Accident Anticipation via Temporal Occurrence
Prediction

Tianhao Zhao"?> Yiyang Zou'! Zihao Mao! Peilun Xiao® Yulin Huang®

Hongda Yang® YuxuanLi® QunLi® Guobin Wu® Yutian Lin'*

!School of Computer Science, Wuhan University  2Zhongguancun Academy, Beijing, China
3Didi Chuxing
{happytianhao, yutian.lin}@whu.edu.cn

Abstract

Accident anticipation aims to predict potential collisions in an online manner,
enabling timely alerts to enhance road safety. Existing methods typically predict
frame-level risk scores as indicators of hazard. However, these approaches rely
on ambiguous binary supervision—Ilabeling all frames in accident videos as posi-
tive—despite the fact that risk varies continuously over time, leading to unreliable
learning and false alarms. To address this, we propose a novel paradigm that
shifts the prediction target from current-frame risk scoring to directly estimating
accident scores at multiple future time steps (e.g., 0.1s—2.0s ahead), leveraging
precisely annotated accident timestamps as supervision. Our method employs
a snippet-level encoder to jointly model spatial and temporal dynamics, and a
Transformer-based temporal decoder that predicts accident scores for all future
horizons simultaneously using dedicated temporal queries. Furthermore, we in-
troduce a refined evaluation protocol that reports Time-to-Accident (TTA) and
recall—evaluated at multiple pre-accident intervals (0.5s, 1.0s, and 1.5s)—only
when the false alarm rate (FAR) remains within an acceptable range, ensuring
practical relevance. Experiments show that our method achieves superior per-
formance in both recall and TTA under realistic FAR constraints. Project page:
https://happytianhao.github.io/TOP/

1 Introduction

Driving accidents pose a significant threat to public safety, resulting in substantial human casualties
and economic losses. This issue often arises when drivers, due to fatigue or distraction, fail to
notice potential hazards in their surroundings, ultimately resulting in accidents. Recently, the task of
accident anticipation [1} 2] has been widely studied to analyze the risk in driving scenarios captured
by dashcams in an online manner, assessing the likelihood of an impending accident with a risk score,
as shown in Figure[T] (a). If the risk score exceeds a preset threshold, the system can promptly alert
the driver to take evasive action, thereby reducing the chances of an accident or mitigating its severity.

Previous works [3l 4] (5] 16} [7} 18 [9] train models to predict frame-wise risk scores using binary
supervision: all frames from accident videos are labeled as 1, and all frames from safe videos as 0.
To reflect the intuition that risk increases near the crash, these methods typically assign exponentially
decaying loss weights to frames based on their temporal distance to the accident—earlier frames
receive lower weights, while those near the crash receive higher ones. However, this approach treats
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Figure 1: Comparison of accident anticipation paradigms. (a) Previous works predict a single risk
score for the current frame, which is ambiguous and hard to supervise accurately. (b) Our method
predicts a sequence of accident scores at multiple future time steps (e.g., 0.1s, 0.2s, ..., 2.0s ahead),
where each score indicates the likelihood of an accident occurring exactly at that future time.

risk as a static binary signal, ignoring its dynamic and continuously varying nature. In reality, risk
levels differ significantly across frames even within the same accident sequence, and assigning a
uniform label of 1 fails to capture these temporal nuances. Such imprecise supervision misguides
learning and often leads to unreliable predictions or false alarms.

We observe that, unlike ambiguous risk labels, the timestamp of actual accident occurrence can be
precisely annotated in real-world driving videos. To leverage this reliable supervision, we shift the
prediction target from per-frame risk scores to directly forecasting future accident timing. Specifically,
as shown in Figure[I| (b), our model outputs a sequence of accident scores at multiple future time
steps {a1, as,...,ar} (e.g., 0.1s,0.2s, ..., 2.0s ahead), where each score a; indicates the model’s
confidence that an accident occurs exactly at that time. During training, only the score at the ground-
truth accident time is labeled as 1; all others are 0. At inference, an alert is triggered if any score
exceeds a preset threshold, indicating an impending collision. This formulation offers two key
advantages: (1) it uses precise temporal annotations for more stable and accurate training, and (2) by
modeling when an accident may occur—rather than just whether the scene is “risky”—it yields more
interpretable and actionable predictions.

To implement this paradigm online, we adopt an encoder—decoder architecture that processes current
and past frames to predict accident scores for multiple future time steps (e.g., 0.1s, 0.2s, ..., 2.0s
ahead), as shown in Figure |I| (b). Unlike previous works [3} 4} 5 |6} 7}, O], which typically use
frame-level encoders with RNNs to model temporal dynamics, our method employs a snippet-level
encoder that jointly captures spatial and temporal information across short clips of consecutive
frames, enabling a comprehensive understanding of object positions, speeds, and motion trajectories.
Furthermore, we design a Transformer-based temporal decoder that simultaneously predicts accident
scores for all future time steps using distinct learnable temporal queries—each corresponding to
a specific future horizon—to explicitly model accident likelihood at each time offset, supporting
accurate and efficient frame-by-frame online prediction.

