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Abstract

Code-switching (CS) is when a speaker alter-
nates between two or more languages within
a conversation, even within a single phrase.
CS presents significant challenges for auto-
matic speech recognition (ASR) systems due to
mixed grammatical structures, accents and in-
sentence language changes. One useful method
for enhancing ASR performance on CS data
is the accurate identification of the token Lan-
guage Identities (LID). However, the LID of
tokens do not explicitly inform ASR models
of the dominant language which provides the
grammatical structure for the CS utterance. The
Matrix Language Frame (MLF) theory pro-
vides a syntactic and structural framework for
the generation and analysis of CS utterances.
It explains the CS process through the inter-
action of the two languages: the Matrix Lan-
guage, which provides the grammatical struc-
ture for the CS utterance, and the Embedded
Language, which is the language that is being
inserted into the grammatical frame. This pa-
per investigates the impact of Matrix Language
Identity (MLID) analysis from the MLF the-
ory on the effectiveness and accuracy of ASR
systems when processing CS speech. The text-
derived MLID was predicted from CS audio
simultaneously with the ASR and token Lan-
guage Identity (LID) prediction task, and the
whole model was trained in a multi-task learn-
ing (MTL) setup. The proposed CS ASR sys-
tem was compared to other MTL setups and
showed a Mixed Error Rate (MER) decrease
from 20.2% in an Attention-CTC ASR base-
line to 19.7%. It was shown that having pre-
dicted MLID as Mandarin leads to an increase
of recognised function words, indicating that
MLID informs the ASR decoder of the gram-
matical properties of the utterance.

1 Introduction

Code-switching (CS) refers to the phenomenon
in which speakers alternate between two or more
languages within a single conversation, utterance,

or sentence, both in spoken and written forms.
While this linguistic behaviour is a natural and
widespread mode of communication in many multi-
lingual communities, it poses significant challenges
for natural language processing systems, particu-
larly Automatic Speech Recognition (ASR). One
of the primary difficulties in developing effective
CS-capable ASR systems lies in the limited avail-
ability of high-quality code-switched data, which
is substantially scarcer than data for monolingual
speech. As aresult, ASR models trained on CS data
often underperform relative to their monolingual
counterparts (Radford et al., 2023).

Nevertheless, the prevalence of code-switching
in multilingual societies—such as India, South
Africa, and Nigeria—underscores the urgent need
for robust and adaptable ASR systems that can han-
dle language mixing effectively (Diwan et al., 2021;
Ncoko et al., 2000; Rufai Omar, 1983). Improv-
ing ASR performance for CS speech is not only a
technical challenge but also a critical step toward
creating inclusive language technologies that re-
flect the linguistic realities of diverse populations.

The Linguistic Matrix Language Frame (MLF)
theory (Myers-Scotton, 1993) provides an expla-
nation for CS production and introduces the con-
cept of a main, i.e. dominant language and a sec-
ondary, inserted language in CS utterances. These
languages are called Matrix Language (ML) and
Embedded Language (EL), respectively. MLF the-
ory introduces two methods for ML determination:

1. The Morpheme Order Principle - the ML will
provide the surface morpheme order for a CS
utterance if it consists of singly occurring EL
lexemes and any number of ML morphemes;

2. The System Morpheme Principle - all system
morphemes that have grammatical relations
external to their head constituent will come
from the ML.



However, there is limited research on the auto-
matic classification of the Matrix Language Identity
(MLID). Consequently, due to the lack of research
on MLID classification, the impact on the perfor-
mance of ASR systems has not been studied. This
paper aims to fill the gaps outlined above by inves-
tigating how MLID can enhance the effectiveness
of ASR systems in recognising CS speech.

In this paper, a novel CS ASR system was
proposed, which makes use of the auxiliary text-
derived MLID prediction in an MTL setup to im-
prove SotA CS ASR performance. Multiple ASR
systems were trained to demonstrate the effects
of incorporating conventional LID information on
both utterance and token levels. The LID-based
ASR systems were compared to an ASR system
with an auxiliary MLID component. The MLID-
based system ASR predictions were then analysed
to demonstrate if using an MLID component in a
multitask learning setup will increase the odds of
recognising function words of the ML.

