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Abstract—In-hand manipulation for robots has recently been
possible due to advances in reinforcement learning and ongoing
development of new robotic hands. Both advancements have
iteratively pushed the frontiers of manipulation with new con-
trollers allow complex manipulators to be effective and hardware
advancements allowing true dexterous manipulation. Co-design
can be used to create a synergy of these efforts by co-optimizing
hardware and control systems for complex tasks. This work aims
to explore co-design by optimizing hardware of robotic hands for
in-hand rotation. To explore an effective method for codesigned
manipulators at scale, we propose a framework for hardware and
controller optimization using MPPI and Dial-MPC. The result is
a co-design method with fast sampling efficiency and hardware
optimized manipulation.

I. INTRODUCTION

Creating dexterous robots capable of complex human tasks
remains a long-standing problem in robotics. Recent advances
in reinforcement learning have sparked new hardware manip-
ulators to be designed with new dexterous hands and sensors
[20][1][29]. These hands in turn have allowed more complex
manipulation with exploration into multi-modal manipulation
[28], in-hand manipulation with PPO [16][17], and imitation
learning for complex tasks. In order to build successful sys-
tems capable of sensitive and dexterous tasks, both frontiers
of control and hardware design need to converge.

This workshop paper aims to show how co-design of
hardware and control policies can be used to develop improved
robotic hands for faster in-hand rotation. More specifically,
we aim to achieve z-axis rotation with the fingertips with an
optimized Allegro hand by altering physical hardware parame-
ters. Co-Design methods are often limited due to the immense
search space of both control and hardware parameters. To
achieve fast sampling without the need for time intensive
training, this work uses Model Predictive Path Integral (MPPI)
for testing sampled designs to approximate final Dial-MPC
performance. Designs are sampled using Bayesian Optimiza-
tion across pre-defined search space of hardware parameters.

Specifically, a search over each independent physical param-
eter is completed with each sample and deployed with MPPI
in order to identify which physical parameters have the highest
impact. Then a joint search is completed across all identified
parameters of impact with the controller deployed for a short
time horizon. The best MPPI controller and sampled hardware
parameters are saved. In a final stage, Dial-MPC is used from
the found best joint parameters to achieve a final controller.
Here MPPI is used as a proxy for Dial-MPC [24], a multi step
diffusion inspired extension of MPPI.

Primarily, this work aims to contribute:

• A framework for efficient search of hardware parameters
and sample efficient training free controllers

• An analysis of what parameters matter most for hardware
design of robotic hands

• Showing that co-design can be another tool for achieving
dexterous manipulation paired with annealing based

II. BACKGROUND

Dexterous manipulation remains one of the most challeng-
ing areas of robotics. With a wide solution space, complex
hardware [26][4] and the need for generalization across human
tasks [11], manipulation remains open to exploration for both
hardware and software. Over the last decade, reinforcement
learning has expanded to manipulation, allowing for drastically
finer control than before.

For example, Hora [16] achieved generalized in-hand ro-
tation across objects through rapid motor adaptation and an
Allegro hand. By encoding parameters of the object and
mimizing the loss between state and privileged information
alongside PPO, the authors achieve zero shot sim2real with
emergent human-like finger gaits. In a subsequent work, tactile
sensors were added, achieving greater levels of success [17].
Likewise, works such as Synesthesia [27] have shown the
ability to build successful multi-modal systems for in-hand
object rotation. AnyRotate similarly achieved in-hand rotation
despite the changing axis of rotation of the hand’s wrist
orientation [25]. These works’ promising results show that
higher levels of dexterity can be achieved by both software
and hardware improvements.

In addition to PPO, imitation learning and diffusion tech-
niques have helped reduce controller search space by leverag-
ing human data [8][22]. These approaches have shown success,
especially in bimanual manipulation where the feasible control
space is exceptionally large. Sampling-based methods such as
MPC have also been deployed with some success. MPC paired
with a VLM has been able to achieve in-hand rotation [10].
This offers potential for robot hands to find sample-efficent
methods but rely on additional methods to achieve fine tuning
and adaptation or rely on a known model.