To evaluate the effectiveness of accident anticipation methods, previous works [3} 14} 15} |6} [7, 9]
primarily use AP (Average Precision), AUC (Area Under the ROC Curve), and TTA (Time-to-
Accident). However, we observe that in real-world applications, an excessively high false alarm rate
(FAR)—e.g., exceeding 1 false alarm per minute—causes disruptive alerts that are unacceptable; under
such conditions, high recall may stem from indiscriminate alarming rather than genuine prediction,
rendering recall and TTA misleading. To address this, we propose a novel evaluation protocol that
reports mean recall and TTA only when FAR is within an acceptable range. Furthermore, we evaluate
recall at different pre-accident intervals (0.5s, 1.0s, and 1.5s before crashes) for a more granular
assessment of anticipative capability. Finally, we identify limitations in existing TTA calculations
that yield inflated values and propose a more reasonable approach, as detailed in Section 4]

Our contributions can be summarized as follows:

* We propose a novel accident anticipation paradigm that shifts from predicting ambiguous
per-frame risk scores to directly estimating accident scores at multiple future time steps
(e.g., 0.1s,0.2s, ..., 2.0s ahead), leveraging precise accident timestamps as supervision for
more accurate and interpretable predictions.



* We design an effective encoder—decoder architecture featuring a snippet-level encoder to
jointly capture spatial and temporal features from driving scenarios, and a Transformer-based
temporal decoder that predicts accident scores for all future time steps simultaneously using
dedicated temporal queries, enabling online frame-by-frame anticipation.

* We introduce a refined evaluation protocol that computes recall and Time-to-Accident (TTA)
only when the false alarm rate (FAR) is within an acceptable range, evaluates recall at
multiple pre-accident intervals (0.5s, 1.0s, 1.5s), and adopts an improved TTA calculation
method that avoids inflated values, offering a more reliable and practical assessment.

2 Related Work

2.1 Temporal Modeling and Attention-Based Approaches

Early works on accident anticipation primarily rely on recurrent architectures to model temporal
dynamics in dashcam videos. DSA [3] introduced the first large-scale dataset (DAD) and combined
object-level and frame-level features with an RNN to predict per-frame risk scores, using an exponen-
tially decaying loss that emphasizes frames closer to the accident. Subsequent methods enhanced
temporal modeling through attention mechanisms. ACRA [2] proposed a soft-attention RNN to
capture spatial and appearance interactions between the event-triggering agent and its surroundings.
AdaLEA [10] improved early anticipation via an adaptive loss weighting strategy, while DSTA [[11]]
introduced dynamic spatial-temporal attention to focus on relevant regions over time.

More recently, transformer-based architectures have emerged. AAT-DA [12] integrates driver attention
into a transformer framework to jointly model spatial and temporal cues. LATTE [13] further
advances temporal modeling by combining multiscale spatial features with memory-based attention
and auxiliary self-attention for long-range dependency capture. Meanwhile, XAI [14] employs
a GRU-based network to learn spatio-temporal relations, and RARE [15]] achieves efficiency by
leveraging intermediate features from a single pre-trained detector. THAT-Net [[L6] enhances motion
understanding by fusing optical flow with spatial-temporal filtering to suppress distracting motions.

2.2 Graph-Based and Relational Reasoning Methods

To explicitly model interactions among traffic participants, several works adopt graph-based represen-
tations. GSC [17] formulates accident anticipation as a graph learning problem with spatio-temporal
continuity constraints. Graph(Graph) [18]] proposes a nested graph architecture to capture hierarchical
agent relationships. DAA-GNN [19] introduces a dynamic attention-augmented graph network
that adaptively weights interactions among detected entities. CRASH [20] designs an object-aware
module that prioritizes high-risk agents by computing their spatial-temporal relationships.

UString [6] combines relational learning with uncertainty quantification, using Bayesian neural
networks to model the stochasticity in agent interactions on its newly collected CCD dataset. AM-
Net [21] employs an attention-guided multistream fusion strategy to localize hazardous agents by
integrating appearance and motion cues.

2.3 Multimodal and Emerging Paradigms

Recent efforts explore richer input modalities and novel learning frameworks. AccNet [22]] and
CCAF-Net [23] incorporate monocular depth cues to enable 3D-aware scene understanding, fusing
RGB and depth features for improved risk prediction. DADA [8]] and DADA-2000 [24] frame
anticipation as a driver attention prediction task, linking gaze behavior to accident likelihood.

Other innovative directions include reinforcement learning and language grounding. DRIVE [[7]
models risk prediction as a Markov decision process and uses deep reinforcement learning with
visual explanations. CAP [9] establishes a multimodal benchmark for cognitive accident anticipation,
integrating behavioral and visual signals. DEDBM [235]] fuses dashcam videos with textual accident
reports in a dual-branch architecture, enabling cross-modal knowledge transfer. Most recently,
WWW [26] leverages large language models (LLMs) to jointly reason about the what, when, and
where of potential accidents, marking a shift toward interpretable, language-augmented anticipation
systems.
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Figure 2: Overview of our encoder-decoder method. We feed the observed frames into the snippet
encoder and use the temporal decoder to predict accident scores for unobserved future frames at
multiple time steps, where the accident score label is 1 for the accident frame and O otherwise.