The remainder of the paper is structured as fol-
lows. The next section provides a comprehensive
summary of the related literature. Afterwards, a de-
tailed description of the methods used is provided.
This is followed by a section on experiments, which
provides information on datasets, detailed imple-
mentation, experiment descriptions and outcomes.
The final content section presents a discussion and
analysis of the results. Conclusions summarise and
complete the paper.

2 Related work

Following the ideas of the linguistic theory, one
can state that CS is an outcome of compositions of
two models and it is not a manifestation of a new
language. This way, according to linguistic theory,
multilingual data should be sufficient for building
an ASR model that can recognise CS. This encour-
aged the emergence of LID-based approaches in
multilingual and CS ASR. Initial attempts at mul-
tilingual ASR (Ma et al., 2002) explored multi-
lingual speech recognition conditioned on explicit
utterance LID, setting the stage for later integration
of LID into acoustic modelling. Similarly, Zhang
et al. 2014 proposed training stacked bottleneck
features conditioned on utterance LIDs, which im-
proved multilingual ASR performance across mul-
tiple languages. However, not a single multilingual
ASR system was able to surpass the quality of an
ASR trained on CS data (Khassanov et al., 2019;

Lietal., 2019; Shan et al., 2019). This is due to the
multilingual ASR systems not being introduced to
additional information that might help with CS de-
tection in an audio stream, for example, sequential
and grammatical information only available in real
CS data. White et al. 2008 investigated acoustic
models for CS, emphasising the importance of EL
as opposed to ML acoustic modelling when han-
dling EL insertions. However, Yilmaz et al. 2016
later explored bilingual deep neural networks for
Frisian-Dutch CS speech, showing the feasibility
of shared representations for closely related lan-
guages. LID of a whole CS utterance in an ASR
pipeline may be performed when CS is regarded
as a separate language (Mary N J et al., 2020), in
this case, the MTL component performs both LID
and CS detection. If a multilingual ASR system
uses a conventional LID component as an auxil-
iary task without a separate CS language, then LID
prompts the CS recognition output to be monolin-
gual (Toshniwal et al., 2017). LID of a CS utter-
ance is ill-defined since a CS utterance is a mix of
two languages and cannot be a separate language
according to the linguistic theory (Myers-Scotton,
1993). Consequently, there have been no attempts
to classify CS utterances based on the dominant lan-
guage in the utterance in such a way that it would
improve CS ASR quality.

The emergence of end-to-end (E2E) models
prompted a shift towards token-level and frame-
level handling of CS in ASR. Watanabe et al. 2018
introduced a language-independent E2E ASR archi-
tecture capable of joint frame-level LID and ASR
in simulated CS data. Luo et al. 2018 have intro-
duced advanced E2E models specifically for CS
that can handle spontaneous switches by introduc-
ing in-prompt switch tokens among the predicted
ASR tokens. Other works, where token (e.g. word)
LIDs were utilised to improve CS ASR recognition
include Zeng et al. 2019; Seki et al. 2019; Mary N J
et al. 2020; Liu et al. 2021b, 2023; Wang and Li
2023. However, token LIDs do not consider the dis-
tribution of tokens based on their explicit grammat-
ical role. One could argue that such a linguistically
informed token LID model can be implicitly learnt
from text-derived LID tokens and corresponding
audio, but for this to be true large amounts of CS
ASR data are required, which cannot be achieved
as of today.

The above demonstrates that the impact of acous-
tic MLID classification on the performance of ASR
systems has not been studied. Although knowing



the MLID of an utterance increases the likelihood
of recognising ML system morphemes (Myers-
Scotton, 2002), this information has not been ex-
plicitly leveraged to improve code-switching ASR
performance. Other ideas from the MLF theory
have been used in CS Language Modelling (LM)
for ASR, for example text augmentation (Yilmaz
etal., 2018; Lee et al., 2019), using additional gram-
matical information during LM construction (Adel
et al., 2015; Soto and Hirschberg, 2019) or includ-
ing a separate MLF-inspired loss function in an
E2E model during monolingual training (Chang
et al., 2019; Lee and Li, 2020). This paper aims to
fill the gaps outlined above by investigating how
MLID can enhance the effectiveness of ASR sys-
tems in recognising CS speech.

