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Figure 1: We introduce i-nstance-level Composed Image Retrieval (i-CIR) evaluation dataset. Given
an depicting a specific instance (e.g., Temple of Poseidon) along with a modifying
text query, the task is to retrieve images showing the same instance altered according to the text
(composed positives). Unlike existing datasets [39, 25, 2], i-CIR explicitly ensures the presence of
challenging negative examples across three distinct dimensions: visual, textual, and composed.

Abstract

The progress of composed image retrieval (CIR), a popular research direction in
image retrieval, where a combined visual and textual query is used, is held back
by the absence of high-quality training and evaluation data. We introduce a new
evaluation dataset, i-CIR, which, unlike existing datasets, focuses on an instance-
level class definition. The goal is to retrieve images that contain the same particular
object as the visual query, presented under a variety of modifications defined
by textual queries. Its design and curation process keep the dataset compact to
facilitate future research, while maintaining its challenge—comparable to retrieval
among more than 40M random distractors—through a semi-automated selection of
hard negatives. To overcome the challenge of obtaining clean, diverse, and suitable
training data, we leverage pre-trained vision-and-language models (VLMs) in a
training-free approach called BASIC. The method separately estimates query-image-
to-image and query-text-to-image similarities, performing late fusion to upweight
images that satisfy both queries, while downweighting those that exhibit high
similarity with only one of the two. Each individual similarity is further improved
by a set of components that are simple and intuitive. BASIC sets a new state of the
art on i-CIR but also on existing CIR datasets that follow a semantic-level class
definition. Project page: https://vrg.fel.cvut.cz/icir/.
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1 Introduction

Composed image retrieval (CIR) combines image-to-image retrieval and text-to-image retrieval. CIR
uses a composed query, i.e. an image and text, to retrieve images whose content matches both the

visual and textual parts of the query. Vision and language models (VLMs) [30, 20, 21, 16, 43] provide
the foundation for developing CIR methods, either through further training [25, 8, |, 26] or in a
training-free manner [28, 42, 19]. The use of VLMs, owing to their large-scale pre-training, enables

CIR to operate in an open-world setting and compare any kind of visual or textual content. This
capability paves the way for novel applications and advanced methods to explore and browse large
image collections. However, the main limitation of CIR lies in the lack of appropriate data for both
evaluating progress and training models. This work addresses these challenges.

Existing CIR datasets [25, 39, 2] often suffer from poor quality due to their construction process,
i.e., two similar images are selected automatically and their difference is textually described. This
approach incorrectly assumes that such a difference always forms a meaningful text query for retrieval,
regardless of the image pair. In contrast, given one image, we first specify a textual modification such
that both together form a meaningful composed query. We then identify positive and a large set of
hard negative images to construct i-CIR, a compact yet challenging dataset. The goal is to retrieve
images that depict the same object instance as the image query, under the modification described by
the text query. Such an instance-level object class definition is missing from existing datasets and is
identified as a limitation by prior work [33]. By integrating diverse object types and modification
types, i-CIR accurately reflects a wide range of real-world use cases.

CIR methods that rely on further training on top of VLMs require large amounts of training triplets
in the form of (query image, query text, positive image), which are challenging to obtain at scale.
As aresult, training is typically performed on small sets of manually labeled triplets [38, 25, 1, 4],
or on automatically generated triplets obtained through crawling [44, 17, 24] or synthetic data
generation [10]. However, these automated methods significantly compromise triplet quality, and
in all cases, the diversity of visual object types and textual modifications remains limited compared
to the variety present in VLM pre-training, thereby restricting generalization ability. Instead, we
develop a training-free Baseline Approach for Surprisingly strong Composition, BASIC, which fully
leverages existing VLM capabilities and remains adaptable to future advances.

BASIC separately computes the similarity with respect to each query component and performs fusion
inspired by the classical Harris corner principle [12]; both responses must be jointly high, rather than
just one of the two. The image-to-image dot product similarity is enhanced through a projection
learned not in the image space, but in the text representation space. This is facilitated by a large
language model that provides common object names and typical textual modifications. The aim is to
increase distinctiveness regarding object variations, i.e., to better represent image objects beyond other
visual cues, while achieving invariance to textually described modifications, so that the same object
is retrieved despite variations. Interestingly, this projection can also be equivalently applied solely
on the query side, enabling user-specific or application-specific customization. The text-to-image
dot product similarity is refined via a query-time contextualization process designed to bridge the
distribution gap between the text inputs seen during VLM pre-training and the text queries used at
inference. Our contributions are summarized as follows:

* We introduce i-CIR, a new evaluation dataset for CIR, meant to retrieve images containing
the same particular object as the visual query under modifications defined by the text query.

* We introduce BASIC, a training-free approach leveraging pre-trained VLM:s for class-level or
instance-level CIR that is based on image-to-image and text-to-image similarities, without
the need to update the database embeddings.

