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ABSTRACT

Neural Architecture Representation Learning aims to transform network models
into feature representations for predicting network attributes, playing a crucial role
in deploying and designing networks for real-world applications. Recently, inspired
by the success of transformers, transformer-based models integrated with Graph
Neural Networks (GNNs) have achieved significant progress in representation
learning. However, current methods still have some limitations. First, existing
methods overlook hardware attribute information, which conflicts with the current
trend of diversified deep learning hardware and limits the practical applicability of
models. Second, current encoding approaches rely on static adjacency matrices
to represent topological structures, failing to capture the structural differences
between computational nodes, which ultimately compromises encoding effective-
ness. In this paper, we introduce LeDG-Former, an innovative framework that
addresses these limitations through the synergistic integration of language-based
semantic embedding and dynamic graph representation learning. Specifically,
inspired by large language models (LLMs), we propose a language embedding
framework where both neural architectures and hardware platform specifications
are projected into a unified semantic space through tokenization and LLM process-
ing, enabling zero-shot prediction across different hardware platforms for the first
time. Then, we propose a dynamic graph-based transformer for modeling neural
architectures, resulting in improved neural architecture modeling performance. On
the NNLQP benchmark, LeDG-Former surpasses previous methods, establishing a
new SOTA while demonstrating the first successful cross-hardware latency predic-
tion capability. Furthermore, our framework achieves superior performance on the
cell-structured NAS-Bench-101 and NAS-Bench-201 datasets. The source code
will be released publicly.

1 INTRODUCTION

With the rapid development of deep learning technology, an increasing number of various neural
networks are designed and deployed in real-world applications (Chen et al.| 2018; |Dudziak et al.,
2020; Zhang et al.| 2021} [Liu et al., 2022; Baylor et al.,|2017). This progression has facilitated the
practical adoption of technologies, but simultaneously increased the workload for model deployment
and development. To address this challenge, researchers have proposed neural architecture represen-
tation learning, leveraging deep learning techniques themselves to accelerate both model deployment
and novel model development (Wen et al., 20205 Ning et al., [2020; |Y1 et al.l 2023azb). The purpose
of neural architecture representation learning is to encode network structures into feature vectors, en-
abling subsequent attribute prediction based on these representations. The encoding process requires
careful consideration of both operational node attributes and topological structure information of the
network (Wen et al., [2020; |[Ning et al.| 2020; Y1 et al.,|2023azb)). Neural architecture representation
learning supports various downstream tasks, such as performance prediction, hardware deployment
optimization, and Neural Architecture Search (NAS) (Luo et al.} 2018} |Cai et al.,[2019; [Luo et al.,
2020; [(Xu et al., 2021;|Chen et al., 2021} |Qin et al., |[2022).

In neural architecture representation learning, neural architectures are naturally expressed as Directed
Acyclic Graphs (DAGs) (Cai et al., 2018 [Zela et al.,|2019; L1 et al.,|2020; |Dong et al., 2022} Luo et al.,
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2023)), where nodes correspond to computational operations and edges represent data flow between
them. With the emergence of Graph Neural Networks (GNNs) and their demonstrated effectiveness
in related work, early approaches commonly relied on GNNSs, leveraging graph convolution to capture
adjacency relationships between nodes for explicit modeling of these DAGs, thereby achieving
preliminary representations of neural network structures. Representative methods such as Peephole,
BRP-NAS, GATES, BANANAS, and NNLP (Deng et al., [2017; |Dudziak et al., [2020; Ning et al.,
2020} [White et al.| 2021} [Liu et al.| |2022) adopted this strategy. However, due to the inherent locality
of GNNs’ aggregation mechanisms, these methods exhibit limitations in representing complex
cross-layer topological information (Kipf & Welling| 2016} Velickovic et al.,2017)). To overcome
these limitations, Transformer architectures have gradually been introduced into neural architecture
representation learning. By leveraging their powerful global attention mechanisms, they improve
the quality of structural representation. Representative methods like TNASP and NAR-Former (Lu
et al.,2021;|Y1 et al.| 2023a) utilize self-attention mechanisms to capture global semantic associations
between nodes, significantly enhancing model performance. The Transformer-based representation
learning method benefits from the flexibility of self-attention mechanisms, demonstrating remarkable
effectiveness on cell-structured datasets such as NAS-Bench-101 (Ying et al. [2019) and NAS-
Bench-201 (Dong & Yang} |2020). However, the global receptive field characteristic of Transformers
makes them particularly sensitive when encoding long sequences, resulting in relatively weaker
generalization capabilities (Y1 et al.,|2023a)).

Recent research has attempted to introduce graph structure enhancement mechanisms within Trans-
former frameworks. For instance, Graphormer(Ying et al.,[2021)) and GraphTrans(Wu et al., 2021)
both inject graph-structured attention masks into Transformers to simulate message passing, en-
abling structure-aware encoding that benefits architecture performance prediction. NAR-Former
V2 (Yi et al.l 2023b)) proposed a position-aware graph embedding technique that explicitly integrates
adjacency relationships into the attention mechanism, thereby improving prediction accuracy. GNN-
Enhanced Transformer(Xiang et al., 2024)) proposes a unified framework that combines GNN-based
local topology encoding with Transformer-based global modeling, achieving improved performance
prediction through joint structural reasoning. NN-Former (Xu et al., [2025) incorporated forward,
backward, and same-layer adjacency information into attention calculations to achieve richer topo-
logical representations, enhancing both accuracy and generalization. Such Transformer frameworks
embedded with GNN mechanisms have demonstrated strong capabilities.

