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Abstract
We consider if the techniques used in the design of approximation algorithms can be
leveraged to develop effective learning solutions for NP-hard graph problems. Specifi-
cally, we focus on semi-definite programs (SDPs), a powerful technique from operations
research, that has been used in the design of many approximation algorithms. In these
approximation algorithms, one typically solves an SDP relaxation of the optimization
objective and then performs some problem-specific rounding of the SDP solution. In this
paper, we present a learning framework that utilizes Hopfield networks to round the SDP
solution for different problems. We show empirically that the approach performs well on
benchmarking instances of three well-studied problems namely Max-Cut, Max-Clique and
Graph Coloring. The solutions obtained are close to optimal and significantly better than
those obtained by the corresponding approximation algorithms. The primary advantage
of such a simple heuristic is that it can be applied to a large number of problems without
much problem-specific engineering. Another advantage of our approach is that we only
need a small number of tunable parameters in the rounding algorithm - this is because we
start with an SDP solution which already contains useful global information. This in turn
means that the parameters can be learnt efficiently with a small amount of training data.
We also show that even approximate solutions to the SDP relaxation suffice - this makes
our approach fast and practical.

1 Introduction

Semi-definite programming (SDP) is one of the most powerful techniques used in the design of
approximation algorithms for combinatorial optimization problems. These approximation algorithms
typically solve an SDP relaxation to the problem and round it to obtain a feasible solution (see the
classical textbooks [1–3] for several examples of these approximation algorithms). The latter part is
usually the non-trivial part and while very clever rounding algorithms have been designed for different
optimization problems, no general techniques exist. This implies that every new variant of even
well-studied problems typically requires designing a rounding algorithm from scratch. This, along
with the fact that these algorithms are usually geared towards worst-case performance guarantees and
do not exploit real-world instance distributions, has prevented the widespread adoption of SDP-based
techniques to solve practical problems. One fact that stands out clearly from the existence of so
many non-trivial approximation algorithms based on SDPs (see e.g., [4–10]) is that the SDP solution
does contain useful information that captures the global structure of the problem. It is therefore
desirable to find a generic rounding technique which can use the SDP solution to find good solutions
for real-world instances. Such a rounding technique may not come with theoretical guarantees but it
should be easy to use and work well for practical instances of a large number of problems.

In this paper, we present a simple rounding technique based on Hopfield networks [11], whose edge
weights are determined from the SDP Gram matrix for the corresponding problem. The dependence
of the edge weights on the SDP Gram matrix is problem-specific and can either be hand-designed or
learnt from data. The latter approach allows for the rounding technique to be dependent on and exploit
the instance distribution. Our technique is sufficiently generic that it can be used with any problem for
which there is an SDP relaxation. We chose to use a Hopfield network for rounding since it is a simple
way to make the outputs binary while respecting pairwise correlations among them. We demonstrate
the efficacy of our approach on three well-studied problems: Max-Cut, Max-Clique, and Graph
Coloring. In all three cases, our heuristic rounding algorithm finds solutions close to the optimal
solution that are significantly better than the solutions found by the corresponding approximation
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algorithms. Our work indicates that there is potential to design heuristics for SDP rounding that work
well for practical instances.

Our experiments also indicate that our rounding algorithm is not very sensitive to noise in the SDP
solution. This allows us to replace the exact computation of the SDP solution with an approximate
computation, thus speeding up the algorithm while incurring very little loss in the quality of the
solution. To give an example, our algorithm for Max-Cut finds a cut of size within 0.6% of the
optimal solution in a graph with 10,000 nodes obtained from a benchmarking dataset in about one
minute.

From a machine learning (ML) point of view, existing approaches for solving combinatorial opti-
mization problems typically rely on end-to-end deep learning (e.g., Graph Neural Networks). Such
techniques throw away the algorithmic techniques that have already proven useful and, as a result,
also require a lot of time and data for training. These techniques also struggle to generalize well
to instances of larger size (compared to training instances) and instances from a different input
distribution. In light of these issues, Bengio et al. [12] opined in a survey of learning algorithms
for combinatorial optimization that “We believe end-to-end machine learning approaches to com-
binatorial optimization are not enough and advocate for using machine learning in combination
with current combinatorial optimization algorithms to benefit from the theoretical guarantees and
state-of-the-art algorithms already available." In line with this, we directly integrate the SDP solution
(which is theoretically known to be very useful) in the learning technique. Due to the simplicity of
our rounding algorithm, it suffices to use shallow neural networks to compute the Hopfield network
weights - this means that their parameters can be learnt efficiently with very little data. Our empirical
results show that the learning generalizes across instances of different sizes, allowing us to learn from
small instances and apply the model to larger instances. It also generalizes quite well across different
instance distributions.

Embeddings obtained from Graph Neural Networks (GNNs) are known to be effective in capturing
local topological features, but they often struggle to capture the global combinatorial structure in
a problem instance (see e.g. [13],[14]). In contrast, linear programming (LP) and semi-definite
programming (SDP) based relaxations have been very successful in the design of approximation algo-
rithms, implying that “embeddings" obtained from them are good at capturing global combinatorial
information, and this can be computed efficiently. It is therefore natural to consider machine learning
architectures that leverage SDP-based embeddings. This is what motivates our current work.

Information from an SDP solver comes in the form of a Gram matrix which indicates pairwise
correlations. Hopfield networks are a simple way to do a rounding based on pairwise correlations.
While one could certainly use more sophisticated techniques like GNNs, our main goal in the paper
is to demonstrate the usefulness of SDP-based embeddings and for this, Hopfield networks suffice.

