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Abstract—One of the central challenges preventing robots from
acquiring complex manipulation skills is the prohibitive cost of
collecting large-scale robot demonstrations. In contrast, humans
are able to learn efficiently by watching others interact with their
environment. To bridge this gap, we introduce semantic action
flow as a core intermediate representation capturing the essential
spatio-temporal manipulator-object interactions, invariant to su-
perficial visual differences. We present ViSA-Flow, a framework
that learns this representation self-supervised from unlabeled
large-scale video data. First, a generative model is pre-trained
on semantic action flows automatically extracted from large-scale
human-object interaction video data, learning a robust prior over
manipulation structure. Second, this prior is efficiently adapted
to a target robot by fine-tuning on a small set of robot demonstra-
tions processed through the same semantic abstraction pipeline.
We demonstrate through extensive experiments on the CALVIN
benchmark and real-world tasks that ViSA-Flow achieves state-
of-the-art performance, particularly in low-data regimes, out-
performing prior methods by effectively transferring knowledge
from human video observation to robotic execution. Videos are
available at https://visaflow-web.github.io/ViSAFLOW,

I. INTRODUCTION

Robot imitation learning has achieved remarkable success
in enabling robots to acquire complex manipulation skills,
ranging from basic object manipulation[13, 9] to intricate
assembly procedures[[7]. However, the scalability of traditional
imitation learning approaches is fundamentally limited by the
need for extensive, carefully curated robot datasets that are
costly to collect. This has become a critical bottleneck in
developing robots capable of performing diverse real-world
tasks.

In contrast, humans demonstrate an extraordinary ability to
learn new skills by observing others. Whether it be in person,
instructional videos or even from sports broadcasts, humans
instinctively focus on the semantically relevant components.
For instance, when learning tennis, we naturally attend to
the player’s body movements, racquet handling techniques,
and ball trajectories, while effectively filtering out irrelevant
background information. This selective attention to meaningful
elements enables efficient skill acquisition and transfer. The
vast repository of publicly available videos on the internet
similarly represents an untapped resource for robot learning,
offering diverse demonstrations of human skills across count-
less domains. However, effectively leveraging this resource
requires addressing several key challenges, particularly in
bridging the gap between human demonstrations in uncon-
strained videos and robot execution in the real world.

Recent research[l, 132 [19] has explored enabling robots
to acquire skills by directly observing unstructured human

videos. These approaches have demonstrated strong general-
izability, allowing robots to adapt to new tasks effectively.
In most real-world scenarios, when humans learn a skill,
we primarily focus on the interaction between the human
hand (or arm) and the manipulated object, while disregarding
irrelevant background elements or distractions. Mimicking this
selective attention mechanism could enhance the efficiency and
effectiveness of robot learning from videos.

Drawing inspiration from this, we propose a novel approach
that enables robots to learn skills by extracting and leveraging
semantic representations from large-scale video collections.
Our framework outlined in Fig. [1| focuses on identifying the
key semantic elements relevant to skill acquisition, much
like how humans naturally attend to meaningful components
while learning from visual demonstrations. By concentrating
on these semantic features - such as object interactions, body
poses, and motion patterns - rather than processing entire
scenes indiscriminately, our approach aims to make video-
based skill learning more efficient and generalizable. Our key
contributions are threefold:

1) We propose ViSA-Flow, a framework for pre-training
generative policies using large-scale Video Semantic
Action Flow, capturing spatio-temporal manipulator-
object interactions from diverse human video demon-
strations. This enables efficient knowledge transfer from
Internet-scale human video data to robotic manipulation
policies.

2) We refine the pretrained policy using robot-specific
semantic actions from few expert demonstrations by
tracking hand-object interactions in both human videos
and robot data, enabling robust semantic alignment for
improved policy adaptation.

3) We evaluate ViSA-Flow in both simulated and real-
world robotic manipulation tasks, demonstrating sub-
stantial performance improvements over SOTA base-
lines. Our method boosts task success rates, highlighting
the effectiveness of video-driven robot skill learning.

