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Abstract

Recently developed large language models (LLMs) have been shown to perform1

remarkably well on a wide range of language understanding tasks. But, can they2

really “Reason” over the natural language? This question has been receiving signif-3

icant research attention and a number of reasoning skills such as commonsense,4

numerical, and qualitative have been studied. However, the crucial skill pertaining5

to ‘logical reasoning’ has remained underexplored. Existing work investigating6

this reasoning ability has focused only on a couple of axioms (such as modus7

ponens and modus tollens) of propositional and first-order logic. To study logical8

reasoning, we introduce LogicBench, a systematically created natural language9

question-answering dataset encompassing 25 reasoning patterns spanning over10

propositional, first-order, and non-monotonic logics. Key steps of our dataset11

construction consist of (1) controlled generation of sentences and their negations12

containing different ontologies, (2) (context, question, answer) triplets creation us-13

ing heuristically designed templates, and (3) semantic variations of triplets adding14

more diversity. We first evaluate easily accessible and widely used LLMs such as15

GPT-3, ChatGPT, and FLAN-T5 and show that they do not fare well on LogicBench,16

achieving just above random accuracy on average (∼ 52%). Then, we show that17

LLMs trained using our data exhibit a better understanding of logical reasoning18

leading to performance improvements on several existing logical reasoning datasets19

such as LogicNLI, FOLIO, LogiQA, and ReClor.120

1 Introduction21

Large language models such as GPT-3 [3], ChatGPT, and FLAN [18] have made remarkable progress22

in NLP research enabling machines to perform a variety of language tasks that were previously23

thought to be exclusive to humans [12, 2, 20]. However, the ability of these LLMs to reason24

“logically” over natural language text remains under-explored, even though logical reasoning is a25

fundamental aspect of intelligence and a crucial requirement for many practical applications, such26

as question-answering systems [8] and conversational agents [1]. Although several datasets have27

been proposed [4, 16, 7, 13] to evaluate the logical reasoning capabilities of LLMs, these datasets28

are limited in their scope by (1) not evaluating logical reasoning independently of other forms of29

reasoning such as LogiQA [11] and ReClor [19]; and (2) evaluating only a single type of logic and30

covering only few logical inference rules as done in FOLIO [6] and ProntoQA [14]. Thus, our aim in31

this work is to address the lacuna of having a more comprehensive evaluation dataset for LLMs.32

To this end, we propose LogicBench, a systematically created question-answering dataset for the33

evaluation of logical reasoning ability. As illustrated in Figure 1, LogicBench includes a total of 2534

1Data is available at https://anonymous.4open.science/r/LogicBench-EEBB
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Figure 1: Comprehensive representation of different inference rules and reasoning patterns covered
by propositional, first-order, and non-monotonic logics. Exp. indicates Expectation

reasoning patterns across propositional, first-order, and non-monotonic logics. To evaluate LLMs, we35

formulate a binary classification task in LogicBench in which the context represents logical statements36

and the models have to determine whether a conclusion given in the question is logically entailed by37

the context. For example, given the context “All mammals have fur” and “A cat is a mammal”, for38

the question is “Does a cat have fur?”, the correct answer, is "Yes". (Additional examples of task39

instances are presented in Table 3 and Appendix B. To construct LogicBench, we use a three-stage40

procedure (refer to §2). In the first stage, we prompt GPT-3 to generate a variety of coherent natural41

language sentences consisting of different ‘ontologies’ (i.e., a collection of concepts such as car,42

person, and animals) and their corresponding negations (refer to §2.2.1). Then, in the second stage,43

we generate (context, question, answer) triplets using heuristically designed templates based on44

the inference rules and patterns. Finally, in the third stage, we generate semantics preserving and45

inverting variations of these logical rules by incorporating negations.46

We evaluate a range of accessible and widely used LLMs including GPT-3 [3], ChatGPT, FLAN-T547

[18], Tk-instruct [17], and UnifiedQA [9] with respect to LogicBench on the accuracy of the predicted48

answers (i.e., “Yes” or “No”). Experimental results reveal that these models struggle with respect49

to many of the inference rules and patterns (showing ∼ 52% accuracy on an average), suggesting50

significant room for improvement in their logical reasoning abilities. We then synthetically augment51