While we only considered three well-studied classical problems in this paper, SDPs have been
successfully used in a wide variety of problems. Many combinatorial optimization problems of
interest can be formulated as quadratic integer programs with binary variables and admit an SDP
relaxation. Our approach is general enough to be applied to any such problem.

Note that heuristics like local search, which are known to work well in practical settings (especially
1-local search), can always be used on top of our framework. We do not study such additional tricks
in this paper so that we can evaluate our framework in isolation.

Our Contribution. To summarize, our contribution in this work is as follows:

• We first show that there is a simple heuristic based on Hopfield networks which is able to
round SDP solutions for practical instances of well-known combinatorial optimization problems,
namely Max-Cut, Max-Clique and Graph Colouring.

• Next, we show that the functional relation between the SDP solution and the Hopfield network
can be learnt from data. This allows the rounding technique to be adapted to new problems and
also to the target input distributions for those problems. Furthermore, shallow neural networks
suffice for this purpose, which means that the training process does not require much data or
processing time.

• Finally, we show that our learnt heuristic is robust to noise in the SDP solution. This allows the
replacement of an exact computation of the SDP solution by a fast approximate computation
with little loss in the solution quality.
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2 Preliminaries
In this section, we briefly describe the basic concepts of Semi-definite programming and Hopfield
networks that we use in the rest of the paper.

2.1 Semi-definite Programming.

Let Sn denote the set of n × n real-symmetric matrices and Tr(X) denote the trace of matrix X .
Further, let C,A1, ..., Am ∈ Sn and B1, ..., Bm be the input variables for a given problem and
X ⪰ 0 denotes that matrix X is positive semi-definite. A semi-definite program (SDP) is a convex
optimization problem of the form:

min
X ∈ Sn

Tr(CX)

s.t. AiX = Bi, i = 1, ...,m,

X ⪰ 0

Semi-definite programs are a special case of cone programming. Any integer quadratic program can
be relaxed into the form of an SDP and solved in polynomial time using algorithms such as interior
point method [15]. Throughout this paper, we transform several NP-Hard problems in their integer
quadratic form into SDP versions of that problem. We consider the classical optimization problems
of Max-Cut, Max-Clique and Graph coloring. We describe these problems and the SDP formulations
that we use in Appendix A.

2.2 Hopfield Networks.

A Hopfield network [11] is a fully connected network with n neurons which we can number from 1 to
n. Each neuron has one output which is initially set to some value (often randomly). Then we update
the outputs in several rounds. Each neuron updates its output to a new value which is obtained by
taking a linear combination of the outputs of all the other neurons and applying a non-linear activation
function. Specifically, for each pair of neurons i and j, the corresponding edge in the complete graph
has a weight a ij called the interaction between the neurons i and j. In addition, for each neuron i
there is an associated bias bi. If we denote the output of neuron i at any point in time by zi, then it is
updated as follows:

zi := A

∑
j ̸=i

a ijzj + bi


where A is a nonlinear activation function (typically the sigmoid or the tanh function). The output
of the neurons can either be updated one by one (i.e., asynchronously) or together (synchronously).
In the latter case, when updated zi for any i, we use the old values of zj for all j ̸= i. Typically we
continue updating the outputs until they have converged (i.e., they don’t change significantly from
one round to the next) or a certain threshold number of updates have been performed.

3 Related Work
3.1 Semi-definite Programs and Approximation Algorithms

Semidefinite programming is among the most powerful tools used in the design of approximation
algorithms [1–3]. Goemans and Williamson’s algorithm [16] for the MaxCut problem is the first
approximation algorithm (from 1995) based on semi-definite programming, and it is still considered
to be among the simplest and most impressive results in this area. It is also known that under the
Unique Games Conjecture, this algorithm provides the best approximation possible in polynomial
time [17]. SDP-based approximation algorithms are known (e.g., [4–10]) for a range of combinatorial
optimization problems, such as graph colouring and maximum clique.

3.2 Rounding Algorithms for LP and SDP

Linear Programming and Semidefinite Programming relaxations are central to the design of many
approximation algorithms. Several broad as well as problem-specific techniques have been devised
for rounding the solutions to such relaxations. See for instance [18–23] and the references therein.
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3.3 Machine learning for Combinatorial Optimization

In the last decade, a large number of machine learning techniques have been developed to solve
combinatorial optimization problems (see [12] for a recent survey and the citations therein). These
include graph neural networks (see [24] for a very recent survey and the citations therein), reinforce-
ment learning (see [25] for a survey), neural symbolic computing (see [26] for a survey) and graph
representation learning (see [27] for a survey). We focus on the last technique as it is closest to our
work. In graph representation learning, the first stage embeds the graphs into low-dimension vectors,
and the second stage uses machine learning to solve the combinatorial optimization problems using
the embeddings of the graphs learned in the first stage. In contrast, we use embeddings derived from
SDP formulations and use Hopfield networks to solve combinatorial optimization problems using
the SDP embeddings. Furthermore, in graph embedding methods, the learning of the embeddings of
the graphs has its own objective, which may not rely on the optimization problems to be solved. In
contrast, the SDP embeddings are problem-dependent and capture global combinatorial information
about the problem being solved.

3.4 Machine Learning and SDP Gram matrix

In recent years, neural networks have been used to approximate SDP Gram matrix computation (see
e.g., [28–32]). In contrast, there is little work in using SDPs for learning to solve problems. Some
examples in this direction are the use of SDPs for designing semi-supervised SVMs [33], the use of
SDP as a lower bound in a branch and bound algorithm for an unsupervised minimum sum-of-squares
clustering [34], the use of a low-rank SDP for probabilistic inference in pairwise Markov Random
Fields [35] and community detection [36]. There are even fewer examples of work that uses SDPs in
a learning framework for effectively solving combinatorial optimization problems. One example is
the use of SDP to learn the Lovasz-Θ function and then use that to find planted cliques in random
graphs [37]. In contrast, we are investigating a general machine-learning framework that can use
SDPs to solve combinatorial optimization problems.