Although Transformer-GNN hybrid methods for neural architecture representation learning inherit
the flexibility of Transformers and the topological encoding strengths of GNNS, achieving significant
performance improvements, these approaches still face several limitations. First, existing methods
primarily focus on encoding the network architecture itself while neglecting hardware attributes.
However, inference efficiency post-deployment is highly dependent on hardware characteristics, and
this omission significantly limits the applicability of representation learning approaches. Moreover,
with the proliferation of specialized hardware for Al models, this limitation will become increasingly
impactful. Second, current GNN-based approaches predominantly rely on static adjacency matrices
to capture topological information, failing to account for positional variations among nodes and
their distinct neighborhood attention patterns. This oversight constrains the modeling capacity for
topological structure representation.

In this paper, inspired by LLM, we conduct a new exploration and combining language embedding
and dynamic graph to address these limitations. Our major contributions can be summarized as:
1) The innovative use of LLMs’ powerful language encoding capabilities to jointly map hardware
specifications and network architecture details into a unified semantic space. This enables hardware-
software co-optimized representation learning for neural networks. Unlike prior methods limited to
single-hardware optimization, our approach facilitates zero-shot cross-hardware attribute prediction;
2) To ensure high-quality encoding, we conducted a thorough analysis of LLM encoding characteris-
tics and designed specialized language templates. Leveraging the LLM’s capabilities, we serialized
both network structures and hardware information. Furthermore, we introduce dynamic graph self-
attention, a novel mechanism that improves flexibility in capturing topological relationships across
nodes, thereby enhancing representation effectiveness.
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2 RELATED WORKS

2.1 GNN FOR REPRESENTATION LEARNING

Neural Architecture Representation Learning has emerged as a vital tool for predicting model
attributes such as accuracy, latency, and energy consumption, especially under cross-platform deploy-
ment scenarios. A key insight in this field is that neural architectures can be naturally represented as
Directed Acyclic Graphs (DAGs), where nodes denote computational operations and edges represent
data flows. Early approaches, such as Peephole (Deng et al.,|2017)and BRP-NAS (White et al.|,[2021)
utilized handcrafted global descriptors or structural metrics derived from DAGs, such as operation
counts or edge lists, to encode architectural features. However, these static encodings failed to capture
the expressive structural nuances of complex models.

To better model DAG structures, Graph Neural Networks were introduced. Methods like
GATES (Ning et al., |2020), arch2vec (Yan et al.| 2020) and TA-GATES (Ning et al., [2022) use
adjacency matrices and node-level attributes to perform message passing over the DAG, enabling
localized structural representation and improved generalization to unseen architectures. These models
successfully capture some topological semantics through fixed edge types, but are fundamentally
limited by the locality and rigidity of their aggregation functions. In particular, they struggle to
model long-range dependencies or dynamically adapt relational attention across diverse network
structures (Scarselli et al. 2008; Hamilton et al., [2017; [Xu et al., |2018; IDwivedi et al., [2023]).
This structural rigidity and limited expressiveness of GNNs highlight the need for more flexible,
context-aware models. Consequently, research has shifted toward attention-based alternatives, par-
ticularly Transformer architectures, which are better suited for learning long-range interactions in
heterogeneous structures.

2.2 TRANSFORMER FOR REPRESENTATION LEARNING

In response to the limitations of GNN-based models, Transformer architectures have been adopted for
Neural Architecture Representation Learning due to their ability to capture long-range dependencies
and model flexible interaction patterns. Initial Transformer-based methods such as TNASP (Lu
et al.,[2021) and NAR-Former (Y1 et al.| 2023a) represent architectures as sequences of operation
or connection tokens, applying self-attention to learn global semantic relationships. However,
these sequence-based representations lack explicit structural bias, making them sensitive to minor
topological variations and insufficient for capturing the inherent graph properties of architectures.

To incorporate structural information more directly, hybrid approaches have emerged. NAR-Former
V2 (Yi et al.,|2023b) introduces topology-aware token connections, embedding adjacency patterns
into the attention mechanism. NN-Former (Xu et al.| |2025)) goes further by disentangling multiple
structural relations, such as hierarchical, sibling, and descendant dependencies, and embedding them
through graph-aware attention kernels within a Transformer encoder. These improvements enhance
the model’s capacity to reason over complex DAGs and achieve state-of-the-art results. However,
both methods still rely on fixed structural priors, where adjacency relations are statically defined and
shared between architectures. This overlooks the dynamic relevance of different topological views
for different network instances.

2.3 EMBEDDING STRATEGY FOR REPRESENTATION LEARNING

The embedding strategy plays a pivotal role in determining the quality and generalization of neural
architecture representations. Earlier approaches primarily focused on embedding the structural
aspects of neural architectures, such as node operations and topological patterns (Zoph & Lel |[2016;
Liu et al.| 2018; |Deng et al., 2017; |Dudziak et al., [2020; [Hamilton et al., 2017). These methods
often relied on simple vectorization techniques that lacked semantic richness, limiting the amount of
meaningful information captured from the architecture.

