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Reproducibility Summary1

Scope of Reproducibility2

RetinaFace [2] is a deep learning model that detects faces in images by proposing rectangular areas (bounding boxes)3

for every single face. Unlike the other current state-of-the-art models, this study proposes a multi-task loss calculation4

by also computing the coordinates of 5 facial landmarks (eyes, nose, and two sides of the mouth) and 3D face mesh5

with 1000 points concurrently. Additionally, the proposed model also adapts a cascaded structure [13] and deformable6

convolution layers (DCL) [1]. The scope of this paper includes the whole model structure excluding DCL. Additionally,7

The tasks implemented are limited only to face bounding box detection and landmark localization tasks, since the 3D8

point detection database is not publicly shared.9

Methodology10

For this challenge, I implemented this model in Julia programming language, by using the Knet deep learning framework.11

The whole model is implemented from scratch. There are official and unofficial implementations are available but these12

codes only contain a subset of the whole model proposed in the paper. In the context module part and for constructing13

the methods related to box proposal, these repositories are taken as examples. For training, the WIDER FACE database14

[12] is preferred and as landmark data, custom annotations created by the original paper’s authors are used. Model is15

trained in one Tesla V100 GPU with a batch size of 10 for 60 epochs, which lasted approximately 9 days.16

Results17

The average precision (AP) metric is used for evaluation and the results are 0.093 lower in the Easy, 0.076 in the18

Medium, and 0.129 in the Hard subsets of WIDER FACE. Possible reasons for this performance difference are discussed19

in the Limitations & Problems section.20

What was easy21

Since the model only uses a small set of operations (convolution, batch normalization, unpooling, softmax, and ReLU).22

Therefore implementing the whole model was easy except for the loss calculation part.23

What was difficult24

The selection process of which box proposals are for faces and which are for background and how to balance their25

losses were not explained in the original paper in detail. Because of these obscurities, implementing the loss calculation26

was difficult.27

Communication with original authors28

I contacted them to request access to the 3D face points database but learned that that data belongs to a start-up company29

and is not publicly licensed.30
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1 Introduction31

Face Detection is a crucial problem in Computer Vision. Depending on the position of the camera relative to the person32

itself, detecting faces may bring some obstacles such as occlusions, really small-sized face captures compared to the33

frame length, change of illumination, etc. To overcome these obstacles, some common structures are preferred in34

the current state-of-the-art detection models. First of all, a mechanism called Feature Pyramid Network (FPN) [4] is35

integrated for processing different-sized intermediate outputs retrieved from backbones such as ResNet [3] or VGG36

[10]. With this approach, each intermediate output learns to focus on faces with different scales, and hence the overall37

performance increases.38

Secondly, two main ways are proposed for detection tasks: single-shot [5] and two-shot [8]. While the single-shot39

method focuses on predicting the coordinates only by feeding the input to the regarding model one time, the two-shot40

method predicts some intermediate outputs by feeding the input for the first time and more accurate bounding box41

proposals are found by using these intermediate outputs and feeding the input to the model a second time. Although42

two-shot models may compute more accurate results compared to single-shot models, longer processing time and extra43

computational load directed more recent studies to design single-shot models. With the recent development and new44

methods on single-shot object detection, current state-of-the-art models also achieved to outperform two-shot based45

approaches [11]. Currently, three single-shot detection models RetinaFace, ProgressFace [14] and HAMBox [6] are46

showing state-of-the-art performances in face detection. While HAMBox deals with adjusting the anchor boxes to have47

a greater intersection of union (IOU) values with the ground truth values, ProgressFace proposes a progressive learning48

model, which learns faces from large to small scales gradually.49

2 Scope of Reproducibility50

Current and previous state-of-the-art face detection models are bounded with using only background/face classification51

and bounding box regression. Other tasks such as facial landmark localization or 3D face points detection are ignored,52

which may improve the overall face detection performance if integrated into the model. Different from these studies,53

RetinaFace aims to benefit from landmark localization and 3D face point detection tasks to improve its performance54

further. Since 3D points data is not shared in public, this reproduction study is only limited with landmark localization55

task added to the main detection task.56

In this study, I am testing:57

• How much the model’s performance increase if landmark task is also added?58

• How much improvement is seen if a context module from SSH [7] is also integrated into the baseline model?59

