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ABSTRACT

Machine learning models have achieved impressive performance across different
modalities. It is well known that these models are prone to making mistakes on
out-of-distribution inputs. OOD detection has, therefore, gained a lot of attention
recently. We observe that most existing detectors use the distribution estimated by
the training dataset for OOD detection. This can be a serious impediment since
faulty OOD detectors can potentially restrict utility of the model. Such detectors,
tied to the bias in data collection process, can be impermeable to inputs lying out-
side the training distribution but with the same semantic information (e.g., class
labels) as the training data. We argue that in-distribution should not be tied to just
the training distribution but to the distribution of the semantic information con-
tained in the training data. To support our argument, we perform OOD detection
on semantic information extracted from the training data of MNIST and COCO
datasets, and show that it not only reduces false alarms but also significantly im-
proves detection of OOD inputs with spurious features from training data.

1 INTRODUCTION

Machine learning models have achieved remarkable success in accomplishing different tasks across
modalities such as image classification (Gkioxari et al., 2015), speech recognition (Hannun et al.,
2014), and natural language processing (Majumder et al., 2017). It is however known, that such mod-
els are unreliable on samples which are less likely to occur, according to the model’s in-distribution
estimated from its training data (Guo et al., 2017; Hendrycks & Gimpel, 2016). Detection of these
out-of-distribution (OOD) inputs is important for the deployment of machine learning models in
safety-critical domains such as autonomous driving (Bojarski et al., 2016), and medical diagno-
sis (De Fauw et al., 2018). OOD detection has, therefore, gained a lot of attention recently (Liang
et al., 2017; Lee et al., 2018; Hendrycks et al., 2019; Kaur et al., 2021b).

Even though there is sufficient interest in OOD detection, to the best of our knowledge, its unclear
what precisely entails an OOD input. Existing detectors estimate a distribution that is tied to the
training dataset, and flagging inputs as OOD when the assigned probability according to the esti-
mated distribution is low. The standard drill involves a set of in-distribution inputs drawn from a
dataset such as CIFAR10, and detecting those inputs as OOD that are drawn from a different dataset
such as SVHN (Hendrycks & Gimpel, 2016; Kaur et al., 2021a; Lee et al., 2018). Such external
inputs (from SVHN) would have non-overlapping class labels (from CIFAR10). Ming et al. (2022)
show that the existing detectors are unfortunately tied to the sampling bias of the training dataset.
This results in low detection on OOD inputs with spurious features such as background, color,
etc. from the training data. The authors report low detection performance of existing detectors on
two datasets: 1) Birds (Sagawa et al., 2019) with class labels in {waterbirds, landbirds}, and 2)
CelebA (Liu et al., 2015) with class labels in {grey hair, non-grey hair}. Table 1 shows these results
for OOD images containing water (or land) as spurious feature for waterbirds (or landbirds), and
OOD images of bald male with male as spurious feature for grey hair. This means that even though
the classifier might be able to generalize better, OOD detectors itself can stifle its utility. On the
other hand these detectors can be permeable to real OOD inputs which ought to be rejected. With
this in mind, we propose to treat intended distribution of images as in-distribution. Images contain-
ing semantic information relevant to the training classes1. Inputs deficient of semantic information

1We will be using the terms “in-distribution” and “intended distribution” exchangeably in the paper.
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Table 1: Low OOD detection by existing detectors on OOD inputs with spurious features from the training
data (Ming et al., 2022). Our Algorithm 2 significantly improves detection on these OOD inputs.

Test Set Baseline ODIN Mahala Energy Gram Our
OOD for Birds 25.32 22.75 30.65 25.78 41.75 98.97

OOD for CelebA 16.30 18.93 21.25 28.72 18.79 74.36

Figure 1: The intended distribution has a much higher variability in terms of the samples it covers, when
compared to the training distribution. The classifier trained to classify birds in {sitting birds, flying birds} is
expected to generalize well for the intended distribution, which has birds sitting on trees, snow or water. OOD
inputs are the ones which are unlikely to occur from the vantage point of the intended distribution DI .

w.r.t any training class such as bird for the Birds dataset and hair for CelebA need to be detected as
OOD.

Contributions: We propose two OOD detection algorithms based on distinct ways of estimating
the intended distribution. The first algorithm uses expert guided semantic information. When expert
guidance is absent, and there is sufficient labeled data, we propose using semantic segmentation
network. Table 1 shows that we achieve significant improvement by 57.22% and 45.64% on OOD
detection with semantic segmentation networks for Birds and CelebA, respectively. This highlights
the drawback of the current approaches.