LogicBench and train T5-large. Our initial experimental results show that this improves the logical52

reasoning ability of existing models leading to performance improvement on other logic datasets, such53

as LogicNLI, and FOLIO (∼ 2% on an average), and shows competitive performance on LogiQA54

and ReClor. In summary, our contributions are as follows:55

1. Introducing LogicBench: A systematically created dataset to assess the logical reasoning56

capabilities of LLMs across propositional, first-order, and non-monotonic logics. This57

benchmark will be publicly available for evaluation and training purposes.58

2. We propose a three-stage method to construct LogicBench consisting of GPT-3 to generate59

coherent natural language sentences using prompts and a template-based module to convert60

them into logical rules. By assessing the performance of existing LLMs, we gain insights61

into their logical reasoning abilities which further leads to several interesting findings.62

3. To the best of the authors’ knowledge, this is the first benchmark to study non-monotonic63

reasoning, as well as various inference rules in propositional and first-order logics including64

hypothetical and disjunctive syllogism; and bidirectional, constructive, and destructive65

dilemmas in the NLP domain.66
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2 LogicBench67

In this section we discuss the logic types, inference rules, and patterns that are explored in this68

research. We also outline the methods for generating the data, and statistics of LogicBench.69

2.1 Logics Types70

Propositional Logic (PL) Propositional logic employs a collection of statements or propositions71

(denoted as P = p1, p2, ..., pn, where pi represents a proposition) and builds upon them using logical72

connectives such as ‘∧’, ‘∨’, ‘→’, ‘↔’, and ‘¬’. Several inference rules for propositional logic73

have been defined using which given a set of premises, one can derive a sound conclusion. To74

illustrate this, let us consider two propositions: p1, which states "It is raining," and p2, which states75

"It is cloudy." From these propositions, we can construct a context (KB) consisting of two premises:76

(1) p1 → p2 and (2) p1. Based on this KB, we can conclude p2. This inference rule is written as77

((p1 → p2) ∧ p1) ⊢ p2 and is known as ‘Modus Ponens’. In our study, we explore nine distinct78

inference rules of propositional logic, extensions of seven of them with one-variable and a universal79

quantifier, and two axioms of first-order logic as shown in Table 1. These inference rules provide a80

systematic framework for deriving valid conclusions.81

Names Propositional Logic Extension to a (restricted) First-order Logic
MP ((p → q) ∧ p) ⊢ q (∀x(p(x) → q(x)) ∧ p(a)) ⊢ q(a)

MT ((p → q) ∧ ¬q) ⊢ ¬p (∀x(p(x) → q(x)) ∧ ¬q(a)) ⊢ ¬p(a)
HS ((p → q)) ∧ (q → r)) ⊢ (p → r) (∀x((p(x) → q(x)) ∧ (q(x) → r(x))) ⊢ (p(a) → r(a))

DS ((p ∨ q) ∧ ¬p) ⊢ q (∀x(p(x) ∨ q(x)) ∧ ¬p(a)) ⊢ q(a)

CD ((p → q) ∧ (r → s) ∧ (p ∨ r)) ⊢ (q ∨ s) (∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (p(a) ∨ r(a))) ⊢ (q(a) ∨ s(a))

DD ((p → q) ∧ (r → s) ∧ (¬q ∨ ¬s)) ⊢ (¬p ∨ ¬r) (∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (¬q(a) ∨ ¬s(a))) ⊢ (¬p(a) ∨ ¬r(a))
BD ((p → q) ∧ (r → s) ∧ (p ∨ ¬s)) ⊢ (q ∨ ¬r) (∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (p(a) ∨ ¬s(a))) ⊢ (q(a) ∨ ¬r(a))
CT (p ∨ q) ⊢ (q ∨ p) -

MI (p → q) ⊢ (¬p ∨ q) -

EI - ∃xP (x) ⇒ P (a)