3 CS ASR using MLF theory

3.1 P1.2: The Morpheme Order Principle

The original definition of the Morpheme Order
Principle (described in Section 1) includes two sep-
arate features of the ML. Therefore, one can derive
two separate principles for ML determination based
on the Morpheme Order Principle:

P1.1) ML provides context for singly occur-
ring words,

P1.2) ML provides the morpheme order for
the utterance.

In this paper the second part of the Morpheme
Order Principle namely P1.2 is implemented for

multiple languages which states that the morpheme
order comes from the ML. For example, in “{f i
1531 Tspeak clear enough "3” a translation of the
auxiliary Mandarin verb "% will never appear at
the end of an utterance in English, signifying that
Mandarin is ML in this utterance.

P1.2 can be defined formally for several lan-
guages as follows. Assume that the languages
(Li,...,Ly) < L are present in a CS utter-
ance y, then y can be translated into monolin-
gual utterances (§r,,....¥r,) by translating the
words to words of the other constituent language.
(¥r,>---- Y1) are obtained from the original ut-
terance y. Consider a probability of an utterance
P(y|L) given the language L, then to determine
the more likely transcription having languages
(L1, ..., Ln) one can define the following decision
function:

ML = argmax P(y.|L) (5)

LE{L1 ..... LN}

3.2 MTL ASR with MLID

Given a recording of CS utterance X with a corre-
sponding transcription y, then an E2E model may
be used to approximate a speech recognition pro-
cess: P(y|X, ®), where © are model parameters.
Auxiliary tasks may be added to the ASR model,
making it a Multi-Task Learning (MTL) training
pipeline. LID conditioning in a component-based
system (Liu et al., 2021a) or MTL with LID pre-
diction (Chen et al., 2023) is commonly used in
multilingual ASR since the probability of an utter-

D]
®j*0im’ ®:SR’ ®:ID = arg max Z(log P()’z |Xi’ ®joint, ®ASR) + log P(Ll |Xl" ®joint’ ®LID)) (1)
Ojoint,OasrR,OLID j—1
|D|
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Ojoint, OAsR,OwLID j=1
|D|
®;im’ ®:,SR’ ®I>\k/ILID’ ®ZID = arg max Z (log P(yilX;, ®joint’ Oasr)
Ojoint;Oasr,OMLID, O 7= (3)
+log P(L;|X;, Ojoine> Owp) + log P(1;1X;, Ojoines Oumn))
|D| L
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ance is different depending on the language spoken
in the utterance P(y|L{) # P(y|L,). If D is the
training dataset, a multilingual ASR system trained
with an auxiliary LID task has the joint objective
as shown in Equation 1. In Equation 1 ©,g are
the parameters of the model which produces the
ASR output, ©,, are the parameters used to pro-
duce the LID output, and ®,,, are the parameters
contributing to the production of both ASR and
LID output.

Similarly to the MTL with utterance LID, MTL
with token LID prediction (Liu et al., 2023) may
be used in CS ASR. Having ASR as the main task
and token LID as an auxiliary task, an MTL objec-
tive may be defined in Equation 2 where /; are the
token LID tags and ®,, are the parameters only
contributing to the token LID output.

Consequently, an MLID classifier can be used
to further enhance CS ASR recognition quality in
a low-resource setting. There is no existing ML
labelled data for CS speech recordings, but MLID
labels can be obtained from target transcriptions
using the implementations of the principles for ML
determination from the MLF theory (Iakovenko
and Hain, 2024). Having determined the MLID
for the data the following MTL objective may be
formulated and displayed in Equation 3, where
Oy are the parameters deriving the MLID output.

Suppose [; and L; are the predicted token LID
sequence and MLID for audio X;, then the ASR
probability may be conditioned by the predicted
MLID and token LID. The final objective is shown
in Equation 4.