II. RELATED WORK

Visual-Feature-Based Imitation Learning. Recent
advancements[28, 15, [31, 21, 3] in visual feature-based
imitation learning have significantly improved the efficiency,

generalization, and robustness of learning from visual
demonstrations. VIEW [15] introduces a trajectory
segmentation approach that extracts condensed prior

trajectories from demonstrations, allowing robots to learn
manipulation tasks more efficiently. Similarly, K-VIL
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Fig. 1: Learning Robot Manipulation Skills from Human Videos via Semantic Action Transfer. (a) Humans and robots
often share underlying atomic actions for similar tasks (e.g., Move & Grasp). (b) Our framework leverages large-scale, unlabeled
human videos by extracting weakly supervised semantic action flow priors (ViSA-Flow). This knowledge is distilled into a
human policy and efficiently transferred to learn a corresponding robot policy.

[8] enhances efficiency by extracting sparse, object-
centric keypoints from visual demonstrations, reducing
redundancy and improving learning speed. Beyond efficiency,
generalization remains a critical challenge, particularly in
adapting to diverse visual environments. Stem-OB [12]]
addresses this issue by leveraging diffusion model inversion
to suppress low-level visual differences, improving robustness
against variations in lighting and texture. In addition,
goal-oriented approaches have been developed to improve
policy learning and adaptation. Visual hindsight self-imitation
learning [17] introduces hindsight goal re-labeling and
prototypical goal embedding, enhancing sample efficiency in
vision-based tasks.

Video-Based Robot Learning. Recent advancements[4, 24}
331 120] in robot learning have demonstrated the effectiveness
of large-scale video datasets for pre-training models and
improving generalization. Methods such as Time-Contrastive
Networks (TCN) [26] have pioneered the extraction of tempo-
rally consistent features to align human demonstrations with
robot actions. Building on this foundation, video pretraining
[2] has shown that large-scale video data can be used to
pretrain robust visual representations for downstream manip-
ulation tasks. More recent works[30] have further leveraged
large-scale video datasets to enhance manipulation perfor-
mance. Similarly, Vid2Robot [14] presents an end-to-end
framework that directly translates video demonstrations and
real-time observations into robot actions, leveraging cross-
attention mechanisms for improved alignment. [19] highlights
the potential of leveraging partially-annotated data to enhance
robot policy learning by integrating multi-modal information.

Vision-Language Models for Robetics. Multi-modal mod-
els such as CLIP[23] and SAM|18|] have shown considerable
promise in grounding visual tasks via language. Building upon
this foundation, recent studies have further enriched the inter-
play between vision and language in robotics. [27] proposed

to couple vision-language embeddings with reinforcement
learning to enhance adaptability in unfamiliar environments.
In a similar vein, Wang et al. [29] introduced a multi-modal
transformer architecture that fuses language cues with visual
inputs, demonstrating improvements in object localization and
manipulation planning. Rodriguez et al.[25] showed that fine-
tuning pre-trained vision-language models on domain-specific
datasets can markedly boost action segmentation and affor-
dance detection accuracy.

III. METHOD

Our approach facilitates learning robot manipulation poli-
cies from limited target-domain data by leveraging knowl-
edge distilled from large-scale source-domain (human) videos.
This is achieved through the introduction and utilization of
Video Semantic Action Flow (ViSA-Flow), a structured
intermediate representation designed for cross-domain transfer.
We first formulate the conceptual properties of ViSA-Flow
and motivate its suitability for transfer learning, then detail
its concrete implementation within our two-stage learning
framework.

A. Problem Definition

Our objective is to pretrain a policy model 7y by utilizing
human-object interactions from a large dataset of human ma-
nipulation videos, D,, = {v; }*. This pretraining aims to facil-
itate learning on a target robotic task using only a small dataset
of robot demonstrations, D, = {7;}", where N < M. The
target task involves controlling a robot based on language
instructions, observations, and proprioceptive state. We define
the robot’s observation space as O, its proprioceptive state
space as S, and its action space as A. Given a language in-
struction I, our goal is to learn a policy 7y (a¢|l, 0t—p.t, St—h:t)
that outputs an action a; € A based on the instruction [, a
history of recent observations o;_p.; € O, and recent states
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Fig. 2: ViSA-Flow Architecture and Policy Learning Framework. (a) During pretraining, hand-object interaction masks
are extracted from large-scale video frames and amplified via tracking to generate semantic flow representations. (b) In the
finetuning stage, a multi-modal Transformer architecture conditions on the goal image, a sequence of RGB observation frames
enhanced with pre-trained ViSA-Flow, language instructions and robot state. The Transformer predicts future visual states,
low-level robot actions, and task progress using dedicated decoders.

S¢—n:t € S. This policy is learned primarily by imitating the
demonstrations in D, leveraging the pretraining from D,,.