UI - ∀xA ⇒ A{x 7→ a}

Table 1: Inference rules and (two) axioms that establish the relationship between premises and their
corresponding conclusions. MP: Modus Ponens, MT: Modus Tollens, HS: Hypothetical Syllogism,
DS: Disjunctive Syllogism, CD: Constructive Dilemma, DD: Destructive Dilemma, BD: Bidirectional
Dilemma, CT: Commutation, MI: Material Implication, EI: Existential Instantiation, UI: Universal
Instantiation

First-order Logic (FOL) In this work, we consider a restricted set of logical axioms for FOL that82

utilize quantifiers, ∀ (universal quantifier) and ∃ (existential quantifier). The universal quantifier83

(∀) denotes that a statement holds true for all instances within a specific category. In contrast, the84

existential quantifier (∃) indicates that a statement is true for at least one instance within its scope.85

For instance, a simple extension of propositional ‘Modus Ponens’ is an inference rule where given86

the premises ∀(p(x) → q(x)) and p(a), we conclude q(a) (e.g., given “All kings are greedy” and87

“Sam is a king”, we can conclude “Sam is greedy”). Here, we explore various axioms and inference88

rules that incorporate the quantifiers shown in Table 1.89

Non-monotonic (NM) Reasoning In this work, we analyze a range of logical reasoning templates90

in NM logics involving “Default Reasoning,” “Reasoning about Unknown Expectations,” and “Rea-91

soning about Priorities.” These templates are inspired by the compilation [10] made in 1989 to92

evaluate the abilities of various non-monotonic logics that were being developed at that time. Below93

Table 2 shows examples of NM reasoning. Additional examples are given in Appendix B.3.94

A key aspect of NM logics is to formalize notions such as "normally," "typically," and "usually"95

that are not directly formalizable using classical quantifiers in the first-order setting. The general96

rule “Heavy blocks are normally located on the table" does not imply that “All heavy blocks are97
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Basic Default Reasoning Default Reasoning with Irrelevant Information

Context: Blocks A and B are heavy.
Heavy blocks are typically located on the table.
A is not on the table.

Conclusion: B is on the table.

Context: Blocks A and B are heavy.
Heavy blocks are typically located on the table.
A is not on the table.
B is red.

Conclusion: B is on the table.

Reasoning about Unknown Expectations Reasoning about Priorities
Context: Blocks A, B, and C are heavy.
Heavy blocks are normally located on the table.
At least one of A, B is not on the table.

Conclusion: C is on the table.
Exactly one of A, B is not on the table.

Context: Jack asserts that block A is on the table.
Mary asserts that block A is not on the table.
When people assert something, they are normally right.

Conclusion: If Mary’s evidence is more reliable than Jack’s.
then block A is not on the table

Table 2: Illustrative examples of non-monotonic reasoning adapted from [10]

always located on the table". Rather, this rule allows for exceptions. Our work explores various NM98

reasoning types, as depicted in Figure 1, to delve deeper into the nuances of this type of reasoning.99

2.2 Data Creation100

S: John exercises regularly.
~S: John does not exercise regularly.

Prompt

Stage 1: Sentence Generation

Negator
Module+

<S1,¬S1>, <S2,¬S2>, .., <Sn,¬Sn>

Sentence Pairs

Stage 2: NL Conversion

Modus Tollens:
((S1 → S2 ) ∧ ¬S2 ) ⊢  ¬S1
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1 Context: If S1, then S2. We know that ¬S2. 

Question: Does this context imply ¬S1?

Answer: Yes
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2
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4

Context: If S1, then S2. We know that ¬S2. 
Question: Does this context imply ¬S1?