Robot hands have existed for well over a century [30] with
a vast majority of approaches aiming to mimic human hands
[15]. The degree of true biomimicry is varied. Direct drive
allows for direct motor feedback of each joint, as implemented
with Allegro [1] and LEAP[20]. Alternatively, tendon-driven
robot hands aim to more closely mimic human hands and
displace motors into the forearm of the robot. Robonaut 2
Hand improved upon the original design by moving motors



from the hand to the forearm achieving a wider range of
human like grasps and additional sensors to the hand [5].
Other prominent examples of tendon-driven hands include
Shadow Hand [2] and tendon driven mimicry by Xu and
Todorov [23]. Due to the demand of new reinforcement and
imitation learning methods, many new robotic hands have
appeared aiming to reduce the gap between teloperation and
retargetting such as RUKA [29]. A large gap between true
human mimicking and robotic hardware still remains.

Beyond rigid components, soft robots have gained traction
in robotics for manipulation. These approaches use soft bodies
to leverage compliance often using pneumatics for control.
Abondance et. Al [3] created a new soft gripper to replicate
primitive rotation showing soft robots are capable of these
tasks using pneumatics. Likewise, the Svelete hand [28] uses
a mixed rigid and soft components to combine compliance
with full tactile sensing. These works show a potential for soft
bodied manipulators in the future. However, accurately mod-
eling soft robots is exceptionally challenging often requiring
the use of designated soft body simulators, model reduction,
or system identification to work reliably.

With the advant of increased hardware design and com-
plex control, co-design has become increasingly explored. In
Cheney et. al, a soft body robot using generation of voxels
with artificial soft muscle and [6]. The result was a soft body
mesh capable of locomotion from expanding and contracting.
Similar works have also explored origimi generated structures
[14], digital hardware [7], and legged robots [21]. The range
of co-design also varies drastically with some works relying
on full innovation of designs while others supply starting
designs or complete parameter optimization on known starting
parameters. For example, DiffAqua [12] generated novel robot
fish for fast swimming by finding a new design by sampling
features from pre determined expert designs.

While co-design shows promise, few works are able to cross
the sim2real gap due to the two fold difficulty of controller
sim2real and accurate hardware modeling and manufacturing
from simulation. Work deploying sim-to-real include soft
robots which deployed sim2real with using model reduction
[18]. Work in legged robots has also used optimizing modular
link lengths to create complex motion gaits[9]. This trans-
ferred successfully on a tested hexapod and quadroped robots,
Additionally, the authors were also able to apply this method
to gripper arms in simulation. Accurate sim-to-real with co
design remains limited with an open space for exploration.

Prior works have explored co-design for locomotion, but
few have explored co-design for complex manipulators. Task
driven co-design for manipulation has previously explored
Bayesian Optimization but for simple manipulators [19]. Initial
work in optimizing robot hands was also recently deployed
through altering parameters of an existing hand [13]. This
work is a very small exploration towards making hardware
optimization more tractable for complex tasks.

III. METHOD

Algorithm 1 Hierarchical Design Optimization with MPPI-
Guided Hardware Refinement
Require: • Initial model M, state x0

• Parameter space D
• Finger and joint sets F ,J
• Horizon H , samples K, iterations N
• Improvement threshold δ
• MPPI parameters: temperature λ, control cost R,

noise covariance Σ

1: d0 ← BAYESIANMPPI(OBJECTIVE over D)

2: Iδ ← IDENTIFYACTIVEPARAMETERS(d0, δ)

3: Define reduced subspace Dδ with active parameters Iδ
4: d∗ ← BAYESIANMPPI(OBJECTIVE over Dδ)

5: π∗ ← DIALMPC(M, x0,drefined,F , H)

6: return Refined parameters drefined and final control policy
π∗

This work aims to identify what hardware features matter
for in-hand co-design and identify implications for what kinds
of co-design will be most useful in the future. Additionally,
this work aims to show how sample-based controllers and co-
design may be a good pairing for initial co-design search. For
simplicity, the authors chose to keep geometry and body size
as a fixed parameter for this workshop, but present preliminary
results with linkage lengths and scaling in a later section. The
authors limit the search for this workshop paper to friction,
inertia, material damping, and similar physical parameters. The
authors are currently exploring geometry.