3 Method

3.1 Problem Definition

Accident anticipation involves online analysis of dashcam footage to determine whether an accident
is likely to occur in the near future. If there is a potential risk of an accident, the system promptly
alerts the driver to take precautionary measures, helping to reduce both the likelihood and severity of
collisions.

Specifically, given the current frame fo and past frames {f_1, f_o, ...} captured by the dashcam
from the driving scenarios, previous works determine whether an accident will occur in the near
future by predicting a risk score rg at the current time ¢y. When the risk score ry exceeds a preset
threshold 7, the system will automatically trigger an alert to warn the driver.

In contrast, our method assesses the likelihood of future accidents by predicting a sequence of accident
scores {aj, as, ... } of an accident occurring at multiple future time steps {t1, to, ... }. When any of
the accident scores a;(¢ > 1) at a certain moment ¢; exceeds a preset threshold 7, it indicates that the
model predicts an accident will occur at time ¢,. Consequently, the system will automatically trigger
an alert at the current time ¢, to warn the driver to take evasive action.

In this task, the model’s optimization objective is to maximize the recall rate and earliness of accident
anticipation while ensuring that the false alarm rate (FAR) does not exceed an acceptable limit.

3.2 Temporal Occurrence Prediction

To anticipate accidents more accurately, we propose a novel paradigm that focuses on predicting a
sequence of accident scores of an accident occurring at multiple future time steps, rather than simply
outputting a risk score of the current frame, providing a more interpretable and reliable anticipation.

To implement this paradigm, we designed an encoder-decoder model, as shown in Figure 2] The
structure details are as follows:

Snippet encoder. To better understand the movement of objects in driving scenarios, we take
the current frame f, along with past frames {f_1, f_2,..., f_(s—1)} as a snippet input to the
model, where S is the length of the snippet. Then we employ a 3D CNN instead of architectures
of frame-level encoders with RNNs (widely adopted in previous works) as a snippet encoder to
simultaneously capture the spatial and temporal information within the snippet. Next, we only apply
spatial pooling to the features output by the snippet encoder, in order to preserve their temporal
resolution, resulting in features {zg, z2_1, . . ., Z_(5-1) }, where each features correspond to the time
steps {to,t—1,... T 571)}, respectively. In this way, the model can not only understand the
motion of objects but also establish a one-to-one correspondence between different frames and their
corresponding features.



Temporal decoder. In order to predict the temporal sequence of accident scores {a1, ag, ..., a7} of
an accident occurring at multiple time steps {¢1,to, ..., t7}, where T is the length of the sequence
to predict, in the future based on features {zg, z_1, . .., Z_( S,l)} extracted by the snippet encoder
from frames of time steps {tg,t_1,. .., l_(s-1) }, we designed a temporal decoder with reference to
the transformer decoder [27]. Specifically, to distinguish between different time steps of the temporal
sequence in the future, we define T different temporal queries {q1, q2, . . ., qr} to represent 7' time
steps {t1,t2,...,tr} in the future following the current timestamp ¢, as the reference. Next, we
feed the features {20, 2_1,...,2_(s—1)} output from the snippet encoder as the memory into the
temporal decoder. Then, we feed temporal queries {q1, g2, ..., g7} into the temporal decoder to
predict the temporal sequence of accident scores {a1, as, ..., ar} of an accident occurring at time
steps {t1,t2,...,t7}.

Sampling strategy. During training, we randomly sample a continuous segment of S frames from
the accident video as the input snippet for the model. Let f_(5_1) be the starting frame of the snippet,
then the last frame is fy, which denotes the current frame. To ensure the relevance of training data,
snippets are sampled only from frames occurring at or before the accident, while frames after the
accident are excluded.

During testing, we adopt a sliding window approach to sample snippets from all available frames in
the video, including those before, during, and after the accident. Specifically, we slide a window of
S consecutive frames across the entire video sequence with a fixed stride, ensuring comprehensive
evaluation of the model’s performance over time. This allows the model to make predictions at
every time step, reflecting real-world deployment scenarios where the exact timing of an accident is
unknown.

Labeling strategy. During training, given a snippet across time steps {to,t_1,...,t_(g_1)} as
input, the model outputs the sequence of accident scores {a1, as,...,ar} at multiple time steps
{t1,ta,...,tr}. If the accident occurrence time step ¢ 4 falls within this range, i.e., 1 < A < T, we
assign its label i 4 as 1, while setting the labels of all other time steps 3, (1 <t < T, t # A)t0 0, as
shown in Figure[2] The model is then trained using the Binary Cross-Entropy (BCE) loss function to
optimize its predictions:

T
1
£BCE:_T w+logaA+Zlog(1—at) , )

t=1
t£A

where w is the weight of the positive one.