4 Experiments

4.1 Datasets

The experiments are carried out on a dataset of
spontaneous Singaporean speech SEAME (Lyu
et al., 2010). The SEAME dataset was collected
in Singapore and Malaysia, with data recorded by
Nanyang Technological University and Universiti
Sains Malaysia, respectively. The recordings en-
compass two distinct speaking styles: conversa-
tional and interview-based speech. In the conver-
sational sessions, the speech of each participant
was recorded separately, covering a range of infor-
mal topics such as hobbies, friendships, and daily
activities. In contrast, the interview recordings in-
clude only the responses of individual interviewees.
The speakers were between 19 and 33 years of age
with a nearly equal gender distribution (49.7% fe-

male, 50.3% male). In total, the dataset comprises
156 distinct speakers, with 36.8% from Malaysia
and the remainder from Singapore. The dataset
includes 192 hours of audio recordings, 110037
utterances and 1449737 transcribed words. The
dataset is split into train, validation, and two test
sets devman and devsge commonly used for CS
ASR benchmarking (Zeng et al., 2019). The sum-
mary of the data splits is shown in Table 1.

4.2 Model

The ASR model employs a Conformer encoder
(Gulati et al., 2020) with 12 blocks and a Trans-
former decoder (Vaswani et al., 2017) comprising 6
blocks. Each block contains 4 attention heads and
2048-dimensional feedforward layers. The system
is trained using a joint loss combining attention-
based cross-entropy and CTC loss (Kim et al.,
2017), along with an additional intermediate CTC
loss. Following (Chen et al., 2023), the weights for
the CTC and intermediate CTC losses are both set
to 0.3. Auxiliary tasks, such as token LID, utter-
ance LID and utterance MLID, are introduced by
the intermediate CTC losses. English tokens are
segmented using 3,000 Byte Pair Encoding (BPE)
units, while Mandarin tokens are represented at the
character level, comprising 2,622 units. The model
is trained with the Adam optimiser (Kingma and
Ba, 2014), beginning with a learning rate of 0.001
and employing 25,000 warm-up steps. Training is
conducted over 60 epochs, and the final model is
obtained by averaging the parameters of the top
10 checkpoints based on validation performance.
All experiments are conducted using the ESPnet
toolkit (Watanabe et al., 2018) on four NVIDIA
RTX 3060 GPUs over a period of three days.

When the above model is trained using an MTL
setup, additional output layers are defined after the
5th and 6th encoder blocks. The auxiliary output
layers perform tasks of either predicting a sequence
of token LIDs or predicting a single LID for the
whole utterance. The implemented setups are sum-
marised in Figure 1. b), ¢) and d) setups from the
figure will be later distinguished from others using
a *-mtl suffix.

An alternative way of including an utterance LID
during training is appending the LID at the begin-
ning of the utterance transcription (Table 3 lines 2
and 3). This setup will be later referred to using a
*-prompt suffix.



Table 1: Dataset splits used for CS ASR training.

unit train validation devman devsge
Total size hours 96.4 5 7.49 3.93
utterances | 89364 4704 6531 5321
Speakers n speakers 134 134 10 10
ﬁ;r:rgl; words | 13.9 13.8 148 102
seconds 3.9 3.9 4.1 2.7
length

Speech features

v

Encoder blocks 1-5

Encoder blocks 1-5

©), d)
L Encoder blocks 1-5
Encoder block 6 ----t nco e;)’ (;))C s 1-
L_-——-""‘——
Encoder blocks 7-12 —> Aas)f{bfz;)’dg)rs

Figure 1: The outline of the ASR models used for exper-
iments. The decoders vary in different implementations:
a) The baseline implementation includes only the ASR
decoder; b) An token LID decoder is defined along-
side the ASR decoders where apart from recognising
a sequence of tokens the model is trained to predict
a sequence of token LIDs; ¢) An LID/MLID decoder
which performs classification of the entire utterance
is performed simultaneously with the main ASR task;
d) All decoders are used to perform ASR, token LID
and LID/MLID tasks simultaneously. The dotted arrow
from the additional decoders to the encoders signifies
the concatenation of the outputs of the encoder with the
hidden representations.