First a Bayesian Optimization sweep over defined parame-
ters was completed in order to identify which physical param-
eters impacted reward. These parameters were all parameters
pre-defined in the Allegro hand model except for contact
softness. Physical and control parameters including friction
of each body, damping coefficients, and range of motion
were explored. For each iteration, MPPI was deployed with
a horizon time of 40 over 30 samples. While manipulation is
a long horizon task, this simplified run time and was sufficient
to determine if reward changed significantly for initial search
over each 50 sampled designs per parameter with the exception
of control range. Control range was sampled at 50 per joint
due to the wide range of solutions. All other parameters were
originally sampled individually with the exception of inertia
and mass which increased by a constant correlating the two.

As friction relies on both the friction of the hand’s surface
for each linkage alongside the object’s friction a search over
10 objects with 3 different shapes (cube, cylinder, square) and
randomized friction between 0.15 and 0.8 for each object.
While the total reward per object shape and friction fluctated,
higher friction of the fingertips resulted in higher dexterity
across all objects.

From the rate of reward change, the parameters most signif-
icant in increasing reward were selected. For this work, a min-



imum reward improvement of 10% was required. The result-
ing parameters which showed improvement were impedance,
linkage lengths, and friction. An additional sweep over these
parameters using Bayesian Optimization with 100 samples
across the design parameters, 10 random starts, and used ex-
pected improvement as the Bayesian Optimization acquisition
function. The controller in this loop was set to a horizon of 60
and 20 samples for training efficiency. A final controller, Dial-
MPC, is trained for a longer time horizon with the new found
optimized parameters as a proxy for longer term efficiency.

Finally, the resulting solved parameters can be used as a
new hand model with a more time expensive controller for
finer manipulation. In this case, we deploy Dial-MPC with
200 steps, 2048 sampled trajectories for each control step,
and MPPI as the update method. Dial-MPC is chosen here as
it is training free, extends sample efficient MPPI, and showed
initial promise with test-time generalization. In future work,
the final controller and hardware pair will be developed and
tested across objects.

Algorithm 2 Model Predictive Path Integral Control (MPPI)
1: function MPPI(M, x0,d,F , H,K,N, λ,R,Σ)
2: Initialize nominal control sequence u← 0H×m

3: for t = 1 to N do
4: for k = 1 to K do
5: Sample noise sequence ϵk ∼ N (0,Σ)
6: uk ← u+ ϵk
7: Sk ← TRAJECTORYCOST(M, x0,uk,F , R)
8: end for
9: Compute weights: wk ← exp(−Sk/λ)∑K

j=1 exp(−Sj/λ)

10: Update nominal control: u← u+
∑K

k=1 wk · ϵk
11: end for
12: return u
13: end function

TABLE I
REWARD SCALING COEFFICIENTS

Component Coefficient
Palm Centering wcenter = 100.0
Multi-Contact Bonus wcontact = 50.0
Angular Velocity Tracking wang = 100.0
Twist Reward wtwist = 50.0
External Force Penalty wforce = 50.0
Control Smoothness wsmooth = 10.0
Finger Distance Penalty wfinger = 20.0

For MPPI’s cost function, several in-hand rotation rewards
were tried including those from Hora [16]. However, the
rewards from reinforcement learning to MPPI did not transfer
well and resulted in unstable solution. A temporary and alter-
native reward was proposed below using palm center, finger
contact, smoothness, and multi contact as key parameters. Here
the ”reward” is negated and minimized to meet MPPI’s cost
function requirement. MPPI had the tendance to find single
contact solutions such as finger juggling even without co-
design. This is better stabilized by Dial-MPC which helps

solve this contact rich convergence issue with annealing.
In future work, the authors will explore this approximation
fully and may replace MPPI with a short horizon Dial-
MPC depending on hardware parameter convergence and task
generalization.

r = − wcenter · ∥xcube − xpalm∥2

− wang · ∥ωcube − ωtarget∥
− wforce · ∥fext∥
− wsmooth · ∥ut − ut−1∥

− wfinger ·
∑
i

max(0, di − δ)

+ wcontact · ncontact

+ wtwist · (ωcube · ẑ)

(1)

Bayesian Optimization was primarily chosen due to the high
cost of evaluation with most controllers. Additionally, manip-
ulation is often noisy and can be treated as a black box. As
initial parameters of impact were found individually, the search
space was reduced helping improve run time. Additionally,
using MPPI as an initial search allows us to determine what
truncated range the search should be conducted over. A search
range over all parameters was pre-defined based on realistic
parameters for the real world.