Our experiments on COCO (Lin et al., 2014) and MNIST (LeCun et al., 1998) datasets show that
the existing detectors overfit to the training data for estimating in-distribution, resulting in - 1. false
OOD detection on inputs with same (training class) labels but from a separate dataset, and 2. low
OOD detection on inputs with classes, absent from the set of training classes. This low detection
is due to sensitivity of detectors to the spurious features from the training data. The proposed
algorithms not only reduces false alarms significantly but also improves OOD detection (≥ 20%) on
inputs with spurious features from training data.

Related Work. OOD detection has been extensively studied and detectors with OOD scores based
on the difference in statistical, geometrical or topological properties of in-distribution and OOD in-
puts have been proposed. These detectors can be classified into three categories, supervised (Lee
et al., 2018; Kaur et al., 2021a), self-supervised (Hendrycks et al., 2019; Kaur et al., 2022), and un-
supervised (Hendrycks & Gimpel, 2016; Liang et al., 2017). Unsupervised approaches can function
without an OOD dataset for training the detector, while supervised approaches do. Self-supervised
approaches require a self-labeled dataset for training the detector. This dataset is created by applying
transformations to the training data and labeling the transformed data with the applied transforma-
tion. The proposed OOD detection algorithms in this paper are unsupervised in nature. Ming et al.
(2022) show that the existing detectors perform poorly on OOD inputs with spurious features from
the training data. They, however, do not propose a solution for fixing the existing detectors.

Domain generalization Zhou et al. (2022) is an active research area where efforts are made for gen-
eralizability of machine learning classifier to its classes beyond the training data. It tries to ask the
question of whether a classifier trained on the images of birds on trees would work on images of
birds on water? Domain-invariant representation learning (Li et al., 2018), training data augmenta-
tion with higher variability (Zhou et al., 2020) etc. have been proposed to solve this problem. With
the intended distribution of images containing (training) class-specific information for a classifier,
we propose inputs that do not contain this information as OOD.
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There has been a great interest in making use of semantic segmentation networks in scene under-
standing problem (Mo et al., 2022), one of the core problems in computer vision with applications
e.g. to autonomous driving, video surveillance, and robot perception (Garcia-Garcia et al., 2017).
Recently, the use of segmentation networks was proposed to train classifiers with a handful of train-
ing examples Mojab et al. (2021). We make use of segmentation networks for OOD detection.

2 PROBLEM FORMULATION AND METHODOLOGY

Let (X ,AX ) be the measurable space from which images are sampled. We assume X is an at most
countable subset of a (possibly very high-dimensional) Euclidean space Rh×w×3 whose dimension
depends on the size of the images. Here, h,w refer to the height and width of the image. Denote
by ∆(X ,AX ) the space of (countably additive) probability measures on (X ,AX ), and consider
a candidate distribution D ∈ ∆(X ,AX ).2 Let then X1, . . . , Xn ∼ D iid, denote by x1, . . . , xn

the realizations of random variables X1, . . . , Xn, and call S = {x1, . . . , xn} our training set (also
referred to as input sample set).

We assume that the support of D, written supp(D), is a proper subset of X , that is, supp(D) ⊊
X . Then, we introduce what we call the intended distribution, i.e. a probability measure DI ∈
∆(X ,AX ) whose support supp(DI) is a proper superset of supp(D). We can write:

supp(D) ⊊ supp(DI) ⊂ X .

Intended distribution DI is needed because it assigns non-zero probability to the set of images which
are likely to be seen by the classifier in the real world. For instance, in case of standard birds dataset,
D captures images of birds on trees. But, the intended distribution DI can refer to birds on trees,
water, or snow. We ask the following research question : Given the input sample set S, can we
build an OOD detector that is able to estimate DI closely ?

2.1 METHODOLOGY

This is a difficult problem, since it demands generalization from the OOD detectors which are strictly
tied to the training set S. For an ϵ > 0, we define the intended set of inputs XI := {x ∈ X : DI(x) >
ϵ} ⊂ supp(DI); next we endow it with a sigma algebra AXI

⊂ AX . Let (Y,AY) be the measurable
space of (class) labels, and assume Y is at most countable. The oracle classifier is a AXI

\AY -
measurable map C : XI → Y , x 7→ C(x) = y ∈ Y , which produces the ground truth labels. With
X ′ := X \ XI we define the following space

F := {F : X × X ′ → XI , (s, z) 7→ F (s, z) = x, C(x) = C(s)} .

The elements of F are maps that combine semantically relevant and irrelevant images so as to
preserve the original label of the image. The label is determined by the oracle classifier C.

Our assumptions are the following three:

1. F ̸= ∅. There exists at least one map F that combines semantically relevant and irrelevant
images so as to preserve the original label of the image.

2. supx∈X |D(x) − DI(x)| ≤ δ, for some δ ≥ 0. The distance between the original and the
intended distributions is bounded by a quantity δ.