4 Rounding SDP solutions using Hopfield Networks
In each of the three problems we study in this paper, the corresponding SDP returns an n-dimensional
embedding σv for each vertex v in the graph. Most algorithms based on SDPs do not directly use
these vectors 1 and instead use the Gram matrix of pairwise dot products of these vectors. This
is what we also do in this paper. The pairwise nature of the information extracted from the SDP
naturally suggests the use of Hopfield networks in which the interaction between any pair of neurons
is a function of the corresponding Gram matrix entry. The actual function used depends on the
problem. Similarly, the bias and initial output used for each neuron, as well as the activation function,
is problem-dependent. We use the Hopfield network to find a rounded solution as follows. We start
by setting the output of each neuron to its initial value and update the outputs of each of the neurons
(synchronously/asynchronously) until either a threshold number of rounds is exceeded or the outputs
of all of the neurons have converged. At this point, we round each output by setting it either to the
closest rounded value or to one of the values probabilistically (the closer the rounded value, the higher
the probability of rounding to that value).

To reiterate, we first obtain the correlation between two variables as a function of the corresponding
Gram matrix entry in a problem-dependent way. After this, we use the Hopfield network as a
mechanism to round the variables while trying to respect the pairwise correlations. This is somewhat
akin to how graph neural networks are used for node classification except that in a Hopfield network,
the underlying network is the complete graph. Our pipeline is illustrated in Figure 1.

In the following subsections, we describe simple functions for each of the three problems and show
that they yield good empirical results. The particular hand-designed functions in this section are not
the main point. The primary objective is to show that simple functions suffice and, therefore, an
appropriate function can be efficiently learned from data. This is particularly useful for new problems
where it may not be easy to hand-design good functions. We discuss how the function can be learnt
from data in the next section.

1The solutions are often rotation invariant i.e., applying the same rotation to all the vectors in a solution
yields an equally good solution to the SDP.
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Figure 1: A schematic diagram showing our framework.

Remark. Note that updates in the Hopfield networks with all pairwise edges takes Θ(n2) time in
every round. This can be improved by doing approximate computations using matrix sketching [38].
We do not discuss this in this paper since our focus is on evaluating the quality of solutions obtained
using our framework. For the problem sizes we consider, this is not the bottleneck since SDP
computations dominate the running time. However, for scaling to larger instances, matrix sketching-
based optimizations along with fast approximate SDP solvers will be necessary.

4.1 Hopfield Networks for Max-Cut.

In this problem, we would like each neuron of the Hopfield network to output a number in the range
[0, 1] from which we create a cut by taking one side to be the vertices whose corresponding neurons
have output at most 0.5 and taking the other side to be the remaining vertices. Given this, we use the
sigmoid function as the activation function for the neurons. The outputs of the Hopfield network are
rounded to the nearest binary output to obtain a binary solution. Given the symmetry between the
sides in the cut (flipping the sides yields the same cut), we set the bias for each neuron to 0.

In the formulation of the SDP for Max-Cut, the quantity cuv := (1− σu · σv)/2 is the coefficient
of wuv in the objective function. If cuv is large, we would like u and v to be separated by the cut,
and otherwise, we would like them to be on the same side of the cut. It is thus natural to use a
decreasing function of cuv, i.e., an increasing function of σu · σv as the interaction between the
neurons corresponding to the vertices u and v. One obvious option is to use σu ·σv as the interaction.
Another option motivated by the Goemans-Williamson algorithm [16] is to use 2puv − 1 as the
interaction where puv = arccos(σu · σv)/π is the probability that σu and σv are separated by a
random hyperplane through the origin. The reason for choosing 2puv − 1 as the interaction is that we
want the range to be [−1,+1]. The initial outputs of the neurons are chosen from [0, 1] uniformly
at random. Denoting the output of the neuron corresponding to vertex u by zu, we update zu to
A
(∑

v ̸=u auvzv

)
where auv denotes the interaction between the neurons corresponding to vertices

u and v and A is activation function - in this case, the sigmoid function. As mentioned before, we
repeat the updates until the outputs converge or the number of rounds of updates exceeds a threshold.

Experimental results. We compared the performance of our approach with that of the Goemans-
Williamson algorithm on SF-295 [39], a collection of graphs representing small molecules recording
cancer screening (4026 instances with 31 nodes and 33 edges on average), and Twitter Snap [40]
graph datasets (97 instances with 130 nodes and 1421 edges on average) along with a custom dataset.
The custom dataset consists of 1000 Erdős-Rényi random graphs, each containing 128 nodes with a
probability of edge existing between a node pair of 0.05. In addition, we inserted a Max-Cut between
a random, even partition of nodes in the graph. To do this, we consider all node pairs with a node on
either side of the partition and insert an edge between them with a probability of 0.15. We carefully
remove random edges from both partitions to ensure that the degree of nodes has a similar distribution
after the planted cuts.