Parameter Search Range Units Definition
Damping 0 to 10.0 N·m·s/rad Coefficient for damping DOF
Kp 0 to 200 N·m/rad Joint pos. control gain
Kv 0 to 300 N·m·s/rad Joint velocity (damping) control gain
Control Range [−π, π] rad Joint range of motion
FrictionLoss 0 to 20 N·m Joint torque threshold
Solref 0.1 to 2.0 — Damping contact coefficient
Solimp 0.5 to 1.0 — Impedance in contact modeling
Friction 0.1 to 0.85 — Contact friction coefficient

TABLE II
PARAMETER RANGES AND DEFINITIONS OF CONTROL AND CONTACT

PARAMETERS USED IN MUJOCO.

IV. ANALYSIS

From the initial parameter sweep, damping and friction had
highest impact on the reward. Position control, frictionloss,
and inertia were found be either negligible or already opti-
mized for values of best fit. Across the ten objects tested,
higher friction consistnetly improved rate of rotation regardless
of object shape of the object’s friction.

The resulting highest optimized hand had the parameters
of 0.70 for friction, finger tip contact damping of .075, and
fingertip linkages of 2.1 scale of the original length were
found. Geometry will be further explored in the future, but
initial results show long and skinny fingertips were more
dexterous. MPPI was very noisy and prone to jitter, leading to
a suboptimal final rotation controller. Simulating soft bodies
with mujoco can lead to over simplified models due to the
difficulty of accuaretly modeling soft body response to soft
forces. At the lowest end of soft body parameters, it may be



to difficult to deploy this without a specialized soft body sim-
ulator. Preliminary results showed impedance shifting towards
both extremes depending on the sweep size and number of
samples. This may mean both extremely rigid robots which
are easier to learn and extremely soft robots which are more
complaint are both good options for exploration.

Fig. 1. Results for MPPI joint sweep for Damping and Friction parameters.

For joint control, the Allegro hand already has a wide
solution space of possible grasps. Adding additional possible
control space did not improve the hand. This is likely due to
Allegro already having an optimized control space for in-hand
manipulation. Additionally, friction can be easily optimized
and deployed in the real world through different textures on
robot hands such as finger tips of different material textures.

With a gpu enabled, co-design took over 45 minutes per
policy and feature sample using a GTX 4070 and PPO. By
contrast, MPPI averaged approximately 10 minutes using 15
samples and a horizon time of 60 without using a GPU.
This allowed for a much more rigorous search over design
parameters within a reasonable time frame.

One caviate with co-design is solutions may be solved in
extremely unintuitive ways. By default, rotating a cube can be
achieved by grasping the outsides of the cube and twisting each
side with a finger gait. However, under co-design solutions can
be found with high stiffness, friction, or softness to try and
juggle the cube between rebound of each finger. Similar to
reinforcement learning, co design seems to be highly reward
sensitive. Further work in exploring stability remains open.

V. CONCLUSION

Similar parameters for the optimized Allegro hand showing
the potential for co-design methods to find designs that work
across similar tasks. Additionally, the resulting work is able to
find a method which outperforms the baseline. However, Cross
Entropy MPC was very unstable. For a final iteration some
additional method such as VLMs or another policy should be
deployed on the optimized hand. Additionally, friction was

Fig. 2. Finger tip scaling compared to contact damping in joint MPPI Baysian
search.

Fig. 3. Example sequence of non ideal in-hand juggling behavior often found
by MPPI.

found to be the most important parameter for hand design
alongside stiffness.

With a method for cheap sampling with with parameter
optimization, more time intensive controllers can be applied
after optimization. In future work, we plan to replace the final
deployent by training the found hand design with PPO for
robustness. This will allow reducing the search time while
achieving fine control of reinforcement methods. Additionally,
co-design is able to over optimize for specific tasks or con-
trollers. Future work in weighting designs across tasks and
exploring how to design for multi-objective functions will be
tested.

We plan to deploy sim-to-real with best found manipulators.
Optimized physical bodies for found parameters including
stiffness, compliance, and texture will be used. For manufac-
turing, corresponding 3d printed materials and friction textures
of fit will be used. Additionally, exploring design morphology
through geometry will be explored across generalized objects.
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