4 Evaluation Metrics

Previous works [9} 2811291130, 131]] primarily used AP (Average Precision), AUC (Area Under the ROC
Curve), and TTA (Time-To-Accident) to evaluate accident anticipation methods. However, unlike
traditional binary classification tasks, we observe that in real-world applications, excessively high
false alarm rates (FAR) can cause unacceptable disturbances to drivers. Therefore, when FAR exceeds
a reasonable threshold, comparing recall rates and TTA becomes meaningless. Existing metrics allow
FAR to range from O to 1, which could lead to suboptimal model selection for practical deployment.
To address this, we introduce a threshold X for FAR and only evaluate cumulative recall and TTA when
FAR remains below \. Furthermore, while current metrics measure overall anticipation capability,
they fail to assess performance at specific pre-accident time intervals. Following the approach in [32],
we analyze anticipation recall rates at different time intervals before accidents. Finally, we identify
limitations in conventional TTA calculation methods and propose an improved alternative. The
detailed metrics are described below:

Area under the ROC curve (AUC). We employ AUC (Area Under the ROC Curve) to calculate the
average recall rate of accident anticipation models under varying false alarm rates (FAR). Notably,
when the false alarm rate exceeds a certain level, comparing recall rates across different models
becomes meaningless. Therefore, we specifically compute the average recall rate only when the false
alarm rate remains below a predefined threshold )\, denoted as AUC?, as illustrated in Equation and
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where FPR is equivalent to the false alarm rate (FAR) and TPR is equivalent to the recall rate, A is
set to 0.1 by default.

Additionally, to evaluate the capability of the accident anticipation models at different horizons
before an accident occurs, we extracted video clips from 0.5s-1.0s, 1.0s-1.5s, and 1.5s-2.0s before
the accident as positive samples, while capturing an equal number of 0.5s-long video segments from
accident-free driving scenarios as negative samples. We then calculated the AUC* for different
time intervals, denoted as AUC) -, AUC} ., and AUC? 5, (e.g., AUC; s represents the model’s
capability in anticipating accidents 1.5 seconds before they occur). Finally, we computed the model’s
mean AUC” using Equation

AUCS.&S + AUC?O& + AUC%S@

AUC? =
o 3

3)

Time-To-Accident (TTA). We adopt Time-To-Accident (TTA) to evaluate the earliness of the accident
anticipation. Specifically, for each frame in an accident video, if the model’s predicted anomaly score
exceeds a preset threshold 7, an alarm will be triggered, and the time gap (in seconds) between this
alarm moment and the actual accident occurrence is recorded as TTA. Generally, as the threshold
7 decreases, both TTA and the false alarm rate (FAR) increase simultaneously. Therefore, we only
compute the mean TTA when the false alarm rate remains below ), as illustrated in Equation

mTTA? = 1 > TTA;, (FPR, < \). )
n
i=1
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Figure 3: Comparison of the TTA calculation approaches
between previous works and our method. We only compute
TTA after the anomaly appears, because the moment the
anomaly appears is the earliest time annotated by humans
as being predictive of the accident. If a model issues an

To address this issue, we propose a alert earlier than this moment, the perceived risk is typically

revised TTA calculation method: we
only compute TTA for alarms trig-
gered after the anomaly appears. This
is because the anomaly appearance
time is the earliest moment annotated

unrelated to the actual accident that eventually occurs. We
consider such alerts as false alarms rather than early warn-
ings. However, previous works did not account for this when
calculating TTA, leading to inflated TTA values—sometimes
even exceeding 3 seconds.

by humans as reliably indicating an

impending accident. Alarms issued

before this point are considered false alarms, not valid early warnings, as the perceived risk lacks
a causal connection to the eventual accident. Under our method, the maximum achievable average
TTA is bounded by the average interval between anomaly appearance and accident occurrence in the
dataset—1.86 seconds on CAP [9] and 1.66 seconds on DADA [8]]. Moreover, if the model fails to
predict an accident at all, its TTA is set to 0, ensuring a fair and meaningful evaluation.



5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on the MM-AU dataset [33]], a large-scale ego-view traffic
accident benchmark collected from public sources including existing datasets (CCD [6], A3D [4],
DoTA [5], DADA-2000 [24]]) and video platforms (YouTube, Bilibili, Tencent), encompassing diverse
weather (sunny, rainy, snowy, foggy), lighting (day, night), scenes (highway, tunnel, mountain, urban,
rural), and road types (arterial roads, curves, intersections, T-junctions, ramps)—which enables robust
evaluation of model generalizability, in contrast to prior works that primarily train on limited datasets
like DAD and CCD. MM-AU consists of two subsets: CAP [9] with 11,727 videos (2,195,613 frames)
and DADA [8] with 2,000 videos (658,476 frames), both providing annotations for 58 accident
categories and temporal labels for key events (“anomaly appear”, “accident occur”, and “accident
end”). We refined and validated the frame rates and annotations for all ego-involved accidents, and
selected approximately 20% of the data as the test set; for evaluation, we extract clips from the first
frame to the “anomaly appear” frame as negative samples to compute the false alarm rate (FAR), and
clips from “anomaly appear” to “accident occur” as positive samples to assess anticipation recall and
Time-to-Accident (TTA).

Implementation details. We preprocess input videos by resizing each frame to 224 x 224 and
resampling at 10 FPS, so that each frame corresponds to a 0.1s time interval. During training, we
sample snippets only from the period before the accident occurs; during testing, we apply a sliding
window over the entire video. Each input snippet consists of S = 5 consecutive frames, which are fed
into a snippet-level encoder (SlowOnly [34], initialized with ImageNet pre-trained weights) to extract
spatiotemporal features. The model then predicts a sequence of accident scores of length T = 20,
corresponding to future time steps from 0.1s to 2.0s ahead. To decode these scores, we employ a
Transformer-based temporal decoder with 2 layers and cosine positional encodings as queries for
each future horizon. We optimize the model using SGD with a batch size of 64 on 8 NVIDIA 4090
GPUs. The binary cross-entropy loss is weighted with wy = 10 for positive samples, and the initial
learning rate is set to 0.01, decayed to 10% of its value every 20 epochs over 50 total epochs.

