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ABSTRACT

We explore leveraging large multi-modal models (LMMs) and Text2image models
to build a more general embodied agent. LMMs excel in planning long-horizon
tasks over symbolic abstractions but struggle with grounding in the physical world,
often failing to accurately identify object positions in images. A bridge is needed
to connect LMMs to the physical world. The paper proposes a novel approach,
egocentric vision language planning (EgoPlan), to handle long-horizon tasks from
an egocentric perspective in varying household scenarios. This pipeline leverages a
diffusion model to simulate the fundamental dynamics between states and actions,
discusses how to integrate computer vision related techniques like style transfer and
optical flow to enhance ability of modeling spatial states and generalization across
different environmental dynamics. The LMM serves as a planner, breaking down
instructions into sub-goals and selecting actions based on their alignment with
these sub-goals, thus enabling more generalized and effective decision-making.
By using LMM, we can output text actions, using a series of mechanisms such as
reflection to perform high-level task decomposition and low-level action output
end-to-end. Experiments show that EgoPlan improves long-horizon task success
rates from the egocentric view compared to baselines across household scenarios.

1 INTRODUCTION

The advent of large language models (LLMs) (et al.,[2024bj [Touvron et al.,|2023) and large multi-
modal models (LMMs) (202} 2023} |Girdhar et al.| [2023} /Zhang et al.| 2023a; |Zhu et al.| 2023)) has
revolutionized the field of artificial intelligence. Their strong reasoning (Wang et al.,2023b; |Wei et al.}
2023) and powerful generalization capabilities allow them to be directly applied in various scenarios.
In the next step toward artificial general intelligence (AGI), researchers are considering enabling
large models (LMs), especially LMMs, to break through the world expressed by text and images
to interact with the physical world. They aim to build a general embodied agent that intelligently
interacts with the physical world.

LMMs have demonstrated an impressive capability of planning for long-horizon tasks over symbolic
abstraction in the physical world (Wake et al., 2024). However, there’s still a piece of the puzzle
missing. They have struggled to ground the text world with the physical world. For example, GPT-4V
often fails to accurately identify objects’ positions in images. LMMs seem to know what to do next
but do not understand how the world works. A world model (dynamics model) is hence needed to
connect the LMMs to the physical world. There are two potential solutions. One is to implicitly
integrate environmental dynamics into the LMMs, that is, fine-tuning the LMMs based on a vast
amount of state-action sequences, such as PaLM-E (Driess et al., 2023)) and RT-2 (et al.| |2023).
However, directly training large models requires extensive data and computational resources. The
other is to explicitly introduce a pre-trained world model, e.g., Text2image models (Radford et al.|
2021; Saharia et al., [2022)), which can be used by LMMs as an auxiliary tool. Our work explores the
second path. We try to answer the question: can we leverage the LMMs and Text2image model to
build a more general embodied agent?

Some works already train Text2image/video models as world models for decision-making. However,
there still exist several limitations. First, their task scenarios often involve object manipulation, a fully
observable setting. This is uncommon in real-world scenarios, and their methods seem to struggle to
adapt to other practical scenes. For example, SuSIE (Black et al.,[2023)) and VLP (Du et al.|[2023b)
require generating images several steps ahead, yet the error introduced by long-range predictions is
substantial for most partially observed scenarios, e.g., autonomous driving. In contrast, we focus
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on a more challenging, partially observable setting. The embodied agent, like humans, tends to
complete more complex and comprehensive tasks, e.g., household tasks including manipulation and
navigation, from the egocentric view. Second, their framework has limited capability, mainly reflected
in three aspects: (i) their low-level policies are tailored to specific tasks, and generalize the polices to
new dynamics can lead to policy collapse; (ii) a key challenge in world models is how to represent
the mapping between state transitions and action information. In the aforementioned work, action
information is typically represented in text form. However, this representation is too coarse, making it
difficult to establish a mapping between coarse-grained text actions and fine-grained state transitions,
especially in comprehensive tasks and partially observable environments. (iii) The dynamics can
vary for different entities even given the same action described by the text, e.g., turn left, due to the
inherent different in these entities. The Text2image/Text2video world model lacks individual motion
pattern information and cannot be generalized accurately to dynamics of other environments that are
out of the training dataset. We hope the agent can generalize to different dynamics within the fixed
household scenario.

In this work, we propose egocentric vision language planning (EgoPlan), a general embodied agent to
perform long-horizon tasks from the egocentric view and slove these three questions mentioned above.
In our approach, we draw on perspectives and methods from the field of computer vision to enhance
the world model. In a range of studies, optical flow is frequently utilized for human/robot action
prediction (Ko et al.,|2023)) and scene understanding (Yang & Ramanan| [2020). This underscores the
rich information regarding actions and state transitions contained within optical flow data. Compared
to traditional text-based actions in world models, integrating optical flow into these models for
task planning could enhance spatial orientation understanding in navigation tasks and facilitate the
modeling of object motion prediction in manipulation tasks. Style transfer in computer vision enables
the integration of diverse content semantics and fine-grained image styles using a limited number of
samples. This capability can significantly enhance the world model’s ability to perform fine-grained
texture modeling and generation across different scenes.

We conduct a comprehensive evaluation and analysis of each module of the embodied agent. Em-
pirically, we demonstrate the high quality of image generation by the world model and the high
accuracy of optical flow prediction. Subsequently, we verify the world model’s effectiveness in aiding
decision-making in more complex tasks. Lastly, we confirm the method’s generalization capabilities
in a different environment. Our major contributions are summarized as follows:

* We have collected a dataset on Virtualhome, which views an action of the agent as a trajectory and
provides egocentric observations each time-step and fine-grained action information, visualising
optical flow, depth maps and semantic segmentation maps at each time step in the trajectory, which
will provide data support for navigation and manipulation tasks in the embodied environment.

* We propose EgoPlan, a framework for complex task planning that combines LMM and a world
model that predicts an egocentric view of the scene at the next time step after an action is executed
and the scene of the subgoal is completed. Optical flow information is computationally invariant to
different scenes and styles motion. Introduce optical flow into the world model leads the world
model more sensitive to action position changes and adapt to scene changes during navigation.
Then we borrow the idea of style transfer in computer vision and adopt the LoRA (Hu et al.| 2021)
model to fine-tune our diffusion world model by a small number of sample images, so as to enhance
the ability of our framework to achieve few-shot generalization in different embodied scenarios.

* For the action selection and decision-making module, we employ the LMM as the execution
module in both the high-level task decomposition and low-level action selection components. The
LMM’s strong multimodal understanding, reasoning capabilities, and text output abilities enable
us to utilize a series of reflection and summarization mechanisms to accomplish tasks, while also
ensuring the agent inherits this ability of generalizing the downstream polices to new dynamics. We
demonstrate the effectiveness of our framework through LMM+world model planning experiments
on comprehensive tasks.