• Does the addition of the cascaded structure improves the model performance?60

3 Methodology61

The codes of this project are shared as a supplementary material and the GitHub repository can also be shared upon62

request.63

3.1 Databases64

This study uses only one face detection database: WIDER FACE Face Detection Database [12]. This database does not65

include any landmark annotation by default. Therefore, 84.6k Faces in the WIDER FACE dataset are also manually66

annotated with 5 landmarks each1 during the original research.67

3.2 Architectural Details68

For the implementation, Julia v1.5.3 is selected as the programming language and Knet v1.4.5 is preferred as the deep69

learning framework. Knet is a low-level framework compared to other popular deep learning frameworks such as70

PyTorch, TensorFlow, or Keras. It only includes operation functions required during the model implementation but does71

not provide objects for these operations. Therefore, even convolution and batch normalization (BN) layer objects are72

constructed manually. Furthermore, Knet does not have support for multi-GPU design. Hence, the implementation is73

only based on a single GPU usage.74

1https://www.dropbox.com/s/7j70r3eeepe4r2g/retinaface_gt_v1.1.zip?dl=0
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3.3 Inputs & Outputs75

640x640 RGB images are used as the model inputs. For each of the images, confidence scores of each area proposals76

(one score for being background and one score for being a face), box coordinates (center coordinates, width, and height),77

and 5 facial landmark locations are retrieved as output.78

3.4 Data Augmentation79

As proposed in the original paper, the techniques below are used to augment the data:80

• Random Crops: the images are cropped in square shapes randomly, then reshaped to 640x640 and the81

annotations are arranged concerning these crops.82

• Horizontal Flip: With 0.5 probability, the images are flipped horizontally.83

• Color distortions: With 0.5 probability for each, brightness, saturation, contrast, and hue distortions are84

applied to the input image.85

Although data augmentation is also implemented, the different model variations are trained without any augmentation86

and the final fully structured model is also trained with augmentation to observe the impact of the augmentation process.87

3.5 Model Description88

Figure 1: Structure of the Whole Model

Backbone. ResNet50 [3] is used with ImageNet pre-trained weights. From this structure, intermediate outputs of89

each block of convolutions are extracted. In total, there are 4 different outputs: C2, C3, C4 and C5 respectively. The90

network is fed with a batch of 640 x 640 RGB images in training and the dimensions below are given for each of these91

intermediate feature maps:92

• C2: 160 x 160 x 256 x N93

• C3: 80 x 80 x 512 x N94

• C4: 40 x 40 x 1024 x N95

• C5: 20 x 20 x 2048 x N96

where N is the batch size. Furthermore, a 3x3 convolution + batch normalization layer (from now on, all convolution +97

batch normalization layer blocks will be called as ConvBn) with the stride size 2 and the filter size of 256 is also defined98

additionally on top of C5. The parameters of this layer are initialized with the Xavier method2. With this additional99

2https://denizyuret.github.io/Knet.jl/latest/reference/#Knet.Train20.xavier
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layer, an extra output called C6 is created with a size of 10 x 10 x 256 x N.100

101

Feature Pyramid Network. After retrieving the outputs C2-C5, all of these values are passed on 1x1 ConvBn layers102

to reduce their third dimensions to 256. The new outcomes are named P2-P5. Starting from the topmost feature map103

(P5), an unpool (upsampling) operation is applied to equalize the first and second dimensions of the upper and lower104

feature maps. Then the unpooled upper layer and the lower layer are added together. Lastly, the outcome is passed to an105

additional ConvBn structure with a kernel size of 3x3. C6 is excluded from all of these processes. The latest values of106

the intermediate feature maps can be summarized as:107

• P6 = C6 (has the size: 10 x 10 x 256 x N)108

• P5 = ConvBn_1x1(C5) (has the size: 20 x 20 x 256 x N)109

• P4 = ConvBn_3x3(ConvBn_1x1(C4) + unpool(P5)) (has the size: 40 x 40 x 256 x N)110

• P3 = ConvBn_3x3(ConvBn_1x1(C3) + unpool(P4)) (has the size: 80 x 80 x 256 x N)111