5.2 Quantitative Results

Quantitative comparison. We evaluate our method

against prior approaches and baselines on the CAP [9] Anticipation ROC (Ours)

and DADA [8] datasets under a unified experi- 1.04

mental protocol. For fair comparison, all meth- 0.91

ods—including CAP [9]], DRIVE [7], DSTA [11, = og]

and GSC [17]—are trained and tested using the same  § ;- |

data splits and evaluation metrics (Section d). As 3 |

baselines, we include (1) a ResNet+LSTM architec- & . |

ture that predicts a single per-frame risk score (iden- £ 041

tical to Experiment I in our ablation study), and (2) & |

a variant of our full model without the temporal de- 3 | —— 0.0s before accidents
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As shown in Table [T} our method achieves signifi-  0.01 —— 15s before accidents

cant gains on CAP. At the 0.0s horizon—where the 0.0 0.1 02 03 04 0.5 06 07 08 09 1.0

task reduces to precise accident detection—our AUC False Positive Rate (False Alarm Rate)

reaches 0.8381, far surpassing all prior works and  Fjoure 4: ROC curves of our method on
the baseline (0.4357). This demonstrates our model’s caAp [9] at different accident anticipation

strong capability in recognizing the exact moment of horizons: 0.0s, 0.5s, 1.0s, and 1.5s before
collision. At short-term horizons (0.5s), we obtain an  (he accident.

AUC of 0.6747, nearly doubling the best prior result

(GSC: 0.4177). The improvement gradually dimin-

ishes at longer horizons (1.0s and 1.5s), where risk signals are inherently weaker, yet our method still
maintains the highest performance (AUC: 0.3982 and 0.2141, respectively), yielding a mean AUC
(mAUC) of 0.4290 and the best mean Time-to-Accident (mTTA = 0.8644 s). These trends are further
visualized in the ROC curves of Figure[d which show consistently higher recall across all false alarm
rates, especially near the accident onset.



Table 1: Quantitative results comparison of different methods on the CAP [9] dataset.
Method AUC’ 1+ AUCSE. + AUCYL, 1+ AUCT:E. + mAUCY! 1 mTTA%! (s) 1

CAP 9] 0.0421 0.0400 0.0296 0.0373 0.0357 0.6372
DRIVE [7] 0.1288 0.1167 0.1079 0.1231 0.1159 0.3954
DSTA [I11] 0.5593 0.3862 0.2817 0.1913 0.2864 0.8039
GSC [17] 0.6093 0.4177 0.2969 0.1994 0.3046 0.8165
Baseline 0.4357 0.3938 0.2770 0.1777 0.2829 0.5389
Ours 0.8381 0.6747 0.3982 0.2141 0.4290 0.8644

Table 2: Quantitative results comparison of different methods on the DADA [8] dataset.
Method AUCY 1+ AUCSE 1+ AUCYE, + AUCY:E 1+ mAUCY! 1 mTTA®! (s) 1

CAP 9] 0.0317 0.0365 0.0670 0.0643 0.0560 0.4964
DRIVE [7] 0.1005 0.0628 0.0770 0.0885 0.0761 0.2257
DSTA [11] 0.4728 0.3276 0.2207 0.1345 0.2276 0.6952
GSC [17] 0.5142 0.3495 0.2382 0.1392 0.2423 0.7034
Baseline 0.3411 0.3046 0.2099 0.1251 0.2132 0.4138
Ours 0.7903 0.5669 0.2877 0.1399 0.3315 0.8848

Similar patterns are observed on DADA (Table 2). Our method achieves 0.7903 AUC at 0.0s and
0.56609 at 0.5s, substantially outperforming previous methods. Although the gains at 1.0s—1.5s are
more modest, our mAUC (0.3315) and mTTA (0.8848 s) remain the best, confirming the robustness
of our approach across datasets. Overall, the results validate that shifting supervision from ambigu-
ous risk labels to precise future accident timing enables more accurate and reliable anticipation,
particularly in the critical moments just before a crash.

Threshold variation. To evaluate the robustness of our accident anticipation capability under
different false alarm constraints, we vary the FAR tolerance threshold A—defined as the maximum
allowable false alarm rate for computing metrics. When A = 1, no constraint is applied, and the
evaluation aligns with conventional protocols used in prior works. As \ decreases (e.g., to 0.1 or
0.01), metrics are computed only over predictions that satisfy the stricter FAR requirement.

As shown in Table under the practical setting of A = 0.1 (i.e., FAR < 10%), our method achieves
mAUC of 0.4290 on CAP and 0.3315 on DADA, with strong short-term anticipation performance
(AUCYL, =0.6747 and 0.5669, respectively). Even under a stringent constraint of A = 0.01 (FAR
< 1%), our model retains non-trivial performance, particularly at the 0.5s horizon (AUC = 0.3371 on
CAP, 0.1183 on DADA).