2 RELATED WORK

In this section, we present a brief overview of related work. More discussions are in Appendix [A]
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2.1 DIFFUSION MODEL

The diffusion model (Ho et al., [2020; |[Song et al.| [2022) has been extensively studied in the field
of image generation (Dhariwal & Nichol, 2021} |Ho et al.,|2021; |Rombach et al.,[2022)) and image
editing (Gal et al.} 2022} Hertz et al.,|2022; [Meng et al.||2022). Diffusion models can achieve a high
degree of control during the image generation. In more detail, InstructPix2Pix (InstructP2P) (Brooks
et al.}2023) trains a conditional diffusion model that, given an input image and text instruction for
how to edit it, generates the edited image. ControlNet (Zhang et al.,[2023b) is widely used to control
the style of the generated image by using various forms of prior information, e.g., edge information
and segmentation. By adding LoRA or adapter (Houlsby et al.||2019) modules to the network, the
model trained on one data distribution can also be transferred to other data distributions (different
visual styles) through a few picture examples. The images produced by current diffusion models are
of very high quality, highly realistic, and easily controllable. It prompts various fields to consider
using these generated images to assist in accomplishing other tasks. Our paper adopts the diffusion
model to generate task subgoals and predict the image of the next state for decision-making.

2.2  WORLD MODEL FOR DECISION-MAKING

The world model is used to model the dynamics of the environment. It is crucial for building au-
tonomous agents and enabling intelligent interactions in various scenarios. However, developing
a precise world model remains a significant challenge in model-based decision-making. The ad-
vancements in diffusion-based world models are reshaping how we model physical motion laws in
real-world settings, particularly in robotics. UniPi (Du et al.| [2023a) frames the decision-making
problem in robotics as a Text2video task. The generated video is fed into an inverse dynamics model
(IDM) that extracts underlying low-level control actions, which are executed in simulation or by a
real robot agent. Video Language Planning (VLP) (Du et al., |2023b)) introduces a novel method for
task planning that integrates video generation with tree search algorithms. This methodology lets
robots plan over longer horizons by visualizing future actions and outcomes. Unlike previous works,
SuSIE (Black et al.l 2023) leverages pre-trained image-editing models to predict the hypothetical fu-
ture frame. A low-level goal-reaching policy is trained on robot data to reach this hypothetical future
frame. Since one goal frame prediction does not require the model to understand the intricacies of the
robot’s low-level precisely dynamics, it should facilitate transfer from other data sources, e.g., human
videos. RoboDreamer (Zhou et al.| 2024) advances the field by utilizing video diffusion to formulate
plans combining actions and objects, solving novel tasks in unexplored robotic environments. We
find it unrealistic to apply the Text2video model to partially observed scenarios. Moreover, it is still
hard to predict the goal frame several steps ahead, as the shift in perspective could be significant.
Therefore, we adopt the Text2image model to accurately predict the short-range outcome for one-step
planning.

3 VH-1.5M DATASET

Most datasets related to embodied agents, e.g., RT-X (et al.,[2024a) and RH20T (Fang et al.| 2023)),
employ the third-person view to avoid the visual occlusion issue, thus lacking data regarding the
egocentric view (first-person view). There are some datasets, e.g., Alfred (Shridhar et al., [2020)
and Procthor (Deitke et al.l 2022}, that adopt a first-person perspective, however, they simplify
the state transition by assuming instantaneous completion of actions, which fails to mimic the
dynamics changes in real-world environments. We propose the VH-1.5M dataset based on the
VirtualHome (Puig et al.| 2018};2020) environment to address these limitations.

We construct our dataset VH-1.5M in the VirtualHome environment, which comprises 50 distinct
houses. Each house contains approximately 300 interactive objects, and the embodied agent can
perform more than 10 actions. Note that the VirtualHome environment is a simulator tailored for
embodied agents, offering a detailed simulation of a residential living scenario. It enables a range of
household tasks, e.g., navigation and object manipulation.

The VH-1.5M dataset is organized in a structured manner, encapsulating the relationship between
actions, houses, agents, and trajectories. Each task sequence entry follows a hierarchical structure,
e.g., "/open/house_0/Female4/2_fridge" (female4 open the fridge2 in house0).

Dataset Details: The VH-1.5M dataset consists of:
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(a) observation (b) next observation (c) seg_inst (d) depth (e) optical flow

Figure 1: An illustration sample in VH-1.5M, which includes current image observation, next image observation
given the text action, semantic segmentation map, depth map, and optical flow map.

* 13 Actions: Various physical actions and interactions for agents within the houses.
* 50 Houses: Uniquely designed houses with diverse layouts and object placements.
* 4 Agents: Four distinct agents, each capable of performing the full range of actions.

* 1.5M Samples: Dateset has numerous detailed sequences, each executing one action. Information
from each step in the sequence is stored as one sample. One example is shown in Figure [T} We use
House49 as the validation set.

More details of the dataset can be found in the Appendix [C| and we will open-source the dataset.

4 METHOD

Our embodied agent, EgoPlan, takes visual observation z; of the scene at the current timestep ¢ and a
natural language goal g as inputs and outputs an action a, to interact with the environment. Note that
the x4 only partially represents the current environment state. In addition, the agent uses encapsulated
skills as actions, such as moving forward, turning, and grabbing objects.

EgoPlan consists of two parts, as illustrated in Figure 2] The first is a dynamics model that gives the
agent the concept of the current environment, and the other is the planner that endows the agent with
decision-making capabilities. Intuitively, we humans first envision the outcomes of each action in our
minds, and then, by comparing the results, we make the best decision. In the same way, we use a
dynamic model to create an egocentric scenario where different actions can be taken, which is then
fed into LMM to determine which action is more reasonable.

4.1 DIFFUSION-BASED DYNAMICS MODEL
4.1.1 LEARNING DYNAMICS

From a first-person perspective, the view after two or more steps may be completely different, making
it difficult to model. Therefore, we aim to model the fundamental dynamics model, pg (z¢41|2¢, at),
for one-step planning usage. In more detail, we want to generate a new image z;, 1, representing
the next state given the current visual observation x; and the text of the action a;. Then, we cast our
eyes on the Text2image model and resort to the diffusion model for modeling specifically. It has an
irreplaceable advantage in easily incorporating other modalities as a condition.

Although the open-sourced diffusion model (Ho et al.| 2022 [Luo et al., [2023), pg(Ztar|Zsrc, 1),
trained on a wealth of online videos, has demonstrated the ability to predict the future, their generated
results are hard to control, and most are only semantically reasonable. Moreover, most of the text in
the pre-trained dataset consists of image descriptions [ rather than action instructions a. Therefore,
supervised fine-tuning is adopted based on our VH-1.5M dataset to better model the dynamics,
Do, (Try1|xt, ar). Formally, the training objective is given by:

Lyise = He—ee (q (xii)llxt,at) k)H2 )]
= |le — eo (VTze + VI = aela) || @

where €y is a learnable denoising model for reverse process, k is denoising steps, and &; are a
set of K different noise levels for each k& € [1, K|, and z;, a; separately represent the current
observation image and action description text. However, we find it difficult to generalize directly to
other environments since our dataset only includes VirtualHome scenes. The difference between two
environments, e.g., Habitat 2.0 (Savva et al.| [2019; [Szot et al} [2022)) and VirtualHome, primarily lies
in their different motion patterns for the same action and distinct visual styles. Especially for the
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Figure 2: Overview of EgoPlan. The left side features a one-step planner that provides the agent with decision-

making capabilities, while the right side includes a world model (dynamics model) that provides the agent with
an understanding of the current environment.
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former, the motion pattern, e.g., the amplitude of the same action, performed by agents in a different
environment can be unpredictable.

