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Abstract001

Code-switching (CS) is when a speaker alter-002
nates between two or more languages within003
a conversation, even within a single phrase.004
CS presents significant challenges for auto-005
matic speech recognition (ASR) systems due to006
mixed grammatical structures, accents and in-007
sentence language changes. One useful method008
for enhancing ASR performance on CS data009
is the accurate identification of the token Lan-010
guage Identities (LID). However, the LID of011
tokens do not explicitly inform ASR models012
of the dominant language which provides the013
grammatical structure for the CS utterance. The014
Matrix Language Frame (MLF) theory pro-015
vides a syntactic and structural framework for016
the generation and analysis of CS utterances.017
It explains the CS process through the inter-018
action of the two languages: the Matrix Lan-019
guage, which provides the grammatical struc-020
ture for the CS utterance, and the Embedded021
Language, which is the language that is being022
inserted into the grammatical frame. This pa-023
per investigates the impact of Matrix Language024
Identity (MLID) analysis from the MLF the-025
ory on the effectiveness and accuracy of ASR026
systems when processing CS speech. The text-027
derived MLID was predicted from CS audio028
simultaneously with the ASR and token Lan-029
guage Identity (LID) prediction task, and the030
whole model was trained in a multi-task learn-031
ing (MTL) setup. The proposed CS ASR sys-032
tem was compared to other MTL setups and033
showed a Mixed Error Rate (MER) decrease034
from 20.2% in an Attention-CTC ASR base-035
line to 19.7%. It was shown that having pre-036
dicted MLID as Mandarin leads to an increase037
of recognised function words, indicating that038
MLID informs the ASR decoder of the gram-039
matical properties of the utterance.040

1 Introduction041

Code-switching (CS) refers to the phenomenon042

in which speakers alternate between two or more043

languages within a single conversation, utterance,044

or sentence, both in spoken and written forms. 045

While this linguistic behaviour is a natural and 046

widespread mode of communication in many multi- 047

lingual communities, it poses significant challenges 048

for natural language processing systems, particu- 049

larly Automatic Speech Recognition (ASR). One 050

of the primary difficulties in developing effective 051

CS-capable ASR systems lies in the limited avail- 052

ability of high-quality code-switched data, which 053

is substantially scarcer than data for monolingual 054

speech. As a result, ASR models trained on CS data 055

often underperform relative to their monolingual 056

counterparts (Radford et al., 2023). 057

Nevertheless, the prevalence of code-switching 058

in multilingual societies—such as India, South 059

Africa, and Nigeria—underscores the urgent need 060

for robust and adaptable ASR systems that can han- 061

dle language mixing effectively (Diwan et al., 2021; 062

Ncoko et al., 2000; Rufai Omar, 1983). Improv- 063

ing ASR performance for CS speech is not only a 064

technical challenge but also a critical step toward 065

creating inclusive language technologies that re- 066

flect the linguistic realities of diverse populations. 067

The Linguistic Matrix Language Frame (MLF) 068

theory (Myers-Scotton, 1993) provides an expla- 069

nation for CS production and introduces the con- 070

cept of a main, i.e. dominant language and a sec- 071

ondary, inserted language in CS utterances. These 072

languages are called Matrix Language (ML) and 073

Embedded Language (EL), respectively. MLF the- 074

ory introduces two methods for ML determination: 075

1. The Morpheme Order Principle - the ML will 076

provide the surface morpheme order for a CS 077

utterance if it consists of singly occurring EL 078

lexemes and any number of ML morphemes; 079

2. The System Morpheme Principle - all system 080

morphemes that have grammatical relations 081

external to their head constituent will come 082

from the ML. 083
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However, there is limited research on the auto-084