Figure 2: Schematic representation of three-stage procedure for data creation. NL: Natural Language

Our data creation procedure, illustrated in Figure 2, consists of three stages:101

1. Sentence Generation: Starting with a given prompt, we generate coherent sentences and102

their negations that incorporate different ontologies.103

2. NL Conversion: Using predefined templates of reasoning patterns based on their formal104

expressions, we convert the generated sentences into (context, question, answer) triplets.105

3. Variation Generation: We generate semantically preserving and inverting variations of106

these triplets to add more diversity.107

By following this method, we construct LogicBench, and examples of generated data corresponding108

to each logic type and reasoning patterns are presented in Appendix B.109

2.2.1 Sentence Generation110

Here, the first step is to generate sentences with diverse ontologies. An ontology represents a111

collection of concepts (e.g. car, person, animals, etc.) along with their corresponding associated112

4



properties. To generate these sentences, we prompt the GPT-3 model with instructions tailored for113

each inference rule. The prompt schema, as depicted in Figure 3, comprise three crucial components:114

Definition

Examples
< sentences, context, question >
< sentences, context, question >
< sentences, context, question >

Instruction for Formatting 

Figure 3: Schematic representation of
prompt.

Definition provides a detailed explanation of the task and115

offers a natural language representation of the reasoning116

pattern for which we are generating sentences.117

Examples provide sample sentences that need to be gener-118

ated. We also illustrate how these sentences will be utilized119

in later stages, emphasizing the importance of coherence120

and the inclusion of relevant ontological concepts.121

Format We provide specific formatting instructions to122

guide the generation of sentences.123

An example of a prompt corresponding to the ‘Modus124

Tollens’ from PL is presented in Appendix A for better125

illustration. Note that our objective at this stage is not to126

generate logical sentences but rather to generate a diverse127

and coherent set of sentences that encompass various con-128

cepts. We also create a negation sentence corresponding to129

each generated sentence2. In this work, the scope of generating negations is simple (refer to Appendix130

C for examples), however, negations can be more complicated in the case of logic. These generated131

sentences will be combined with logical connectives in a later stage to form context and questions.132

2.2.2 NL Conversion133

We focus on leveraging the formal expressions of reasoning patterns to create templates that establish134

the desired NL formulation for each logical connective. For instance, implication: “p → q” is135

expressed as “If p, then q”, conjunction: “p ∧ q” is expressed as “p and q.”, and disjunction: “p ∨ q”136

is expressed as “At least one of the following is true: (1) p and (2) q. Note that we do not know which137

of (1) and (2) is true. It is possible that only (1) is true, or only (2) is true, or both are true.”138

With these established formulations, we proceed to utilize the sentences generated in §2.2.1 to139

create the context and questions corresponding to reasoning patterns. For instance, let’s consider140

the “Modus Tollens” from PL (((p → q) ∧ ¬q) ⊢ ¬p), and the “Bidirectional Dilemma” from FOL141

(∀x((p(x) → q(x)) ∧ (r(x) → s(x))) ∧ (p(a) ∨ ¬s(a))) ⊢ (q(a) ∨ ¬r(a))). Table 3 presents142

examples of logical context and questions for these inference rules, and Appendix C showcases143

further examples corresponding to each inference rule and patterns from LogicBench.144

2.2.3 Variation Generation145

After generating the context and questions in §2.2.2, we generate semantically preserving and146

inverting variations of questions. Let’s consider the example of “Modus Tollens” from Table 3,147

where the question is: “If he won’t order pizza for dinner, does this imply that Liam didn’t finish his148

work early?” In this question, we observe two propositions: s1, representing the statement “Liam149

didn’t finish his work early,” and s2, representing the statement “He won’t order pizza for dinner.”150

By perturbing these propositions, we can create four possible tuples: < s1, s2 >,< ¬s1, s2 >151

, < s1,¬s2 >,< ¬s1,¬s2 >. Each tuple represents a combination of true or negation values152

for the propositions. Although it is possible to create more combinations from < s1,¬s1 >, and153

< s2,¬s2 >, we refine and restrict the set of triplets to exclude those that undermine the validity154

of the inference rule. To generate question variations, we replace the propositions in the original155

question with the corresponding tuples from the generated variations, hence, adding more diversity156

to LogicBench. This process allows us to create different variations of the question, as illustrated in157

Figure 2 (Step 3). More examples of question variations are in Appendix B.158

2We use https://github.com/dmlls/negate to generate negated sentences
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Axiom Generated sentences in stage 1 Context and Question

Modus Tollens

p: Liam finished his work early.
¬p: Liam did not finish his work early.
q: He will order pizza for dinner.
¬q: He will not order pizza for dinner.