4.1.2 GENERALIZATION

We want to improve the model’s generalization ability from a different perspective. In other words,
instead of enhancing generalization through big data and large models, we aim to explicitly address the
differences between environments such as the visual style of indoor environments and the definition
of action amplitudes at the methodological level.

Motion Regularization. Firstly, we must combine the motion information into the diffusion model
to distinguish the different motion patterns. Optical flow has thus caught our attention. It refers to
the pattern of apparent motion of image objects between two consecutive frames caused by objects
or camera movement. In optical flow maps, colors represent the direction of motion, and the depth
or intensity of the colors indicates the magnitude of the motion, which is a general feature across
different environments.

However, in practice, in the absence of the next observation, we cannot obtain the current optical
flow, f¢ ++1. Inspired by other motion estimation works (Chen & Koltun|, 2016} |Zach et al., 2007),
we assume motion consistency holds over short intervals, meaning abrupt changes do not occur.
Consequently, the consecutive optical flow maps are highly correlated, allowing us to predict the
current optical flow map using the previous map. The previous map is calculated from the previous
two frames and reflects the actual motion pattern in the current environment.

We notice that optical flow generation does not require complex texture generation, and it is expected
not to cause a significant delay in the pipeline. Therefore, we adopt a less powerful but lightweight
generative model, VQ-GAN (Esser et al.|[2021)), and train it on our dataset to predict the optical flow
map. Empirically, the generalization ability to predict optical flow is much better than predicting
actual images. Formally, the training objective is given by:

min Lvq(E, G, Z) = |z — 2[5 + |Isg[E(x)] — 2[5 + Bllsglzd] — E(@)]3, 3)

where FE is the encoder, G is the generator, Z represents the latent space, « is the input image, & is
the reconstructed image, z, is the quantized latent vector, sg denotes the stop-gradient operator, and
[ is a hyperparameter that balances the commitment loss.

In summary, we use a simple model to predict motion patterns and then a more complex model to recon-
struct real textures based on motion patterns. Therefore, we adopt ControlNet (Zhang et al., 2023b)
to incorporate the optical flow map, f; ;1, into the default diffusion model, pg_,, (41|21, at, fr.e+1)-
Only the ControlNet part needs to be fine-tuned on VH-1.5M at this stage. Formally, the training
objective is given by:

(k) 2
€—¢€p (q <$t+1|$t,at,ft,t+1> ,k> H 4
= H€—€0 (\/C%:txt+v1—CTt6|at»ft,t+1)H2- )

Style Transfer. Secondly, we use LoRA to fine-tune the diffusion model for visual style transfer.
Note that LoRA requires very little data, just about 20 of samples. Normally, it is convenient to

Lyvse =
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collect data on such a scale in new environments. We expect the model to achieve generalization with
as little effort as possible. In Section[5.2] we can find the role of LoRA method in maintaining the
action pattern of the model between different environments, while flexibly transferring the style of
fine-grained observation images.

4.2 PLANNING WITH DYNAMICS MODEL

To avoid further training in new environments, we prompt the LMM, i.e., GPT-4V, as the planner. The
LMM needs to be responsible for high-level goal decomposition as well as low-level action selection.
Meanwhile, the pre-trained dynamics model can help the LMM better understand the world.

4.2.1 GOAL DECOMPOSITION

For long-term complex tasks, goal decomposition is an indispensable step. Subgoals can be repre-
sented in both text and image forms. For the text-based subgoal g.,, we prompt the LMM to generate
a reasonable one. In addition, we train another diffusion model, pg_,, (Ztar|Tt, gtar), to generate the
image-based subgoal x,, only based on the text-based subgoal and current observation. Note that in
order to complete long-horizon planning, the diffusion model is used in series of works to predict the
scene image of the state when the subgoal task is completed (Black et al.,[2023;|Zhou et al.; 2024)), but
these works mainly focus on manpulation task. For composite tasks that integrate manpulation and
navigation, especially for navigation tasks, it is often quite difficult to generate subgoal scene images,
because the subgoal scene images often involve the change of the entire image scene information, and
the joint position of most objects changes, which requires the model’s ability to understand spatial
attributes. Not just editing the part of the image that involves an item. So predicting the image of the
subgoal can be more challenging than predicting the next observation, which means the results are
not very precise. We plan to delve into the impact of different types of subgoals on tasks. See Section

4.2.2 ONE-STEP PLANNER

Since we can only ensure that the prediction for the next step is relatively accurate, we adopt a
one-step planning method. In more detail, we utilize the pre-trained dynamics model to predict the
visual outcomes of all the actions in the next state. Once the text/image-based subgoal is obtained,
we send the subgoal and all the visual outcomes to the LMM. Then, we prompt it to compare all
the potential outcomes with the subgoal and determine which action can bring the agent closer to
the goal. So the process of goal decomposition and one-step planner is equivalent to the following
formula.

{GQ, Gl, s ,Gn} = LLM(S(), task‘) (6)
a* :argmii‘ld(f(st,a),GE {GOaGh"' 7G’n}) (7)
ac
In the aforementioned equations, {Gq,G1, - - - , G, } refers to a series of subgoals that are decom-

posed from the task using LMM. It is noteworthy that, in selecting the optimal action for one-step
planning process, inspired by [Tan et al.|(2024); [Zhai et al.|(2024)), we utilize LMM to generate low-
level actions in contrast to reinforcement learning or imitation learning algorithms. In this context, we
leverage the comprehension capabilities of LMM to ensure the generalization of the low-level action
in cross-environment decision-making. We also employing mechanisms like React (Yao et al., [2023)
and Reflexion (Shinn et al.| [2023)) to enhance the agent’s performance, which are shown in Appendix
[Gl The prompt of task-decomposition and low-level action selection has been listed in Appendix
[Fl [Black et al|(2023) has discussed the generalization of objects concerning various operational
targets; however, the generalization of underlying policy networks based on reinforcement learning
or imitation learning algorithms, particularly in response to changes in the entire environmental
scene—especially in navigation tasks, the ability of the pipeline still requires improvement. We will
further discuss the experimental outcomes related to this in Sections[5.2]and [5.4]

5 EXPERIMENT

In this section, we comprehensively evaluate and analyze each module of the embodied agent. We
first evaluate the quality of image generation using the world model and the quality of optical flow
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(a) Original (b) InstructP2P (finetuned) (c) Previous flow (d) Ours (previous flow) (e) Predicted flow (f) Ours

Figure 3: Examples of the generated image of the next observation in VirtualHome. The tasks from rows 1 to 4
are: close the fridge, switch off the light, turn left, and turn right.

prediction. Secondly, we evaluate whether our world model can assist task planners in completing
more complex tasks. Finally, we assess the generalization of our method.