matic classification of the Matrix Language Identity085

(MLID). Consequently, due to the lack of research086

on MLID classification, the impact on the perfor-087

mance of ASR systems has not been studied. This088

paper aims to fill the gaps outlined above by inves-089

tigating how MLID can enhance the effectiveness090

of ASR systems in recognising CS speech.091

In this paper, a novel CS ASR system was092

proposed, which makes use of the auxiliary text-093

derived MLID prediction in an MTL setup to im-094

prove SotA CS ASR performance. Multiple ASR095

systems were trained to demonstrate the effects096

of incorporating conventional LID information on097

both utterance and token levels. The LID-based098

ASR systems were compared to an ASR system099

with an auxiliary MLID component. The MLID-100

based system ASR predictions were then analysed101

to demonstrate if using an MLID component in a102

multitask learning setup will increase the odds of103

recognising function words of the ML.104

The remainder of the paper is structured as fol-105

lows. The next section provides a comprehensive106

summary of the related literature. Afterwards, a de-107

tailed description of the methods used is provided.108

This is followed by a section on experiments, which109

provides information on datasets, detailed imple-110

mentation, experiment descriptions and outcomes.111

The final content section presents a discussion and112

analysis of the results. Conclusions summarise and113

complete the paper.114

2 Related work115

Following the ideas of the linguistic theory, one116

can state that CS is an outcome of compositions of117

two models and it is not a manifestation of a new118

language. This way, according to linguistic theory,119

multilingual data should be sufficient for building120

an ASR model that can recognise CS. This encour-121

aged the emergence of LID-based approaches in122

multilingual and CS ASR. Initial attempts at mul-123

tilingual ASR (Ma et al., 2002) explored multi-124

lingual speech recognition conditioned on explicit125

utterance LID, setting the stage for later integration126

of LID into acoustic modelling. Similarly, Zhang127

et al. 2014 proposed training stacked bottleneck128

features conditioned on utterance LIDs, which im-129

proved multilingual ASR performance across mul-130

tiple languages. However, not a single multilingual131

ASR system was able to surpass the quality of an132

ASR trained on CS data (Khassanov et al., 2019;133

Li et al., 2019; Shan et al., 2019). This is due to the 134

multilingual ASR systems not being introduced to 135

additional information that might help with CS de- 136

tection in an audio stream, for example, sequential 137

and grammatical information only available in real 138

CS data. White et al. 2008 investigated acoustic 139

models for CS, emphasising the importance of EL 140

as opposed to ML acoustic modelling when han- 141

dling EL insertions. However, Yılmaz et al. 2016 142

later explored bilingual deep neural networks for 143

Frisian-Dutch CS speech, showing the feasibility 144

of shared representations for closely related lan- 145

guages. LID of a whole CS utterance in an ASR 146

pipeline may be performed when CS is regarded 147

as a separate language (Mary N J et al., 2020), in 148

this case, the MTL component performs both LID 149

and CS detection. If a multilingual ASR system 150

uses a conventional LID component as an auxil- 151

iary task without a separate CS language, then LID 152

prompts the CS recognition output to be monolin- 153

gual (Toshniwal et al., 2017). LID of a CS utter- 154

ance is ill-defined since a CS utterance is a mix of 155

two languages and cannot be a separate language 156

according to the linguistic theory (Myers-Scotton, 157

1993). Consequently, there have been no attempts 158

to classify CS utterances based on the dominant lan- 159

guage in the utterance in such a way that it would 160

improve CS ASR quality. 161

The emergence of end-to-end (E2E) models 162

prompted a shift towards token-level and frame- 163

level handling of CS in ASR. Watanabe et al. 2018 164

introduced a language-independent E2E ASR archi- 165

tecture capable of joint frame-level LID and ASR 166

in simulated CS data. Luo et al. 2018 have intro- 167

duced advanced E2E models specifically for CS 168

that can handle spontaneous switches by introduc- 169

ing in-prompt switch tokens among the predicted 170

ASR tokens. Other works, where token (e.g. word) 171

LIDs were utilised to improve CS ASR recognition 172

include Zeng et al. 2019; Seki et al. 2019; Mary N J 173

et al. 2020; Liu et al. 2021b, 2023; Wang and Li 174

2023. However, token LIDs do not consider the dis- 175

tribution of tokens based on their explicit grammat- 176

ical role. One could argue that such a linguistically 177

informed token LID model can be implicitly learnt 178

from text-derived LID tokens and corresponding 179

audio, but for this to be true large amounts of CS 180

ASR data are required, which cannot be achieved 181

as of today. 182

The above demonstrates that the impact of acous- 183

tic MLID classification on the performance of ASR 184

systems has not been studied. Although knowing 185
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the MLID of an utterance increases the likelihood186