3. supx∈X |D(x) − D̂I(x)| ≤ η, for some η ≥ 0. The distance between D, and an estimate
of the intended distribution DI , that we are able to compute is bounded by a quantity η.

The first assumption is a realistic one, since it is almost always the case that we can decompose an
image into the two aforementioned components. The second assumption is reasonable because it is
usually the case, that the distance between the intended and the sampling distribution is not arbitrar-
ily large. The third assumption states that when building the estimate of the intended distribution,
we do not move too far away from the sampling distribution. Then, we have the following.

Theorem 1. Let DI , D̂I ∈ ∆(X ,AX ) be defined as above. Then, there is ν ≥ 0 such that
d(DI , D̂I) := supx∈X |DI(x)− D̂I(x)| ≤ ν.

2As no confusion arises, we do not distinguish between probability measure and probability distribution.
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Algorithm 1 Detecting OOD Inputs as Out-of-Intended Distribution Inputs

Input: Test datapoint o ∈ X
Parameters: Training set S, detection threshold ϵ
Output: “1” if o is detected as OOD; “0” otherwise
X̂I = estimated XI from S
D̂I = OOD Detection(X̂I , x ∈ X )

Return 1 if D̂I(X̂I , o) < ϵ, 0 otherwise

The proof of Theorem 1 is included in Appendix. The Theorem states that the distance between the
estimated intended distribution D̂I and the intended distribution DI is bounded by ν = δ + η ≥ 0.
If the sampling process was perfect, then intended distribution DI would be arbitrarily close to D,
hence δ = 0 and the distance between D̂I and DI would be bounded by η only. That is the error due
to the short-fall of the algorithm which estimates the intended distribution from the sampled data.

OOD Detection: In image classification, the intended input set XI is the set of images with class
labels in Y . An OOD input is an image whose (associated class) label does not belong to Y . In light
of Theorem 1, that shows that – under three natural assumptions – the distance between DI and D̂I

is bounded, we propose to perform OOD detection using D̂I . With X̂I being the estimation of XI

obtained from training set S, and D̂I being estimated from X̂I , Algorithm 1 proposes to detect those
inputs as OOD whose probability according to D̂I is low.

We can assign probabilities to the (class) labels associated to the elements of XI using a pushforward
argument. That is, we define PY as:

Y ∋ y 7→ PY(y) ≡ C♯DI(y) := DI(C
−1(y)),

We estimate DI for OOD detection. In the next section, we propose two ways of defining the OOD
detection function DI in Algorithm 1.

3 USING SEMANTICALLY RELEVANT INFORMATION FOR OOD DETECTION

In this section, we use two kinds of maps, Ns and Nr. The former – introduced in section 3.1 –
represents a semantic segmentation network, while the latter – introduced in section 3.2 – represents
a two-step process. We estimate the set XI of intended images for a classifier from the class-specific
semantic information contained in S. Inputs without semantic information for any class in Y are
detected as OOD. We define:

X̂I := {x′ ∈ Rh×w×3 : x′ = N (x), x ∈ S}. where, N is a generic segmentation map.

We argue that X̂I is a good estimator of XI because it preserves the semantically relevant information
that is required for classification. This is in line with our intuition of using the elements of set F
which combine semantically relevant and irrelevant information.

3.1 OOD DETECTION WITH SEMANTIC SEGMENTATION NETWORK

In scenarios with large amount of labeled available data, we propose to use semantic segmentation
models as Ns. The output of a segmentation network, the segmentation map, is the classification of
each pixel in the image into either background (semantically irrelevant information) or one of the
class labels in Y . We propose X̂I as the set of segmentation maps on (the elements of) S, where
class information is labeled by the segmentation network. We call that segment of a segmentation
map as the foreground segment which is labeled with a class in Y .

Here Ns is a segmentation algorithm that filters the input with the class-specific semantic informa-
tion in Y . It can be seen as a AX \B(Rh×w×(|Y|+1))-measurable function Ns : X → Rh×w×(|Y|+1),
where B(R) denotes the Borel sigma-algebra of a generic Euclidean space R. In particular, Ns only
keeps height and width of the image, losing the color information; the third dimension is given by
a vector of dimension |Y| + 1, where |Y| is the number of (class) labels, and the extra dimension
captures an “extra label” associated to the background and all the images that are not assigned any of
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the labels in Y . Its entries are reals between 0 and 1 that sum up to 1; they represent the probability
of image x belonging to (class) label y ∈ Y or to the “extra label”.