With the growing adoption of Transformers, such as TNASP (Lu et al., 2021), NAR-Former (Y1
et al.,|2023a) and Autogt (Zhang et al.,2023)) introduced position-aware embeddings that tokenize
architectural structures for attention-based modeling. More recent models, including NAR-Former V2
and NN-Former, further incorporate static attributes of neural networks by embedding them separately
alongside the structure, such as flops, depth, and batch size. These methods are specifically designed
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Figure 2: Illustration of the proposed language embedding

encoding approaches tailored for network structure representation, exhibiting poor extensibility. For
instance, they would fail when encountering unseen node types or novel hyperparameters. Moreover,
these encoding schemes primarily focus on the network architecture itself while neglecting hardware-
related information.

3 METHODS

The final framework of LeDG-Former is shown in Fig[T} which consists of two key stages: a
language embedding stage using a pre-trained language model and a representation learning stage
employing dynamic graph-aware self-attention. In the language embedding stage, we systematically
encode both model architecture information and hardware platform specifications through carefully
designed linguistic templates, then transform them into feature tokens using a pre-trained LLM.
These embedding tokens serve as input to our dynamic graph-aware self-attention mechanism that
adaptively models node-level dependencies in the computational graph while capturing cross-modal
interactions between hardware and architecture features. The resulting network representation token
is concatenated with the hardware platform’s language embedding for final attribute prediction. Next,
we will provide a detailed explanation of these two stages.

3.1 LANGUAGE EMBEDDING

The language embedding module is designed to encode both neural architecture information and
hardware specifications into feature vectors within a unified representation space. As shown in
Fig[2] this paper adapts the tokenizer from pretrained language models (LLMs) to achieve this joint
mapping. For neural architectures, the network architecture is first represented as a directed acyclic
graph (DAG) following the node sequence. For each node in the graph, we extract its information
according to predefined language template. These structured descriptions are then fed into the LLM
and compressed into a unified feature vector representation. A similar process is adopted in modeling
hardware platform information. Different language templates are designed for modeling neural
architecture information and hardware platform information:

* When designing language templates for neural architectures, our primary consideration is
to ensure accurate and concise descriptions of operations and their attributes so that the
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Figure 3: Diagram of the proposed Dynamic Graph Self-Attention (DGSA).

embedded information remains faithful. First, we observe that different types of operations
may affect the target prediction differently. Therefore, classifying the operation types
during standardization helps preserve this information. Meanwhile, for operation-specific
attributes, such as the kernel size of a convolution operation, we represent them using
concise numerical tokens to prevent such attributes from being overwhelmed by surrounding
context in the language embedding process. For example, "Conv 3x3" is extracted and
described using the template as “ParamL Conv 3”, where “ParamL” serves as a template
indicator for “operations with learnable parameters”.

* For hardware platform information, we focus on platform attributes that are impactful for
latency prediction. We prioritize information such as computational throughput and power
consumption under different inference precisions, which directly influence model latency.
Furthermore, to support cross-platform generalization tasks, it is also important to include
platform type and architectural-level descriptions in the template. For example, the Nvidia
Tesla T4 under FP32 precision is described using the template as “Nv GPU FP32 8.1 Turing
TOW”.

The language embedding for the node 7 is generated by:
frode; = LLM(Tokenizer(Taen(info;))), )

where fode; is the language embedding, and T, represents language template for neural archi-
tecture. in fo; denotes the information of the i—th node. The LLM adopted here is not limited to a
specific one, this paper adopts BERT. The language embedding for platform is calculated as:

fptat = LLM(Tokenizer(Tpiat (infopiat))), )

where in fopq: is the platform information. Both LLM and T'okenizer adopted here are same
with that adopted in Equation (1), which ensures the neural architecture information and platform
information are projected in the same space. For a neural architecture with n nodes, the output of
language embedding stage is [frode, s frnodess - - - s frode, s [plat)-

3.2 DYNAMIC GRAPH SELF-ATTENTION

Following the research line of combining transformer and GNN for representation learning (Yi
et al., 2023b}; | Xu et al.||2025), we propose Dynamic Graph Self-Attention (DGSA) and employ it to
replace the standard self-attention mechanism in Transformers. Unlike prior works that rely on static
adjacency matrices to model topological structures, the proposed DGSA dynamically aggregates
multi-scale topological information by adaptively retrieving relevant connectivity patterns from
three hierarchical contexts: (1) grandfather nodes (two-hop predecessors), (2) father nodes (direct
predecessors), and (3) son nodes (direct successors), as shown in Fig[3] This design facilitates
adaptive topology-aware representation learning, leading to consistent performance gains, as verified
in ablation study part.
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Specifically, this process contains two steps. The dynamic weights are computed by incorporating
information from predecessor nodes, with the formula:

node; = Softmax(q; - (k1, ko, ..., ki) (vi, v, ..., v5), 3)
Wl, Wg, W3 = Softmax(MLP( node; )) (4)

where ¢; = W frode,s ki = W frode,» vi = W frode,. MLP represents a fully connected
layer with three output nodes. The final representation is calculated with formula:

nodel Z W X“ (5)

X =0 ((QKT (I + MGrandfather)) /\/E) Va (6)

=0 ((QKT o (I + Myur)) /VR) V. )

Xy =0 ((QKT o (I+Msw)) /VA) V, ®)

where f ;.. is the representation learning feature of the i—th node. @ = F WO K=FWK, V=

FWYV denote the query, key, value. F' = [frode,s fnodess - - - 5 frode, | 1 the language embedding
result for neural architecture. I is identity matrix, which ensures that each node can also attend
to itself when computing adjacency-based attention. Mgrandfathers MFather, Mson denote the
masks derived from the adjacency matrices corresponding to grandfather, father, and son nodes. The
derivation of these three masks is as follows: Let the binarized adjacency matrix corresponding to son
nodes be denoted as A (Ms,, = A). Then Mpqiher = Bi(AT), and Mgranafather = Bi(ATAT),
where B is the binarization function.