Context: If Liam finished his work early, then he will
order pizza for dinner.

Question: If he won’t order pizza for dinner, does
this imply that Liam didn’t finish his work early?

Bidirectional
Dilemma

p(x): someone drinks lots of water
q(x): they will feel hydrated
r(x): they eat too much sugar
s(x): they will experience a sugar crash
p(a): Jane drinks lots of water
¬p(a): Jane does not drink lots of water
q(a): she will feel hydrated
¬q(a): she will not feel hydrated
r(a): she eats too much sugar
¬r(a): she does not eat too much sugar
s(a): she will experience a sugar crash
¬s(a): she will not experience a sugar crash

Context: If someone drinks lots of water, then they will
feel hydrated. If they eat too much sugar, then they will
experience a sugar crash. We know that at least one of
the following is true (1) Jane drinks lots of water and (2)
she won’t experience a sugar crash. Note that we do not
know which ones of (1) and (2) are true. It might be the
case that only (1) is true, or only (2) is true or both are true.

Question: If at least one of (1) and (2) is true,
can we say, at least one of the following must always be
true? (a) she will feel hydrated and (b) she doesn’t eat too
much sugar.

Table 3: Illustrative examples of logical context and questions created using sentences that are
generated in the first stage §2.2.1.

2.3 Statistics and Qualitative Analysis159

Statistics We introduce two versions of our proposed dataset: LogicBench(Eval) and Log-160

icBench(Aug). Statistics of both versions are presented in Table 4. Here, LogicBench(Eval) is161

created using the above method along with human-in-loop to ensure the quality of generated data,162

whereas LogicBench(Aug) is only a synthetically augmented version for training purposes.163

Dataset # of Instances
per Axiom

Total # of
Instances

Total # of Instances
(Including Variations)

LogicBench(Eval) 20 500 1720
LogicBench(Aug) 150 3750 12908

Table 4: Statistics of the LogicBench(Eval) and LogicBench(Aug)

These two versions aim164

to accommodate differ-165

ent evaluation and train-166

ing needs to explore log-167

ical reasoning. Consider-168

ing the cost and complex-169

ity associated with recent170

LLMs such as GPT-3, and171

GPT-4, we believe that LogicBench(Eval) provides a more feasible evaluation benchmark.172

Quality of Data Throughout the data generation phase of LogicBench(Eval), the authors conduct173

a review of the logical formations to ensure they adhered to the intended structure. We examine174

each reasoning pattern for any potential discrepancies, ensuring that they were logically sound and175

correctly represented the intended relationships between propositions. In addition to the logical176

formation, we also dedicated considerable effort to eliminating typos and validating the grammar.177

3 Results and Analysis178

3.1 Experimental Setup179

Task Formulation We formulate binary classification task using LogicBench to evaluate the logical180

reasoning ability of LLMs. Let us consider a set of data instances Ia,L corresponding to axiom a181

and logic type L. In this set, ith instance is represented as Ii
a,L = {(ci, Qi)} where ci represents182

context and Qi = {q1, q2, ..., qn} represents set of question and its variations corresponding to ith183

instance. As discussed in §2, each context (c) represents logical rules (e.g., All cats have fur. Tom is184

a cat.) and question (q) represents the conclusion (e.g., Does Tom have fur?). To each context and185

question pair, i.e., < c, q >, we assign a label from the set Y = {Y es,No}. We assign a label Y es186

if the conclusion logically entails the context, otherwise, assign a label No. To evaluate any model187

on this setup, we provide < c, q > as input to predict a label from Y .188
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Experiments We evaluate easily available and widely used prompting models (i.e., GPT-3 (davinci-189

003) and ChatGPT), and instruction-tuned models (FLAN-T5 and Tk-instruct) on LogicBench(Eval).190

Since logical reasoning is an important aspect of different QA tasks, we also evaluate UnifiedQA.191