4.3 Evaluation

This work employs several evaluation methods to
quantify differences in recognition performance.
All methods are based on the Levenshtein distance
between token sequences, normalised by the num-
ber of tokens in the reference. However, each
method applies a different tokenisation strategy,
thereby emphasising different types of discrepan-
cies between predicted and reference utterances.
A summary of these evaluation methods and their
respective tokenisations is provided in Table 2.

In addition to Levenshtein-based evaluation met-
rics, Sentence Error Rate (SER) is used to quantify
the proportion of sentences that contain recognition
errors; it is the complement of sentence accuracy.
The quality of utterance classification is assessed

non

Table 2: Evaluation methods summary. means that
the metric is not estimated for the language in the exper-
iments.

Error rate Tokens
type Acronym | English Mandarin
Word WER words -
Character CER letters  characters
Mixed MER words  characters

using accuracy, defined as the proportion of utter-
ances whose predicted class matches the ground
truth.

For LID evaluation, Token Error Rate (TER) is
used to measure the accuracy of token-level LID
predictions produced by the additional decoder
component (denoted as d in Figure 1). At the utter-
ance level, two types of SER are considered:

1. The proportion of utterances in which the en-
tire sequence of token-level LID labels is in-
correctly predicted, and

2. The proportion of utterances in which the pre-
dicted utterance-level LID or MLID, gener-
ated by component c¢) in Figure 1, does not
match the ground truth.

4.4 Auxiliary task definitions

In a multi-task learning (MTL) framework, auxil-
iary tasks are secondary objectives learned in par-
allel with the primary task. In this study, the pri-
mary task is automatic speech recognition (ASR),
while the auxiliary tasks include token-level lan-
guage identification (LID), utterance-level LID,
and matrix language identification (MLID). Aux-
iliary tasks are particularly beneficial in scenarios
with limited training data, as they help guide the
optimisation process. Specifically, they provide ad-
ditional supervision signals that steer the model’s
gradients toward more generalizable solutions and
help avoid convergence to suboptimal local min-
ima.



This subsection outlines the procedures used to
obtain labels for the auxiliary tasks. All label gen-
eration methods are either derived from the textual
transcriptions, such as those for token LID and
MLID, or sourced directly from the SEAME cor-
pus, as in the case of utterance-level LID.

4.4.1 Token LID

Following Figure 1, an token LID decoder may be
defined which predicts a sequence of token LIDs
for an utterance. The LID of the tokens is deter-
mined based on the script the words are written in
similar to Wang and Li 2023. An example of the
sequence of tokens is given in Table 3 in line 4.

44.2 LID

Apart from a token LID component, an additional
LID task may be defined which predicts a monolin-
gual language ID of an utterance from the SEAME
dataset. CS between utterances (inter-sentential
CS) is common for CS: 48% of isolated SEAME
utterances are monolingual, so for those LID can
be defined. The remaining CS utterances may be
regarded as a separate language by introducing a
separate LID "<cs>". A demonstration of such
classification is given in Table 3 in line 5.

Table 3: Example target labels for a sentence "okay kay
1EFZE H T Hcalculator”. a), b), ¢) and d) refer to the
model structure specified in Figure 1.

Decoder Decoder output
type
ASR okay kay ik & E H &
(a,b,c,d) Acalculator
ASR  with | <cs> okay kay iE & & H &
LID prompt | ffcalculator
(a)
ASR  with | <zh> okay kay iF & Z &
MLID Hcalculator
prompt (a)
token LID | <en> <en> <zh> <zh> <zh>
(b,d) <zh> <zh> <zh> <en>
LID (c,d) <cs>
MLID (¢, d) | <zh>
443 MLID

Assume that in a monolingual utterance the MLID
is equal to LID, this way all utterances in a CS
dataset may be classified as one of the two mixed
languages ("<zh>" or "<en>"). MLID is derived
from the two principles for ML determination and

uses the following rules for accurately identifying
the MLID from text:

* P1.1) ML is the language that provides the
context for the singleton insertions from the
EL;

* P1.2) ML provides the word order for the CS
utterance;

* P2) ML provides the system morphemes for
the CS utterance.