4 EXPERIMENTS

In this section, we conduct experiments on three widely used neural architecture datasets:
NNLQP (Liu et al., 2022), NAS-Bench-101 (Ying et al., 2019), and NAS-Bench-201 (Dong &
Yang| [2020)), to evaluate the effectiveness of our proposed framework. A series of ablation studies
in Section {.3] further validate the effectiveness of our design choices. Further experiments and
implementation details related to training are included in the supplementary material.

4.1 LATENCY PREDICTION ON NNLQP

In this section, we perform latency prediction on the "unseen" datasets of the NNLQP to evaluate
the effectiveness and generalization capability of our proposed framework. This dataset offers a
diverse and comprehensive benchmark, comprising 20,000 deep learning networks across 10 distinct
architecture types (2,000 samples per type). We compare our method against eight representative
approaches, spanning from early linear regression-based prediction methods to recent representation
learning frameworks.

We consider two different experiments. The first is a practically meaningful setting, where the
target network type to be predicted does not appear in the training process. This experiment is
divided into ten groups, where in each group, all samples of one network type are used as the test
set, while samples of the remaining nine network types are used as the training set. As shown in
Table[I} our method achieves the best performance in terms of both average MAPE and Acc(10%),
averaged over 10 repeated experimental runs. Compared to the second-best method, NN-Former,
our approach improves the average Acc(10%) by 2.29% and reduces average MAPE by 0.66. These
results demonstrate that our proposed self-attention mechanism with dynamic adjacency awareness
enables each node to attend to more appropriate topological information, resulting in more accurate
neural architecture representations.

In the second experiment, the training and testing sets are drawn from the same network types
distribution, as shown in Table[2] We construct the training set using the first 1,800 samples from
each of the ten network types, and the remaining 2,000 networks are used as the test set. When
testing on all network types test samples, our method achieves a highest average Acc(10%) and



Under review as a conference paper at ICLR 2026

Table 1: Out of domain latency prediction on NNLQP. “Test Model = AlexNet” means that only
AlexNet models are used for testing, and the other 9 model families are used for training. The best
results refer to the lowest MAPE and corresponding Acc (10%) in 10 repeated experiments. TPU
(Kaufman et al., [2021)).

. . FLOPs+ NNLP NAR-FormerV2 NN-Former Ours
Metric Test Domain |[FLOPs MAC nn-Meter TPU BRP-NAS (ave/best) (avg/best) (ave/best) (ava/best)
AlexNet 44.65 1545 720 1055 31.68 10.64/9.71 24.28/18.29 11.47/11.17 10.92/10.88
EfficientNet | 58.36  53.96 1893 1674 5197 21.46/18.72 13.20/11.37 5.13/4.81 4.61/4.54
GoogleNet | 30.76 32.54 11.71  8.10 2548 13.28/10.90 6.61/6.15 6.74/6.65 5.50/5.39
MnasNet | 40.31  35.96 10.69 11.61 1726 12.07/10.86 7.16/5.93 2.71/2.54 331/3.01
MAPE | MobileNetV2| 37.42  35.27 643  12.68 2042 8.87/7.34 6.73/5.65 4.17/3.66 4.29/4.06
MobileNetV3| 64.64 57.13 3527 997 5813 1457/13.17 9.06/8.72 9.07/9.03 8.30/8.06
NasBench201| 80.41 33.52 9.57 5894 13.28 9.60/8.19 9.21/7.89 793/7.71 833/7.84
ResNet 21.18 1891 15.58 20.05 15.84 7.54/7.12 6.80/6.44 7.49/738 6.71/6.66
SqueezeNet | 29.89  23.19 18.69 24.60 42.55 9.84/9.52 7.08/6.56 9.08/7.05 5.85/5.85
VGG 69.34  66.63 19.47 3873 3095 7.60/7.17 15.40/14.26 20.12/19.64 19.45/17.86
| Average |47.70 3726 15.35 2120 30.76 11.55/10.27 10.55/9.13 839/796 17.73/7.41
AlexNet 6.55 4050 7545 57.10 1520 59.07/64.40 24.65/28.60 56.08/57.10 59.15/59.65
EfficientNet | 0.05 0.05 23.40 17.00 0.10 25.37/28.80 44.01/50.20 90.85/90.90 91.85/92.25
GoogleNet | 12.75  9.80 4740 69.00 12.55 36.30/48.75 80.10/83.35 80.43/83.40 86.52/87.20
MnasNet 6.20 9.80 60.95 44.65 3430 55.89/61.25 73.46/81.60 98.65/98.70 97.45/98.40
Acc(10%) + MobileNetV2| 6.90 8.05 80.75 3395 29.05 63.03/72.50 78.45/83.80 94.90/96.85 92.65/95.05
MobileNetV3| 0.05 0.05 2345 6425 13.85 43.26/49.65 68.43/70.50 74.18/74.30 74.46/75.85
NasBench201| 0.00 10.55 60.65 250 4345 60.70/70.60 63.13/71.70 69.90/71.10 69.78 / 72.70
ResNet 26.50 29.80 3945 2730 39.80 72.88/76.40 77.24/79.70 70.83/71.55 77.93/78.75
SqueezeNet | 16.10 21.35 36.20 25.65 11.85 58.69/60.40 75.01/79.25 77.85/80.95 83.10/84.50
VGG 4.80 2.10 26.50 2.60 13.20 71.04/73.75 4521/4530 29.40/29.85 33.12/36.27
| Average | 7.99 1320 4742 3440 21.34 54.62/60.65 62.70/67.40 74.31/75.47 76.60/78.06

Table 2: In domain latency prediction on NNLQP. Training and testing on the same distribution.