of recognising ML system morphemes (Myers-187

Scotton, 2002), this information has not been ex-188

plicitly leveraged to improve code-switching ASR189

performance. Other ideas from the MLF theory190

have been used in CS Language Modelling (LM)191

for ASR, for example text augmentation (Yilmaz192

et al., 2018; Lee et al., 2019), using additional gram-193

matical information during LM construction (Adel194

et al., 2015; Soto and Hirschberg, 2019) or includ-195

ing a separate MLF-inspired loss function in an196

E2E model during monolingual training (Chang197

et al., 2019; Lee and Li, 2020). This paper aims to198

fill the gaps outlined above by investigating how199

MLID can enhance the effectiveness of ASR sys-200

tems in recognising CS speech.201

3 CS ASR using MLF theory202

3.1 P1.2: The Morpheme Order Principle203

The original definition of the Morpheme Order204

Principle (described in Section 1) includes two sep-205

arate features of the ML. Therefore, one can derive206

two separate principles for ML determination based207

on the Morpheme Order Principle:208

P1.1) ML provides context for singly occur-209

ring words,210

P1.2) ML provides the morpheme order for211

the utterance.212

In this paper the second part of the Morpheme213

Order Principle namely P1.2 is implemented for214

multiple languages which states that the morpheme 215

order comes from the ML. For example, in “你觉 216

得我们speak clear enough吗” a translation of the 217

auxiliary Mandarin verb 吗 will never appear at 218

the end of an utterance in English, signifying that 219

Mandarin is ML in this utterance. 220

P1.2 can be defined formally for several lan- 221

guages as follows. Assume that the languages 222

(𝐿1, ..., 𝐿𝑁 ) ⊂ 𝐿 are present in a CS utter- 223

ance y, then y can be translated into monolin- 224

gual utterances (ŷ𝐿1 , ..., ŷ𝐿𝑁
) by translating the 225

words to words of the other constituent language. 226

(ŷ𝐿1 , ..., ŷ𝐿𝑁
) are obtained from the original ut- 227

terance y. Consider a probability of an utterance 228

𝑃(y|𝐿) given the language 𝐿, then to determine 229

the more likely transcription having languages 230

(𝐿1, ..., 𝐿𝑁 ) one can define the following decision 231

function: 232

ML = arg max
𝐿∈{𝐿1,...,𝐿𝑁 }

𝑃(ŷ𝐿 |𝐿) (5) 233

3.2 MTL ASR with MLID 234

Given a recording of CS utterance X with a corre- 235

sponding transcription y, then an E2E model may 236

be used to approximate a speech recognition pro- 237

cess: 𝑃(y|X,Θ), where Θ are model parameters. 238

Auxiliary tasks may be added to the ASR model, 239

making it a Multi-Task Learning (MTL) training 240

pipeline. LID conditioning in a component-based 241

system (Liu et al., 2021a) or MTL with LID pre- 242

diction (Chen et al., 2023) is commonly used in 243

multilingual ASR since the probability of an utter- 244

Θ∗
joint,Θ

∗
ASR,Θ

∗
LID = arg max

Θjoint,ΘASR,ΘLID

|𝐷 |∑︁
𝑖=1

(log 𝑃(𝑦𝑖 |X𝑖 ,Θjoint,ΘASR) + log 𝑃(𝐿𝑖 |X𝑖 ,Θjoint,ΘLID)) (1)

Θ∗
joint,Θ

∗
ASR,Θ

∗
tLID = arg max

Θjoint,ΘASR,ΘtLID

|𝐷 |∑︁
𝑖=1

(log 𝑃(𝑦𝑖 |X𝑖 ,Θjoint,ΘASR) + log 𝑃(𝑙𝑖 |X𝑖 ,Θjoint,ΘtLID)) (2)