Table 1 presents the result of this comparison. For the Goemans-Williamson algorithm (referred to as
the GW Algorithm in the table), we use 5 random planes to generate cuts and take the best result from
the 5 cuts. We also run our Hopfield Network based approach 5 times and take the best cut. Table 1
shows the mean optimality ratio (i.e., size of generated cut/optimal cut) and the standard deviation
over all graphs in the different datasets. Throughout these experiments, the Hopfield network always
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converged to a stable state in a handful of iterations and didn’t require to be terminated after a
fixed number of steps. As can be seen in Table 1, our approach based on the Hopfield network
produces cuts that are significantly better than generating random cuts for each graph, implying
that Hopfield networks can decode the cut information contained in SDP vectors. Surprisingly, we
find that it even returns better cuts than the classical Goemans-Williamson approximation algorithm
that has provable guarantees on the cut size. Outperforming the well-studied Goemans-Williamson
approximation algorithm on various graph datasets clearly outlines the potential of our Hopfield
network-based approach. We also show in Table 1 that the mean time to pre-process the Hopfield
network edges, computing the weights (excluding the SDP computation time) and for the Hopfield
network to converge to a solution is very small (less than a second).

In addition, we investigate how our framework performs as the size of the instances increases. To do
this, we generated an additional 25 Erdős-Rényi graphs in the same manner as before, except that we
generated them for sizes varying from 16 nodes to 512 nodes. We refer to them as our custom-cut
instances. The same experiment as before was carried out with results displayed in Table 2. Once
again, we observe that the cuts produced by the Hopfield network have a better mean optimality ratio
compared to the Goemans-Williamson approximation algorithm. We also compare it with taking a
random cut and note that random cuts have a considerably poor mean optimality ratio and the usage
of SDP vectors is indeed crucial to obtaining good cuts on these problem instances.

SF-295 Twitter Custom Cut
Hopfield Network 0.998(±0.005) 0.993(±0.006) 0.998(±0.002)

GW Algorithm 0.943(±0.073) 0.937(0.041) 0.897(±0.051)
Random 0.621(±0.071) 0.797(±0.044) 0.686(±0.019)

SDP Runtime 0.745(±2.173 ) 9.001(±8.709 ) 3.961(±0.823 )
Hopfield Network Runtime 0.014(±0.015) 0.256(±0.192) 0.203(±0.006)

GW Algorithm Runtime 0.0002(±0.0001) 0.002(±0.001) 0.0017(±0.0028)
Table 1: Mean optimality ratio for Max-Cut and runtimes in seconds

Cut # Nodes Hopfield Hopfield Runtime GW Random
16 0.998(±0.006) 0.002(±0.001) 0.951(±0.045) 0.782(±0.060)
32 0.998(±0.005) 0.008(±0.0006) 0.935(±0.047) 0.679(±0.065)
64 0.993(±0.007) 0.036(0.001) 0.908(±0.049) 0.678(±0.029)

128 0.998(±0.002) 0.203(±0.006) 0.894(±0.047) 0.683(±0.020)
256 1.000(±0.000) 0.587(±0.032) 0.923(±0.060) 0.674(±0.009)
512 1.000(±0.000) 2.356(±0.112) 0.918(±0.098) 0.672(±0.003)

Table 2: Mean optimality ratio for varying size Erdős-Rényi Max-Cut instances

Table 2 also shows that for these graph sizes, the running time remains quite small (around 2.4
seconds for 512 node Erdős-Rényi graphs). The running time scales roughly quadratically with the
input size (Around 1024 times increase as the number of nodes increases by a multiplicative factor
of 32 from 16 to 512). This is in line with what we would expect theoretically – Hopfield networks
with all pairwise edges take Θ(n2) time in every round. As discussed before, this can be improved
by doing approximate computations using matrix sketching [38].

4.2 Hopfield Networks for Max-Clique and Graph Coloring.

We present the details of the Hopfield networks for the Max-Clique and Graph coloring problems in
Appendix B and C, respectively. Our experimental results on various benchmark instances show that
the SDP rounding based on Hopfield network finds near-optimal solutions in very little runtime. Our
approach compares favourably to the Erdős Goes Neural [41] GNN architecture as well as a greedy
heuristic for the Max-Clique problem.

5 Learning the Hopfield Network parameters
In this section, we show that instead of hand-crafting the weights of the Hopfield network, we can
express the interaction between a pair of neurons as a parameterized function of the corresponding
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Gram matrix entry and learn the parameters from the data (as illustrated in Figure 2). For instance,
we can train a neural network that learns this function separately for each combinatorial optimization
problem. We experimentally demonstrate the efficacy of the idea for the Max-Cut problem. A similar
approach can be used for other problems.

Figure 2: A schematic diagram showing our framework where a small neural network is used to
learn the interaction weights of the Hopfield network.

While the input graph G = (V,E) can be sparse, the Hopfield network works on a complete graph
G′ = (V,E′) with E ⊆ E′. We need to learn the function governing the interaction weights auv

for all edges (u, v) in the Hopfield network. The input to the neural network that learns the weight
function consists of the corresponding Gram matrix value Xuv together with some polynomial terms
X2

uv, X
3
uv etc. In addition, we also input an indicator variable corresponding to whether or not an

edge in the Hopfield network is in the input graph or not.

We train a small, dense neural network to compute an interaction weight for the Hopfield network
edges. For this, we need to design an appropriate loss function. For each vertex u, let zu be the
output corresponding to u. If the z′us were assumed to be in {0, 1}, finding the max-cut is equivalent
to maximizing

∑
(u,v)∈E wuv(zu − zv)

2. Accordingly, we use the negative of the above sum as the
loss function. Note that here we are using the "raw" outputs of the nodes in the Hopfield network and
not rounding them since we want the loss function to be differentiable.

Remark. The max-cut problem is particularly simple since all solutions are feasible. In problems with
constraints, one needs to construct the loss function carefully. This is in general problem dependent
but a generic method is to use a Lagrangian relaxation. For instance, in the max-clique problem,
the loss function that we used is

∑
v∈V zv − λ

∑
(u,v)/∈E zuzv where λ is a parameter which in our

experiments was set to 1. We backpropagate the loss through each iteration of the Hopfield network -
this is similar to backpropagation through time in Recurrent Neural Networks - yielding the gradient
with respect to each edge weight in our Hopfield network. Since these edge weights are themselves
the output of a neural network, we further backpropagate through that network to obtain the gradient
of the loss with respect to the parameters in that network.