5.1 VISUAL QUALITY

We adopt two metrics, FID (Heusel et al.,2018) Table 1: FID score comparison with other models on
and user score, to evaluate the visual quality of the validation set. It is calculated between the predicted
the generated image of the world model. For observation and ground truth. The lower the number, the
models, InstructP2P (pre-trained) is the de- better the quality of the image.

fault model of InstructP2P. InstructP2P (fine-

tuned) is the model fine-tuned on our dataset. Model Mean  Variance
Ours (previous flow) is the world model that TnstructP2P (pre-trained)  13.65 0.10
conditions on the previous optical flow map, InstructP2P (fine-tuned)  1.06 0.05
while Ours is conditioned on the predicted op- Ours (previous flow) 0.83 0.03
tical flow map. Note that the validation set of Ours 0.82 0.03

VH-1.5M has around 5k samples.

FID Score. FID is a standard metric measuring the distance of two image distributions using the
inception model. The smaller the FID is, the more similar the two images are. Table [I] shows the
FID score of our model and baselines. We can see that using existing diffusion models as world
models is ineffective because their training data often lacks state transition-related data. Meanwhile,
introducing an optical flow map, which serves as motion pattern information, significantly enhances
the generation results. In addition, world models based on predicted optical flow are slightly better
than those based on the optical flow of the previous frame.

User Study. We also conduct a user study on the  Table 2: User score of the user study. The user score
accuracy of world models for image generation. is the percentage of images that users consider to meet
For the criterion, users judge the correctness the criteria out of the total 1000 images. The higher the
of the direction and amplitude of the executed number, the better the quality of the image.

action. Each user investigates a total of 1000

samples from the validation set. There are 8 Model Mean Variance
users participating in the survey in total. Our InstructP2P (fine-tuned) 54.10% 1.53%
user study, shown in Table |Z[, again verifies our Ours (previous flow) 69.35% 1.34%
predicted optical flow can help generate higher- Ours 74.93% 2.57%

quality images.

Analysis. As illustrated in Figure 3] InstructP2P (fine-tuned) generates the scene of steering in
the wrong direction. However, this flaw can be greatly improved by incorporating optical flow
information. Moreover, it is observed that the dynamics of closing the refrigerator can be more
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Figure 4: The success rate on 12 tasks for all the methods. Note that tasks 1-6 occur inside one room, while
tasks 7-12 take place in two rooms.

accurately predicted if the prediction of the motion pattern is considered. More examples can be seen
in Appendix

5.2 VIRTUALHOME TASKS

Results. To demonstrate that our world model can well assist the LMM in task planning, we evaluate
various methods on 12 tasks, each task described by an instruction, in the VirtualHome environment.
Each task is tested 100 times, and the maximum step in one episode is 80. For each of the 12 tasks,
we abbreviated the task names for convenience. For example, the instruction of task 1, "take the
bread from the toaster and place it on the plate on the table," consists of four subtasks: a) walk to the
toaster, b) grab the bread, c) walk to the plate, and d) place the bread on the plate. We use "take and
place” to refer to task 1. Each task and instruction can be found in Appendix B}

These 12 instructional tasks are comprised of multiple sequential sub-tasks. For baselines, we use
GPT4 combined with React (Yao et al.,|2023)) as the task planner and policy, denoted as GPT4+React,
and it takes input as the JSON format text environment description. We also directly use GPT-4V to
make decisions, denoted as GPT4V, and we also combined GPT4V with React (Yao et al., | 2023))
and Reflexion (Shinn et al.,[2023)) as the task planner and policy. When employing the Reflexion
algorithm, its actor component is based on the React algorithm. These two baselines are denoted as
GPT4V+React and GPT4V+Reflexion. For ablation baselines, we use the fine-tuned InstrctP2P as
the world model, denoted as GPT4V+P2P. The world model that conditions on the previous optical
flow map is denoted as GPT4V+PrevOF.

As shown in Figure 4] the world model significantly improves the GPT-4V ability on various
long-horizon tasks. Moreover, the inclusion of optical flow information enhances the accuracy of
image generation and further improves task planning performance. The results also demonstrate the
effectiveness of the predicted optical flow map.
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(a) Enclose the fridge (b) Go through door (c) Shut off the PC  (d) Take hold of pillow(e) Switch off the light  (f) Shut the stove  (g) Open the cabinet

Figure 5: Examples of the generated image subgoals. The first row is the original image, and the second row is
the image subgoal generated based on the text subgoal.

o -‘-D ‘
VQ-GAN

prediction

o -‘-[ 1

(a) Switch off lights (b) Turn to the left  (c) Walk straight ahead  (d) Turn to the left (e) Turn to the right

Figure 6: Examples of optical flow prediction by VQ-GAN. The first 3 columns are optical flow from the
VirthualHome environment. The last 2 columns are optical flow from the Habitat 2.0 environment.

Image Subgoal vs. Text Subgoal. In this part, we analyze the impact of different types of subgoals
on tasks. During the goal decomposition process, the text subgoal directly outputted by the LLM
task planner represents a high-level, coarse-grained description. If our method can generate images
of the scene at the completion time of the subgoal, a more detailed, fine-grained description can be
obtained. This might enhance the action selection ability that relies on the quality of the subgoal.

When using images as subgoals, our approach, in contrast to SuSIE (Black et al.| [2023)), employs a
one-step planning world model to model the state images following different actions. Additionally,
we utilize LMM for end-to-end pipeline of task decomposition and action selection, rather than
SuSIE’s goal-conditioned behavioral cloning (GCBC) for the downstream low-level policy. In Figure
Ml we compare SuSIE (donated as SuSIE) with our method, demonstrating our method has advantages
over SuSIE in long-horizon composite task planning, specially in terms of significant changes in
perspective and the need for reasoning to generate subgoals.

Specifically, we have trained an InstructP2P model based on VH-1.5M to generate the image when
the subgoal is completed, with the generation results illustrated in Figure[5] The decision-making
results in Figure[dshow that fine-grained subgoal description is better than coarse-grained description,
even if the generated image is not that accurate.

We also conduct a user study to evaluate the visual quality of the generated image-based subgoals.
More details can be found in the Appendix [E]

5.3 MOTION PATTERN

As mentioned before, we cannot obtain the op- Table 3: Average endpoint error (AEE) results. The
tical flow from the current timestep to the next lower the number, the closer the image is to the ground
timestep. Therefore, we adopt the VQ-GAN truth.

model to predict the current optical flow map.

As illustrated in Figure [6a and [6c] the quality Previous flow Prediction flow
of prediction for details is promising. Further- Habitat 2.0 330 3.0
more, as demonstrated in Figure [6d]and [6¢] the AI2-THOR 5.00 4.08
VQ-GAN trained on the VH-1.5M dataset can VirtualHome 21.22 15.71

easily generalize to other environments. This is
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Figure 7: Examples of the generated images of the next

observation in Habitat 2.0. Figure 8: The success rate on 5 navigation tasks
for all the methods in Habitat 2.0. GPT4+React is

omitted due to its poor performance.

because the optical flow map is a universal feature and does not require the prediction of complex
textures.