Θ∗
joint,Θ

∗
ASR,Θ

∗
MLID,Θ

∗
tLID = arg max

Θjoint,ΘASR,ΘMLID,ΘtLID

|𝐷 |∑︁
𝑖=1

(log 𝑃(𝑦𝑖 |X𝑖 ,Θjoint,ΘASR)

+ log 𝑃(𝐿𝑖 |X𝑖 ,Θjoint,ΘMLID) + log 𝑃(𝑙𝑖 |X𝑖 ,Θjoint,ΘtLID))
(3)

Θ∗
joint,Θ

∗
ASR,Θ

∗
MLID,Θ

∗
tLID = arg max

Θjoint,ΘASR,ΘMLID,ΘtLID

|𝐷 |∑︁
𝑖=1

(log 𝑃(𝑦𝑖 |X𝑖 , �̂�𝑖 , 𝑙𝑖 ,Θjoint,ΘASR)

+ log 𝑃(𝐿𝑖 |X𝑖 ,Θjoint,ΘMLID) + log 𝑃(𝑙𝑖 |X𝑖 ,Θjoint,ΘtLID))
(4)
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ance is different depending on the language spoken245

in the utterance 𝑃(y|𝐿1) ≠ 𝑃(y|𝐿2). If 𝐷 is the246

training dataset, a multilingual ASR system trained247

with an auxiliary LID task has the joint objective248

as shown in Equation 1. In Equation 1 ΘASR are249

the parameters of the model which produces the250

ASR output, ΘLID are the parameters used to pro-251

duce the LID output, and Θjoint are the parameters252

contributing to the production of both ASR and253

LID output.254

Similarly to the MTL with utterance LID, MTL255

with token LID prediction (Liu et al., 2023) may256

be used in CS ASR. Having ASR as the main task257

and token LID as an auxiliary task, an MTL objec-258

tive may be defined in Equation 2 where 𝑙𝑖 are the259

token LID tags and ΘtLID are the parameters only260

contributing to the token LID output.261

Consequently, an MLID classifier can be used262

to further enhance CS ASR recognition quality in263

a low-resource setting. There is no existing ML264

labelled data for CS speech recordings, but MLID265

labels can be obtained from target transcriptions266

using the implementations of the principles for ML267

determination from the MLF theory (Iakovenko268

and Hain, 2024). Having determined the MLID269

for the data the following MTL objective may be270

formulated and displayed in Equation 3, where271

ΘMLID are the parameters deriving the MLID output.272

Suppose 𝑙𝑖 and �̂�𝑖 are the predicted token LID273

sequence and MLID for audio X𝑖, then the ASR274

probability may be conditioned by the predicted275

MLID and token LID. The final objective is shown276

in Equation 4.277

4 Experiments278

4.1 Datasets279

The experiments are carried out on a dataset of280

spontaneous Singaporean speech SEAME (Lyu281

et al., 2010). The SEAME dataset was collected282

in Singapore and Malaysia, with data recorded by283

Nanyang Technological University and Universiti284

Sains Malaysia, respectively. The recordings en-285

compass two distinct speaking styles: conversa-286

tional and interview-based speech. In the conver-287

sational sessions, the speech of each participant288

was recorded separately, covering a range of infor-289

mal topics such as hobbies, friendships, and daily290

activities. In contrast, the interview recordings in-291

clude only the responses of individual interviewees.292

The speakers were between 19 and 33 years of age293

with a nearly equal gender distribution (49.7% fe-294

male, 50.3% male). In total, the dataset comprises 295

156 distinct speakers, with 36.8% from Malaysia 296

and the remainder from Singapore. The dataset 297

includes 192 hours of audio recordings, 110037 298

utterances and 1449737 transcribed words. The 299

dataset is split into train, validation, and two test 300

sets devman and devsge commonly used for CS 301

ASR benchmarking (Zeng et al., 2019). The sum- 302

mary of the data splits is shown in Table 1. 303

4.2 Model 304

The ASR model employs a Conformer encoder 305

(Gulati et al., 2020) with 12 blocks and a Trans- 306

former decoder (Vaswani et al., 2017) comprising 6 307

blocks. Each block contains 4 attention heads and 308

2048-dimensional feedforward layers. The system 309

is trained using a joint loss combining attention- 310