* BASIC sets a new state of the art on i-CIR and across existing class-level CIR datasets.

2 Related work

Methods. While early methods like TIRG [38], CIRPLANT [25] and CLIP4CIR [!] rely on
supervised training with annotated triplets, recent efforts in zero-shot CIR (ZS-CIR) avoid triplet
supervision and fall into three main categories. Textual-inversion methods (e.g., Pic2Word [33],
SEARLE [2], ISA [6], LinCIR [ 1]) map the reference image to a pseudo-text token, which is then



composed with the modification text in the language domain and processed by a vision-language
model. Pseudo-triplet approaches (e.g., TransAgg [24], HyCIR [17], CompoDiff [10], CoVR-2 [37],
MCL [22]) generate synthetic training data using LLMs [23] and image generative models [3 1], either
from caption-editing strategies or from natural web-based image pairs. Training-free methods (e.g.,
WeiCom [28], FreeDom [42], CIReVL [19], GRB [35], WeiMoCIR [40], ) leverage off-the-shelf
VLMs [30, 20, 21] and LLMs [36] to perform CIR without any additional training by either recasting
it as text-based retrieval or fusing visual and textual embeddings directly via weighted sums or
geometric interpolations.

Datasets. Key benchmarks include FashionlQ [39] (77k images, 30k triplets across three fashion
sub-tasks) and CIRR [25] (22k images, 37k triplets), both criticized for label ambiguity, high false-
negative rates, and text-only shortcuts [2, 15], and recently refined by [15]. CIRCO [2] (1k queries
over 120k COCO-unlabeled distractors, 4.53 targets/query) extends this paradigm with more diverse
negatives. Four additional domain-conversion datasets-ImageNet-R [13] (30k stylized images of 200
classes in four style domains), MiniDomainNet [46] (140k images of 126 classes in four domains),
NICO++ [45] (89k images of 60 categories in six contexts), and LTLL [7] (500 images of 25
locations)-explore class-level retrieval under style or context shifts. Concurrent to our work, ConCon-
Chi [32] introduces an image—caption benchmark for personalized concept—context understanding,
designed for text-to-image generation, retrieval, and editing. Their concepts correspond to our
instances, while their contexts parallel the modifications expressed by our text queries.

3 i-CIR dataset

3.1 Overview and structure

We introduce the i-nstance-level Composed Image Retrieval (i-CIR) evaluation dataset. Following
the instance-level class definition [29, 41], we group all visually indistinguishable objects, i.e. the
same particular object, into a single class. For example, a class may correspond to (i) a concrete
physical entity, such as the Temple of Poseidon, or (ii) a fictional yet visually distinctive character or
object, such as Batman. In practice, if a human observer can confidently state that multiple visual
manifestations represent the same object, they belong to the same instance-level class.

Given a composed query (g°, q') consisting of an image query ¢* depicting a particular object, also
referred to as an object instance or simply instance, and a text query ¢* describing a modification, the
goal is to rank a database of images such that those depicting the same instance under the requested
modification appear at the top. We refer to these images as composed positives or simply positives.
For each composed query, we consider the following types of hard negative images: (i) visual
hard negative: depicts an identical or visually similar object as ¢* but does not match the textual
modification ¢, (ii) textual hard negative: matches the semantics of ¢* but depicts a different instance,
typically from the same semantic category, (iii) composed hard negative: nearly matches both query
parts, while one of the two may be identically matched, i.e. depicts an object similar/identical to
gV with semantics similar to ¢*, or an object similar to ¢* with semantics identical/similar to ¢’.
Examples are shown in Figure 1 and Figure 3.

All types of negatives, including non-hard ones, are treated equally during evaluation. However, we
include a significant number of hard negatives in our dataset to create a challenging yet manageable
benchmark that supports future research. There are n” image queries for the same instance combined
with n! text queries that are combined to construct n?n! composed queries (values of n* and n! vary
per instance). Unlike typical retrieval benchmarks that use a single common database for all queries,
we employ the same image database for all n'n! composed queries of an instance, but a different
database for queries of other instances. This design ensures scalable and error-free labeling, avoiding
the impracticality of verifying each database image as positive or negative for every query.

3.2 Collection and curation

The dataset construction process combines human input with automated image retrieval®. Our aim is
to curate, for each instance, composed queries, sets of corresponding positives, and a well-structured
set of challenging hard negatives, with all i-CIR images sourced from the LAION [34] dataset.

*We perform image-to-image and text-to-image retrieval using dot product search based on image and text
representations obtained from OpenAl CLIP [30].
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Figure 2: i-CIR statistics. From left to right: Number of (a) image queries, (b) text queries, and (c¢)
hard negatives per instance; (d) composed positives per composed query.