B. ViSA-Flow Representation

We propose ViSA-Flow as an intermediate representation
2zt € Zvisa-Flow Obtained by mapping an observation o; and
context [ through a function f : O X L — Zyisa-Fiow- The mo-
tivation is to define a representation space Zyisa-rlow Where the
manipulation interaction relevant to the task is preserved while
the domain-specific nuisance factors are mitigated, facilitating
skill transfer from O° to O

a) 1) Semantic Entity Grounding.: Given the initial ob-
servation frame oy and context [, we utilize a pre-trained
Vision-Language Model (VLM) to ground textual descriptions
of the manipulator (e.g., ‘hand’, ‘gripper’) and task-relevant
objects (e.g., ‘red block’) identified from [. A segmentation
model (e.g., SAM[18])) then generates initial segmentation
masks for these grounded entities, including manipulators and
objects, i.e., {mar,0, Moy, .,0}-

b) 2) Hand-Object Interaction Tracking.: Due to the
instability of semantic segmentation across sequential frames,
we propose tracking the correctly segmented hand-object
interaction mask over time. Specifically, we instantiate a
robust point tracker (e.g., CoTracker[16]) with points densely
sampled within the initial masks. The tracker estimates the 2D
image trajectories P, = {pj,t}évzo for these points across the
sequence {o0; }_,. These trajectories P; represent the extracted
raw flow information, capturing the motion of key interaction
points.

c) 3) Flow-Conditioned Feature Encoding.: To produce
the final VISA-Flow representation z;, we encode the flow
information P, into a rich feature vector while retaining visual
context. We first apply a perceptual enhancement process
directly on the raw observation frame o;. Using tracked point
trajectories P;, we generate a spatially-localized amplification
mask M;(z,y) with parameterized radius r around each
tracker coordinate:

My(z,y) =géalgt<1(ll(:r,y) —pll2<r). )
This mask modulates pixel intensities by an amplification
factor o within these regions of interest, while maintaining
contextual information elsewhere. The resulting perceptually-
enhanced frame exhibits selective luminance amplification at
interaction-critical regions. This pre-processed frame is then
passed through a vision encoder ¢ (e.g., MAE[11]), transform-
ing the flow-highlighted observations into our implemented
ViSA-Flow representation z;:

Zt:¢(0t®[1+O£Mt]). (2)

This implementation aims to focus on tracked semantic
entities and modulating features accordingly.

C. Policy Learning through ViSA-Flow Representation

Our learning framework leverages the extracted ViSA-Flow
representations z; within a two-stage pre-training and fine-
tuning scheme, implemented using a transformer architecture,
denoted g, (parameters 1)), inspired by prior work such as

GR-1[30].



a) Model Architecture.: A transformer g, is designed
to process multimodal sequences for both generative predic-
tion and policy inference shown in Fig. 2] Its input is a
sequence formed by concatenating tokens representing various
modalities and special learnable query tokens. Primary input
modalities include language instruction embeddings Emb(!)
(e.g., from CLIP[23]]), the sequence of recent ViSA-Flow
representations {z;_p,...,2¢} encoding flow-conditioned vi-
sual features (Sec. [[II-B), the sequence of proprioceptive
states {st—p,..., ¢} (processed via linear embeddings), and
potentially tokens representing a goal state zgoq;. Added to
these are special query tokens: an [ACT] token for action
prediction and multiple [OBS] tokens for predicting future
ViSA-Flow states. Standard positional embeddings are added
to this combined sequence to encode temporal order before
processing by the transformer blocks. The output embeddings
corresponding to the query tokens are then directed to task-
specific heads; notably, the [ACT] token’s output yields the
action chunk prediction Gsy1.¢4+%, While the [OBS] tokens’
outputs yield predictions Z;11..4, for future states.

b) Stage 1: Pre-training — Learning ViSA-Flow Dynamics
Prior.: Using the large-scale human video dataset D,,, we pre-
train g, to model the dynamics within the ViSA-Flow space.
For each sequence v; € D, we extract {z;;} (Sec. .
The model is trained to predict future representations 2z;41.t4p
based on past context z<; and [, using the [OBS] query
tokens. The objective is to minimize the prediction error,
typically via Mean Squared Error (MSE):

Lorerain(V) = Eup, [||l9w(2<t, Dioss) — 2e41:640 2] - (3)