The average endpoint error (AEE) specifically measures the average distance between two motion
vectors at the pixel level. As illustrated in Table 3] the gap between the predicted optical flow map
and ground truth is narrower than that between the previous flow map and ground truth (current
optical flow map). In addition, the model trained on VirtualHome can still predict optical flow maps
in Habitat 2.0 and AI2-THOR 2017). This confirms the effectiveness and generalization
of the VQ-GAN model.

5.4 GENERALIZATION

To assess the generalization of our method, we also evaluate its performance in a new household
environment. In more detail, we choose Habitat 2.0 due to its high-fidelity scenes compared with other
simulators, such as AI2-THOR. However, Habitat 2.0 does not provide any inter-frame regarding
manipulation skills, which is unrealistic. Therefore, we only carry out experiments on navigation
tasks.

To enhance usability, we use the pre-trained optical flow model, RAFT (Teed & Deng| [2020), to
calculate the optical flow for the previous step since the optical flow cannot be directly obtained. The
RAFT results are shown in the last 2 columns of Figure[6| Since VQ-GAN has demonstrated some
degree of generalization ability to Habitat 2.0 in Sectiorl?lg we can predict the motion pattern of
the new environment. The remaining task is to transfer the visual style to a new environment, and
we adopt LoRA to fine-tune the world model. As shown in Figure[/] we successfully perform style
transfer with a small amount of data (tens of samples), and the results with LoRA are closer to real
scene images compared to those without LoRA visually.

Figure[§]shows the success rate of all methods on navigation tasks in Habitat 2.0, and we compare
our method with SuSIE. We can draw the same conclusion as in the VirtualHome environment:
incorporating predicted optical flow into the world model enhances the agent’s decision-making
capabilities. Additionally, our method achieved a high success rate, which further demonstrates its
strong generalization ability. Due to the lack of generalization capability of the subgoals generated
by the diffusion model in SuSIE for scenes with styles differing from the training set, the resulting
subgoals lacking sufficient information, often exhibit poor quality in downstream behavior cloning
methods.

6 CONCLUSION AND LIMITATIONS

This paper introduces EgoPlan, an embodied agent, using the LMM as the one-step planner and
the Text2image model as the world model for long-horizon tasks. We demonstrate its high-quality
image generation, precise optical flow prediction, and promising decision-making ability. More
importantly, we have demonstrated its generalization capabilities across different environments. It is
also important to acknowledge the limitations of EgoPlan. Currently, the agent uses encapsulated
skills as actions. It cannot perform low-level control, e.g., joint position. How to directly control
low-level actions is left as future work.
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APPENDIX

A MORE RELATED WORK

A.1 WORLD MODEL FOR DECISION-MAKING

The Dreamer series (Hafner et al.| [2020; 2022} |2024)) models environmental dynamics in latent space
to predict future states within gaming contexts, enabling agents to learn tasks through imagination and
reducing the number of interactions needed for effective learning. However, as these world models
are developed in latent space rather than pixel space, they often struggle to generalize to unseen tasks
and environments. A world model constructed in pixel space may offer improved generalization
capabilities. Recent studies have sought to address how to learn world models from large-scale
video datasets (Liu et al., [2024). In Genie (Bruce et al., |2024), researchers utilize a latent action
representation, though their focus primarily revolves around 2D platform video games or simple
robotic actions. By meticulously orchestrating rich data across various dimensions, UniSim (Yang
et al.,[2023) simulates realistic visual experiences in response to actions performed by humans, robots,
and other interactive agents. Overall, the applications of world models extend beyond gaming and
robotics. For instance, in |[Escontrela et al.| (2024)), frame-by-frame video prediction is employed as a
mechanism for providing rewards in reinforcement learning. Dynal.ang (Lin et al.,|2023) explores
the integration of language prediction as an element of the world model, enabling the training of
multimodal world models using datasets that lack explicit actions or rewards. In Dynal.ang, the
representation is shared between vision and language within the world model.

A.2 EMBODIED AGENT WITH LMMSs

Recent methods use LMMs to assist planning and reasoning in simulation environments (Fan et al.,
2022; Wang et al., 2023a; [Yao et al.,[2023))and robot learning (Ahn et al.| 2022} |Liang et al.| 2023}
Zeng et al., [2022)). LMMs are also applied to help robot navigation (Parisi et al., 2022} Majumdar
et al.}2020) and manipulation (Jiang et al., 2022} |Ren et al.| 2023} |[Khandelwal et al.| 2022). Among
them, ReAct (Yao et al.|[2023) uses chain-of-thought prompting by generating both reasoning traces
and action plans with LMMs. SayCan (Ahn et al.|[2022)) leverages the ability of LLMs to understand
human instructions to make plans for completing tasks without finetuning LL.Ms. Voyager (Wang
et al.| 2023a)) leverages GPT-4 to learn and continually discover skills during learning. While these
studies demonstrate encouraging outcomes, they depend significantly on the inherent capabilities
of powerful large language models (LLMs), which poses challenges for their application to smaller
language and multimodal models (LMMs) with limited reasoning abilities.

The successful integration of language as a semantically rich input for interactive decision-making un-
derscores the pivotal role of LMMs in facilitating interaction and decision-making processes (Abrams
son et al., [2020; [Karamcheti et al.| 2022; [Li et al., 2022). LMMs have also been employed across
various environments to support robot navigation (Parisi et al., [2022; [Hong et al., [2021; Majumdar|
et al.,[2020) and manipulation tasks (Jiang et al., [2022} |Ren et al., [2023} [Karamcheti et al., 2022).
Recently, numerous approaches have emerged that leverage LMMs to enhance the planning and
reasoning capabilities of embodied agents. For instance, SayCan (Ahn et al.,|2022) evaluates the affor-
dance of potential actions by combining their probabilities derived from LMMs with a value function.
Zeng et al.|(2022)) integrate a language and multimodal model (LMM) with a visual-language model
and a pre-trained language-conditioned policy (Shridhar et al.,[2022) to facilitate open vocabulary
robotic tasks. Similarly, |Huang et al.|(2022a)) illustrate that LMMs can be effectively utilized for plan-
ning and executing simple household tasks, grounding LMM-generated actions by comparing their
embeddings with a predefined list of acceptable actions. To incorporate environmental feedback, Inner
Monologue (Huang et al.|[2022b) enhances SayCan through a closed-loop principle. This principle is
further employed in related works such as (Yao et al.| 2023 [Huang et al., 2022b; Kim et al.| 2024;
Singh et al., 2023} |Liang et al.,[2023; Shinn et al., 2023; |Wang et al.,[2023c) to continuously monitor
agent behaviors and refine plans accordingly for tasks in domains like computer automation and
Minecraft. Furthermore, there are methods that prompt language and multimodal models (LMMs) to
generate temporally abstracted actions (Zheng et al., 2023)). |Dasgupta et al.| (2023) utilize the LMM
as both a planner and a success detector for an agent, with their actor module requiring pre-training
using reinforcement learning to enable the agent to adhere to natural language instructions. While
these studies yield impressive results, they are heavily dependent on the inherent capabilities of
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powerful LMMs, such as GPT-4 and PalLLM (Chowdhery et al.| [2023), which presents challenges
when attempting to apply these approaches to smaller LMMs with limited reasoning abilities, such as
LLaMA-7B. GLAM (Carta et al.l 2023) employs RL fine-tuning to achieve functional grounding
of LLMs and LMMs. However, their focus is primarily on simple primitive actions (e.g., turn left,
turn right, go forward) evaluated within toy environments, such as BabyAl (Chevalier-Boisvert;
et al., 2018), using a significantly smaller encoder-decoder LMM, Flan-T5-780M. These primitive
actions possess a similar token count and lack substantial semantic meaning, which leads to an
underutilization of LMM capabilities. Consequently, they fail to adequately explore the effects of
prompt design and address the imbalance within the action space, resulting in additional instability
and reduced robustness.