OOD Detection Scores: The classification-based detection scores by the existing detec-
tors (Hendrycks & Gimpel, 2016; Liang et al., 2017) can be used for OOD detection on the fore-
ground segment of the input image. Similar to the baseline detector (Hendrycks & Gimpel, 2016),
which uses softmax score of the predicted class by a classification network for detection, we pro-
pose to use softmax scores for the predicted class of the foreground segment for detection. Since the
detection score has to be a single value, we take average of the softmax scores for the pixels in the
foreground segment.

Recall that X ⊂ Rh×w×3. Let C = {∅,X , c1, . . . , cN , cN+1}, N ∈ N, be a partition of X whose
elements are N classes of images (e.g. birds, clothes, cars, etc.), computed as:

cj := C−1(y) = {x ∈ XI : C(x) = y} for all y ∈ Y, j ∈ {1, . . . , N},

one class – the (N + 1)-th – that incorporates the background and everything that is not subsumed
in the other N classes, that is, cN+1 = X \ (∪N

j=1cj), and the whole space X and the empty set ∅.

Pick any x ∈ X and let H = {1, . . . , h} and W = {1, . . . , w}. For a generic vector a, we denote by
ai its i-th entry, while for a generic element t of Rh×w×(|Y|+1), we write ti,j to denote the (|Y|+1)-
dimensional vector that we obtain if we “slice” t at first coordinate i and second coordinate j.

Let q = (q1, . . . , qN , qN+1)
⊤ ∈ RN+1; define function

q 7→ S(q) :=

{
maxi qi when argmaxi qi ∈ {1, . . . , N,N + 1}
0 otherwise

.

Definition 1. Pick any x ∈ X . Define the following baseline score

BS(x) :=

∑
i∈H

∑
j∈W S

(
Ns(x)i,j

)
h · w

(1)

We can also use the classification-based score used by the ODIN detector (Liang et al., 2017). ODIN
is an enhanced version of the baseline detector where the temperature-scaled softmax score of the
preprocessed input is used for detection. The input is preprocessed by adding small perturbations:

x̃ := x− ζ sign(−∇xlogS′
⋆(x, T )).

Here ζ > 0 is the perturbation magnitude, sign denotes the sign function, T ∈ R>0 is the tempera-
ture scaling parameter, S′(x, T ) is an N -dimensional vector whose i-th entry

S′
i(x, T ) =

exp(fi(x)/T )∑N
j=1 exp(fj(x)/T )

is given by the temperature-scaled softmax score of the i-th class predicted by the classification
network f = (f1, . . . , fN , ) that is trained to classify classes in {c1, . . . , cN}, and S′

⋆(x, T ) =
maxi S

′
i(x, T ).

Definition 2. Pick any x ∈ X . Define the ODIN score as

OS(x) :=

∑
i∈H

∑
j∈W S(Ns(x̃)i,j)

h · w
. (2)

Algorithm 2 is the proposed algorithm for OOD detection with X̂I as the segmentation maps of S.
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Algorithm 2 D̂I : OOD Detection with Seman-
tic Segmentation Network

Input: Test input o ∈ X ,
Parameters: Semantic segmentation net-
work Ns trained on S , detection score ds ∈
{BS,OS}, detection threshold ϵ
Output: “1” if o is detected as OOD; “0” oth-
erwise
o′ = Ns(o)
Create z s.t, zi,j = S(o′i,j), ∀i ∈ h,∀j ∈ w
Return 1 if ds(z) < ϵ, 0 otherwise

Algorithm 3 D̂I : OOD Detection with Refer-
ence Set

Input: Test input o ∈ X
Parameters: Segmentation algorithm Nr,
reference set R, detection threshold ϵ
Output: “1” if o is detected as OOD; “0” oth-
erwise
v = ComputeNearestSample(R,Nr(o))
Return 1 if max(v) < ϵ, 0 otherwise

3.2 OOD DETECTION WITH A REFERENCE SET

Datasets such as MNIST, with a history of feature engineering techniques (Belongie et al., 2000),
permit semantically relevant pixels to be derived easily. The generation of the segmentation
AX \B(Rh×w×3)-measurable map Nr : X → Rh×w×3 follows a two step process. First it uses
a standard segmentation algorithm to define super-pixels of an image. Next, it removes the seg-
ments which are can be regarded as irrelevant information. We create an image out of the two
components by setting different colors to these pieces. We leave the details with examples (Fig. 8)
to the Appendix.

OOD Detection Score: Given a pair of segmented images, we compare them using a metric known
as the SSIM value. It is a well known metric to compare similarity between images. OOD detection
is performed by measuring its similarity with the nearest neighbor in a reference set.