Notably, as A decreases, AUC drops more sharply at longer horizons (1.0s—1.5s) than at shorter ones
(0.0s-0.5s), indicating that early false alarms are effectively suppressed under tight FAR constraints.
This confirms that our model’s early predictions are often spurious, while its near-crash anticipation
remains reliable—a behavior aligned with real-world safety requirements. The corresponding
reduction in mTTA reflects the inherent trade-off between false alarm suppression and anticipation
lead time.

5.3 Ablation Study

Temporal occurrence prediction. Our temporal occurrence prediction (TOP) module replaces the
conventional single risk score with a sequence of accident scores over future time steps (0.1s—2.0s),
enabling explicit modeling of when an accident may occur. As shown in Table [ adding TOP
(Experiment III vs. I) improves performance at the 0.0s horizon (AUC from 0.4357 to 0.5700), but
yields limited gains at longer horizons, suggesting that TOP alone—without strong spatiotemporal
modeling—struggles to capture early precursors of accidents. However, when combined with the
snippet encoder (Experiment IV), TOP contributes significantly to overall anticipation accuracy,
confirming that forecasting future accident timing provides more informative supervision than frame-
level risk scoring.



Table 3: Quantitative results comparison across different A\ of our method on the CAP [9] and

DADA [8]] datasets.

Dataset A AUC* t AUC);, T AUC},, T AUC;, T mAUC*T mTTA (s)1
1 0.9760 0.9389 0.8377 0.7164 0.8310 1.5908
CAP[9] 0.1  0.8381 0.6747 0.3982 0.2141 0.4290 0.8644
0.01  0.7329 0.3371 0.0882 0.0227 0.1494 0.4394
1 0.9666 0.8946 0.7399 0.6400 0.7582 1.4328
DADA [8] 0.1  0.7903 0.5669 0.2877 0.1399 0.3315 0.8848
0.01 03177 0.1183 0.0203 0.0068 0.0484 0.5153

Table 4: Ablation study on the CAP [9] dataset. TOP: temporal occurrence prediction; SE: snippet
encoder.

Experiment | TOP  SE | AUC*!' 1+ AUCJZ, 1t AUCY{, t AUCYL, + mAUC™' 4 mTTA%! (s) 1

I (Baseline) X X 0.4357 0.3938 0.2770 0.1777 0.2829 0.5389
II X v 0.6027 0.5550 0.3607 0.1931 0.3696 0.7330
1 v X 0.5700 0.3432 0.2284 0.1721 0.2479 0.4595
IV (Ours) | v v | 0.8381 0.6747 0.3982 0.2141 0.4290 0.8644

Snippet encoder. The snippet encoder (SE) processes short clips of consecutive frames to jointly
model spatial and temporal dynamics, which is crucial for understanding motion patterns and scene
evolution. Comparing Experiment II (SE only) with the baseline (I), SE alone boosts AUC 55 from
0.3938 to 0.5550 and mTTA from 0.5389s to 0.7330s. More importantly, when SE is combined with
TOP (Experiment IV), the model achieves the best results across all metrics: AUC®! =0.8381, mAUC
=0.4290, and mTTA = 0.8644s. This demonstrates that SE and TOP are highly complementary—SE
provides rich spatiotemporal context, while TOP leverages precise temporal supervision to produce
well-calibrated anticipation outputs.

6 Conclusion

In this work, we propose a novel accident anticipation paradigm that shifts the prediction target
from ambiguous per-frame risk scores to directly estimating accident scores at multiple future time
steps (e.g., 0.1s—2.0s ahead), leveraging precisely annotated accident occurrences as supervision.
Our method employs a snippet encoder and a Transformer-based temporal decoder to jointly model
spatiotemporal dynamics and enable online anticipation. Furthermore, we introduce a practical
evaluation protocol that reports recall and Time-to-Accident (TTA) only under acceptable false alarm
rates, aligning metrics with real-world deployment needs. Experiments show that our approach
achieves state-of-the-art performance, particularly in the critical moments just before a crash.

Limitations. While our method significantly improves anticipation accuracy near the accident onset,
its performance at longer horizons (e.g., >1.0s) remains limited, indicating challenges in capturing
subtle early precursors. Additionally, even under constrained false alarm rates, spurious alerts can
still occur in complex scenes, which may affect user trust. These issues point to key directions for
future work.

Potential societal impacts. Our system has the potential to enhance road safety by providing timely
warnings. However, over-reliance on automated alerts might reduce driver vigilance. Careful human-
in-the-loop design and user education are essential to maximize safety benefits while mitigating
behavioral risks.

Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62471344),
the Zhongguancun Academy (Project No. 20240304), and the CCF-DiDi GAIA Collaborative
Research Funds for Young Scholars.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

J. Fang, J. Qiao, J. Xue, and Z. Li, “Vision-based traffic accident detection and anticipation: A survey,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 34, no. 4, pp. 1983-1999, 2023.

K.-H. Zeng, S.-H. Chou, F.-H. Chan, J. Carlos Niebles, and M. Sun, “Agent-centric risk assessment:
Accident anticipation and risky region localization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2222-2230.