The process for each instance begins by defining the object instance, e.g. Temple of Poseidon, and
selecting semantically meaningful modifications, e.g. ‘‘at sunset’’, while avoiding implausible
ones, e.g. ‘“‘with snow’’. We then create seed images and seed sentences to serve as queries for
retrieving neighbors from LAION, which collectively form a candidate image pool that includes
potential queries, positives, and (hard) negatives.

Seed images: 2 to 5 high-quality images depicting (i) the object instance, e.g. the Temple of Poseidon,
or (ii) a composed positive, e.g. the Temple of Poseidon at sunset. These images are gathered from
web searches in Creative Commons repositories or personal photo collections. The neighbors retrieved
from LAION are categorized as visual and composed hard negatives for cases (i) and (ii), respectively.

Seed sentences: Textual descriptions of (i) the instance (e.g. ““Temple of Poseidon’’), (ii) another
object of the same category (e.g. “‘Ancient Greek Temple’’), (iii) rephrased versions of defined
modifications (e.g. ‘‘a photo of dusk’), (iv) the instance under the modifications (e.g. ‘“Temple
of Poseidon at sunset’’), (v)an object of the same semantic category under the modification (e.g.
‘““an Ancient Greek Temple at sunset’’). The neighbors retrieved from LAION are classified
as visual, textual, and composed hard negatives for cases (i & ii), (iii), and (iv & v), respectively.

After building the candidate image pool, automated filtering removes low-resolution, watermarked, or
duplicate content using perceptual hashing and resolution checks. Annotators then manually inspect
the remaining images to identify composed positives per composed query. Unmarked images are
considered negatives. Visual hard negatives are associated with all composed queries of an instance,
while fextual and composed hard negatives are associated only with the specific composed query
from which (or from whose text query) they were derived. Finally, annotators manually select images
within the visual hard negatives to serve as image queries. All images that were neither filtered out
from the candidate image pool nor selected as queries form the database for this instance. Positives
and hard negatives associated with a composed query are negatives for another composed query.

To avoid bias towards/against CLIP-based methods, seed images are discarded and not included in
i-CIR, while seed sentences do not include the exact phrasing of a text query.

3.3 Statistics and visualisations

Figure 2 summarizes key per-instance and per-query statistics in i-CIR. We include 202 object
instances and 750 K images in total. Each instance has 1-46 image queries (195 with >1, median:
6) and 1-5 text modifications (median: 2), yielding 1,883 composed queries overall. Queries
can be categorized either by their visual part (the object instance) or by their textual part (the
modification). Each composed query has 1-127 positives (median: 5) and each instance’s database
contains 951-10,045 hard negatives (median: 3,420), creating a challenging retrieval benchmark.
Figure 3 illustrates a set of randomly chosen pairings from the categorization: for each of eight
visual-textual category combinations, we show the image query, composed positive, visual hard
negative, textual hard negative, and composed hard negative. These visualisations highlight the rich
diversity of i-CIR, both in terms of the wide array of visual categories (e.g., landmarks, products,
fictional characters, tech gadgets) and the broad spectrum of textual modifications (e.g., viewpoints,
attributes, contexts, additions), setting our benchmark apart from existing CIR datasets.

3.4 Shortcomings of existing benchmarks

Commonly used CIR datasets include CIRR [25], FashionIQ [39], CIRCO [2], and ImageNet-R [13].
CIRR, FashionlQ, and CIRCO share a common limitation: their construction relies on an automated
process to select two similar images, guided by either textual or visual similarity. These images
form the image query and the positive pair. Due to the nature of the image sources, either there
is no obvious relation of such selected pairs or the relationship is typically at semantic level only,
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Figure 3: Visualization of visual and textual category examples from i-CIR. For each of the eight
randomly chosen category pairings (a—h), we display: the , the text query, the composed
positive, the visual hard negative, the textual hard negative, and the composed hard negative.

rather than at instance level. Subsequently, a language-based description is generated to capture the
difference between the two images. However, the lack of concrete differences between the images,
often coupled with their low relevance, results in descriptions that are either poor representations
of meaningful text queries or inadequate components of a composed query. In many cases, the text
query alone suffices to describe the positive image, making the image query redundant. Moreover,
these datasets exhibit a paucity of challenging negatives and a substantial rate of false negatives
in their ground-truth annotations [2], inflating reported performance. We present such cases in the
supplementary material.

Domain-conversion benchmarks such as ImageNet-R [13], NICO++ [45], and MiniDomainNet
(MiniDN) [46] extend CIR to style or context shifts (e.g., ‘‘photo’’—*‘cartoon’’) but define positives
by semantic class membership rather than object identity, lacking instance-level granularity. LTLL [7]
is the sole existing instance-level domain-conversion dataset, but it is extremely limited in scale
(500 images of 25 locations, two domains) and provides only binary ‘‘archive’’ vs. ‘‘today”’
modifications. Furthermore, these benchmarks offer very narrow categorical variation—FashionIQ is
confined to fashion items, LTLL to a two-way temporal shift, and the domain sets to domain changes
only. These semantic-level definitions, small scale, minimal textual variation, and weak negative
mining in prior benchmarks motivate the creation of i-CIR.