Experimental Results. To evaluate this approach, we consider the Max-Cut Problem and select a
subset of 1000 graphs from the SF-295 dataset. We perform a 70/30 train/test split on this dataset and
train a small neural network for 50 epochs with a learning rate of 10−3 using the ADAM optimiser
with the default parameters in Pytorch. The model consists of three dense layers, with a single hidden
layer with a width of 6 neurons and tanh activation functions.

Similarly, for the Max-Clique problem, we perform a 70/30 train/test split on a subset of 1000 graphs
from the IMDB-Binary graph dataset and train a small neural network for 50 epochs. The only
difference is that the learning rate of 10−4 is used in ADAM optimiser instead of 10−3. The learning
rate needs to be carefully tuned as there is a trade-off between the number of instances for which the
Hopfield network returns cliques of sub-optimal size and the number of instances where the Hopfield
network produces a superset of the optimal clique (which itself is not a clique and therefore an invalid
solution). A large learning rate tends to cause the optimizer to jump between the two extremes. The
hidden layer, in this case, had 10 neurons.

Figure 3 shows that for both these problems, after only a few epochs, the optimality ratio associated
with the learnt weight function on the Hopfield network edges reaches above 0.9. Thus, a good weight
function for this instance distribution could be learnt in only a few iterations.
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Figure 3: Optimality ratio associated with learning the weight function of the Hopfield network using
SDP during training. The left plot shows the progress for the Max-Cut problem on the SF-295 training
dataset, and the right plot shows the progress for the Max-Clique problem on the IMDB-Binary
training dataset.

After training the network, we compute the mean optimality ratio and standard deviation in a similar
manner as our experiments in Section 4.1. Even with learnt edge weights (instead of manually
selected edge weight in Section 4.1) using a small neural network, for Max-Cut our approach returned
a cut with the mean optimality ratio of 0.979(±0.105) on the 300 test graphs of the SF-295 dataset.
For Max-Clique, our approach returned a clique with a mean optimality ratio of 1.0(±0.0) for valid
cliques, and for only two instances, the network failed to produce a valid clique. This shows that the
neural network converged towards learning a function that produced edge weights with comparable
performance to our manually selected edge weight function. This implies that the design of the
transformation function can be automated through the use of a small dense neural network.

In Appendix D, we show that our learning models for Max-Cut and Max-Clique generalizes well
across distributions and larger size instances. Our models achieves near optimal solutions on graph
classes that are very different in size and density from the classes on which they were trained.

We observed that the learnt model for Max-Clique is quite different from the carefully selected
function presented in Appendix B. Specifically, it puts less emphasis on the connection to the dummy
vertex. The fact that the learning technique has converged to a different function for Max-Clique on
this graph class and that this function was learnt from a space that generalizes the carefully designed
weight function suggests that the learnt function minimizes the loss on the training instances more
than the handcrafted weight function.

6 Using approximate Low Rank SDP solutions

A potential criticism of our approach is that it relies on a computationally expensive step of calculating
SDP vectors. We ran experiments to check the sensitivity of the rounding algorithm to the accuracy
of the SDP solutions and found that the algorithm is quite robust to noise. The results are presented
in Appendix E. Motivated by these results, we tried our approach on large instances of Max-Cut
in which instead of computing the optimal SDP solution (which would be prohibitive), we used
low-rank SDP solutions obtained using the mixing method [42] - a simple and fast algorithm based
on coordinate descent. Since for such large instances, we cannot compute the optimal solution in
a reasonable amount of time, we compare our results with Breakout Local Search (BLS) [43], one
of the top heuristics for this problem. The rank of the solutions is a tunable parameter that provides
a trade-off between the quality of the solution and the speed of computation. We used

√
2n as the

rank in line with the recommendation by Wang et al. [42]. We use the default hyperparameters for
BLS from Benlic and Hao [43] since they use the same benchmarking dataset and had used those
hyperparameters for that dataset.

Our Max-Cut instances were from the Gset graph dataset [44], with graphs having between 800
and 10,000 nodes. Table 3 shows that our approach based on Hopfield Networks obtains solutions
that are nearly as good as those obtained by BLS [43] but is significantly faster, especially for large
instances. For instance, for the graph G70 with 10,000 nodes, our approach finishes in around a
minute with a Max-Cut size that is only 0.6% less than that of BLS, whereas BLS takes over 3 hours.
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To avoid the O(n2) storage requirement of the Gram matrix, we can approximately store the entries
via a low-rank approximation. We know that there exist vectors v1, ...,vn ∈ Rn s.t. the entry Gij of
the Gram matrix is vi · vj . Given these vectors, we could use dimension reduction to reduce their
dimension to O(log n) while approximately preserving dot products. We could also use SDP solvers
that can return approximate solutions where the vectors are of dimension d ≪ n.

|V | SDP Hopfield Hopfield BLS BLS
Time Obj. Time Obj. Time

G1 800 1.601 11450 1.553 11624 13
G14 800 0.641 2970 0.91 3064 119
G15 800 0.610 2977 0.92 3050 43
G22 2000 2.203 13000 4.605 13359 560
G23 2000 2.376 12973 4.698 13354 278
G24 2000 2.161 13024 4.669 13337 311
G35 2000 1.641 7403 4.276 7684 442
G36 2000 1.561 7401 4.254 7677 604
G37 2000 1.582 7407 4.21 7689 444
G45 1000 1.016 6482 1.486 6554 104
G53 1000 0.829 3732 1.308 3850 117
G54 1000 0.813 3740 1.285 3852 131
G55 5000 3.082 9903 4.34 10294 842
G58 5000 4.317 18539 22.577 19263 1354
G60 7000 4.471 13631 40.916 14176 2822
G70 10000 4.572 9485 61.805 9541 11365