based cross-entropy and CTC loss (Kim et al., 311

2017), along with an additional intermediate CTC 312

loss. Following (Chen et al., 2023), the weights for 313

the CTC and intermediate CTC losses are both set 314

to 0.3. Auxiliary tasks, such as token LID, utter- 315

ance LID and utterance MLID, are introduced by 316

the intermediate CTC losses. English tokens are 317

segmented using 3,000 Byte Pair Encoding (BPE) 318

units, while Mandarin tokens are represented at the 319

character level, comprising 2,622 units. The model 320

is trained with the Adam optimiser (Kingma and 321

Ba, 2014), beginning with a learning rate of 0.001 322

and employing 25,000 warm-up steps. Training is 323

conducted over 60 epochs, and the final model is 324

obtained by averaging the parameters of the top 325

10 checkpoints based on validation performance. 326

All experiments are conducted using the ESPnet 327

toolkit (Watanabe et al., 2018) on four NVIDIA 328

RTX 3060 GPUs over a period of three days. 329

When the above model is trained using an MTL 330

setup, additional output layers are defined after the 331

5th and 6th encoder blocks. The auxiliary output 332

layers perform tasks of either predicting a sequence 333

of token LIDs or predicting a single LID for the 334

whole utterance. The implemented setups are sum- 335

marised in Figure 1. b), c) and d) setups from the 336

figure will be later distinguished from others using 337

a *-mtl suffix. 338

An alternative way of including an utterance LID 339

during training is appending the LID at the begin- 340

ning of the utterance transcription (Table 3 lines 2 341

and 3). This setup will be later referred to using a 342

*-prompt suffix. 343
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Table 1: Dataset splits used for CS ASR training.

unit train validation devman devsge

Total size
hours 96.4 5 7.49 3.93

utterances 89364 4704 6531 5321
Speakers n speakers 134 134 10 10
Average

words 13.9 13.8 14.8 10.2
utterance

seconds 3.9 3.9 4.1 2.7
length

Figure 1: The outline of the ASR models used for exper-
iments. The decoders vary in different implementations:
a) The baseline implementation includes only the ASR
decoder; b) An token LID decoder is defined along-
side the ASR decoders where apart from recognising
a sequence of tokens the model is trained to predict
a sequence of token LIDs; c) An LID/MLID decoder
which performs classification of the entire utterance
is performed simultaneously with the main ASR task;
d) All decoders are used to perform ASR, token LID
and LID/MLID tasks simultaneously. The dotted arrow
from the additional decoders to the encoders signifies
the concatenation of the outputs of the encoder with the
hidden representations.

4.3 Evaluation344

This work employs several evaluation methods to345

quantify differences in recognition performance.346

All methods are based on the Levenshtein distance347

between token sequences, normalised by the num-348

ber of tokens in the reference. However, each349

method applies a different tokenisation strategy,350

thereby emphasising different types of discrepan-351

cies between predicted and reference utterances.352

A summary of these evaluation methods and their353

respective tokenisations is provided in Table 2.354

In addition to Levenshtein-based evaluation met-355

rics, Sentence Error Rate (SER) is used to quantify356

the proportion of sentences that contain recognition357

errors; it is the complement of sentence accuracy.358

The quality of utterance classification is assessed359

Table 2: Evaluation methods summary. "-" means that
the metric is not estimated for the language in the exper-
iments.

