update onR
18: compute all losses Lres,Lanchor,Lvgi by Eq. 17.
19: θ ← θ − αV∇θ(. . .)
20: ▷ Actor update for each agent
21: for i = 1, . . . , N do
22: compute A(x, u) for all (x, u) ∈ R
23: ωi ← ωi − απ∇ωi

(
−E(x,u)∈R[A(x, u) log πωi(ui | x) ]

)
by Eq. 8.

24: end for
25: end for

B ENVIRONMENTAL SETTINGS

B.1 COUPLED OSCILLATOR

We evaluate on a two-agent coupled spring–damper system. Each agent i ∈ {1, 2} controls one mass
in a pair of identical oscillators with linear coupling. The continuous-time dynamics are

ẋi = vi,

v̇i = − k xi − b vi + ui,
i = 1, 2, (18)
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where

• xi and vi are the position and velocity of mass i;
• k = 1.0 is the spring constant, and b = 0.5 is the damping coefficient;
• ui ∈ [−umax, umax] is the control force applied by agent i, with umax = 10.

At each step the joint reward is

r = −
(
x21 + x22 + λc (x1 − x2)2 + β (u21 + u22)

)
,

with coupling strength λc = 2.0 and control penalty β = 0.01. We normalize by a constant factor
(here 1/10) so that r ∈ [−1, 0].
For the coupled oscillator with linear dynamics

ẋ = Ax+B u,

we can compute the exact infinite-horizon LQR solution:

1. Solve the continuous algebraic Riccati equation (CARE)
A⊤P + P A− P BR−1B⊤P +Q = 0

for the symmetric matrix P ∈ R4×4.
2. Form the optimal state-feedback gain

K = R−1B⊤P.

3. The optimal control law is
u∗(x) = −K x, u∗i = −Ki x,

where Ki is the i-th row of K.
4. The corresponding optimal value function is the quadratic form

V ∗(x) = x⊤P x,

whose exact gradient is
∇xV ∗(x) = 2P x.

We use u∗(x), V ∗(x), and ∇xV ∗(x) as ground truth targets when evaluating the precision of the
policy, the error of the value function, and the consistency of the gradient.

B.2 CONTINUOUS-TIME MPE

We build on the standard MPE of Lowe et al. (2017b), which simulates N holonomic agents in a 2D
world with simple pairwise interactions. In the original MPE each control step advances the physics
by a fixed time-step ∆tfixed = 0.1 s. To evaluate our continuous-time framework under irregular
sampling, we modify the simulator so that at each step the integration interval is drawn randomly,

∆tk ∼ Uniform(∆tmin, ∆tmax).

The underlying dynamics, observation and action spaces, reward functions, and task definitions
remain exactly as in the original MPE. For the cooperative predator-prey environment, we only
control the predators (3 agents) action to capture the prey (1 agent). While the prey is set up with
random actions.

B.3 CONTINUOUS-TIME MULTI-AGENT MUJOCO

For high-dimensional control we adapt the discrete-time Multi-Agent MuJoCo suite (e.g. cooperative
locomotion, quadruped rendezvous). By default MuJoCo uses an internal physics integrator with a
base time-step of 0.01 s and repeats each action for Kfixed = 5 frames, yielding an effective control
interval ∆tfixed = 0.05 s. We instead sample the number of frames per control step,

Kk ∼ UniformInteger(1, 9),

so that each step advances by
∆tk = Kk × 0.01 s ∈ [0.01, 0.09]s

at random. All other aspects of the environment (observations, reward structure, termination condi-
tions) are kept identical to the original multi-agent MuJoCo tasks.
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C ADDITIONAL EXPERIMENTAL RESULTS

Experiments were conducted on hardware comprising an Intel(R) Xeon(R) Gold 6254 CPU @
3.10GHz and four NVIDIA A5000 GPUs. This setup ensures the computational efficiency and
precision required for the demanding simulations involved in multi-agent reinforcement learning and
safety evaluations.

C.1 VALUE GRADIENT COMPARISON

(a) Ground Truth Gradient (b) VPI Gradient w/ VGI (c) VPI Gradient w/o VGI

Figure 9: Value gradient comparison between using of VPI module.

To further demonstrate the effectiveness of VIP, we sample the same trajectory in the coupled
oscillator environment and compute the value gradient from the analytical LQR solution, from VIP
equipped with the VGI module (ours), and from VIP trained without VGI, respectively. Fig. 9
presents the resulting 3-D surfaces. The surface in panel (b) preserves the principal ridges and valleys
of the ground truth, showing that the network recovers the correct geometric structure of ∇xV ; its
absolute error remains below 0.02 across almost all timesteps and gradient dimensions. In contrast,
the surface in panel (c) is noticeably distorted: several peaks are flattened, troughs are misplaced, and
the absolute error frequently exceeds 0.08. This comparison confirms that the VIP module is critical
for aligning the learned gradients with the analytical solution, thereby reducing bias and stabilising
the HJB residual.

C.2 RELU VS TANH AT ANT 2× 4d AND ANT 4× 2.

Fig. 10 compares VIP’s learning curves when the policy network uses ReLU or Tanh activations
on Ant 2 × 4d and Ant 4 × 2. Across both tasks the Tanh implementation converges faster and
attains a higher plateau reward, whereas the ReLU version peaks earlier and then undergoes a mild
performance decay. The observation aligns with the earlier Tanh-versus-ReLU analysis reported in
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Figure 10: VIP performance with ReLU and Tanh at Ant 2× 4d and Ant 4× 2.
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the main paper Fig. 5: smoother activation functions mitigate gradient saturation and promote more
stable policy updates. The additional evidence from the two Ant variants therefore reinforces our
previous claim that Tanh is better suited for value–gradient propagation in VIP.

Table 1: Hyperparameter settings used in all experiments.

Parameter Value
Episode length 50
Replay buffer size 104

Discount factor ρ 0.95
Soft update rate τ 0.001
Actor learning rate 0.0001
Critic learning rate 0.001
Dynamics model learning rate 0.001
Reward model learning rate 0.001
Exploration steps 1000
Model save interval 1000
Random seed 111-120

D HYPER-PARAMETERS

As Table 1 shows, the exploration steps are used to delay the decay of the exploration rate: during
the first 1000 steps, the exploration schedule remains fixed to encourage initial exploration. The soft
update rate τ controls the target network update in the critic and value estimation, where we adopt a
target network with an exponential moving average to stabilize bootstrapped training. This technique
helps suppress oscillations in value learning and leads to more accurate estimation of long-horizon
returns.

Table 2: Summary of neural network architectures used in our framework.

Network Input Dimension Architecture and Activation
Value Network State (d) FC(128) → FC(128) → FC(1), ReLU or Tanh
Dynamics Network State + Joint Action (d+ na) FC(128) → FC(128) → FC(d), ReLU
Reward Network State + Joint Action (d+ na) FC(128) → FC(128) → FC(1), ReLU
PolicyNet Observation + Time Interval (o+ 1) FC(128) → FC(128) → FC(64) → FC(a), ReLU

Table 2 summarizes the architectures of the neural networks used in our VIP framework. All networks
are implemented as FC layers with hidden size 128 unless otherwise specified. The value network
takes the concatenation of the global state and time (d) as input and outputs a scalar value. In our
implementation, we use the Tanh activation function for the value network, as it provides smoother
and more stable gradient propagation, which is critical for PINN-based value approximation. To
validate this choice, we conducted an ablation study comparing Tanh and ReLU activations in the
previous section.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs as a writing assistant to polish/revise the paper.
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