• P2 = ConvBn_3x3(ConvBn_1x1(C2) + unpool(P3)) (has the size: 160 x 160 x 256 x N)112

where each of the ConvBn layers is defined independently from each other. From now on, all of the P2-P6 outputs will113

be referred to as lateral paths.114

Figure 2: SSH Detection Module [7]

Context Modules. Each of the lateral paths is passed into independent context modules, which have the same model115

structure but different weights (in total, there are 5 context modules, one for each lateral path). The context module116

design is directly adopted from SSH Detection Module [7] and it can be further investigated in Figure 2. Additionally,117

batch normalization layers are added after each of the convolution layers in the figure. The input size is preserved by118

adding padding of size 1 to each convolution. All of the lateral paths are updated with this module.119

Figure 3: Anchor Box Demonstration
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Anchor Boxes. Anchor boxes are predefined rectangles that divide the image into grids with different sizes. They have120

basically a height, width, and two center coordinates (x and y). Figure 3 demonstrates how anchor boxes are located.121

There is a constant distance between the centers of each neighboring anchor box pairs. Also, more than one anchor122

boxes can be constructed from the same center point. Each anchor box includes 4 values (center x, center y, width, and123

height).124

The size of the model output is equal to the size of the combination of anchor boxes. In this specific implementation,125

there are 102,300 anchor boxes for a single image, the final outputs of the model are 2 x 102,300 for classification, 4 x126

102,300 for box proposal, and 10 x 102,300 for landmark localization tasks. By calculating the IOU values of each127

of the anchor boxes with each of the ground-truth bounding boxes and by selecting the maximum-IOU-value-giving128

anchor indices per ground truth face, the indices in the model output which are responsible for predicting the bounding129

box values of the ground truth objects can be determined.130

Since faces usually share similar height and width ratios, selecting anchor boxes that have 1:1 height and width ratios131

would be logical. In RetinaFace, each lateral path output includes W x H many anchor box centers if the dimension of132

the lateral output is W x H x C x N. Furthermore, each anchor box center is responsible for 3 different anchor boxes, all133

having 1:1 width and height ratios. The details of each lateral outputs are as follows:134

Laterals Anchor Center Sizes Center Distances (in Pixels) Edge Lengths (in Pixels)

P6 100 64 256 322.54 406.37

P5 400 32 128 161.26 203.19

P4 1600 16 64 80.63 101.59

P3 6400 8 32 40.32 50.80

P2 25600 4 16 20.16 25.40

Total Centers 34100 Total Anchors 102300

Table 1: Anchor Data for Each Lateral Path

Multi-Task Heads. After passing the context modules, the lateral paths are put 1x1 convolutions to convert their135

third dimension size to the correct output format. Assuming that W x H x C x N is the size of a lateral path after its136

corresponding context module and each anchor center is responsible for "A" many anchors (A is selected as 3 in the137

original paper), the final outputs retrieved from only one lateral path should have the dimension:138

• Classification Output: W x H x 2A x N139

• Bounding Box Output: W x H x 4A x N140

• Landmark Output: W x H x 10A x N141

Multi-task heads convert the dimension C to required sizes by 1x1 convolutions. Each lateral path has its own142

classification, bounding box, and landmark head and after this process, each lateral path creates 3 different outputs.143

However, the processes after multi-task heads are common to each lateral path. Therefore, these outcomes are144

concatenated. To achieve this, classification outputs are reshaped to the size 2 x (W · H · A) x N, bounding box outputs145

to 4 x (W · H · A) x N and landmark outputs to 10 x (W · H · A) x N. Afterward, the results of each lateral path are146

concatenated along their second dimensions. In the end, only 3 outputs are constructed:147

• Classification Final Output: 2 x 102300 x N148

• Bounding Box Final Output: 4 x 102300 x N149

• Landmark Final Output: 10 x 102300 x N150

where (W · H · A) is the number of anchor boxes responsible for one lateral path output, 102,300 is the total number of151

anchor boxes.152

153

Prediction & Ground Truth Conversions. The predicted box and landmark coordinates are designed to be scale154

invariant. Therefore, some transformation equations are applied to convert ground truth data to predicted value format.155