F.-H. Chan, Y.-T. Chen, Y. Xiang, and M. Sun, “Anticipating accidents in dashcam videos,” in ACCV.
Springer, 2017, pp. 136-153.

Y. Yao, M. Xu, Y. Wang, D. J. Crandall, and E. M. Atkins, “Unsupervised traffic accident detection in
first-person videos,” in /ROS. 1EEE, 2019, pp. 273-280.

Y. Yao, X. Wang, M. Xu, Z. Pu, Y. Wang, E. Atkins, and D. J. Crandall, “Dota: Unsupervised detection
of traffic anomaly in driving videos,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 1, pp. 444-459, 2022.

W. Bao, Q. Yu, and Y. Kong, “Uncertainty-based traffic accident anticipation with spatio-temporal relational
learning,” in ACMMM, 2020, pp. 2682-2690.

W. Bao, Y. Qi, and Y. Kong, “Drive: Deep reinforced accident anticipation with visual explanation,” in
ICCV, 2021, pp. 7619-7628.

J. Fang, D. Yan, J. Qiao, J. Xue, and H. Yu, “Dada: Driver attention prediction in driving accident scenarios,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4959-4971, 2021.

J. Fang, L.-L. Li, K. Yang, Z. Zheng, J. Xue, and T.-S. Chua, “Cognitive accident prediction in driving
scenes: A multimodality benchmark,” IEEE Intelligent Transportation Systems Magazine, 2024.

T. Suzuki, H. Kataoka, Y. Aoki, and Y. Satoh, “Anticipating traffic accidents with adaptive loss and
large-scale incident db,” in CVPR, 2018, pp. 3521-3529.

M. M. Karim, Y. Li, R. Qin, and Z. Yin, “A dynamic spatial-temporal attention network for early anticipation
of traffic accidents,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 9590—
9600, 2022.

Y. Kumamoto, K. Ohtani, D. Suzuki, M. Yamataka, and K. Takeda, “Aat-da: Accident anticipation
transformer with driver attention,” in 2025 IEEE/CVF Winter Conference on Applications of Computer
Vision Workshops (WACVW), 2025, pp. 1052-1061.

J. Zhang, Y. Guan, C. Wang, H. Liao, G. Zhang, and Z. Li, “LATTE: A real-time lightweight attention-based
traffic accident anticipation engine,” Information Fusion, vol. 122, p. 103173, 2025.

M. M. Karim, Y. Li, and R. Qin, “Toward explainable artificial intelligence for early anticipation of traffic
accidents,” Transportation Research Record, vol. 2676, no. 6, pp. 743-755, 2022.

I. Song and J. Lee, “Real-time traffic accident anticipation with feature reuse,” in 2025 IEEE International
Conference on Image Processing (ICIP), 2025, pp. 2312-2317.

W. Liu, T. Zhang, Y. Lu, J. Chen, and L. Wei, “That-net: Two-layer hidden state aggregation based
two-stream network for traffic accident prediction,” Inf. Sci., vol. 634, p. 744-760, 2023.

T. Wang, K. Chen, G. Chen, B. Li, Z. Li, Z. Liu, and C. Jiang, “Gsc: A graph and spatio-temporal continuity
based framework for accident anticipation,” IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp.
2249-2261, 2023.

N. Thakur, P. Gouripeddi, and B. Li, “Graph (graph): A nested graph-based framework for early accident
anticipation,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2024, pp. 7533-7541.

W. Song, S. Li, T. Chang, K. Xie, A. Hao, and H. Qin, “Dynamic attention augmented graph network for
video accident anticipation,” Pattern Recognition, vol. 147, p. 110071, 2024.

H. Liao, H. Sun, H. Shen, C. Wang, C. Tian, K. Tam, L. Li, C. Xu, and Z. Li, “Crash: Crash recognition
and anticipation system harnessing with context-aware and temporal focus attentions,” in Proceedings of
the 32nd ACM International Conference on Multimedia, 2024, pp. 11 041-11 050.

M. M. Karim, Z. Yin, and R. Qin, “An attention-guided multistream feature fusion network for early
localization of risky traffic agents in driving videos,” IEEE Transactions on Intelligent Vehicles, pp. 1-12,
2023.

H. Liao, Y. Li, Z. Li, Z. Bian, J. Lee, Z. Cui, G. Zhang, and C. Xu, “Real-time accident anticipation for
autonomous driving through monocular depth-enhanced 3d modeling,” Accident Analysis & Prevention,
vol. 207, p. 107760, 2024.

W. Liu, Y. Li, T. Zhang, Y. Gao, L. Wei, and J. Chen, “Ccaf-net: Cascade complementarity-aware fusion
network for traffic accident prediction in dashcam videos,” Neurocomput., vol. 624, 2025.

10



[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

J. Fang, D. Yan, J. Qiao, J. Xue, H. Wang, and S. Li, “Dada-2000: Can driving accident be predicted by
driver attentionf analyzed by a benchmark,” in I7SC. IEEE, 2019, pp. 4303-4309.

Y. Guan, H. Liao, C. Wang, B. Wang, J. Zhang, J. Hu, and Z. Li, “Domain-enhanced dual-branch model
for efficient and interpretable accident anticipation,” Communications in Transportation Research, vol. 5,
p. 100214, 2025.