4 A surprisingly strong baseline

In the task of composed image retrieval (CIR), we are given an image query ¢° € X'V and a text query
qt € X, where X' is the image input space and X’ is the text input space. The goal is to retrieve
images =V from a database X = {z¥,..., 2%} C X’ that are visually relevant to the image query
and reflect the modifications specified by the text query. Features are extracted using a pre-trained
visual encoder ¢¥ : XV — R and text encoder ot Xt — R4, e.g., CLIP, which map image and text
queries to a shared embedding space of dimension d. Image-to-image and image-to-text similarities
are computed via dot product of the corresponding features.

The proposed training-free method, called BASIC, is based on the assumption that both modalities in
the composed retrieval query encode complementary information that jointly contribute to the retrieval
objective. This makes the composed retrieval task analogous to performing a logical conjunction over
the two modalities: we seek results that are simultaneously relevant to both the image and the text .

3While this assumption holds well for standard composite tasks (e.g., this image and the concept “winter”),
it may not apply in tasks where one modality dominates (e.g., purely textual transformations) or where the
text query is highly entangled with image content (e.g., CIRR-like datasets). In such cases, the benefits of the
proposed mechanisms may diminish.
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Figure 4: Overview of our training-free composed image retrieval method BASIC. Given a query
image and text, we apply centering and semantic projection, guided by corpora C'+ and C'—, to
suppress irrelevant dimensions. The text is contextualized using caption-like prompts. Both modalities
are scored against the database with min-based normalization and fused via a multiplicative “AND”
operation regularized by a Harris-like criterion to retrieve jointly relevant results.

Following the aforementioned assumption, we compute the similarity per modality and then combine
them. We improve the representation per modality by removing modality-specific noise and spurious
correlations that can interfere with their effective combination. In practice, visual features may be
entangled with background clutter, image composition, or dataset-specific styles, whereas textual
features can reflect lexical biases or corpus-level drift. Figure 4 presents a high-level overview of
BASIC, which consists of a sequence of conceptually simple yet effective steps that progressively
filter out the aforementioned noise and modality-specific artifacts from the image and text features.

Centering for bias removal. We remove modality-specific biases by subtracting mean features.
These means typically capture low-level regularities unique to each modality: the average image
feature reflects general visual patterns, while the average text feature captures common linguistic
patterns. Subtracting them helps isolate semantic content from distributional bias. In particular, after
extracting the image features q” = ¢¥(¢%) € R? and text features q* = ¢*(¢*) € R, also from the
database images, we subtract a precomputed image feature mean p¥ € R?, and a text feature mean
pt € RY, respectively. The centered features are

qv:qv_uv:¢v(qv)_uu and qtzqt—utngt(qt)—ut. (1)
To ensure scalability and generalization, we compute " using a large external dataset X", e.g.,

LAION [34]. Similarly, we calculate the text mean p! on a predefined textual corpus which contains
content-relevant concepts (see next step).

Projection onto semantic subspace. We aim to transform the image features to retain information
related to the main objects, while suppressing information related to image styles, object domains,
or background setting, i.e. that correspond to text query modifications of common use cases. This
is achieved by projecting into a lower-dimensional subspace derived from text CLIP features. To
construct this projection, we use two textual corpora: C., a object corpus containing object-oriented
terms (e.g., “building”, or “dog”), and C_, a stylistic corpus containing terms related to style, viewing

conditions or contextual setting (e.g., “cartoon”, “aerial view”, or “in a cloudy day”). Inspired by [27],
we compute a weighted contrastive covariance matrix as follows :

C=(1-a)C —aCo, where Ci= o 3 (6'0) -~ W)W -u)T @
zeCy

and « is an empirically determined hyperparameter. We extract the top-k eigenvectors of C € R%*¢
to form a projection matrix P € R?**. The eigenvectors capture directions with high variance in
C. and small in C_, emphasizing object-specific cues while suppressing style-related variation.
We then project the centered image features X? = ¢(z¥) — pu¥ € RY, either query or database, as
P "x" € R¥. Note that the corpora C; and C_ need not match the domain of the retrieval database.
Even generic corpora for C, e.g., class names from ImageNet, yield performance improvements, as
the captured directions are semantically rich and broadly transferable.

Image query expansion. In the literature, image retrieval performance, recall in particular, has been
shown to be significantly improved by query expansion [3, 9]. The proposed method benefits from



applying the optional step of query expansion using the image query. Following [9], the original
feature of the image query is enhanced by a weighted combination of the top-ranked database features
that it retrieves. The weights are an increasing function of the corresponding similarities.