For any ground truth with a center coordinate (xc, yc), with the lengths (w, h) and with a landmark point (xl, yl):156
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• xp
c = (xc − xa

c )/w
a157

• ypc = (yc − yac )/h
a158

• wp = ln(w/wa)159

• hp = ln(h/ha)160

• xp
l = (xl − xa

c )/w
a161

• ypl = (yl − yac )/h
a162

where (xp
c , y

p
c ) corresponds to the box center in the prediction format, (wp, hp) to the box lengths in the prediction163

format, and (xp
l , y

p
l ) to the landmark point in the prediction format. Additionally, (xa

c , y
a
c ) is the center coordinate and164

(wa, ha) are the lengths of the corresponding anchor box.165

166

Online Hard Example Mining (OHEM) [9] & Loss Calculation. The training process utilizes both classification167

and regression losses. For classification, the negative log-likelihood (NLL) is preferred and for regression, the smooth168

L1 loss is selected as proposed in the original paper.169

170

The regression losses are computed only from the positive anchors (the ones that are matched with a ground-truth171

object) since there are no values to regress for backgrounds. The box losses are computed by using width, height, and172

center coordinate values. The overall loss structure for a single selected index i is given below:173

• Li = Lcls(pi, p
∗
i ) + p∗iLbox(ti, t

∗
i ) + p∗iLpts(li, l

∗
i )174

• Lcls(pi, p
∗
i ) = −ln(1− |pi − p∗i |)175

• Lbox(ti, t
∗
i ) = smoothL1(|ti − t∗i |) for each (xc, yc, w, h)176

• Lpts(li, l
∗
i ) = smoothL1(|li − l∗i |) for each (x, y) of 5 landmarks177

where p∗i is 1 if the proposal belongs to a ground-truth face and 0 otherwise, pi means the probability of a bounding178

box proposal to be positive, t∗i is a ground truth box value converted as explained in the Prediction & Ground Truth179

Conversions subsection, ti is a box value prediction, l∗i is a ground truth landmark value converted in a scale-invariant180

style, li is a landmark value prediction.181

There is a significant difference in terms of counts of the positive anchors and negative anchors (the ones that are not182

assigned to a specific ground-truth object). Therefore, the OHEM method is used to balance the ratios of positive and183

negative anchors selected.184

After calculating the output of the multi-head module, the IOU values are calculated between each ground truth object185

and each anchor box of the corresponding multi-head module. Then, the maximum IOU value is calculated for each of186

the anchor boxes. The anchor boxes that have an IOU value bigger than the positive threshold are selected as positive187

anchors. The positive threshold for the first multi-task module is set as 0.7 and for the second multi-task module as 0.5.188

Similarly, the ones among the non-positive anchors that have a maximum IOU less than the negative threshold with any189

of the ground truth object are chosen as negative anchor candidates. The negative threshold is assigned as 0.3 in the first190

multi-task head and 0.4 in the second multi-task head. According to the OHEM rule, the number of selected negative191

anchors must be equal to at most 3 times the number of positive anchors. Hence among the candidates, a subset having192

the greatest NLL loss values is selected as negative anchors.193

194

Cascaded Structure. Instead of loading the whole final proposal job to only one multi-task head structure, a cascaded195

model divides this job into 2 multi-task head modules. Same as before, the model retrieves lateral outputs until the196

context module. Then by using already-existing static anchor boxes and the first multi-task head module, it produces197

classification scores, bounding box, and landmark predictions. A loss from this process is also calculated. Then, instead198

of using the actual static anchor boxes, the model uses the bounding box predictions calculated from the first multi-task199

head module as anchors and applies the same process this time with the second multi-task head module. The outcomes200
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of the second multi-task head become the final outputs of the model and the sum of the losses calculated from both201

multi-task head modules are added for computing the final loss.202

3.6 Computational Requirements203

The code is tested on both Windows and Linux and confirmed that it is fully functioning. To obtain the best performance,204

Tesla V100 GPU is suggested since it can run up to 10 images per batch. The model is also tested in Tesla T4 and it is205

seen that batch size can be set at most 4. The full model completes 6.5 epochs per day if the batch size is set as 10 and206

discarding the cascaded structure increases this amount to 10 epochs per day.207

4 Experiments & Results208

4.1 Hyper-Parameters209

As it is given in the actual paper, the SGD optimizer (momentum: 0.9, weight decay: 0.0005) is selected for training210

purposes. Since this implementation remained limited with single GPU usage, the batch size is selected as 10, which is211

the highest amount of image count in a batch that a Tesla V100 GPU memory supports while training.212