This stage yields pre-trained parameters e, encoding a prior
over interaction dynamics.

c) Stage 2: Fine-tuning — Policy Adaptation.: Using the
small-scale robot demonstration dataset D, we fine-tune the
model, initialized with tpe, to learn the target policy my
(where § C ). For each robot trajectory 7; € D., we
extract ViSA-Flow representations {z;} using the identical
pipeline. The model is trained end-to-end with a multi-task
objective combining action prediction and continued dynamics
modeling:

»Cﬁnetune(w) - ETND.,. |:£'act (at+1:t+k7 CAltJrl:tJrk)
+ )\fwd Lobs (Zt+1:t+na 2t+1:t+n) + )\prog Eprog (pta ﬁt)i|

Here, a; = gy (2<t, S<t,1)jacty 18 the predicted action. L, is
the action loss (e.g., a weighted combination of Smooth L1,
BCE, KL divergence terms appropriate for the action space).
Ziitan = Gu(2<t,S<t,1)joss) are predicted future ViSA-
Flow states, and Ly is the forward dynamics loss (MSE,
identical form to Eq. but on D.) weighted by Apyq. Py is the
optional predicted progress, with Ly, being the progress loss
(e.g., MSE) weighted by Ay This stage adapts the general
dynamics prior to the specific robot and learns the mapping
from ViSA-Flow states (and proprioception) to robot actions,
yielding the final policy parameters .

IV. EVALUATION

We conduct extensive experiments in both simulated and
real-world environments to systematically evaluate ViSA-
Flow’s performance. Our evaluation is designed to answer the
following key questions: 1) Can ViSA-Flow effectively learn
and generalize across multiple tasks, particularly in challeng-
ing scenarios involving distractors, different backgrounds, and
new objects? 2) Can ViSA-Flow effectively learn and general-
ize across diverse tasks using minimal expert demonstration
data, particularly in scenarios where expert demonstration
data with language annotations are scarce? 3) Do semantic
actions extracted from human demonstrations benefit robot
skill learning?

A. Simulation Experiments

Evaluation Setup. We evaluate ViSA-Flow on the CALVIN
benchmark[22]], a standard testbed for long-horizon, language-
conditioned manipulation requiring generalization. We use
the ABC—D split, training on environments A, B, C and
evaluating zero-shot on the unseen environment D as shown
in the lower row of Fig. 3]

Pre-training Data. The ViSA-Flow model undergoes pre-
training (Stage 1, Sec. using the large-scale Something-
Something-V2 (SthV2) dataset[10] as the source domain.
SthV2 contains approximately 220,000 short videos depicting
diverse human-object interactions (examples visualized in the
upper row of Fig.[3). Each video is associated with a template-
based textual description indicating the action performed (e.g.,
‘Pushing [something] from left to right’) and includes place-
holder labels identifying key objects within frames. The videos
are processed to extract ViSA-Flow representations which are
used for the pre-training as described in Secs. and
Fine-tuning Data. Following pre-training, ViSA-Flow is fine-
tuned (Stage 2, Sec. [[II-C) specifically for the CALVIN
environment. To evaluate performance under data scarcity, we
utilize only 10% (1,768 trajectories) of the available language-
annotated robot demonstrations from CALVIN’s ABC dataset
as our target domain dataset. Each trajectory consists of
the language instruction and the sequence of robot states,
observations, and actions.

Baselines. We compare ViSA-Flow against two groups of
SOTA methods: (i) Low-Data Baselines: Strong contemporary
methods trained under the identical 10% data condition as
ViSA-Flow for direct comparison of data efficiency. This in-
cludes CLOVER[5], GR-1[30], SeeR[28] and GR-MG([19]. (ii)
Full-Data Baselines: Methods trained on 100% of CALVIN
annotated robot data (17,870 trajectories), including Hulc[21],
MDT][24], Spil[33], Roboflamingo[20] and SuSIE[3]. These
represent the performance achievable with substantially more
in-domain supervision.