SSIM : Structural similarity index metric (SSIM) (Wang et al., 2004) computes statistical similarity
between two images. SSIM value is calculated as:

SSIM(x1, x2) = S1(x1, x2)S2(x1, x2), where
S1(x1, x2) = lum(x1, x2), S2(x1, x2) = con(x1, x2)corr(x1, x2)

(3)

The functions lum, con and corr compare the luminosity, contrast and correlation between two
image inputs x1 and x2. The details of the implementation can be found in (Wang et al., 2004) and
(Brunet et al., 2012). SSIM permits fast GPU based implementation. Next, we define a reference
set R ⊂ X̂I as a set of size |Y| containing one representative of each class y ∈ Y; by representative,
we mean an image whose associated (class) label is some y ∈ Y . It is defined as:

R := {x ∈ X̂I : x ∼ Unif(C−1(y)), ∀y ∈ Y} ⊂ XI .

A more involved algorithm can be used to replace this simple choice, such as the ones proposed in
Yang et al.; Dutta et al. (2022). But, we find this simple procedure to work well in this context.

Algorithm: Algorithm 3 combines these pieces together. We compute SSIM of an input image
o ∈ X with all images in R and use the maximum value for detection. In other words if the
similarity value of o with its nearest neighbor in R is below the threshold ϵ, we declare o as OOD.

4 EXPERIMENTS

We perform experiments with the existing state-of-the-art (SOTA) detectors from all the three cate-
gories of supervised, unsupervised, and self-supervised OOD detection techniques.

Unsupervised : Baseline detector (Hendrycks & Gimpel, 2016) is the SOTA unsupervised detector.
It uses softmax score of a classifier for the predicted class. ODIN (Liang et al., 2017) is an enhanced
version of the baseline detector that uses temperature-scaled softmax score but, for a perturbed input
for detection. Details are in section 3.1.

Supervised : Mahalanobis detector (Mahala) is the SOTA supervised detector which uses Maha-
lanobis distance (Mahalanobis, 1936) of the input in the training feature space of the classifier for
detection.
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Figure 2: Examples of images from the three test cases for COCO.

Self-supervised : Aux (Hendrycks et al., 2019) is the SOTA self-supervised detector which uses
error in the prediction of the applied transformation on the input for detection. It trains a classifier
with an auxiliary task of predicting the an applied rotation, vertical and horizontal translations. The
sum of the error in the three predictions and classification error is used for detection.

Evaluation Metrics: We call in-distribution inputs as positives and OOD inputs as negatives. We
report the Receiver Operating Characteristic curve (ROC), Area under ROC (AUROC), and True
Negative Rate (TNR) at 95% True Positive Rate (TPR) for evaluation. These are the standard metrics
used in OOD detection (Hendrycks et al., 2019; Liang et al., 2017; Lee et al., 2018).

4.1 CASE STUDY I: OOD DETECTION WITH SEMANTIC SEGMENTATION NETWORK

4.1.1 DATASET AND MOTIVATION

Common Objects in Context-Stuff (COCO) dataset (Caesar et al., 2018b) is a large-scale vision
dataset created for the purpose of training machine learning models for object detection, segmenta-
tion and captioning with 182 object classes. We use that subset (training and test) of COCO which
can be classified with the class labels from the set Y = {cup, umbrella, orange, toaster, broccoli,
banana, vase, zebra, kite}. These classes are common to another dataset Vizwiz (Chiu et al., 2020).
Vizwiz is a real patient dataset captured by blind people. This dataset is collected with the purpose
of assisting partially blind people. Where the quality of images captured can be an issue. So, images
in the Vizwiz are labeled with either “no issues”, or with issues such as “blurry”, “too bright”, “too
dark”, “camera obstructed” etc. We call the images with “no issues” label in the Vizwiz dataset as
the clear Vizwiz.

We train the ResNet18 (He et al., 2016) model to classify the training set of COCO dataset. With
74.33% as model’s accuracy on test COCO, it achieves a comparable accuracy of 68.14% on the
clear Vizwiz. Detecting inputs from clear Vizwiz as OOD by the existing detectors restricts the
generalizability of classifiers from the training distribution D to the intended distribution DI .

4.1.2 SEMANTIC SEGMENTATION NETWORK Ns FOR ALGORITHM 2 AND CLASSIFIER
FOR DETECTION BY EXISTING DETECTORS

As recommended by the authors of the COCO dataset (Caesar et al., 2018a), we train the DeepLab
version 2 (v2) segmentation model (Chen et al., 2017) on the training set of COCO. DeepLab
v2 uses ResNet101 (He et al., 2016) model as the backbone model. For a fair comparison with
the existing detectors, we train the ResNet101 classifier on the training set of COCO. We use the
trained classifier for OOD detection by the existing SOTA unsupervised and supervised detectors.
The accuracy of the classifier on the test COCO set is 68.64%. COCO dataset is commonly used
for object detection and segmentation. The classification accuracy of 68.64% is comparable with
the SOTA detection accuracy (in terms of mean average precision) of 64.2% on COCO (Wei et al.,
2022). For the self-supervised detector AUX, we train the ResNet101 classifier with the auxiliary
losses of rotations and translations. Its classification accuracy on the test COCO set is 74.11%.