Contextualization of text queries. CLIP is trained primarily on natural language captions and full
sentences. As a result, using single-word text queries (e.g., ‘‘sculpture’’) or sentence parts (e.g.,
‘“‘during sunset’’) constitute out-of-distribution input and may produce text features that are not
well-aligned with image features. To address this, we introduce a contextualization step that enriches
such textual queries with additional terms. Let ¢* be a raw text query (e.g., ‘“‘sculpture’’). We
generate multiple caption-like queries by combining ¢* with elements from the subject corpus C',.. We
add a random set of terms before (e.g., ‘‘dog during the sunset’’) and after (e.g., ‘‘sculpture
dog’’) the text query. These composed phrases are embedded using CLIP’s text encoder, centered, and
averaged. This operation yields a more robust textual feature that better reflects how CLIP interprets
concepts in natural language (e.g., ‘‘[something] during the sunset”).

Score normalization and fusion. The final step is to combine similarities from the two modalities to
rank the database items. Given the centered image query embedding q” € R? and the contextualized
centered text query (either original, or expanded) embedding g* € R?, we compute similarities to the
centered embedding X € R? of a database image 2V € X as:

s'=(P'x",P'q") and s'=(x",q"). 3)
To reflect the complementary nature of the modalities, we fuse the two scores by multiplication:

s = sVst. However, due to modality imbalance and differences in representation ranges, one modality
can disproportionately dominate the final score.

Min-based normalization. To mitigate range imbalances, an affine re-scaling of the similarities s in
each modality is performed. The empirical minimum s,;, < 0 of the dot product in (3) is used, so
that sy, is mapped to 0 and O is mapped to 1:

5 = (S_Smin>/|smin|~

We apply this to both sV and s’ using predefined statistics for sV . and s
dataset. See supplementary material for details.

t
min?

estimated on an external

Fused similarity with Harris criterion. Finally, we fuse the normalized scores using multiplication
and a regularizer inspired by the Harris corner detector. The final score is:

57 =5v5t — \(5V + 542
The first term rewards items that are jointly relevant to both modalities. The second term penal-

izes items where only one modality is highly activated, thereby suppressing false positives from
unbalanced queries. The scalar A controls the trade-off and is fixed across all experiments.

Computational complexity. The strengths of our approach stem from its simplicity and efficiency.
The entire pipeline is (deep-network) training-free and is composed of operations that scale linearly
or sub-linearly with the dataset size, since similarity computation over the dataset items is a simple
inner product and can be efficiently handled by existing libraries, e.g., FAISS [18]. The proposed
similarity computation efficiently operates over a stored database of original CLIP representations.
The similarity s is efficiently computed as follows
s' = (PT(x" = p"),PT(q" — ")) = (x", PP (q" — ")) — (n", PP (q" — p")),

where the first term is a dot-product computed over the unaltered database features and the second
term is a query dependent constant. Thus, all computation related to centering and projection can be
computed on-the-fly on the query side. This is valuable, since the mean and the projection matrix can
be alternated (e.g. with specific knowledge of the domain) without touching the stored index. This
makes our method particularly well-suited for large-scale deployments, requiring no adaptation, no
fine-tuning, and no backpropagation.

5 Experiments

5.1 Experimental setup

Datasets and evaluation protocol. We evaluate BASIC on our proposed i-CIR as well as four
composed image retrieval benchmarks: ImageNet-R, MiniDN, NICO++, and LTLL. Retrieval



performance is measured using the standard mean Average Precision (mAP) metric. Average
Precision (AP) is computed per query by averaging the precision values at the ranks of all relevant
items in the retrieval list. The mean Average Precision (mAP) is then obtained by averaging AP
over all queries, providing a global measure of retrieval effectiveness that accounts for the order of
relevant results. For i-CIR, we report the macro-mAP over instances, defined by first computing mAP
per instance and then taking the mean of these per-instance mAPs across all instances.

Baselines and competitors. We include four simple baselines. “Text” scores each database image
z¥ € X by (¢'(¢"), ¢”(2")); “Image” scores by (¢ (g"), ¢"(x")); “Text + Image™ combines the
similarities by summation; “Text x Image” by product. We also benchmark BASIC against state-of-
the-art zero-shot composed image retrieval methods: WeiCom [28], Pic2Word [33], CompoDift [10],
CIReVL [19], SEARLE [2], MCL [22], MagicLens [44], CoVR-2 [37], and FreeDom [42]. All
methods use CLIP with ViT-L/14 [5], whereas CompoDiff employs the larger CLIP ViT-G/14.