MAPE | Acc(10%) T
Test Domain NNLP NN-Former Ours NNLP NN-Former Ours
(avg/best) (avg/best) (avg/best) (avg/best) (avg/best) (avg/best)

AlexNet 6.37/6.21 4.69/4.61 5.26/4.99 81.75/84.50 90.50 / 91.00 90.10/90.50
EfficientNet 3.04/2.82 2.31/2.21 2.61/2.50 98.00/97.00 99.00/ 100.0 99.60 / 100.00

GoogleNet 4.1874.12 3.48/3.39 3.29/3.22 93.70/93.50 97.15/97.50 97.40 / 98.00
MnasNet 2.60/2.46 1.52/1.48 1.48/1.42 97.70 / 98.50 99.50/100.0 100.00 / 100.00
MobileNetV2 2.47/2.37 1.54/1.50 1.43/1.34 99.30/99.50 99.60 / 100.0 100.00 / 100.00

MobileNetV3 3.50/3.43 3.17/2.99 2.83/2.78 95.35/96.00 96.50/97.00 98.10 / 98.50
NasBench201 1.46/1.31 1.11/0.96 1.16 /1.11 100.0/ 100.0 100.0/ 100.0 100.00 / 100.00
SqueezeNet 4.03/3.97 3.09/3.08 2.58/2.49 93.25/93.00 97.70 / 98.00 99.60 / 100.00

VGG 3.73/3.63 2.94/2.89 3.06/2.99 95.25/96.50 95.80/96.50 96.50/ 97.50

ResNet 3.34/3.25 2.66 /2.47 2.95/2.86 98.40/98.50 99.45/99.50 98.40/99.50

All | 3.47/3.44 2.85/2.65 2.64/2.54 | 95.25/95.50 97.45/97.85 97.94/98.15

the best average MAPE. When testing on each network type individually, our method consistently
outperforms NN-Former on all model types, except for the AlexNet and ResNet families, where
the performance is comparable. These results further validate the effectiveness of our proposed
self-attention mechanism with dynamic adjacency awareness, which enables more precise modeling
of topological relationships among nodes.

4.2 HARDWARE AWARE ZERO-SHOT

In the zero-shot latency prediction across hardware platforms experiment, we perform an in-depth
reorganization and mining of the data in the NNLQP "multi_platform" datasets, from which we extract
latency samples under four inference configurations across two hardware platforms (Nvidia Tesla
P4 and T4) and two numerical precisions (FP32 and INTS8). The reorganized datasets contain 5,194
samples in total, including 1,416 and 1,075 samples for P4 under FP32 and INTS respectively, and
1,150 and 1,553 samples for T4 under FP32 and INTS respectively. Due to the relatively small number
of samples and observable distributional discrepancies across different configurations, we adopt a
pretrain-finetune strategy. First, we pretrain on the NNLQP "unseen" datasets (using the same datasets
as in Section . T)), and then finetune it on latency samples from T4 or P4 under different precision, in
order to enable latency prediction on previously unseen hardware-precision combinations. To evaluate
the effectiveness of our approach, we compare it against three baseline methods: linear predictors
using FLOPs, FLOPs+MACs, and the NN-Former framework (Xu et al.;[2025)). The linear models
serve as traditional baselines commonly used for cross-hardware latency estimation, while NN-Former
represents the current state-of-the-art in learning-based latency prediction. Consistent with previous
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Table 3: Zero-shot latency prediction on reorganized NNLQP "multi_platform" datasets. Nvidia
Tesla P4—Nvidia Tesla T4 means using latency sample on Tesla P4 for finetune, and zero-shot
prediction on Tesla P4 sample.

Nvidia Tesla P4—Nvidia Tesla T4 Nvidia Tesla T4—Nvidia Tesla P4
Metric Test Domain _ l 3 l - E