4.1.3 TEST CASES AND RESULTS

We conduct our experiments with the following three test cases:
(a) In-Distribution from Clear Vizwiz: Inputs with the class labels in Y but from the clear Vizwiz.
(b) OOD from Vizwiz: Inputs with blurry, too bright, too dark, and obstructed issues from Vizwiz.
Due to the quality issues of these images, this dataset cannot be labeled with any labels in Y .
(c) OOD From COCO: Inputs from the test COCO dataset with class labels not in Y . Here, we
filter that subset of the test COCO that can be classified with the class labels from the set {traffic
light, stop sign, parking meter, fire hydrant}.
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(a) In-Distribution from Clear Vizwiz

Baseline: 67.57

ODIN: 72.70

Mahala: 60.53

AUX: 73.08

Our(BS): 31.57

Our(OS): 35.48
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(b) OODs from Vizwiz (blurry, too bright etc.)

Baseline: 85.67

ODIN: 92.48

Mahala: 92.90

AUX: 92.72

Our(BS): 84.18

Our(OS): 85.76
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(c) OODs from COCO

Baseline: 54.22

ODIN: 64.75

Mahala: 63.16

AUX: 65.83

Our(BS): 85.43

Our(OS): 84.82

Figure 3: (a) AUROC less than 50% on in-distribution inputs from clear Vizwiz, and (c) highest AUROC on
OOD inputs from COCO by Algorithm 2 shows that the proposed detection not only significantly reduces the
false alarms but also improves on OOD detection on inputs with spurious features from training set.

Figure 2 shows some examples of the images from the three test cases. Figure 3 compares the ROC
and AUROC results of the existing detectors with Algorithm 2 on these test cases:
(a) In-Distribution from Clear Vizwiz (Fig. 3(a)): AUROC less than 50% by our approach (with
both the baseline and ODIN scores) implies that the proposed detector is not able to distinguish be-
tween the test COCO and Clear Vizwiz datasets. AUROC greater than 50% by the existing detectors
implies that these detectors distinguish clear Vizwiz from the test COCO by assigning higher OOD
detection scores to clear Vizwiz.
(b) OOD from Vizwiz (Fig. 3(b)): With these images as OOD for COCO, we require the AUROC
to be as close to one as possible. The existing supervised detector Mahala achieves the best AUROC
of 92.90% and our results are 84.18% and 85.76% with baseline and ODIN scores respectively.
(c) OOD from COCO (Fig. 3(c)): Significantly higher (≥ 20%) AUROC by Algorithm 2 (with
both scores) than the existing ones indicates that the proposed detector performs OOD detection on
these inputs with spurious features from the training data better than the existing ones.

Discussion The performance of the proposed Algorithm 2 depends on the semantic (or foreground)
information segmented in XI by the segmentation network. We observe that the trained segmenta-
tion network labels all pixels in 22% images of the test COCO as background. This results in low
AUROC (in comparison to 92.90% by Mahala) of 85.76% on low quality OOD inputs from Vizwiz.

If the segmentation network is trained well to segment inputs drawn from XI (ex. test COCO) then
the detection performance of Algorithm 2 improves. Figure 4 shows the ROC and AUROC results
on the 88% images of test COCO that are segmented with class labels in Y by the network. This
test case is analogous to using a well trained segmentation network which segments 100% of the
test COCO with class labels in Y as improving the training of segmentation network is beyond the
scope of this paper. With the 100% test COCO segmented with class labels in Y by the segmentation
network, the performance of Algorithm 2 improves from 85.76% to 98.52% (with ODIN score) on
OOD inputs from Viziwz and 85.43% to 97.42% (with baseline score) on OOD inputs from COCO.
Here we show results on test cases (b) and (c). Results on test case (a) are included in Appendix.

4.2 CASE STUDY II: OOD DETECTION WITH A REFERENCE SET

4.2.1 DATASET AND MOTIVATION

We use a mixture of MNIST-M (Ganin & Lempitsky, 2015) and Background-Colored-MNIST (BC-
MNIST) (Bui et al., 2021) datasets. Both MNIST-M and BC-MNIST are modified versions of
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(b) OODs from Vizwiz (blurry, too bright etc.)