B DETAILS OF VIRTUALHOME TASKS

We conducted experiments to evaluate the decision-making ability of all methods in the VirtualHome
environment. In total, we investigated 12 complex tasks, with detailed instructions and reference
action steps for each task as follows:

Listing 1: Instructions and subtasks.

<$one-house instructions$>

1. take and place: take the bread from the toaster and place it on the
plate on the table
steps: (a). walk to the toaster
(b) . grab the bread
(c). walk to the table
(d) . place the bread on the plate
2. take and putl: take the apple from the table and put it in the
microwave
steps: (a). walk to the table
(b) . grab the apple
(c). walk to the microwave
(d) open the microwave (if the microwave is closed)
(e) . put the apple in the microwave
3. take and put2: take the book from the table and put it on the
bookshelf
steps: (a). walk to the table
(b) . take the book
(c) . grab the book
(d) . walk to the bookshelf
(e) . put the book on the bookshelf
4. take and drink: take the water glass from the table and drink from it
steps: (a). walk to the table
(b). take the water glass
(c) . drink the water glass
5. turn on sit: turn on the TV and sit down
steps: (a). walk to the TV
(b) . turn on the TV
(c) . walk to the chair
(d) . sit down
6. put apple: Put an apple that is on the table into the bookshelf
steps: (a). walk to the table
(b) . grab the apple
(c). walk to the bookshelf
(d) . put the apple on the bookshelf

<$two-houses instructions$>

7. take and place2: take the frying pan from the counter and place it in
the sink

steps: (a). walk to the counter
(b) . grab the frying pan
(c) . walk through the door
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(d) . walk to the sink
(e) . place frying pan in the sink
8. take and place3: take the condiment shaker from the bookshelf and
place it on the table
steps: (a). walk to the bookshelf
(b) . grab the condiment shaker
(c) . walk through the door
(d) . walk to the table

(e) . place condiment shaker on the table
9. take and put3: take the salmon on top of the microwave and put it in
the fridge
steps: (a). walk to the microwave
(b) . grab the salmon
(c) . walk through the door
(d) . walk to the fridge
(e) . open the fridge (if the fridge is closed)
(f) . put salmon in the fridge

10. take open and put: take the pie on the table and warm it using the
stove
steps: (a). walk to the table
grab the pie
walk through the door
walk to the stove
put pie on the stove
). switch on the stove
11. take put and open: put the sponge in the sink and wet it by switching
on the faucet

steps: (a). walk to the sponge

) . grab the sponge
c) . walk through the door
d) . walk to the sink
e) . put sponge in the sink
f). switching on the faucet
12. take and put4: take the condiment bottle from the kitchen table and

put it on the plate

steps: (a). walk through the door

). walk to the kitchen table
(c). grab the condiment bottle
(d) . walk to the plate
(e). put pie on the stove
(f) switch on the stove

C DETAILS OF VH-1.5M’S TEXT ACTIONS

The dataset includes a wide range of action sequences, each meticulously annotated with corre-
sponding text actions. These text actions are crucial for providing contextual information that aligns
visual actions with natural language descriptions. Below, we detail the process and structure used to
generate the text actions for each action sequence in the dataset.

The generation of text actions for VH-1.5M involves a systematic and automated process. This
process ensures consistency and variety in the text actions, which are essential for robust training and
evaluation in vision-and-language tasks. The key steps in this process are as follows:

Verb Selection: A list of verbs related to various actions (e.g., "walk through," "close," "drink")
is predefined. For each identified action sequence directory, a verb is randomly selected from the
relevant list. This selection ensures a diverse representation of actions.

Object Name Extraction: Each directory represents the object acted upon, which signifies the object
affected by the action. However, if the action does not involve an object, such as "walk through" or
"turn left," no extraction is necessary.

Phrase Construction: Two types of phrases are constructed for each action sequence:
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Next Timestep Phrase: Describes the immediate next action in the sequence. For example, "next
timestep: redeposit the plate".

Goal State Phrase: Describes the intended final action or goal of the sequence. For example, "the
goal state: redeposit plate”.

Prompt File Creation: The constructed phrases are saved in a prompt json file within the respective
action sequence directory. This JSON file contains two keys: "next" and "goal," corresponding to the
next timestep phrase and goal state phrase, respectively.

C.1 MORE EXAMPLES OF THE SAMPLES

We give some samples in the sequence of the task, which are shown in Figure[9] [T0]and [T1] Note
that samples in one sequence are arranged in chronological order, with the timestep increasing from
top to bottom.

D MORE EXAMPLES OF GENERATING IMAGES

More examples of generated images from EgoPlan can be seen in Figure[T2] Each line represents a

non non

task, and the task prompts are, in order: "capture the chicken", "grasp juice", "grasp the hairproduct”,

"non non non non non

"open the cabinet", "open the microwave", "go left", "make a left", "make a left-hand turn", "make a

non "non "non

right", "turn right", "turn to the right", "walk straight ahead".

E USER STUDY OF SUBGOAL IMAGE GENERATION

We also conduct a user study on the image generation of the subgoal. A total of 8 users evaluated
whether the generated image met the criteria of the subgoal described in the text. Each user evaluates
100 generated images for each action, and the evaluation results are shown in Table[d] The results
show that most of the generated subgoal images can represent the meaning of the text subgoals. More
examples of generating figures can be seen in Figure[I3]

Table 4: User study for the subgoal generation. The user score is the percentage of images that users consider to
meet the criteria out of the total 1000 images.

Close Drink Grab Open Put back Put in
Mean user score(%) 66.5 71.75 55 66.375 62.125 64.625
Sit Stand up Switch off Switch on Walk through
Mean user score(%) 79.875 78.75 73.375 77.875 79

F PROMPT OF TASK-DECOMPOSITION AND LOW-LEVEL ACTION SELECTION

We conducted experiments with detailed query prompt for each task as follows:

Listing 2: query for action selection.

Start working. The picture of what you can see has been given above, the
picture is what you see from the first person perspective as the
person in the room. Analyze the scene and all the items in the
picture to make a task plan to complete the instruction.