Each model is evaluated in a zero-shot setting where the prompt is provided to the model without192

any in-context examples. This approach allows us to determine LLM’s inherent ability to do logical193

reasoning (based on pre-training), as we can not expect that various logical inference rules/patterns194

will always be made part of prompts. However, we do evaluate these models in a few-shot setting,195

and present the results in Appendix F. We also present exploratory – only exploratory because of the196

limited availability of their inference APIs – analysis over Bard and GPT-4 in Appendix G.197

In addition, we employed the T5-large model and trained it on the LogicBench(Aug) resulting in a198

model named LogicT5. LogicT5 has achieved ∼ 97% of accuracy on LogicBench(Eval) since it is199

evident that supervised fine-tuning improves results by a large margin. Subsequently, we performed200

fine-tuning on four other logical reasoning datasets: LogiQA, Reclor, LogicNLI, and FOLIO. Our201

experiments were carried out in two settings: single-task (fine-tuning and evaluation on one dataset)202

and multi-task (fine-tuning on all four datasets combined, with separate evaluations for each dataset).203

A detailed experimental setup is described in Appendix D.204

Metrics Here, we evaluate performance in terms of accuracy corresponding to each label, i.e.,205

A(Y es) and A(No). We evaluate each model on three different prompts and report average results206

across these prompts. All prompts used for experiments are described in Appendix D.207

3.2 Benchmark Results208

Table 5 represents label-wise accuracy (A(Y es) and A(No)) corresponding to each LLMs. Here,209

we focus on analyzing the A(Y es) since the aim is to understand the model’s logical reasoning210

capabilities in answering the question where the conclusion entails the logical context. Table 5211

provides valuable insights into the performance of different models on various logic types. For212

PL, UnifiedQA exhibits an average performance of 15%, while FLAN-T5 and Tk-instruct achieve213

∼ 25%. GPT-3 demonstrates a performance of 57.6%, and ChatGPT achieves 46.8%. Moving on to214

FOL, these models showcase performance accuracy of 52.7%, 51.2%, 55.7%, 76.2%, and 72.6% for215

UnifiedQA, FLAN-T5, Tk-instruct, GPT-3, and ChatGPT, respectively. On the NM reasoning, these216

models show an accuracy of 63.5%, 56.2%, 56.3%, 62%, and 70.9%, respectively. Overall, these217

models display an average performance of ∼ 34%, ∼ 61%, and ∼ 62% on PL, FOL, and NL.218

From Table 5, we can observe that models struggle more with inference rules of PL compared to219

FOL and NM reasoning. Furthermore, it is noticeable that each model performs relatively better on220

questions with a negative response (i.e., No) compared to questions with a positive response (i.e.,221

Y es). This observation suggests that the models struggle to fully comprehend the logical relationship222

between the context and the conclusion (i.e., lower A(Y es)). However, they demonstrate a relatively223

stronger understanding when the relationship is contradictory in nature (i.e., higher A(No)). However,224

analyzing the performance of the models on inference rules is crucial to understand their limitations.225

Table 5 presents the inference rule-wise performance for each model as well.226

3.3 Analysis and Discussion227

Large models are better logical reasoners. Based on the observed performance from Table 5,228

it becomes evident that larger model sizes and extensive pre-training data contribute to a better229

understanding of logical aspects. Consequently, models with larger sizes tend to exhibit higher230

performance across different types of logic. Nonetheless, the average performance remains at around231

52.7%, indicating room for improvement in these models’ logical comprehension capabilities.232

Negations are hard to understand when embedded with logical rules. Regarding PL and FOL,233

it is apparent that the models struggle more with the DS, DD, and MT inference rules. A closer234

look at Table 1 reveals that all of these axioms include examples where the models need to draw235

conclusions based on negated premises. This indicates that the models encounter difficulties when236
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Type Axiom FLAN-T5 Tk-instruct UnifiedQA GPT-3 ChatGPT

A(No) A(Y es) A(No) A(Y es) A(No) A(Y es) A(No) A(Y es) A(No) A(Y es)