Baseline: 87.13

ODIN: 92.87

Mahala: 93.65

AUX: 93.29

Our(BS): 96.75

Our(OS): 98.52
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(c) OODs from COCO

Baseline: 58.01

ODIN: 68.10

Mahala: 64.92

AUX: 68.56

Our(BS): 97.42

Our(OS): 96.60

Figure 4: ROC and AUROC results of the existing detectors and Algorithm 2 on that subset of test COCO
which is segmented with class labels in Y by the trained segmentation network Ns.

AUROC / TNR

Figure 5: AUROC less than 50% on in-distribution inputs from BC-MNIST by Algorithm 3 shows that the
proposed algorithm significantly reduces false alarms (by the existing detectors) for training set of Mix-MNIST.

MNIST (LeCun et al., 1998) dataset. MNIST-M is MNIST with its digits blended over patches of
colored images. BC-MNIST is the colored version of MNIST where both digits and background are
colored. We use a mixture dataset of 100% data from MNIST-M and 50% data from BC-MNIST.
We call this dataset as Mix-MNIST.

With 60, 000 training images in MNIST-M and 4000 training images in BC-MNIST, 96.77% of the
training data in Mix-MNIST comes from MNIST-M and the remaining 3.23% from BC-MNIST. We
train the Lenet5 (LeCun et al., 1998) classifier on Mix-MNIST. The classifier achieves comparable
accuracy of 90% and 91% on test MNIST-M and test BC-MNIST datasets respectively. Therefore,
with the classifier’s ability to generalize on BC-MNIST with only 3.23% of BC-MNIST as the
training data, detecting inputs from BC-MNIST as OOD by the exiting detectors (Fig. 5) limits the
applicability of the classifier.

4.2.2 EXPERIMENTAL DETAILS AND RESULTS

For the existing detectors, we use trained the LeNet5 model with its accuracy of 91.91% on the
test set of Mix-MNIST. Figure 5 compares the ROC, AUROC, and TNR results of the existing
detectors with Algorithm 3 on the test set of BC-MNIST. AUROC higher than 50% by the existing
detectors implies that existing detectors distinguish the test data of Mix-MNIST from the test set of
BC-MNIST with higher OOD detection scores assigned to BC-MNIST. AUROC less than 50% by
the proposed Algorithm 3 shows that it does not distinguish between the test sets of Mix-MNIST
and BC-MNIST. We achieve the lowest false alarm rate of 2.95% here.

We perform additional experiments for Mix-MNIST with OOD datasets from (low quality) Vizwiz
and Fashion-MNIST. Details and results on these experiments are included in Appendix.

5 CONCLUSION

In this paper we show that including more nuanced semantic information about the content of images
can improve detection of out-of-distribution inputs. This to the best of our knowledge, is one of the
first approaches which differentiates between sampling distribution and intended distribution.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. It is immediate to see that the proposed d is a proper metric. Then, the proof goes as follows

d(DI , D̂I) := sup
x∈X

|DI(x)− D̂I(x)| = sup
x∈X

|DI(x)− D̂I(x)−D(x) +D(x)|

≤ sup
x∈X

{
|D(x)−DI(x)|+ |D̂I(x)−D(x)|

}
≤ sup

x∈X
|D(x)−DI(x)|+ sup

x∈X
|D̂I(x)−D(x)|

= δ + η.

So putting ν = δ + η, we conclude the proof.

A.2 EXAMPLE IMAGES FROM COCO SEGMENTED WITH CLASS-SPECIFIC RELEVANT
INFORMATION

Figure 6 shows some examples of images sampled from COCO and clear Vizwiz datasets on the left
and corresponding output of the trained semantic segmentation network Ns from section 4.1.2 on
the right.

Clear Vizwiz

COCO

Figure 6: Example images from COCO and clear Vizwiz on left and output of the trained semantic
segmentation network on these images on the right. Yellow color in the segmented images represent
the class-specific semantically relevant information, and purple color represents the semantically
irrelevant information.

A.3 RESULTS ON IN-DISTRIBUTION INPUTS FROM CLEAR VIZWIZ WITH THAT SUBSET OF
COCO WHICH IS SEGMENTED WITH CLASS LABELS IN Y BY THE SEGMENTATION
NETWORK Ns

Figure 7 shows these results. Again, AUROC less than 50% by our approach (with both the baseline
and ODIN scores) implies that the proposed detector is not able to distinguish between the test
COCO and Clear Vizwiz datasets. AUROC greater than 50% by the existing detectors implies that
these detectors distinguish clear Vizwiz from the test COCO by assigning higher OOD detection
scores to clear Vizwiz.
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(a) In-Distribution from Clear Vizwiz

Baseline: 70.42

ODIN: 74.82

Mahala: 60.09

AUX: 75.36

Our(BS): 39.52

Our(OS): 44.96

Figure 7: ROC and AUROC results of the existing detectors and Algorithm 2 on that subset of test
COCO which is segmented with class labels in Y by the trained segmentation network Ns.