Table 3: Comparison of the Max-Cut size and runtimes in seconds of the low-rank SDP solution
rounded using our Hopfield network approach with Breakout Local Search (referred BLS)

7 Discussion
We have shown that a simple Hopfield network with appropriate interaction weights based on SDP
embeddings can obtain near-optimal solutions for practical instances of the classical combinatorial
optimization problems of Max-Cut, Max-Clique and Graph Colouring obtained from various bench-
mark datasets. Furthermore, we show that the appropriate problem-dependent interaction weights
can be learnt efficiently using a small neural network.

Our approach has two parts – computing a low-rank SDP solution and then rounding the solution
using a Hopfield network. Yu et al. [28] have recently shown that a low-rank SDP vector can be
computed using a graph neural network (GNN). Similarly, for the second part, while we have used
a Hopfield network, a more scalable and general approach would be to use GNNs initialized with
the SDP solution vectors of a fixed rank. The final embedding obtained by the GNN can then be
processed by another neural network to output a decision for each node (e.g., whether it is part of the
solution, the colour of the node, etc.). While this approach sounds natural and appealing, it does not
seem easy to make it work in practice. An interesting open problem is to design a flexible architecture
based on GNNs that can integrate existing algorithmic tools like SDPs.

Code availability: Our code is available at https://anonymous.4open.science/r/
SDP-Hopfield-645D/

Acknowledgement: This publication has emanated from research supported in part by a grant from
Science Foundation Ireland under Grant number 18/CRT/6183. For the purpose of Open Access,
the author has applied a CC BY public copyright licence to any author accepted manuscript version
arising from this submission.
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Appendix

A Problems Considered and their SDP

In this appendix, we describe the problems considered in this paper and the ILP formulations that we
use for SDP relaxation.

Max-Cut: In the Max-Cut problem, we are given a weighted graph G = (V,E) in which the edge
(u, v) ∈ E has weight wuv and the goal is to partition the vertex set V into two sets S ⊂ V and V \S
so that we maximize the number of edges in E which have one end-point in both sets. This problem
is NP-hard and we can use the following integer programming formulation for this problem.

max
∑

u,v∈E

wuv

(
1− xu · xv

2

)
s.t. xu ∈ {−1, 1} (1)

Here, xu = 1 if u ∈ S and xu = −1 otherwise. The value of the cut equals
∑

u∈S,v∈V/S wuv =∑
u,v∈E wuv

(
1−xu·xv

2

)
. The integer constraint xu ∈ {−1, 1} can also be written as x2

u = 1.

The best approximation ratio for this problem is obtained by a celebrated algorithm due to Goemans
and Williamson [16] using semi-definite programming. The SDP relaxation used in their paper is as
follows:

max
∑

(u,v)∈E

wuv

(
1− σu · σu

2

)
s.t. σu ∈ Rn and σu · σu = 1 ∀ u ∈ V. (2)

(3)

Here σv is an n-dimensional unit vector associated with the vertex v. Note that the quantity we are
maximizing depends only on the inner products of the vectors and is not affected by rotations in Rn.
In this paper, we only use the pairwise dot products of the vectors associated with the vertices and do
not really need the vectors σv .

Max-Clique: In the Max-Clique problem, we are given a graph G = (V,E) and the goal is to find
the largest subset S ⊆ V which forms a clique i.e., each pair of vertices in S are connected by an
edge in the graph. The following integer programming formulation can be used for solving this
problem:

max
∑
v∈V

xv (4)

s.t. xu · xv = 0 ∀ (u, v) /∈ E (5)
xv ∈ {0, 1} ∀v ∈ V (6)

(7)

Here is the SDP relaxation we use for this problem:

max
∑
v∈V

σv · σv (8)

s.t. σ0 · σ0 = 1, (9)
σv · σv = σv · σ0 (10)
σu · σv = 0 ∀ (u, v) /∈ E (11)

As in the previous problem, σv is an n-dimensional vector (not necessarily of length 1) associated
with the vertex v. In addition, we have a vector σ0.

Graph Coloring: In the graph colouring problem, we are given a graph G = (V,E), and the goal is
to colour the vertices with the minimum number of distinct colours so that any pair of vertices joined
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by an edge e ∈ E have different colours. The ILP formulation for the problem is as follows:

min

n∑
k=1

yk

s.t.
n∑

k=1

xuk = 1 ∀u ∈ V

xuk ≤ yk ∀ k = 1, . . . , n and ∀u ∈ V

xuk + xvk ≤ 1 ∀ k = 1, . . . , n and ∀ (u, v) ∈ E

0 ≤ xuk, yk ≤ 1 ∀ k = 1, . . . , n and ∀u ∈ V

xuk, yk ∈ Z

Here is the SDP relaxation we use:

min t

s.t. σu · σv ≤ t ∀ (u, v) ∈ E

σv · σv = 1 ∀ v ∈ V

σv ∈ Rn ∀ v ∈ V

Here too, for every vertex v ∈ V , we have an associated vector σv of unit length.