BASIC. For fair comparison, we also use CLIP [30] ViT-L/14 [5]. We set k = 250 components for
PCA, \ = 0.1 for the Harris criterion and o = 0.2. These values were fixed once on a small privately
owned development set, named i-CIR g4ey. The corpora C; and C_ were automatically generated
using ChatGPT [14]. The statistics s?; and s’ were computed over a synthetically generated
dataset constructed using Stable Diffusion [3 1] with automatically created prompts. More details are
included in the supplementary material.

5.2 Experimental results

Per-category performance. In Figure 5 we report the per-category performance of selected baselines
and competitors on i-CIR split by the a) primary visual and (b) textual categories of the queries.

In Figure 5(a), BASIC ranks first in six of the eight visual categories, delivering particularly large
margins on fictional (47.8% vs. 31.1% for SEARLE), mobility (45.8% vs. 29.3% for MagicLens),
and technology (30.6% vs. 23.0% for Text x Image). It also leads on product (33.7% vs. 26.7% for
MagicLens), landmark (39.3% vs. 35.0% for MagicLens), and art (38.0% vs. 35.0% for MagicLens).
The only exceptions are fashion, where MagicLens edges out at 25.6% vs. 22.0% for BASIC, and
household, where MagicLens peaks at 29.1%; BASIC is second at 22.4%. In contrast, the other
methods show uneven strengths.

Figure S(b) further confirms the Consistency of BA- Table 1: Average mAP (%) Comparison across
SIC. BASIC dominates projection (53.1% vs. 31.1%  datasets. T: without query expansion.
for MagicLens), appearance (48.8% vs. 36.8% for

. . Method ImageNet-R NICO++ MiniDN LTLL i-CIR

SEARLE), and domain (39.3% vs. 31.1% for Magi-
cLens). It also leads on vewpoint (47.8% vs. 40.1% IT;’:ge 2;3 égg g‘gg 156‘?9 2'8)1
for MagicLens) and attribute (26.3% vs. 24.1% for — Text+Image 621 930 933 17.86 8.0
MagicLens). BASIC is second on context (35.6%  Text x Image  7.83 979 986 23.16 17.48
vs. 36.4% for MagicLens) and addition (24.0% vs.  WeiCom 10.47 1054 852 26.60 18.03
28.2% for MagicLens). Pic2Word 7.88 976 1200 21.27 19.36
CompoDiff 12.88 1032 2295 2161 9.63
Comparison with SOTA. We further evaluate the CReVL 1811 17.80 2620 32.60 18.66
. . SEARLE 14.04 1513 21.78 25.46 19.90
performance of BASIC against all considered base- . 313 1909 1841 1667 19.89
lines and state-of-the-art CIR methods across five  MagicLens 9.13 19.66  20.06 24.21 27.35
datasets, including i-CIR. Results are shown in Ta- _°VR-2 .52 2493 2776 24.68 2850
ble 1. As observed, BASIC consistently outperforms FreeDomT 2991 26.10 3727 3324 17.24
all competing methods across the board. Runtime FreePom 2581 2324 3214 30.82 1576
comparisons are provided in the supplementary ma- Basic 3213 31.65  39.58 41.38 31.64
terial Basic 27.54 2890 3575 3822 34.35

Note. For i-CIR we report macro-mAP

5.3 Ablation studies

BASIC components. Table 2 presents a detailed ablation study on the contribution of each component
of BASIC across all evaluated datasets. Starting with a simple Text x Image baseline, we progressively
add the components of BASIC, highlighting the cumulative benefits of each module.

Centering provides a notable boost across most datasets (17.48% — 28.33% on i-CIR) with the
exception of LTLL, likely due to its narrow focus on landmarks. Normalization and Harris fusion
further enhance retrieval, as demonstrated by their removal, with min normalization being especially
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(b) Textual categories. mAP (%) averaged over instances in the same primary-level textual category.
Figure 5: Performance comparison on i-CIR per primary category of queries. (a) Visual, (b) Textual.

Table 2: Ablation study reporting average mAP (%) across datasets. Each row progressively adds or
removes components of the proposed method: mean centering (Centering), min-based normalization
(Min Norm.), Harris criterion (Harris), text contextualization (Context.), semantic projection (Proj.),
and query expansion (Q. Exp.). The first row (no component applied) corresponds to Text x Image.
Centering Min Norm. Harris Context. Proj. Q.Exp. ImageNet-R NICO++ MiniDN LTLL i-CIR

X X X X X X 7.66 9.26 9.48 19.78 17.48
4 X X X X X 12.16 9.95 12.16 1693 28.33
4 v X X X X 12.06 17.20 1772 2220 27.30
4 v v X X X 16.21 15.06 17.79  29.70 28.42
4 v v v X X 18.61 15.34 21.01 3374 33.48
4 v v v v X 27.54 28.90 35.75 3822 3435
4 v v v X v 17.31 13.96 2122 2242 31.78
4 v v X v v 26.18 30.61 33.64 3450 25.85
v 4 X v 4 4 30.75 29.82 3885  40.65 31.61
v X X v v v 24.50 22.74 29.65 19.36  30.75
v v v v 4 v 32.13 31.65 39.58 41.38 31.64

critical, since its absence causes a significant drop. Harris consistently contributes moderate gains.
Text contextualization is also important. Its removal results in a substantial performance decline,
particularly on datasets requiring nuanced language understanding (31.64% — 25.85% on i-CIR). On
the image side, semantic projection accounts for the majority of the performance gain in many cases,
serving as a key enhancement. Query expansion offers additional improvements, particularly on
category-level datasets, though it leads to performance decrease in i-CIR. Note that some components
depend on the presence of others to be effective (e.g., projection assumes centered features, Harris
step requires min-normalized scores).