Error rate Tokens
type Acronym English Mandarin
Word WER words -

Character CER letters characters
Mixed MER words characters

using accuracy, defined as the proportion of utter- 360

ances whose predicted class matches the ground 361

truth. 362

For LID evaluation, Token Error Rate (TER) is 363

used to measure the accuracy of token-level LID 364

predictions produced by the additional decoder 365

component (denoted as d in Figure 1). At the utter- 366

ance level, two types of SER are considered: 367

1. The proportion of utterances in which the en- 368

tire sequence of token-level LID labels is in- 369

correctly predicted, and 370

2. The proportion of utterances in which the pre- 371

dicted utterance-level LID or MLID, gener- 372

ated by component c) in Figure 1, does not 373

match the ground truth. 374

4.4 Auxiliary task definitions 375

In a multi-task learning (MTL) framework, auxil- 376

iary tasks are secondary objectives learned in par- 377

allel with the primary task. In this study, the pri- 378

mary task is automatic speech recognition (ASR), 379

while the auxiliary tasks include token-level lan- 380

guage identification (LID), utterance-level LID, 381

and matrix language identification (MLID). Aux- 382

iliary tasks are particularly beneficial in scenarios 383

with limited training data, as they help guide the 384

optimisation process. Specifically, they provide ad- 385

ditional supervision signals that steer the model’s 386

gradients toward more generalizable solutions and 387

help avoid convergence to suboptimal local min- 388

ima. 389
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This subsection outlines the procedures used to390

obtain labels for the auxiliary tasks. All label gen-391

eration methods are either derived from the textual392

transcriptions, such as those for token LID and393

MLID, or sourced directly from the SEAME cor-394

pus, as in the case of utterance-level LID.395

4.4.1 Token LID396

Following Figure 1, an token LID decoder may be397

defined which predicts a sequence of token LIDs398

for an utterance. The LID of the tokens is deter-399

mined based on the script the words are written in400

similar to Wang and Li 2023. An example of the401

sequence of tokens is given in Table 3 in line 4.402

4.4.2 LID403

Apart from a token LID component, an additional404

LID task may be defined which predicts a monolin-405

gual language ID of an utterance from the SEAME406

dataset. CS between utterances (inter-sentential407

CS) is common for CS: 48% of isolated SEAME408

utterances are monolingual, so for those LID can409

be defined. The remaining CS utterances may be410

regarded as a separate language by introducing a411

separate LID "<cs>". A demonstration of such412

classification is given in Table 3 in line 5.413

Table 3: Example target labels for a sentence "okay kay
让我拿出我的calculator". a), b), c) and d) refer to the
model structure specified in Figure 1.

Decoder
type

Decoder output

ASR
(a,b,c,d)

okay kay 让 我 拿 出 我
的calculator

ASR with
LID prompt
(a)

<cs> okay kay 让我拿出我
的calculator

ASR with
MLID
prompt (a)

<zh> okay kay 让我拿出我
的calculator

token LID
(b,d)