B Hopfield Network for Max-Clique
For this problem, we treat a neuron’s output as the probability that it belongs to the Max-Clique. As
the SDP formulation of the Max-Clique problem indicates, for any vertex v, σv · σv can be thought
of as the “probability that v belongs to the clique". We therefore set σv ·σv as the bias for the neuron
corresponding to v. In addition, since we want to avoid picking non-adjacent vertices in the clique,
we set the interaction between the neurons corresponding to the vertices u and v as −1 if u and v are
non-adjacent and 1 otherwise. One difference with the Max-Cut problem is that whereas any cut is a
feasible solution to the Max-Cut problem, arbitrary subsets of the vertices do not generally form a
clique and, therefore, are not feasible solutions. Unlike for Max-Cut, we initialize the outputs for
each of the neurons to 0, so that after the first round of updates, the neuron corresponding to vertex v
has a pre-activation output of σv · σv .

Experimental results. For this architecture, we tested its performance on the IMDB-Binary (1000
instances with 19 nodes and 96 edges on average), Google Colab [45] (5000 instances with 74
nodes and 2457 edges on average) and Twitter [40] graph datasets along with a Custom Dataset
consisting of 1000 Erdős-Rényi graphs with an edge probability of 0.5 and a planted hidden clique
that is twice the size of the Max-Clique within the graph. We carefully ensure that we have a similar
degree distribution between nodes within the planted clique and nodes outside it. We compare the
performance with the Erdős Goes Neural [41] fast GNN architecture as well as a greedy heuristic.
The greedy heuristic builds a clique by starting with the highest-degree node in a clique and iteratively
adding the next highest-degree node that is connected to all current members of the clique until
no further nodes can be added. Table 4 shows that our Hopfield network-based approach returns
optimal or near-optimal maximum cliques on these graph collections. The mean optimality ratio
of our approach is considerably better than the Erdős Goes Neural GNN technique and the greedy
heuristic.

The "Erdoes Goes Neural" approach always produces feasible solutions. Our approach based on
Hopfield networks can sometimes result in infeasible solutions. However, as shown in Table 4,
even for our approach, the frequency of producing infeasible solutions is very small (0.4% on
IMDB-Binary, 0.3% on Collab, 0% on Twitter instances, and 0. 3% on Custom clique instances).

Note that for this problem, one can always return a subset of the vertices in the returned solution that
form a maximal clique to ensure feasibility. Similarly, in the coloring problem, one can modify the
algorithm so that it colors vertices one by one and we only allow a set of colors to a vertex which are
distinct from already colored neighbors. For many problems, such postprocessing of the solution is
possible.
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IMDB-Binary Collab Twitter Custom Clique
Hopfield Network 0.993(±0.068) 0.996(±0.058) 0.978(±0.115) 0.994 (±0.062)

Erdős Goes Neural [41] 1.0(±0.0) 0.982(±0.063) 0.924(±0.133) 0.810(±0.226)
Greedy Heuristic 0.954(±0.133) 0.886(±0.195) 0.848(±0.154) 0.740(±0.238)

% of Invalid Cliques 0.4% 0.3% 0% 0.3%
SDP Runtime 0.194(±0.258) 2.589(±6.046) 21.219(±38.190) 4.385(±0.536)

Hopfield Runtime 0.0006(±0.0007) 0.006(±0.0130) 0.0132(±0.0094) 0.0117(±0.0007)
Table 4: Mean optimality ratio and the standard deviation for Max-Clique over graphs in different
collections, runtimes in seconds and percentage of infeasible cliques found.

C Hopfield Network for Graph Coloring

Graph Name χ(G) Hopfield χ(G) SDP Runtime Hopfield Runtime
1-Insertions-4 5 5 3.968 0.043
2-Insertions-4 5 5 63.319 0.156

Anna 11 11 3.878 0.576
David 11 11 1.624 0.354

Games120 9 9 4.563 0.462
Huck 11 11 1.121 0.279

Mugg88-1 4 4 28.658 0.067
Myciel5 6 6 1.059 0.057
Myciel6 7 7 5.53 0.319
Myciel7 8 8 46.526 0.817

Queen5-5 5 5 0.303 0.071
Queen6-6 7 8 1.197 0.016
Queen7-7 7 9 1.191 0.032
Queen8-8 9 10 1.975 0.063
Queen8-12 12 12 3.590 0.113
Queen9-9 10 11 2.628 0.076

Queen11-11 11 14 6.931 0.307
Queen13-13 13 15 20.522 0.351

Table 5: Optimal chromatic number and chromatic number returned by Hopfield network for several
graphs and runtimes in seconds.

For the graph colouring problem, instead of directly minimizing the number of colours required via a
Hopfield network, we fix a parameter k and use a Hopfield network to try to find a k-coloring. If
the network is not able to find such a colouring after several attempts, we increase k and retry with
a larger k. For the remainder of this subsection, we assume that k is fixed, and our goal is to find
a k-coloring. In this case, we want the output of each layer to be a probability vector whose ith

entry corresponds to the probability that the vertex has colour i. This is done by having k neurons
corresponding to a vertex v - one for each of the colours and using the softmax function as the
activation function. Let t∗ be the objective value of the SDP solution. By definition, if vertices u and
v are neighbours in the graph, then σu · σv ≤ t∗. In this case, we do not want u and v to have the
same colour and to ensure this; we set the interaction between ui and vi for every i ∈ {1, · · · , k}
to −2n, where n is the number of vertices in the graph. Otherwise, if σu · σv > t∗, we set the
interaction between ui and vi to σu ·σu − t∗ so that the larger the quantity, the more we “encourage"
u and v to have the same colour. We choose the initial output of each neuron to be the uniform
distribution over the k colours. Once the output probability distribution (on the k colours) for each
vertex is fixed, we choose a colour for the vertex from this probability distribution.