FLOPs FLOPs+MAC NN-Former Ours FLOPs FLOPs+MAC NN-Former Ours
AlexNet 326.99 431.72 32.66 97.95 350.29 5524 92.49 79.17
EfficientNet 49.64 28.92 34.81 34.96 43.83 25.02 37.71 19.12
GoogleNet 27.25 37.53 68.69 20.54 50.13 28.39 46.92 19.09
MnasNet 30.76 21.42 58.39 18.3 24.47 202 49.87 25.31
MAPE | MobileNetV2 37.61 32.52 53.30 17.51 20.96 17.86 51.93 29.56
MobileNetV3 85.08 63.58 14.46 77.84 57.05 3523 24.83 15.78
ResNet 59.92 28.14 75.73 16.67 273.90 180.92 41.69 25.39
SqueezeNet 41.77 25.86 71.51 29.81 166.98 91.5 46.85 40.11
VGG 27.20 32.42 80.04 20.05 72.11 102.96 62.83 73.47
| Average | 5258 39.24 54.13 19.06 | 11522 75.03 40.82 18.43
AlexNet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.67
EfficientNet 0.00 5.03 5.02 14.57 0.55 16.39 0.55 30.21
GoogleNet 14.00 3.00 0.00 30.10 5.05 20.71 0.00 29.00
MnasNet 8.16 22.45 0.00 38.78 44.12 41.18 0.00 19.05
Acc(10%) 1 MobileNetV2 6.12 2.04 2.04 34.69 31.82 4091 0.00 10.88
v MobileNetV3 8.50 12.5 40 3.50 9.74 14.87 7.69 49.50
ResNet 15.00 26.00 0.00 34.00 0.00 0.00 4.50 12.00
SqueezeNet 17.00 19.00 0.00 9.50 0.00 0.00 0.51 4.50
VGG 9.30 20.93 0.00 2791 0.00 0.00 0.00 0.00
| Average | 1043 13.22 791 3462 | 484 11.44 3.81 39.07

Table 4: Ablation study on NNLQP SqueezeNet family. Validate the effectiveness of DGSA and
investigating the impact of embedding strategies with pretrained language models.

Embedding Strategies Graph Attention Metric
Row Position Language model Global DGSA w/o Dynamic
Embedding Embedding ASMA Attention Graph Attention DGSA MAPE | Acc(10%) T

1 (Baseline: NN-Former) v - v - - - 9.08 77.85
2 - v - v - - 6.70 76.50

3 - v - - v - 6.48 78.05

4 v - - - - v 6.09 81.10

5 - v’ (w/o pretrain) - - - - 8.25 66.45

6 (Ours) - v - - - v 5.85 83.10

studies (Y1 et al., [2023agb)), we employ two standard evaluation metrics for latency prediction: Mean
Absolute Percentage Error (MAPE) and Error Bound Accuracy (Acc(10%)). Specifically, Acc(10%)
denotes the percentage of predictions with a relative error less than 10%.

As shown in Table 3] our method demonstrates promising and robust performance under two distinct
zero-shot latency prediction settings across hardware platforms, performing favorably compared to
conventional baselines. In the Nvidia Tesla P4—T4 experiment, we finetune on latency samples from
P4 (under FP32 and INT8) and T4 (under INTS), and perform zero-shot prediction on previously
unseen T4 FP32 samples. Our method achieves the best performance, with an Acc(10%) of 36.62%
and a MAPE of 19.06. In the T4— P4 setting, Our method again achieves the best performance, with
39.07% Acc(10%) and a MAPE of 18.43. These results outperform all baselines and highlight the
effectiveness of incorporating hardware-aware modeling. In particular, the NN-Former results further
support our observation in Section I|that prior methods tend to overlook hardware attributes, which
limits their generalization ability in cross-platform latency prediction tasks.

Overall, LeDG-Former integrates hardware-awareness via language-based embedding and exhibits
strong generalization across diverse hardware platforms. As shown in the two experiments in Table 3]
our method enables zero-shot latency prediction not only across different hardware configurations,
but also across numerical precisions, from high-precision (FP32) to low-precision (INT8) settings on
the same device, which is a critical feature for real-world model deployment scenarios that demand
adaptability and efficiency.

4.3 ABLATION STUDIES

In this section, we conduct a series of ablation studies on the NNLQP datasets to investigate the impact
of various modifications. We conduct comparative experiments under the different distributions of
training and testing data, and the SqueezeNet family is selected as the test domain. As shown in
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Table 5: Accuracy prediction results on NAS-Bench-101 (Ying et al.l[2019) & NAS-Bench-201 (Dong
& Yangl 2020) . We use different proportions of data as the training set and report Kendall’s Tau on
the whole datasets.

NAS-Bench-101 NAS-Bench-201

Method Publication 0.04% 0.1% 1% 3% 5% 10%
(172) (424) (4326) (469) (781) (1563)

NP (Wen et al.![2020) ECCV 2020 0.545 0.679 0.769 0.584 0.634 0.646
Graphormer (Ying et al.[[2021) NeurIPS 2021 0.580 0.611 0.797 0.680 0.719 0.776
TNASP (Lu et al.[[2021) NeurIPS 2021 0.669 0.705 0.820 0.640 0.689 0.724
NAR-Former (Y1 et al.[[2023a) CVPR 2023 0.653 0.765 0.871 0.790 0.849 0.901
PINAT (Lu et al.]|2023) AAAI 2024 0.715 0.772 0.846 0.706 0.761 0.784
NAR-Former VZ (Y1 et al.][[2023b) NeurIPS 2023 0.704 0.773 0.861 0.846 0.874 0.888
NN-Former (Xu et al.{[2025] CVPR 2025 0.765 0.809 0.877 0.860 0.879 0.890
Ours | - | 0.762 0.809 0.880 | 0.864 0.881 0.892