<en> <en> <zh> <zh> <zh>
<zh> <zh> <zh> <en>

LID (c,d) <cs>
MLID (c,d) <zh>

4.4.3 MLID414

Assume that in a monolingual utterance the MLID415

is equal to LID, this way all utterances in a CS416

dataset may be classified as one of the two mixed417

languages ("<zh>" or "<en>"). MLID is derived418

from the two principles for ML determination and419

uses the following rules for accurately identifying 420

the MLID from text: 421

• P1.1) ML is the language that provides the 422

context for the singleton insertions from the 423

EL; 424

• P1.2) ML provides the word order for the CS 425

utterance; 426

• P2) ML provides the system morphemes for 427

the CS utterance. 428

P1.2 is described in Section 3 and the other two 429

rules (P1.1 and P2) are explained in greater detail 430

in Iakovenko and Hain 2024. To provide the most 431

accuracy and coverage of the principles, they are 432

applied jointly in the following order of priority: 433

P1.1 > P2 > P1.2. 434

4.5 Token LID, LID and MLID in CS ASR 435

The summary of the results is presented in Table 436

4. no-lid is the baseline implementation with no 437

additional LID losses, lid-* are the implementa- 438

tions with token LID and monolingual utterance 439

LIDs following Liu et al. 2023, ml-* are the imple- 440

mentations with token LID and utterance MLIDs. 441

MER is primarily discussed in this section since it 442

is a preferred metric in English/Mandarin CS ASR 443

research (Vu et al., 2012). 444

The table shows that any way of incorporating 445

LID information is beneficial for ASR training 446

which is known from previous research (Section 2): 447

no-lid getting the lowest total MER of 20.2%. Intro- 448

ducing the utterance LID or MLID in prompt (lid- 449

utt-prompt and ml-utt-prompt respectively) does 450

improve ASR performance in comparison to the 451

baseline (20% MER for both implementations) but 452

using MLID in an MTL setup (ml-utt-mtl) is more 453

effective achieving 19.8% MER. Interestingly, the 454

ASR quality is the same for setups when using to- 455

ken LID (lid-tok-mtl) and MLID (ml-utt-mtl) as 456

auxiliary tasks, despite token LID providing more 457

detailed information about the target text. Finally, 458

the performance may be further improved by train- 459

ing the ASR system with both MLID and token 460

LID auxiliary tasks (ml-utt-tok-mtl) yielding the 461

best result of 19.7% MER. Although the changes 462

in performance are subtle, they are statistically sig- 463

nificant: p-value test for CS utterances from de- 464

vman and devsge reveals a significant difference 465

at the level of p=0.05 between lid-utt-tok-mtl and 466

ml-utt-tok-mtl. 467
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Table 4: Model performance for all implementations. a), b), c) and d) refer to the model structure specified in Figure
1. Metric definitions are given in Section 4.3 and 2. no-lid is the baseline implementation with no additional LID
losses, lid-* are the implementations with token LID and monolingual utterance LIDs, ml-* are the implementations
with token LID and utterance MLIDs.

Metric MER SER CER WER

Model
Subset

devman devsge all devman devsge Mandarin English

a) no-lid 16.8 23.5 20.2 75.3 74.7 18.6 29.2
a) lid-utt-prompt 16.6 23.4 20 75.4 74.4 18.4 28.8
b) lid-tok-mtl 16.4 23.1 19.8 75.5 73.8 18.2 28.7
c) lid-utt-mtl 16.5 23.5 20 75.4 74.8 18.3 29
d) lid-utt-tok-mtl 16.5 23.2 19.9 75.1 73.6 17.9 28.9
a) ml-utt-prompt 16.6 23.3 20 75.5 74.5 18.1 29
c) ml-utt-mtl 16.3 23.2 19.8 75 74.1 18 28.7
d) ml-utt-tok-mtl 16.4 22.9 19.7 75 73.8 18 28.6