H. Liao, Y. Li, C. Wang, Y. Guan, K. Tam, C. Tian, L. Li, C. Xu, and Z. Li, “When, where, and what? a
novel benchmark for accident anticipation and localization with large language models,” ACM MM, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, .. Kaiser, and 1. Polosukhin,
“Attention is all you need,” NeurlIPS, vol. 30, 2017.

L. Chen, J. Lu, Z. Song, and J. Zhou, “Recurrent semantic preserving generation for action prediction,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 1, pp. 231-245, 2020.

T. J. Schoonbeek, F. J. Piva, H. R. Abdolhay, and G. Dubbelman, “Learning to predict collision risk from
simulated video data,” in 2022 IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2022, pp. 943-951.

A. P. Shah, J.-B. Lamare, T. Nguyen-Anh, and A. Hauptmann, “Cadp: A novel dataset for cctv traffic
camera based accident analysis,” in 2018 15th IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS). 1EEE, 2018, pp. 1-9.

T. You and B. Han, “Traffic accident benchmark for causality recognition,” in ECCV.  Springer, 2020, pp.
540-556.

D. C. Moura, S. Zhu, and O. Zvitia, “Nexar dashcam collision prediction dataset and challenge,” 2025.
[Online]. Available: https://arxiv.org/abs/2503.03848

J. Fang, L.-1. Li, J. Zhou, J. Xiao, H. Yu, C. Lv, J. Xue, and T.-S. Chua, “Abductive ego-view accident
video understanding for safe driving perception,” in CVPR, 2024, pp. 22 030-22 040.

C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recognition,” in CVPR, 2019,
pp. 6202-6211.

11


https://arxiv.org/abs/2503.03848

A Qualitative Results
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(a) A case where the ego vehicle collides with a motorcyclist who suddenly emerges from a blind spot.

Annotations: O Safe scenario O Anomaly appeared O Accident occurred
A Sscore

threshold=0.5

20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -09 -08 -0.7 -06 -05 -04 -03 -02 -0.1 00 01 02 03 04
(b) A case where the ego vehicle collides with a cyclist who suddenly cuts across the road.
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(d) A case where the ego vehicle rear-ends the lead car.

Figure 5: Qualitative results on CAP [9]. Each case shows the trend of the maximum accident score
predicted over future time steps; an alarm is triggered if this maximum exceeds the threshold.

We present the qualitative results of our method on the CAP dataset [9]] in Figure[5] where different
colors denote the temporal annotations in the dataset. Four distinct cases are demonstrated: (a) and
(b) involve ego-vehicle collisions with vulnerable road users, while (c) and (d) involve collisions with
other vehicles.
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We trigger an alarm if any accident score within the 2.0s prediction horizon exceeds a predefined
threshold (e.g., 0.5). In cases (a) and (b), the model issues an alert immediately when a motorcyclist
emerges from a blind spot or a cyclist begins to cut across the road. In cases (c) and (d), the model
accurately responds to sudden lane changes and abrupt braking of the lead vehicle, demonstrating
reliable anticipation under diverse hazardous scenarios.

The average Time-to-Accident (TTA) across these four cases is 1.0s, consistent with the typical
duration between anomaly onset and collision in real-world accidents. Notably, previously reported
TTAs exceeding 3 seconds in prior works [[7, 9] stem from flawed calculation methods that count false
alarms far before the anomaly as valid early predictions—rather than genuine long-term anticipation
capability. This underscores the necessity of our revised TTA metric.

113

Furthermore, we observed inconsistencies in the dataset’s “anomaly appear” annotations. For instance,
cases (b) and (d) were labeled too early, while case (c) was labeled too late. Such subjectivity
introduces noise when using anomaly onset as a training or evaluation boundary.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a novel accident anticipation paradigm that shifts from traditional
per-frame risk score prediction to directly estimating accident scores at multiple future
time steps (e.g., 0.1s—2.0s ahead), leveraging precisely annotated accident occurrences as
supervision. This provides more accurate training signals and yields more interpretable and
temporally grounded predictions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The project page, which includes code, model checkpoints, and implementation
details, is provided in the abstract (https://happytianhao.github.io/TOP/).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this work (CAP [9], DADA [8], and MM-AU [33])) are
publicly available. Our code, model checkpoints, and detailed instructions for reproducing
the main results are provided on the project page: https://happytianhao.github.io/
TOP/.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in the implementation details
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported results are averaged over three independent runs with different
random seeds. While error bars are omitted in the tables for clarity (following common
practice in video accident anticipation benchmarks), the use of mean values ensures stable
and reproducible comparisons. The performance gaps between our method and baselines
are consistent across runs and substantially larger than any observed variance.

Guidelines:

16


https://happytianhao.github.io/TOP/
https://happytianhao.github.io/TOP/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have specified all the training and test details in the implementation details
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discussed both potential positive societal impacts and negative societal
impacts of our work in the conclusion section.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all third-party assets used in this work are properly credited with full
compliance to their licensing terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, all newly introduced assets in this work are thoroughly documented
following FAIR principles (Findable, Accessible, Interoperable, Reusable).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work includes no crowdsourcing experiments and research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work poses no such risks
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core method development does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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