Table[d] we obtain the following two conclusions: (1) The proposed dynamic graph self-attention
(DGSA) substantially improves the representation quality of neural architectures. Row 1
presents the primary baseline, NN-Former, which uses its original position embedding and the ASMA
attention mechanism proposed in that work. Replacing DGSA with global attention (Row 2) leads to
a clear accuracy drop, confirming the effectiveness of our proposed graph attention. Row 4, which
applies DGSA with position embedding, already improves over the baseline by reducing MAPE
by 2.99% and increasing Acc(10%) by 3.25%, demonstrating that DGSA alone yields significant
gains. Row 3 indicates that fixing the dynamic weights in Equation (4) results in a 5.05% decrease in
Acc(10%) compared to Row 6, highlighting the benefit of adaptive adjacency selection. (2) Language
embedding provides richer and deeper semantic modeling capabilities for the model. Replacing
language embedding with position embedding (Row 4) reduces accuracy by 2.00%, while discarding
pretraining (Row 5) causes a 16.65% decline. These results emphasize that both DGSA and pretrained
language embeddings are critical to the effectiveness and generalization of our model.

4.4 ACCURACY PREDICTION

To further evaluate the generalization capability of our approach, we conduct accuracy prediction
experiments on NAS-Bench-101 and NAS-Bench-201, shown in Table E} While LeDG-Former also
achieves strong performance on NAS-Bench-101 and NAS-Bench-201, the improvement over the
state-of-the-art NN-Former is relatively marginal compared to the substantial gains observed on the
NNLQP benchmark. We attribute this to two main factors: First, our dynamic graph-based modeling
is particularly effective for architectures with deep and complex topologies, whereas cell-based
search spaces typically contain shallow architectures with only 5 to 7 operations, limiting the richness
of structural information that can be exploited. Second, the relatively small number of unique
architectures and training samples in these benchmarks may lead to saturated prediction performance,
reducing the observable performance gap. Despite this, the consistent results across diverse settings
further demonstrate the robustness of LeDG-Former.

5 CONCLUSION

In this paper, we propose LeDG-Former, a novel neural architecture representation learning frame-
work that synergistically integrates hardware-aware language embedding and dynamic graph-based
transformer modeling. Our framework addresses the limitations of existing methods by incorporating
hardware attributes and employing dynamic adjacency structures to effectively capture fine-grained
structural differences among computational nodes. By projecting both neural architectures and hard-
ware specifications into a unified semantic embedding space through language-model tokenization,
LeDG-Former achieves the first successful zero-shot latency prediction across diverse hardware
platforms on the NNLQP dataset. Comprehensive experiments further demonstrate that our approach
surpasses existing state-of-the-art methods across multiple architecture-property prediction bench-
marks, including NAS-Bench-101 and NAS-Bench-201. These findings highlight the importance
of hardware-awareness and dynamic topology modeling for deployability-aware neural architecture
representation. However, existing cross-hardware latency datasets cover limited hardware and archi-
tectural diversity, hindering robust evaluation under domain shifts. Future work should develop more
diverse benchmarks to support comprehensive and realistic assessments.
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sensitive personal data, or potentially harmful applications. All datasets used in this paper are publicly
available and widely used in the research community, and no ethical concerns arise from their usage.
We confirm that there are no conflicts of interest or ethical issues related to the methods or experiments
presented.

REPRODUCIBILITY STATEMENT

We have taken measures to ensure the reproducibility of our results. The details of the model
architecture, training setup, datasets, and evaluation protocols are clearly described in the main paper.
Additional implementation details, hyperparameters, and ablation studies are provided in the appendix
and supplementary materials. The datasets used are publicly available, and we will release the source
code and scripts for data processing and training in the camera-ready version.
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A  SUPPLEMENTARY MATERIALS

A.1 LLM USAGE STATEMENT

Large Language Models were only used for grammar refinement and language polishing of this
manuscript.

A.2 EXPERIMENTS DETAILS

In this section, we provide detailed descriptions of the datasets, experimental settings, and training
configurations used in our study. For each task, we follow established protocols and apply consistent
training strategies to ensure fair and reproducible comparisons.

For accuracy prediction, we evaluate on two cell-structured benchmarks: NAS-Bench-101 and NAS-
Bench-201. NAS-Bench-101 contains 423,624 unique architectures. We use training subsets of
0.04%, 0.1% and 1% of the full dataset and evaluate on the entire test set. NAS-Bench-201 includes
15,625 cell candidates, and we conduct training on 3%, 5% and 10% subsets before evaluating on the
full set. For latency prediction, we use the NNLQP dataset, which consists of 20,000 deep-learning
architectures annotated with latency measurements across multiple hardware platforms. The latency
measurements of these architectures on a single hardware platform are used in the "Latency Prediction
on NNLQP" experiments in the main text and are referred to as the "unseen" dataset. Additionally, a
subset of these architectures is measured on multiple heterogeneous hardware platforms, forming the
"multi_platform" datasets used in the “Hardware-Aware Zero-Shot” experiments described in the
main text.

All experiments are trained using the Adam optimizer with a linear learning rate schedule: the
learning rate warms up to 0.001 during the first 10% of training steps and then linearly decays to zero.
Training is conducted on a machine equipped with an NVIDIA GeForce RTX 3090 GPU. For latency
prediction tasks, we conduct 10 independent experiments under each configuration and report the
average results to ensure stable evaluation.

A.3 ABLATION STUDIES

To further validate the effectiveness of our proposed components and provide deeper insight into model
behavior, we conduct extensive ablation studies. These results not only support the effectiveness
of our proposed components but also offer practical insights for future developments in neural
architecture modeling and deployment-aware design.