A.4 DETAILS ABOUT THE TWO-STEP SEGMENTATION ALGORITHM Nr USED IN
ALGORITHM 3

Detecting semantically relevant pixels is the first step in this algorithm. In order to separate the
semantically relevant pixels, we first partition the image into meaningful segments using Felzen-
szwalb’s Algorithm Felzenszwalb & Huttenlocher (2004). Next we mark the segments placed away
from the center as being semantically irrelevant. Whatever remains closely maps to semantically
relevant information. We binarize the result in the previous step, to obtain a black and white version
of the image. Figure 8 shows some examples of images sampled from Mix-MNIST on the left and
corresponding output of the segmentation algorithm Nr from section 4.2.2 on the right.

Figure 8: Example images from Mix-MNIST on left and the output of the segmentation algorithm
on these images on the right. White color in the segmented images represent the class-specific se-
mantically relevant information, and black color represents the semantically irrelevant information.
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A.5 EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS ON MIX-MNIST

A.5.1 EXPERIMENTAL DETAILS

Given two binarized versions of an image pair by the segmentation algorithm Nr described in Ap-
pendix A.4, we compute the SSIM value between these images. We restrict ourselves to a non-
negative version of the SSIM metric in this paper. To estimate whether an image contains digit, we
maintain a reference set for digits zero to nine. Figure 9 shows the reference set used in experi-
ments. For a given test image, we compute the SSIM between the binary version of the image and
each digit image in the reference set. If the test image does not resemble any digit in the reference
set, we declare it to be OOD.

Figure 9: Reference set of 0-9 digits extracted from images in Mix-MNIST by the segmentation
algorithm Nr.

A.5.2 ADDITIONAL EXPERIMENTS

We conduct additional experiments on Mix-MNIST with the following two test cases:
(a) OOD from Vizwiz: Images with the blurry, too dark, and obstructed quality issues from Vizwiz.
(b) OOD from Fashion-MNIST: Images from Fashion-MNIST (Xiao et al., 2017) dataset with
class labels from fashion objects such as trousers, shoe etc.

The results are as follows:
Figure 10 compares the ROC and AUROC results of the existing detectors with the proposed OOD
detection Algorithm 3. Table 2 shows these results on TNR (at 95% TPR) on these test cases:
(a) OOD from Vizwiz (Fig. 10(a)): With failure to assign any labels to this dataset due to quality
issues, these images are OOD for the Mix-MNIST dataset and here we require the AUROC to be as
close to one as possible. The existing detector ODIN achieves the best AUROC of 94.95% and our
result is 90.93%. We achieve the best TNR (@95%TPR) detection of 67.15% here.
(b) OOD from Fashion-MNIST (Fig. 10(b)): With the class labels of Fashion-MNIST disjoint
from the classes in Mix-MNIST, images from Fashion-MNIST are OOD for Mix-MNIST. The ex-
isting supervised detector Mahala achieves the best AUROC of 86.03% and our (unsupervised)
results are comparable at 84.27%. Mahala achieves the best TNR (@95%TPR) detection of 56.86%
and ours is second best at 44.67%.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

(a) OOD from Vizwiz (blurry, too bright etc.)

Baseline: 93.70

ODIN: 94.95

Mahala: 77.19

AUX: 80.28

Our: 90.93
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(b) OOD from Fashion-MNIST

Baseline: 84.33

ODIN: 85.46

Mahala: 86.03

AUX: 68.59

Our: 84.27

Figure 10: AUROC results of the existing detectors and Algorithm 3 on Mix-MNIST.

Table 2: TNR (@95% TPR) of existing detectors and Algorithm 3 on Mix-MNIST.

Test Set Baseline ODIN Mahala AUX Our
OOD from Vizwiz 64.73 66.67 54.16 43.23 67.15

OOD from Fashion-MNIST 23.13 19.02 56.86 11.24 44.67
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A.6 DETAILS ON THE CELEBA AND BIRDS EXPERIMENTS

A.6.1 CELEBA

We use the semantic segmentation network Ns by Lee et al. (2020) on CelebA dataset. The network
segments faces into different parts including nose, hair, mouth, etc. In this experiment, we ran
Algorithm 2 with the Baseline score.

Figure 11: Images from CelebA dataset.

A.6.2 BIRDS

We use the semantic segmentation network Ns by Iakubovskii (2019). Here, we select Feature Pyra-
mid Network (FPN) (Lin et al., 2017) with ResNet50 (He et al., 2016) as its backbone architecture.
It segments the images into two parts: bird and background. In this experiment, we ran Algorithm 2
with the Baseline score.

Figure 12: Images from Birds dataset
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