The learning rate is set to 0.001 between the 1st and 27th epochs, 0.004 between 28th and 39th, 0.001 again between213

40th and 49th, and 0.0001 between 50th and 60th. In total, each of the model variations is trained for 60 epochs and the214

individual checkpoints are chosen as final, where the highest scores are achieved. The learning rate of 0.01 is not used215

although it is preferred in the original paper, because the batch size is 3 times lower in this implementation compared to216

the original training batch size, and selecting high learning rates may cause unstable updates.217

4.2 Different Model Variations218

To test the hypotheses mentioned in the Scope of Reproducibility section, different variations of the model are trained219

separately:220

• Baseline: ResNet50 + FPN + Landmark Localization Task221

• Context Module without Landmark: ResNet50 + FPN + Context Module222

• Context Module with Landmark: ResNet50 + FPN + Context Module + Landmark Localization Task223

• Full Model: ResNet50 + FPN + Context Module + Landmark Localization Task + Cascaded Structure224

4.3 Evaluation of AP in WIDER FACE Validation Data225

In the actual paper, the evaluation also included the performance of the landmark localization task but in this reproduction226

study, the evaluation scope is limited only to bounding box prediction performance and the average precision (AP)227

metric used for this purpose. AP is calculated by taking the IOU threshold as 0.5 and iterating through 1000 steps of228

confidence levels between 0 and 1. The models are evaluated only with WIDER FACE validation data and this data is229

separated into 3 groups (Easy, Medium, and Hard) concerning their difficulty. The confidence threshold is set to 0.02 to230

decrease the total computation time, then the top 5000 predictions are selected among the candidates and lastly, the231

non-maximum suppression (NMS) method is applied with a threshold of 0.4 to eliminate redundant area proposals.232

In table 2, the results of the original RetinaFace model, other state-of-the-art models, and my different model variations233

are provided. While the HAMBox model achieves the highest performance in all of the 3 subsets of WIDER FACE234

validation data, RetinaFace performs close to HAMBox.235

The best-performing model results in 0.093 lower AP value in the Easy subset, 0.076 lower in the Medium, and 0.129236

lower in the Hard subset compared to the original paper results. As mentioned in the Scope of Reproducibility section,237

the model performs better when landmark localization task is included or the Context Module is also added. However,238

adding a cascaded structure causes a performance drop in contrast to our expectations. Although the reason for the239

negative effect of the cascaded structure is not clear, the possible main reasons for the performance difference between240

the original paper and this implementation are discussed in the following Limitations & Problems section.241
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Model WIDER FACE Easy WIDER FACE Medium WIDER FACE Hard

HAMBox [6] Baseline 0.943 0.931 0.894

HAMBox Final 0.970 0.964 0.933

ProgressFace [14] 0.968 0.962 0.918

RetinaFace Baseline 0.958 0.952 0.899

+ Context Module with DCL 0.961 0.956 0.903

+ Cascade 0.962 0.957 0.906

+ Landmark Loss 0.966 0.959 0.912

Baseline 0.842 0.864 0.769

Context Module without Landmark 0.865 0.878 0.767

Context Module with Landmark 0.873 0.883 0.783

Full Model 0.842 0.854 0.752

Table 2: WIDER FACE Validation Data AP Scores

4.4 Some Example Visual Results242

These results are retrieved from the best performing model variation. For the prediction, the NMS threshold is set to 0.2243

and the confidence threshold is set to 0.5. Images are taken from WIDER FACE validation data. If the faces are not too244

small, then the model mostly detects the faces (Figures 4 and 5) even when there is a bad lighting (Figure 6) or the faces245

from a slightly different domain (a drawing in the case of Figure 7). On the other hand, if the faces are too small or the246

resolution is not very clear (Figures 8, 9, and 10), then the model may miss the faces in the picture.247

248

Figure 4: Good Example Result I
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Figure 5: Good Example Result II

Figure 6: Good Example Result III: Bad Lighting
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Figure 7: Good Example Result IV: Drawing Domain

Figure 8: Bad Example Result I: Small Faces, No Faces Detected
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Figure 9: Bad Example Result II: Not a Good Resolution