The instruction is as follows:

nwn

{"instruction": [INSTRUCTION] }

nwn

The history is as follows:
mnn

{"history": [HISTORY]}

19




Under review as a conference paper at ICLR 2025

You return should follow these rules:

1. Make sure you provide 4 lines of output each time, the first line is
the ["Preoperation"] and the secondline is the ["Postoperation"] of
the action to be taken in the current task plan, and the third line
is the action to be taken in the plan, which is the ["task_sequence
"]. The fourth line is the natural language expression of the action
taken, namely ["step_instructions"]. When output the answer, do not
attach "step_instructions", "task_sequence", etc.

2. In addition to these, other problem such as input images is too dark
and historical actions is empty, please DO NOT output.

3. Make sure that element of the ["step_instructions"] explains
corresponding element of the ["task_sequence"]. That is, the fourth
line explains the third line.

4. DO NOT USE undefined verbs. USE ONLY verbs in "HUMAN ACTION LIST".

5. The first line and the second line are detailed explanation of the
forth line. For the task in the forth line, it must be explained in
two parts: ["Preoperation"] and ["Postoperation"] in the first and
second line, separately represents the action state of the agent and
item before and after the execution of the task.

6. Look carefully at the output examples provided. DO NOT use any strings

or spaces at the end of sentences. Never left ’,’ at the end of the
sentences. STRICTLY ENSURE that the output is always four lines long,
with no blank lines.

7. The environment given is a picture that you see from the first person
perspective as the person in the room. Analyze the scene and all the
items in the picture to make a task plan. If you see a picture that
is all balck, this means there has been no task planning or execution

before, please give a general task plan, but BE SURE to stick to the
output format shown earlier.

8. When selecting each action for task planning, carefully think about
the function of the action in terms of the two parts ["Preconditions
"] and ["Postconditions"] after the action, where ["Preconditions"]
represents the state of the environment before the action is executed
, and ["Postconditions"] represents the state of the environment
after the execution, after which the planning is carried out.

9. All sentences you output should NOT be double-quoted.

10. Please strictly correspond to the actions and items in the
instructions, please strictly keep the spelling of the items, for
multi-word items, please do not add connection symbols between words,

for items composed of single-word, please do not split the word.

11. The history is a string that records the actions performed in the
past few steps, separated by " ". Please plan what action to perform
at this step based on the historical actions, instructions and the
current picture.

12. Make sure that you output a consistent manipultation as a human. For
example, grasping an object should not occur in successive steps.
Consider whether the current action is simliar to the last action in
the history. DO NOT output same two actions in row.

13. Every time you do task planning, you should consider whether the
historical action in history and the current action have completed
the instruction, and if so, output "Stop()" in time.

Adhere to the output format I defined above. Follow the nine rules. Think

step by step.

We conducted experiments with detailed environment, role of LMM, action function, few-shot output
example prompt for each task as follows:

Listing 3: prompt for environment.

[user]

Information about environments and objects are given as a picture that
can be seen from the first person perspective. The picture will be
given in the example latter.
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The texts above are part of the overall instruction. Do not start working
yet:

[assistant]

Understood. I will wait for further instructions before starting to work.

Listing 4: prompt for role of LMM.

[user]

You are an excellent interpreter of human instructions for household
tasks. Given an instruction and information about the working
environment, you break it down into a sequence of human actions.

Please do not begin working until I say "Start working." Instead, simply
output the message "Waiting for next input." Understood?

[assistant]

Waiting for next input.

Listing 5: prompt for explanation of action function.

[user]
Necessary and sufficient human actions are defined as follows:
mnw

"HUMAN ACTION LIST"

Walk (argl) : Walks some distance towards a room or object.

Preconditions: If the environment represented by picture doesn’t have the
objl for the task decomposition you did to perform the action, add a
subtask of Walk (objl) before the task.

Grab (argl) : Grabs an object.

Preconditions: The objectl property is grabbable (except water). The
character is close to objl. objl is reachable (not inside a closed
container). The character has at least one free hand.

Postconditions: Adds a directed edge: character holds_rh or hold_1lh, objl

objl is no longer on a surface or inside a container.

Open (argl) : Opens an object.

Preconditions: The objl property is IS_OPENABLE and the state is closed.
The character is close to objl. objl is reachable (not inside a
closed container). The character has at least one free hand.

Postconditions: The objl state is open.

Close (argl): Closes an obiject.

Preconditions: The objl property is IS_OPENABLE and the state is open.
The character is close to objl. objl is reachable (not inside a
closed container). The character has at least one free hand.

Postconditions: The objl state is closed.

Put (argl, arg2): Puts an object on another object.

Preconditions: The character holds_lh objl or character holds_rh objl.
The character is close to obj2.

Postconditions: Removes directed edges: character holds_lh objl or
character holds_rh objl. Adds directed edges: objl on obj2.

PutIn(argl, arg2): Puts an object inside another object that is OPENABLE,
such as stove and microwave.
Preconditions: The character holds_lh objl or character holds_rh objl.
The character is close to obj2. obj2 is not closed. If obj2 is closed
, The character should open obj2 first and put objl in obj2.
Postconditions: Removes directed edges: character holds_lh objl or
character holds_rh objl. Adds directed edges: objl inside obj2.

SwitchOn (argl): Turns an object on.

Preconditions: The objl has the property "switch." The objl state is off.
The character is close to objl.
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Postconditions: The objl state is on.

SwitchOff (argl): Turns an object off.

Preconditions: The objl has the property "switch." The objl state is on.
The character is close to objl.

Postconditions: The objl state is off.

Drink (argl): Drinks from an object.
Preconditions: The objl property is drinkable or recipient. The character
is close to objl.

Sit (argl): Sit down on an object.

Preconditions: The objl property is sittable. The character is close to
objl.

Stop () : The instruction can end the task sequence after the completion of

the task by the planned instruction.

Preconditions: After the instruction is decomposed into a series of tasks
, these tasks fulfill all the requirements of the instruction to be
executed in order, that is, the instruction is completed in the
history.

wnn

The texts above are part of the overall instruction. Do not start working
yet:

[assistant]

Waiting for next input.

Listing 6: prompt for output example.

[user]
I will give you some examples of the input and the output you will
generate.
Example 1:
mnn
- Input:
The picture of what you can see has been given above.
"instruction": "take the salmon on top of the microwave and put it in the
fridge"
"history": nn
— Output:
The microwave where the salmon is located appears to be distant or out of
reach, and I need to approach it to interact with it.
I am now close enough to the microwave to interact with it, specifically
to reach the salmon.
Walk (<microwave>)

Walk towards the microwave to reach the salmon on top.
nmmon

Example 2:

mmonw

- Input:

The picture of what you can see has been given above.

"instruction": "take the salmon on top of the microwave and put it in the

fridge"

"history": "Walk (<microwave>)"

— Output:

The salmon is on top of the microwave and within reach. I have at least
one free hand to grab it.

I am now holding the salmon, which is no longer on the microwave.

Grab (<salmon>)

Grab the salmon from the top of the microwave
mmnw

Example 3:
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wnn

- Input:

The picture of what you can see has been given above.