Controlling semantic projection. Table 3
shows the effect of omitting C'_, using a
generic negative corpus, or using a dataset-
specific corpus (generated via ChatGPT) de-
Negative Corpora Source signed to reflect the domain variability of
Eval. Dataset none generic Imagenet-R NICO++ MiniDN LTLL ImageNet-R, NICO++, MiniDN, and LTLL.
grlméggnet»R 28.2 g%g ggéi 3(1)147‘ g(l)é; g(l).g(l) Results indicate that leveraging application-
++ 30. o . . 30. Sl .
MiniDN 3864 3938 3934 3875 3958 38s related knowledge can improve performance,
LTLL 41.80 41.24 41.33 4339  42.09 43.98 partlcu]ar]y compared to omitting C_. This
i-CIR 3151 31.64 3161 3120 3132 3106 .. . . .
idea is further discussed in the supplementary

material.

Table 3: mAP(%) on each dataset using different neg-
ative corpora. The first column lists the evaluation
datasets.

i-CIR: Compact but hard. We use randomly selected images from LAION as negatives to assess
how challenging i-CIR is in comparison to a large-scale database that is commonly shared across
all queries and lacks explicit hard negatives. Using the performance of Text x Image baseline as a
reference (17.48%), we find that more than 40M distractor images are required for this baseline to
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Figure 6: Modality bias via weight sweeps. mAP(%) vs. fusion weight A for three simple methods,
where A=0 is text-only and A=1 is image-only. Compositional datasets should peak at interior A and
exceed both endpoints. i-CIR shows strong interior optima and large gains over the best uni-modal
baseline; CIRR and FashionlQ peak at A=0, indicating text dominance.

reach a similarly low performance. Note that the performance measured using unlabeled LAION
images as negatives is only a lower bound, due to the inevitable presence of false negatives. This is
four orders of magnitude larger than the 3.7K database images per query, on average, that i-CIR uses,
or 1.5 orders of magnitude larger than the 750K database images used among all queries; the latter
defines the experimental processing cost. More analysis is provided in the supplementary material.

i-CIR: Truly compositional. A dataset that requires composition should reward combining text and
image, not either modality alone. To diagnose this, we sweep a mixing weight A € [0, 1] between
text-only (A=0) and image-only (A=1) similarity for three simple fusion methods (WeiCom, Text +
Image, Text x Image), and plot mAP as a function of A (Figure 6). For each method we compute
the composition gain A: the difference between the peak value of the curve and the best uni-modal
endpoint, and then average A across the three methods. On i-CIR, the average composition gain
is large: +14.9 mAP (+490% relative to the best uni-modal baseline), with peaks occurring at
interior A—clear evidence that both modalities must work together. By contrast, it shrinks to +3.0
mAP (+11%) on CIRR, +5.0 mAP (+26%) on FashionIQ, and +6.8 mAP (+167%) on CIRCO.
Moreover, the highest uni-modal performance of CIRR and FashionIQ is always when (A = 0), i.e.,
text-only. Thus legacy datasets reward composition only marginally, whereas i-CIR demands genuine
cross-modal synergy; BASIC is designed for the latter scenario.