4.6 Language disambiguation performance468

The performance of token LID, utterance LID and469

MLID tasks is also measured in the lid-utt-tok-mtl470

and ml-utt-tok-mtl setups. Token LID is assessed471

using TER and achieves 9.7% in lid-utt-tok-mtl and472

9.8% in the ml-utt-tok-mtl setup which are almost473

identical values. Having calculated the token-level474

errors it is possible to also compute SER of the475

token LID task similarly to ASR, leading to 68.5%476

SER for lid-utt-tok-mtl and 67.8% SER for lid-utt-477

tok-mtl. Token LID TER and SER are similar in478

both setups which allows us to fairly assess the479

impact of the utterance LIDs and MLIDs on the480

ASR task. If token LID module is used to calculate481

utterance LID based on the recognised tokens the482

overall LID accuracy is 90.8%.483

For the separate utterance classification decoders484

accuracy of LID prediction is 86.1% in the lid-utt-485

tok-mtl setup and the accuracy of MLID prediction486

is 71.2% in the ml-utt-tok-mtl setup. Despite the487

high SER values solving these classification tasks488

alongside ASR and token LID brings improvement489

to the ASR performance thus also highlighting the490

necessity for further research in this area.491

5 Discussion492

Given the results above, it can be concluded that493

MLID is the most advantageous approach for classi-494

fying CS utterances in CS ASR systems. This is pri-495

marily because MLID provides more nuanced infor-496

mation than monolingual LID. While monolingual497

LID merely indicates that an utterance belongs to498

a single language, MLID additionally signals that499

the grammatical structure of the utterance aligns500

with the ML. This grammatical alignment imposes 501

constraints on the types of EL tokens that are likely 502

to occur. For instance, EL function words are less 503

likely to be predicted. This property makes it pos- 504

sible to jointly model utterance-level classification 505

and token-level LID, leading to improvements in 506

overall CS ASR performance. 507

To explore the impact of MLID on function word 508

recognition, POS tags were assigned to the ASR 509

outputs using a monolingual POS tagging approach 510

described in (AlGhamdi et al., 2016). POS tag- 511

ging was applied to outputs from two configura- 512

tions: lid-utt-tok-mtl and ml-utt-tok-mtl, using the 513

SpaCy toolkit. Following the definition in (Bul- 514

lock et al., 2018), function words were identified 515

as those tagged as auxiliaries, determiners, coordi- 516

nating conjunctions, or subordinating conjunctions. 517

The number of function words was then counted 518

for each configuration and grouped by the MLIDs 519

assigned by the MLID decoder in the ml-utt-tok-mtl 520

setup (see Table 5). 521

Analysis of the results shows that for utterances 522

labelled with English MLID, the proportion of En- 523

glish function words remained relatively stable, 524

with a slight decrease from 18.15% (3354 words) 525

in the lid-utt-tok-mtl setup to 18.13% (3352 words) 526

in the ml-utt-tok-mtl setup. In contrast, utterances 527

with Mandarin MLID exhibited a modest increase 528

in the probability of Mandarin function word us- 529

age: from 18.48% (3416 words) to 18.66% (3450 530

words). This suggests that incorporating MLID not 531

only improves classification but may also better 532

preserve function word usage patterns in line with 533

the ML. 534
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Table 5: Predicted function words counts: absolute and relative. Relative is normalised by the number of words in
the dataset.

MLID = English MLID = Mandarin

Model
Absolute

count
Relative

count
Absolute

count
Relative

count
lid-utt-tok-mtl 3354 18.15% 3416 18.48%
ml-utt-tok-mtl 3352 18.13% 3450 18.66%

6 Conclusion535

This paper presented a novel approach to CS ASR536

by introducing the concept of MLID into an MTL537

framework. To show the effectiveness of the538

method, the MLID-based approach was compared539

to several LID-based CS ASR approaches used in540

SotA CS ASR models. Drawing from the MLF541

theory, additionally determining the grammatical542

structure of CS utterances was shown to improve543

ASR accuracy. In particular, incorporating MLID544

as an auxiliary task led to a measurable reduction545

in MER compared to strong LID-based baselines,546

indicating the value of distinguishing the domi-547

nant grammatical language in CS speech. Using548

text-derived MLID as an auxiliary task in an MTL549

ASR setup led to a MER decrease from 20.2% in550

an Attention-CTC ASR baseline to 19.7%. The551

comparison to the standard CS ASR frameworks552

revealed that performing MLID in the MTL CS553

ASR setup is just as effective as performing token554

LID. Furthermore, qualitative analysis revealed that555

MLID prediction facilitates the recognition of func-556

tion words from the ML, suggesting that MLID557

helps the model better capture the syntactic struc-558

ture of utterances. These findings show that lin-559

guistic theories such as MLF can be meaningfully560

integrated into E2E ASR systems to address the561

unique challenges posed by CS.562

While the above method improves CS ASR per-563

formance, it requires accurately identified MLIDs.564

Therefore, future work will focus on incorporating565

grammatical information directly through setting566

the backpropagation weights dependent on gram-567

matical function of the word or morpheme. Further-568

more, the MLID-informed ASR systems should be569

extended to other language pairs in the future, such570

as South African or Indian languages.571

Limitations572

The limitation of the following approach, as high-573

lighted in the conclusion, is that it was only tested574

for a single language pair. Given that the MLF575

theory does not accurately model all types of CS, 576

it could encounter difficulties when processing and 577

training on African or Indian data. Furthermore, 578

the approach requires finely defined MLIDs using 579

accurate textual MLID approaches or manual anno- 580

tation, which may be difficult to obtain. Finally, the 581

changes in the recognition performance, although 582

statistically significant, are marginal, which may 583

not be useful in certain applications. 584
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