PL

HS 100 48.4 97.9 57.9 81.6 95.2 97.6 78.3 100 57.2
DS 64.1 8.3 67.9 10.9 68.8 2.1 75.5 33.3 73.8 5.5
CD 50 25 75 25 63.3 0 97.7 75.4 99.4 81.0
DD 75 25 75 25 71.1 0 78 43.4 100 33.1
BD 75 25 75 25 88.8 0 80.5 97 97.4 58.0
MT 92.2 44.6 74.5 24.4 74.1 22.9 72.5 17.5 92.3 45.5
MI 63.7 23.2 64.2 0 90.3 0 81.5 33.3 91.3 41.3
CT 25 16.7 78.3 31.5 95.2 0 95.8 97 100 52.3

Avg 68.1 27 76 25 79.1 15 84.9 59.4 94.3 46.8

FOL

EI 100 100 95 100 98.4 100 88.9 100 89.7 100
UI 98.1 86.9 89.3 84.4 72.5 94.9 88.2 98.2 85.1 94.3
MP 99.2 79.3 88.6 86.3 70.7 87.4 81.6 82.3 88.5 80.1
HS 100 49.2 100 52.7 83.6 88.3 94.9 78.7 95.7 53.1
DS 72.1 21.9 71.4 4.6 80.4 55.6 81.8 96.3 88.2 97.6
CD 75 25 91.7 62 54.6 0 93.2 65.9 93.7 87.9
DD 75 25 87.4 28 94.4 0 75.4 44.4 83.9 30.6
BD 25 25 91.7 47 100 33.3 77.5 94.4 98.7 67.6
MT 93.3 48.1 81.8 35.9 70.8 15.2 74.8 25.7 85.9 42.3

Avg 82 51.2 88.5 55.7 80.6 52.7 84.1 76.2 89.9 72.6

NM

DRI 60.5 59.6 52.5 53.8 58.2 61.7 75 100 75.6 89.6
DRS 66.3 2.9 60 3.9 67.3 2.8 72.6 10.1 72.7 0
DRD 95 95 88.8 75.7 68.1 97.8 84.7 100 82.2 100
DRO 40 42.6 43.8 45.3 53.2 91.7 65.3 100 70.3 100
RE1 74.2 24.2 85.2 28 75.8 33.3 74.3 0 81.4 33.6
RE2 100 100 98.2 93.8 56.2 66.7 50 0 62.3 64.7
RE3 65.6 63 78.3 57.7 78.2 81 64.5 93.6 67.2 82.7
RAP 70.1 62.6 76.9 92.5 64.5 73 56.8 92.2 58.3 96.9

Avg 71.5 56.2 73 56.3 65.2 63.5 67.9 62 71.3 70.9

Table 5: Evaluation of LLMs in terms of label-wise accuracy on LogicBench(Eval), where A(Y es)
and A(No) denote the accuracy for the Y es and No labels, respectively. DRI: Default Reasoning
with Irrelevant Information, DRS: Default Reasoning with Several Defaults, DRD: Default Reasoning
with a Disabled Default, DRO: Default Reasoning in an Open Domain, RE1: Reasoning about
Unknown Expectations I, RE2: Reasoning about Unknown Expectations II, RE3: Reasoning about
Unknown Expectations III, RAP: Reasoning about Priorities

negated premises are introduced. Additionally, the performance of the models tends to decrease when237

inference rules involve negations.238

Longer inference rules are still challenging. Table 1 indicates that the models face challenges239

when handling longer rules, such as BD, CD, and DD, both in PL and FOL. Hence, it can be240

concluded that these models struggle with longer logical dependencies in the premise, particularly241

when a higher number of propositions are present. In the case of NM reasoning, the models exhibit242

lower performance in DRS of NM reasoning, indicating that a higher number of rules in the context243

often leads to more frequent mistakes.244

Effect on other logic datasets Table 6 represents the accuracy comparison between LogicT5 and245

baseline T5-large in both single-task and multi-task settings. The results indicate that training LLMs246

on LogicBench(Aug) has a greater impact on logic datasets that primarily focus on logical reasoning,247

such as FOLIO and LogicNLI. Hence, we can observe that LogicT5 consistently outperforms the248

baseline for LogicT5 and FOLIO. However, LogiQA and ReClor encompass other forms of reasoning249

in addition to logical reasoning, hence, LogicT5 demonstrates competitive performance on them.250