Dynamic Graph Selection Firstly, to validate that our proposed Dynamic Graph Self-Attention
mechanism effectively and adaptively selects different adjacency relationships, we conducted ex-
periments on samples with varying topological structures. Specifically, we printed the dynamically
selected attention mask weights for different nodes within these structures to visually illustrate the
effectiveness of our dynamic selection mechanism.

As shown in Table E], we selected one structural sample each from Mnasnet, Mobilenetv2, and
Resnet18 architectures, verifying that our method generalizes broadly across different types of
neural network structures. In particular, we chose sample 02001 from Mnasnet, sample 04001 from
Mobilenetv2, and sample 06001 from Resnet18, these identifiers are original indices from the publicly
available "unseen" subset of the NNLQP dataset. To further demonstrate our mechanism’s capability
to dynamically attend to distinct adjacency relationships based on the topological position of nodes,
we analyzed nodes located at different positions within the aforementioned structures.

In the Resnet18 sample, we selected node_0 and node_6, where node_0 is the first operational node
immediately after the input (preceding the first residual connection), and node_6 is the target node
of the first residual connection. As presented in Table @, node_0, being the initial node, exhibits
attention weights primarily biased toward downstream child nodes. In contrast, the attention weights
for node_6 distinctly shift focus toward the grandfather-level adjacency relationships, accurately
reflecting the topological characteristics inherent in residual connection structures.

For the Mnasnet sample, we selected node_7 and node_15, where node_7 is situated before the first
residual connection, and node_15 is the node targeted by this residual connection. Compared to
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Table 6: Ablation study of the dynamic selection of attention masks in Dynamic Graph Self-Attention.
The table reports attention mask weights assigned to Mgrandfathers MFather, and Mg, for each selected
node.

Model Type ‘ Node No. ‘ MGrandfather MFather MS()n

Resnetl8 node_0 0.3304 03312 03383
node_6 03328 03327 03344

Miasnet node_7 03318 03336 03345
node_15 0.3338 03324 03337

. node_12 03325 03332 03342
Mobilenetv2 | | 1716 03331 03332 03337

Table 7: Ablation study of hardware embedding token. Setting on Zero-shot latency prediction on
reorganized NNLQP “multi_platform” datasets, Nvidia Tesla P4 — Nvidia Tesla T4.

Metric NN-Former w/o hardware embedding Ours
Average MAPE |, 54.13 41.40 19.06
Average Acc(10%) 1 7.91 8.15 34.62

node_0 in Resnet18, which has only a single preceding node, node_7 possesses multiple predecessor
nodes; accordingly, its dynamically selected attention weights exhibit a pronounced focus on prede-
cessor adjacency relationships (both father and grandfather). This result underscores the effectiveness
of our mechanism in dynamically attending to adjacency relationships according to node-specific
topological context.

Similarly, for the Mobilenetv2 sample, we analyzed nodes node_12 and node_16, node_12 is
located within the first residual connection block, while node_16 follows this residual connection.
The dynamically selected attention weights for these two nodes similarly conform to the logical
expectations based on their respective topological positions.

Collectively, these experimental results substantiate that our proposed Dynamic Graph Self-Attention
mechanism genuinely and effectively performs dynamic adjacency selection, confirming the im-
portance and validity of dynamically modeling distinct adjacency information for nodes located at
varying topological positions during neural architecture representation learning.

Hardware Embedding To further validate the contribution of the hardware embedding token,
we performed an additional ablation study under the zero-shot transfer setting from Nvidia Tesla
P4 — Nvidia Tesla T4. As shown in Table[/| removing the hardware embedding led to a severe
degradation in performance. In particular, the Average MAPE increased from 19.06 to 41.40, while
the Acc(10%) dropped sharply from 34.62% to 8.15%, corresponding to a 26.47% decrease. This
substantial performance gap highlights that hardware-aware representations are crucial for accurate
and generalizable modeling across heterogeneous platforms. These results further reinforce our claim
that the proposed hardware embedding token is indispensable for achieving robust cross-platform
latency prediction.

Language Models Adopted In the language embedding stage of LeDG-Former, the language
model is proposed as a replaceable module whose performance is closely related to the overall
predictive capability of the method. In our main experiments, we use the smallest BERT (“bert-base-
uncased”), which already achieves strong results as reported in the main text. Nevertheless, to further
examine the influence of language models, we conducted an ablation study on the latency prediction
task using the NNLQP dataset.

As shown in Table [8] in Rows 1, we first randomly initialized the parameters of the originally
employed BERT model to perform language embedding. By comparing Rows 1 with Rows 2, we
observe a significant drop in performance, demonstrating the critical importance of semantic modeling
provided by pretrained language models for this task. Moreover, in Rows 3, we replaced the original
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Table 8: Ablation study on the impact of different language models for latency prediction on the
NNLQP dataset.

Rows | Language Models | MAPE] Acc(10%)T
bert-base-uncased
randomly initialized 8.25 66.45
2 bert-base-uncased 2.64 97.94
3 bert-large-uncased 2.57 98.10

model with a larger-scale language model ("bert-large-uncased"), resulting in a decrease in MAPE by
0.07 and an increase in Acc(10%) by 0.16%. This result further confirms our hypothesis that richer
language embeddings contribute to better generalization performance. In theory, employing even
larger-scale language models might further enhance performance, which we regard as a promising
direction for future research.
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