P1.2 is described in Section 3 and the other two
rules (P1.1 and P2) are explained in greater detail
in Iakovenko and Hain 2024. To provide the most
accuracy and coverage of the principles, they are
applied jointly in the following order of priority:
P1.1 > P2 > P1.2.

4.5 Token LID, LID and MLID in CS ASR

The summary of the results is presented in Table
4. no-lid is the baseline implementation with no
additional LID losses, lid-* are the implementa-
tions with token LID and monolingual utterance
LIDs following Liu et al. 2023, ml-* are the imple-
mentations with token LID and utterance MLIDs.
MER is primarily discussed in this section since it
is a preferred metric in English/Mandarin CS ASR
research (Vu et al., 2012).

The table shows that any way of incorporating
LID information is beneficial for ASR training
which is known from previous research (Section 2):
no-lid getting the lowest total MER of 20.2%. Intro-
ducing the utterance LID or MLID in prompt (/id-
utt-prompt and ml-utt-prompt respectively) does
improve ASR performance in comparison to the
baseline (20% MER for both implementations) but
using MLID in an MTL setup (ml-utt-mtl) is more
effective achieving 19.8% MER. Interestingly, the
ASR quality is the same for setups when using to-
ken LID (lid-tok-mtl) and MLID (ml-utt-mtl) as
auxiliary tasks, despite token LID providing more
detailed information about the target text. Finally,
the performance may be further improved by train-
ing the ASR system with both MLID and token
LID auxiliary tasks (ml-utt-tok-mtl) yielding the
best result of 19.7% MER. Although the changes
in performance are subtle, they are statistically sig-
nificant: p-value test for CS utterances from de-
vman and devsge reveals a significant difference
at the level of p=0.05 between lid-utt-tok-mtl and
ml-utt-tok-mtl.



Table 4: Model performance for all implementations. a), b), ¢) and d) refer to the model structure specified in Figure
1. Metric definitions are given in Section 4.3 and 2. no-lid is the baseline implementation with no additional LID
losses, lid-* are the implementations with token LID and monolingual utterance LIDs, ml-* are the implementations

with token LID and utterance MLIDs.

Metric MER SER CER WER
Subset devman devsge all devman devsge | Mandarin | English
Model
a) no-lid 16.8 235 202753 74.7 18.6 29.2
a) lid-utt-prompt 16.6 234 20 75.4 74.4 18.4 28.8
b) lid-tok-mtl 16.4 23.1 19.8 75.5 73.8 18.2 28.7
¢) lid-utt-mtl 16.5 23.5 20 75.4 74.8 18.3 29
d) lid-utt-tok-mtl 16.5 23.2 19.9 75.1 73.6 17.9 28.9
a) ml-utt-prompt 16.6 23.3 20 75.5 74.5 18.1 29
¢) ml-utt-mtl 16.3 23.2 19.8 75 74.1 18 28.7
d) ml-utt-tok-mtl 16.4 22.9 19.7 75 73.8 18 28.6

4.6 Language disambiguation performance

The performance of token LID, utterance LID and
MLID tasks is also measured in the lid-utt-tok-mtl
and ml-utt-tok-mtl setups. Token LID is assessed
using TER and achieves 9.7% in lid-utt-tok-mtl and
9.8% in the ml-utt-tok-mtl setup which are almost
identical values. Having calculated the token-level
errors it is possible to also compute SER of the
token LID task similarly to ASR, leading to 68.5%
SER for lid-utt-tok-mtl and 67.8% SER for lid-utt-
tok-mtl. Token LID TER and SER are similar in
both setups which allows us to fairly assess the
impact of the utterance LIDs and MLIDs on the
ASR task. If token LID module is used to calculate
utterance LID based on the recognised tokens the
overall LID accuracy is 90.8%.

For the separate utterance classification decoders
accuracy of LID prediction is 86.1% in the lid-utt-
tok-mtl setup and the accuracy of MLID prediction
is 71.2% in the ml-utt-tok-mtl setup. Despite the
high SER values solving these classification tasks
alongside ASR and token LID brings improvement
to the ASR performance thus also highlighting the
necessity for further research in this area.