Figure 10: Bad Example Result III: Small Faces

11



5 Limitations & Problems249

In this section, some limitations of the framework and the main reasons for the difference between the actual paper’s250

results and this implementation’s results will be discussed.251

Lack of Deformable Convolution Layers. The actual paper uses Deformable Convolutions instead of regular convo-252

lutions for the Context Module structure. This special type of convolution achieves to "learn the offsets from the target253

tasks, without additional supervision" [1]. Therefore, it increases the overall performance of the model. However, this254

type of layer structure is not available in Julia or Knet, and implementing this structure requires a significant amount of255

additional work. Thus, this improvement is left as future work.256

Lower Batch Size. The original RetinaFace model uses 4 V100 GPUs and in total 32 images as a batch. However,257

Knet does not fully support training models on multiple GPUs and the maximum number of images a V100 GPU can258

take are 10 images. Hence, the model is limited to complete its training with 3 times lower batch size. Having a lower259

batch size also causes more unstable updates on the model. Therefore, it becomes harder to find the optimal checkpoint260

and the chance of finishing the training with sub-optimal local minimum increases.261

Knet Defaults During Learning Rate Change. During training, each of the trainable parameters stores an additional262

optimizer field, where the optimizer name and its specific parameters are stored. With the current Knet configurations263

once this field is set, calling another optimizer with different parameter settings does not change the optimizer field of264

the parameters unlike the other frameworks such as PyTorch or Tensorflow. Hence, the model continues to be trained265

with the initial optimizer and learning rate until the end. To change the learning rate or the optimizer, each of the266

optimizer fields of each trainable parameter has to be set to "nothing". I realized this problem in the last couple of days267

of the first submission and therefore, I could only submit some results that are significantly lower than the original268

paper.269

GPU-CPU Data Transfer. While recording the gradient flow of the training batch, Knet also forbids to slice the final270

outputs and compute a loss from these sliced sub-parts when the data is on GPU. Therefore, a constant data transfer271

between the GPU and CPU takes place in this implementation during the loss calculation. This deficiency also increases272

the overall run-time.273

6 Conclusion274

In this paper, the structure of the RetinaFace model is analyzed, the implementation process is explained, the configura-275

tions and different experiments are shared and the results are discussed. The scope of the reproducibility is defined276

as testing if the model’s performance increases when landmark localization task, context module, and/or cascaded277

structure are included in the model’s structure.278

According to the AP results retrieved for different model variations, it is shown that adding context module and landmark279

task to the model increases the performance. However, including the cascaded structure resulted in a decrease in the280

overall performance. The evaluation score difference between the original paper and this implementation is between281

0.076 and 0.129 but the lower batch size and lack of deformable convolutions are possible reasons for this performance282

drop. Overall, the model mostly detects faces when they are not extremely small in the given image.283

7 Discussion284

7.1 What Was Easy285

As stated in the summary page and the model description, RetinaFace only uses a couple of layer and activation286

structures. Excluding the deformable convolution layers used in the original model, it is easy to implement the whole287

model structure (except the loss calculation) even with a low-level deep learning framework like Knet.288

7.2 What Was Difficult289

Implementing the loss calculation structure was the hardest task because of the lack of information in the original290

paper. No detailed explanation was given to select the positive and negative anchors, OHEM technique was291

stated to balance the negative and positive anchor selection but no extra hyper-parameters and instructions to use292

the OHEM method were provided. To overcome this issue, official and unofficial implementation codes and the293

issues opened in these repositories are checked. Additionally, the OHEM paper is read and blogs on that issue are visited.294

295
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Implementing the AP metric in Julia was also a challenging task because it is a complicated metric and for this specific296

case, 3 different AP evaluations have to be made for each of the subsets of WIDER FACE validation data: Easy,297

Medium, and Hard. These subsets are not separated in terms of image files but are created by selecting a subset of faces298

for every single image. To avoid any false evaluation results, I used a python repository3 which includes all of the AP299

evaluation processes for every single subset of the validation data.300

7.3 Communication with Original Authors301

I only communicated with the authors to request the 3D facial points data to extend my model with the 3D point302

prediction task. However, they indicated that the data is not licensed public. Therefore, I excluded the 3D point detection303

task from the model structure. Other than this, the model was explained mostly successfully in the original paper and it304

was enough for me to implement most of the parts.305
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