How do LLMs reason step-by-step? We investigate the fraction of low-performing axioms that251

contain various types of logical reasoning steps to predict the answer, and whether the correctness252

of those steps is correlated with the performance. Here, we perform a case study on ChatGPT.253

We prompt ChatGPT to generate reasoning steps along with predictions. For PL, we observe that254
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Methods Models LogiQA FOLIO LogicNLI ReClor

Single-Task T5-large 16.8 69.6 82.3 35.4
LogicT5 16.9 71.2 84.4 36.8

Multi-Task T5-large 21.8 83.8 68.2 42.8
LogicT5 19.7 85.6 69.8 40.0

Table 6: Performance comparison between LogicT5 and baseline T5-large in terms of accuracy.

while the model can effectively reason the initial section of the disjunctive syllogism involving two255

possibilities p or q, it encounters challenges in deducing whether q should follow from the ¬p. For256

FOL, ChatGPT encounters challenges in comprehending longer logical contexts, resulting in a lack257

of confidence in establishing the relationship between given propositions. Furthermore, to derive258

an accurate conclusion when the rules are followed correctly, the model relies on supplementary259

evidence. We observe that ChatGPT encounters difficulties in comprehending the nuanced meanings260

of words such as “usually”, “normally” and “typically” when establishing sentence relationships261

within NM reasoning. Notably, when it comes to the rule of default reasoning, ChatGPT fails to grasp262

inherent associations between two entities that commonly share characteristics. Examples and more263

analysis of generated explanations for each logic type are presented in Appendix E.264

4 Related Work265

LogiQA [11] and ReClor [19] have made notable contributions by compiling multichoice questions266

from standardized graduate admission examinations that demand diverse forms of logical reasoning.267

However, in contrast to our LogicBench, these datasets involve complex mixed forms of reasoning and268

do not specifically focus on assessing logical reasoning in isolation. A few past attempts have been269

made to create datasets to evaluate only logical reasoning while excluding other forms of reasoning.270

For example, CLUTTER [15] covers inductive reasoning, [5] covers temporal logic, and Ruletaker271

[4] evaluates whether a transformer-based model emulates deductive reasoning over synthetically272

generated statements in a limited setting. LogicNLI [16] introduced a diagnostic benchmark for273

FOL reasoning, with the dataset constructed by first automatically generating logic expressions and274

then replacing the entity and attribute placeholders in the logic expressions with simple and random275

subjects and predicates. FOLIO [6] gives diverse and complex logical expressions, however, it is only276

limited to FOL. ProntoQA [14] provides explanation and reasoning steps but is limited to modus277

ponens in FOL. Additional datasets for evaluating logical reasoning also exist such as TaxiNLI [7]278

introduce logical taxonomy in NLI task and RuleBert [13] covers only soft logical rules. In summary,279

LogicBench is evaluate logical reasoning in isolation and provides more diverse inference rules and280

logic types compared to existing datasets. Extended related work is discussed in Appendix H.281

5 Conclusions282

To study the logical reasoning ability of LLMs, we introduced a novel benchmark called LogicBench283

which consists of 25 distinct inference rules and reasoning patterns covering propositional, first-284

order, and non-monotonic logics. We released two versions of the dataset: LogicBench(Eval) and285

LogicBench(Aug). LogicBench(Eval) serves as a high-quality, cost-effective, and reliable dataset for286

evaluating LLMs, while LogicBench(Aug) can be utilized for training purposes. Through compre-287

hensive experiments, we showed that models such as GPT-3 and ChatGPT do not perform well on288

LogicBench, even though they require the application of only a single inference rule in positive (i.e.,289

label ‘Yes’) data instance. Furthermore, we demonstrated that LLMs trained using LogicBench(Aug)290

showcase an improved understanding of logical reasoning, resulting in a better performance on291

existing logic datasets. Though LogicBench facilitates the evaluation and improvement of the logical292

reasoning ability of LLMs, it can be further extended by incorporating other inference rules and logic293

types; and having data instances that require applications of multiple inference rules.294
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