"instruction": "take the salmon on top of the microwave and put it in the
fridge"

"history": "Walk (<microwave>) ""Grab (<salmon>)"

— Output:

The fridge appears to be distant or out of reach, and I need to approach
it to interact with it.

I am now close enough to the fridge to put the salmon inside.

Walk (<fridge>)

Walk to the fridge with the salmon

wnn

Example 4:

nmnwn

- Input:

The picture of what you can see has been given above.

"instruction": "take the salmon on top of the microwave and put it in the
fridge"

"history": "Walk (<microwave>)""Grab (<salmon>)""Walk (<fridge>)"

— Output:

Before I can put the salmon inside, the fridge must be open.

The fridge is now open, and I can place items inside.

Open (<fridge>)

Open the fridge

Example 5:

nmnon

- Input:

The picture of what you can see has been given above.

"instruction": "take the salmon on top of the microwave and put it in the
fridge"

"history": "Walk (<microwave>) ""Grab (<salmon>)""Walk (<fridge>) ""Open (<
fridge>)"

— Output:

I hold the salmon. I am close to the fridge which is now open.

The salmon is now inside the fridge, and my hands are free.

PutIn (<salmon>, <fridge>)

Put the salmon in the fridge

wnn

Example 6:

nnn

- Input:

The picture of what you can see has been given above.

"instruction": "take the salmon on top of the microwave and put it in the
fridge"

"history": "Walk (<microwave>) ""Grab (<salmon>)""Walk (<fridge>) ""Open (<
fridge>) ""PutIn (<salmon>, <fridge>)"

— Output:

After placing the salmon inside, the fridge remains open.
The fridge is now closed, securing the salmon inside.
Close (<fridge>)

Close the fridge door

Example 7:

mmw

- Input:

The picture of what you can see has been given above.

"instruction": "take the salmon on top of the microwave and put it in the
fridge"
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"history": "Grab (<salmon>)""Walk (<fridge>)""Open (<fridge>)""PutIn (<salmon
>, <fridge>)""Close (<fridge>)"
— Output:

I take the salmon on top of the microwave and put it in the fridge.
The instruction has been finished.

Stop ()

Complete the instruction and stop the task planning

The texts above are part of the overall instruction. Do not start working
yet:

[assistant]

Waiting for next input.

Listing 7: prompt for output format.

[user]

You divide the actions given in the text into detailed robot actions and
put them together as a python dictionary.

The dictionary has three keys.

mmww

— dictionary["task_cohesion"]: A dictionary containing information about
the robot’s actions that have been split up.

— dictionary["instruction_summary"]: contains a brief summary of the
given sentence.

wnn

Two keys exist in dictionary["task_cohesion"].

nwn

— dictionary["task_cohesion"] ["task_sequence"]: A dictionary containing
information about the human’s actions that have been split up.

— dictionary["task_cohesion"] ["step_instructions"]: contains a brief text
explaining why this step is necessary.

The texts above are part of the overall instruction. Do not start working
yet:

[assistant]

Waiting for next input.

G TRAJECTORIES OF SELF-REFLECTION IN NAVIGATION TASKS

When executing navigation tasks, the subgoal is "walk to (<somewhere>)" while the underlying
actions include "walk forward", "turn left", and "turn right". Accomplishing the navigation task with
such a subgoal constitutes a long-horizon composite task. In addressing these types of tasks, we
employ a React+Reflexion mechanism that leverages previous actions to perform operations such as
obstacle avoidance and target searching. For example, we can illustrate trajectories based on these
actions.

Listing 8: Trajectory of self-reflection.

Trial #1
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a garbagecan 1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf
5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.
Task: walk to computer 1.
> think: To solve the task, I need to find a desk, then find a computer.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
left to get direction.
> turn left
> success
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Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
left to get direction.
> turn left
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 5, a shelf 4, a shelf 3, a shelf 2,
and a shelf 1.
> think: You are get right direction of the desk, the desk is in the
middle of the egocentric view.
> walk forward
> Nothing happens.
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 5, a shelf 4, a shelf 3, a shelf 2,
and a shelf 1.
> think: You are get right direction of the desk, the desk is in the
middle of the egocentric view.
> walk forward
> Nothing happens.
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 5, a shelf 4, a shelf 3, a shelf 2,
and a shelf 1.
> think: You are get right direction of the desk, the desk is in the
middle of the egocentric view.
> walk forward
> Nothing happens.
Status: Fail

Reflection: When we locate the computer and identify the correct
direction, we find that the action to approach the computer is not
responding. Observing first-person perspective images reveals that
there is a bed in front, acting as an obstacle that prevents forward
movement. To get closer to the computer, it is necessary to navigate
around the bed first.

Trial #2
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a garbagecan 1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf
5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.
Task: walk to computer 1.
> think: To solve the task, I need to find a desk, then find a computer.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
right to get around the bed.
> turn right
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
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computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
right to get around the bed.
> turn right
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
right to get around the bed.
> turn right
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, currently, there are no obstacles blocking
your path in front of you. From the dynamic model output, you should
walk forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, currently, there are no obstacles blocking
your path in front of you. From the dynamic model output, you should
walk forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, currently, there are no obstacles blocking
your path in front of you. From the dynamic model output, you should
walk forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, currently, there are no obstacles blocking
your path in front of you. From the dynamic model output, you should
walk forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
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2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
left to get direction.
> turn left
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
left to get direction.
> turn left
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
left to get direction.
> turn left
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a garbagecan 1, a
laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3,
a shelf 2, and a shelf 1.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1, from the dynamic model output, you should turn
left to get direction.
> turn left
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1. From the dynamic model output, you should walk
forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1. From the dynamic model output, you should walk
forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
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1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1. From the dynamic model output, you should walk
forward to get around the bed.
> walk forward
> success
Environment: <observation image>. You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a
computer 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer
1, a laundryhamper 1, a cabinet 1, a shelf 6, a shelf 5, a shelf 4, a
shelf 3, a shelf 2, and a shelf 1, a laundryhamper 2.
> think: First I need to find a computer. From the obsersation image, a
computer is on desk 1. From the dynamic model output, you should walk
forward to get around the bed.
> walk forward
> success

Status: Success
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(a) observation (b) next observation (c) seg-inst
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Figure 9: Samples in the sequence of closing the microwave.
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(a) observation  (b) next observation (c) seg-inst (d) depth
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Figure 10: Samples in the sequence of walking through the door.
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(a) observation  (b) next observation (c) seg-inst
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(d) depth

(e) optical flow

Figure 11: Samples in the sequence of switching on the toaster.
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(a) Original (b) InstructP2P (finetuned) (c) Previous flow (d) Ours (previous flow) (e) Predicted flow (f) Ours

Figure 12: Examples of the generated image of the EgoPlan in VirtualHome. We can find that in some hand
reconstruction and direction understanding scenes, the model without introducing optical flow prior information
often performs poorly.
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i

(a) grasp the cutlets

(d) stand from sofa (e) walk through (f) power up toaster

Figure 13: Examples of the generated image subgoals. The first and third rows is the original image, and the
second and forth rows is the image subgoal generated based on the text subgoal.
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