5 Discussion

Given the results above, it can be concluded that
MLID is the most advantageous approach for classi-
fying CS utterances in CS ASR systems. This is pri-
marily because MLID provides more nuanced infor-
mation than monolingual LID. While monolingual
LID merely indicates that an utterance belongs to
a single language, MLID additionally signals that
the grammatical structure of the utterance aligns

with the ML. This grammatical alignment imposes
constraints on the types of EL tokens that are likely
to occur. For instance, EL function words are less
likely to be predicted. This property makes it pos-
sible to jointly model utterance-level classification
and token-level LID, leading to improvements in
overall CS ASR performance.

To explore the impact of MLID on function word
recognition, POS tags were assigned to the ASR
outputs using a monolingual POS tagging approach
described in (AlGhamdi et al., 2016). POS tag-
ging was applied to outputs from two configura-
tions: lid-utt-tok-mtl and ml-utt-tok-mtl, using the
SpaCy toolkit. Following the definition in (Bul-
lock et al., 2018), function words were identified
as those tagged as auxiliaries, determiners, coordi-
nating conjunctions, or subordinating conjunctions.
The number of function words was then counted
for each configuration and grouped by the MLIDs
assigned by the MLID decoder in the ml-utt-tok-mtl
setup (see Table 5).

Analysis of the results shows that for utterances
labelled with English MLID, the proportion of En-
glish function words remained relatively stable,
with a slight decrease from 18.15% (3354 words)
in the lid-utt-tok-mtl setup to 18.13% (3352 words)
in the ml-utt-tok-mtl setup. In contrast, utterances
with Mandarin MLID exhibited a modest increase
in the probability of Mandarin function word us-
age: from 18.48% (3416 words) to 18.66% (3450
words). This suggests that incorporating MLID not
only improves classification but may also better
preserve function word usage patterns in line with
the ML.



Table 5: Predicted function words counts: absolute and relative. Relative is normalised by the number of words in

the dataset.

MLID = English MLID = Mandarin
Absolute | Relative | Absolute | Relative
Model
count count count count
lid-utt-tok-mtl 3354 18.15% 3416 18.48%
ml-utt-tok-mtl 3352 18.13% 3450 18.66%

6 Conclusion

This paper presented a novel approach to CS ASR
by introducing the concept of MLID into an MTL
framework. To show the effectiveness of the
method, the MLID-based approach was compared
to several LID-based CS ASR approaches used in
SotA CS ASR models. Drawing from the MLF
theory, additionally determining the grammatical
structure of CS utterances was shown to improve
ASR accuracy. In particular, incorporating MLID
as an auxiliary task led to a measurable reduction
in MER compared to strong LID-based baselines,
indicating the value of distinguishing the domi-
nant grammatical language in CS speech. Using
text-derived MLID as an auxiliary task in an MTL
ASR setup led to a MER decrease from 20.2% in
an Attention-CTC ASR baseline to 19.7%. The
comparison to the standard CS ASR frameworks
revealed that performing MLID in the MTL CS
ASR setup is just as effective as performing token
LID. Furthermore, qualitative analysis revealed that
MLID prediction facilitates the recognition of func-
tion words from the ML, suggesting that MLID
helps the model better capture the syntactic struc-
ture of utterances. These findings show that lin-
guistic theories such as MLF can be meaningfully
integrated into E2E ASR systems to address the
unique challenges posed by CS.

While the above method improves CS ASR per-
formance, it requires accurately identified MLIDs.
Therefore, future work will focus on incorporating
grammatical information directly through setting
the backpropagation weights dependent on gram-
matical function of the word or morpheme. Further-
more, the MLID-informed ASR systems should be
extended to other language pairs in the future, such
as South African or Indian languages.

Limitations

The limitation of the following approach, as high-
lighted in the conclusion, is that it was only tested
for a single language pair. Given that the MLF

theory does not accurately model all types of CS,
it could encounter difficulties when processing and
training on African or Indian data. Furthermore,
the approach requires finely defined MLIDs using
accurate textual MLID approaches or manual anno-
tation, which may be difficult to obtain. Finally, the
changes in the recognition performance, although
statistically significant, are marginal, which may
not be useful in certain applications.
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