6 Conclusions

We introduced i-CIR, an instance-level benchmark for composed image retrieval with explicit hard
negatives (visual, textual, and composed). It fills a long-standing gap by providing an ambiguity-free
evaluation suite that rewards composition rather than single-modality shortcuts. We also presented
BASIC, a simple, efficient, training-free method that compares favorably to both training-based and
training-free baselines across benchmarks. BASIC is built from a few transparent components, whose
combination delivers strong accuracy, transfers well, and exhibits broad hyperparameter plateaus. We
hope i-CIR becomes a reliable target for assessing genuinely compositional retrieval, and that the
simplicity of BASIC catalyzes adoption and further advances.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize our key contributions: the
creation of an instance-level composed image retrieval dataset (i-CIR) with challenging hard
negatives, the proposal of a training-free CIR method (BASIC) that leverages existing VLMs,
and the demonstration of state-of-the-art performance on i-CIR and multiple benchmarks.
All claims are supported by detailed methodology and experiments in Sections 3-5, as also
in supplementray material.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly acknowledge in Sec. 3 (footnote) that our logical-AND assump-
tion may break down when one modality dominates (e.g., pure style edits or highly entangled
image—text pairs like CIRCO). We point readers to additional method and dataset limitations
in the supplementary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper contains no formal theorems or theoretical results requiring proof; it
is entirely empirical and algorithmic.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give exhaustive details of our dataset construction (including LAION
search and retrieve, filtering and annotation protocols) and our method (all pre-processing
steps, corpora generation, hyper-parameters k, A, o, normalization statistics), and we commit
to releasing both the dataset and code with scripts to reproduce every result.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Both i-CIR dataset and code will be made publicly available through our
project page https://vrg.fel.cvut.cz/icir/.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental section of both the main paper and supplementary material
is exhaustive and detailed. It specifies all the details needed to understand the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our method is training-free, so it does not involve sources of randomness such
as weight initialization, optimization, or data shuffling.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Technical and implementation details are included in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We use only publicly available, license-annotated sources (e.g., LAION-derived
URLs and rights-cleared repositories), and we respect licenses and site Terms of Service.
All images in i-CIR were reviewed by trained annotators; inappropriate, copyrighted, or
privacy-sensitive content was removed. In categories where people are inherently present
(e.g., apparel), we automatically pixelate faces and perform spot checks; no raw PII is
released. i-CIR is an evaluation-only benchmark, distributed under CC-BY-NC-SA with an
explicit prohibition on surveillance/biometric or other privacy-invasive uses. We publish a
misuse policy, provide a “Report misuse/PII” channel, honor takedown requests, and reserve
the right to revoke access for violations. Our method is training-free and does not scrape
private data, minimizing environmental and privacy risks. No human-subjects research was
conducted (IRB not applicable). Overall, collection, curation, release, and documentation
follow the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper explicitly discusses benefits and risks. On the positive side, instance-
level composed retrieval can support cultural-heritage search (GLAM), assistive-vision use
cases, product provenance, and reproducible evaluation of compositional models. On the
negative side, we analyze dual-use pathways—including surveillance/profiling, indirect
“object-of-interest” tracking (e.g., via distinctive belongings), fine-tuning our techniques on
face/plate corpora, and misuse of crawl scripts—and we describe harms from both correct
and incorrect system behavior. However, we exhaustively outline concrete mitigations too.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We release i-CIR as an evaluation-only benchmark under CC-BY-NC-SA
with an explicit ban on surveillance/biometric and other privacy-invasive uses; access is
governed by a misuse policy with revocation. Images are curated with a privacy-first process:
annotators preferentially exclude PII, and in categories where people are intrinsic (e.g.,
apparel) we retain images but exhaustively pixelate visible faces before release; we also
filter watermarks, near-duplicates, and low-quality items, followed by manual spot checks.
Any search/crawl scripts are released under the same restrictive license with hard-coded
keyword blocks and documentation discouraging sensitive-content collection (IRB review
recommended for modifications). The project page provides a prominent “Report misuse /
PII” channel; we commit to prompt review, content takedown, and access revocation when
warranted. We will periodically red-team object-level re-identification risks and update the
release if failure modes are found. No identification models or person-level embeddings are
released; our method is training-free and not tailored to biometric tasks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We build on publicly available assets and cite them in the paper and project
page. For data, we rely on LAION metadata (CC-BY 4.0) and keep each image under
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its original source license. For models/code, we use public VLMs and toolchains under
their original licenses and cite them: CLIP (MIT), OpenCLIP (Apache-2.0), and, for
anonymization, InsightFace (MIT). Our own release is evaluation-only under CC-BY-NC-
SA and does not alter upstream terms; LICENSE files and attributions are included in our
repo.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release i-CIR with a comprehensive datasheet detailing collection protocols,
licensing, annotation guidelines, dataset statistics, and limitations; our code repository
includes installation instructions, example scripts, configuration files for all experiments,
and explicit CC-BY-NC-SA license information.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We did not use crowdsourcing; all annotations were performed by salaried
institutional staff. The supplemental material includes annotation guidelines/instructions.
Annotators received domain and ethics training, and we ran weekly QA spot-checks and
inter-annotator-agreement audits. Compensation exceeds the legal minimum (>80% of a
first-year PhD stipend with full social-security coverage). No participants were recruited, no
demographic attributes were collected, and PII was removed/redacted; thus this work does
not constitute human-subjects research, but we nevertheless followed our institution’s ethics
policies throughout.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not constitute human-subjects research: no participants were
recruited or interacted with; annotators were salaried staff performing routine labeling; no
demographic or behavioral data were collected; and all images were sourced from public
datasets with PII removed/pixelated prior to release. Under these conditions, IRB (or
equivalent) review is not required per common definitions and institutional policies.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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