Experimental results. To test the schema, we tested the performance on several graphs from the
COLOR02/03/04 dataset2. We selected a subset of graphs similar to that used in a recent paper on
GNNs for graph colouring [46]. Table 5 shows that our approach finds the optimal or near-optimal
chromatic number on these graphs.

2https://mat.tepper.cmu.edu/COLOR02/
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D Generalization of learnt Hopfield network to different graph classes

SF-295 Test Twitter Custom Cut
Hopfield Network 0.979(±0.105) 0.986(±0.013) 0.998(±0.002)

Runtime 0.443(±0.478) 9.512(±7.546) 7.364(±0.306)
Table 6: Mean optimality ratio and runtimes in seconds for Max-Cut with Learnt Models

IMDB-Binary Test Collab Twitter Custom Clique
% of Invalid Cliques 2% 2.3% 35.1% 17%

Hopfield Network 1.0(±0.000) 0.996(±0.004) 0.991(±0.024) 1.0(±0.000)
Runtime 0.222(±0.298) 4.940(±11.486) 10.291(±8.122) 8.101(±0.083)

Table 7: Percentage of valid cliques found, mean optimality ratio of valid cliques and runtimes in
seconds for Max-Clique with learnt models.

To test the generalization ability of our learning models to learn the interaction weights on Hopfield
network, we tested our neural network performance of our learnt model for Max-Cut on the Twitter
dataset and the custom cut dataset consisting of 128 nodes Erdős-Rényi graphs. Even though our
training dataset consisted of 10-50 node SF-295 graphs (average number of nodes 31 with density
0.08) which is very different from the Twitter (average number of nodes is 130 with density 0.18) and
Custom Cut of 128 node instances (average density of 0.48), Table 6 shows that the model can still
produce edge weights that the Hopfield network can decode to produce cuts of high quality. While
the optimality ratio obtained on the test part of the SF-295 dataset is 0.979(±0.105), the optimality
ratio for Twitter and Custom dataset is 0.986(±0.013) and 0.998(±0.002), respectively which is
comparable to the instances from the same distribution. Likewise, for Max-Clique, we tested our
neural network performance on the Google Collab, Twitter and Custom Clique datasets to show the
generalization performance of our learnt model (Table 7). The distribution of our training dataset
(average number of nodes is 20 with density 0.52) again differs from the Google Collab (average
number of nodes is 74 with density 0.51), Custom Clique of 128 node instances (average density
0.49) and Twitter datasets (average number of nodes is 130 with density 0.18), but still produces edge
weights that result in high-quality cliques. This shows that the model has learnt a function which can
be used on graphs outside of its training data/graph size and can generalize well across distributions
and larger size instances.

E Sensitivity of Hopfield network to the noise and precision of SDP Gram
matrix

A potential criticism of our approach is that it relies on a computationally expensive step of calculating
SDP vectors. In this section, we show that we do not actually need the exact computation of SDP
vectors. In fact, a coarse approximation of SDP vectors can already yield near-optimal solutions.
Such low-accuracy SDP vectors can be computed efficiently and scalably. For instance, a recent
pre-print by Yau et al. [28] shows that GNNs can be used to learn a low-rank SDP. Yurtsever et
al. [47] solved the Max-Cut SDP (to moderate accuracy) for a sparse graph with over 20 million
vertices, where the matrix variable has over 1014 entries on a laptop equivalent machine. In this
context, we also refer the reader to a review article by Majumdar et al. [48], a recent paper by Durante
et al. [49] and the book chapter on “Approximately Solving Semidefinite Programs" by Gärtner and
Matoušek [1].

Figure 4 shows that our approach based on the Hopfield network is significantly more robust to the
addition of noise than the Goemans-Williamson approximation algorithm [16]. In this experiment, we
modified each value in our Gram matrix by adding some random value from a uniform distribution. A
magnitude of M in Figure 4 refers to adding a uniform random noise in the range [−M,M ] to each
element in the Gram matrix. Note that both – our approach and the Goemans-Williamson algorithm
– rely on SDP vectors. However, the optimality ratio of the Goemans-Williamson algorithm goes
down considerably as we insert noise in the Gram matrix, whereas our approach returns optimal or
near-optimal solutions even when a large amount of noise is added. As expected, too much noise kills
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Figure 4: The plot shows how the mean optimality ratio decreases with increasing noise for our
approach based on Hopfield network/SDP vectors and for the Goemans-Williamson approximation
algorithm. The results are shown for the SF-295 graphs (top-left), the collection of Twitter graphs
(top-right) and our collection of Custom Cut Graphs with 128 nodes (bottom).

the performance of our approach as well, indicating that SDP solutions do contain useful information
for our approach.

Next, we explore the effect of reducing the precision by rounding the values in the Gram matrix to the
nearest decimal place. Figure 5 shows that when we reduced the precision of Gram Matrix instead
of adding random noise, we could still obtain optimal or near-optimal solutions on most problem
instances. Again, this is in contrast with the Goemans-Williamson algorithm, for which the optimality
ratio degrades considerably. We obtained similar noise/precision results for the graphs from IMDB
and the Google Collab collection as well.

We obtained similar results for the Max Clique problem instances when we reduced the precision by
rounding the values in the Gram matrix to the nearest decimal place.From the above discussion, we
conclude that our rounding approach is tolerant to noise and can potentially leverage a low-precision
SDP Gram matrix (e.g., using an approximation) to extract good-quality solutions.
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Figure 5: The plot shows how the mean optimality ratio decreases with reduced precision for our
approach based on Hopfield network/SDP vectors and for the Goemans-Williamson approximation
algorithm. The results are shown for the SF-295 graphs (top-left), the collection of Twitter graphs
(top-right) and our collection of Custom Cut Graphs with 128 nodes (bottom).
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