Metrics. Following the standard CALVIN evaluation proto-
col, we measure the success rate to complete 5 consecutive
subtasks within a longer instruction sequence, evaluated over
1,000 independent sequences. We also report the average
successful sequence length (Avg. Len.). These metrics assess
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Fig. 3: Datasets used for pretraining, finetuning, and evaluation. A model is trained on the Something-Something-V2
dataset with text labels. Placeholders are used to extract underlying semantic action flow. The finetuning stage involves 34
manipulation tasks across three simulated environments (Env A, B, and C) in CALVIN benchmark [22]. The evaluation is on

Environment D, where the robot complete 5 consecutive subtasks within one continuous sequence. )
TABLE I: Comparative evaluation on CALVIN ABC— D benchmark. Performance metrics include success rates for completing

1-5 consecutive tasks and average sequence length (Avg. Len). Methods in the top section use 100% of training data, while
methods in the bottom section use only 10%. The robot executed 1,000 test sequences with five tasks each. Bold indicates

best performance.

| Fully-Annotated | Partially-Annotated |

Tasks Completed in A Row | Avg. Len

Method | Data (Demo No.) | Data | 1 2 3 4 5 |

Hulc 100% (17870) v 41.8% 16.5% 5.7% 1.9% 1.1% 0.67
MDT [24] 100% (17870) v 61.7%  40.6% 23.8% 14.7% 8.7% 1.54
Spil [33] 100% (17870) v 742%  463%  27.6% 14.7% 8.0% 1.71
Roboflamingo 100% (17870) X 82.4% 619%  46.6% 33.1% 23.5% 2.47
SuSIE 100% (17870) v 87.0% 69.0% 49.0% 38.0%  26.0% 2.69
CLOVER [3] 10% (1768) X 443%  18.0% 5.0% 1.0% 0.0% 0.68
GR-1 [30] 10% (1768) X 672% 37.1% 19.8% 10.8% 6.9% 1.41
SeeR [28] 10% (1768) X 655% 388% 21.4% 11.7% 6.8% 1.44
GR-MG 10% (1768) X 81.8% 59.0% 39.0% 24.0% 16.2% 2.20
ViSA-Flow (Ours) 10% (1768) X 89.0% 73.8% 56.8% 44.8% 31.4% 2.96

single-task proficiency and the ability to maintain performance
over long horizons.

Results and Analysis. Table [I| presents the performance met-
rics for all methods. The results demonstrate that ViSA-Flow
outperforms all baseline methods, achieving highest success
rates across all consecutive task completion metrics despite
using only 10% of the available annotated robot trajectories.
Most impressively, ViSA-Flow maintains strong performance
in sequential tasks, completing 5 consecutive tasks 31.4%
of the time, almost twice the rate of the next best method
trained with 10% data (GR-MG: 16.2%) and exceeding all
methods trained on 100% data, including Susie (26.0%). The
average sequence length of 2.96 further demonstrates the effec-
tiveness of ViSA-Flow in handling long-horizon manipulation

tasks. Performance degradation from single to sequential tasks
(89.0% — 31.4%) is notably less severe for ViSA (64.7%
reduction) compared to GR-MG (80.2% reduction) and Susie
(70.1% reduction). This remarkable performance can probably
be attributed to utilization of semantic action representations
extracted from human demonstration videos. These results in
simulation experiments validate our hypothesis that semantic
action representations from human videos can significantly
enhance robot skill learning, even when expert demonstrations
are scarce and encounter different environments.

Ablation Study of ViSA-Flow Components. Table [[I| sum-
marizes the results when each component within the ViSA-
Flow framework is individually removed from the full method.
Removing the semantic entity grounding stage and tracking the
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Fig. 4: The real-world experiment setup. We evaluate ViSA-Flow on two single-stage manipulation tasks and a two-stage

long-horizon manipulation task.
TABLE II: Ablation study evaluating the contribution of key
components in ViSA-Flow.

Method | Tasks Completed in A Row

| Avg. Len.

| 1 2 3 4 5|
ViSA-Flow wio Seg. | 71.3%  45.1% 245% 145%  9.6% 1.64
ViSA-Flow w/o Trace. | 87.2%  692%  520% 39.6% 30.0% | 278
ViSA-Flow wio Hand | 89.0% 71.8% 542% 394%  28.4% | 2.83
ViSA-Flow (Full) 89.0% 738% 568% 448% 314% | 296

motion of points across whole observation images significantly
reduces performance across all consecutive-task metrics. Suc-
cess rate on five-task sequences drops from 31.4% to just
9.6% with the average successful length falling from 2.96
to 1.64, which indicates the importance of accurately seg-
menting and identifying semantic entities to anchor tracking
and flow conditioning. Omitting the robust temporal tracking
stage decreases the average successful length over five-task
sequences from 2.96 to 2.78, highlighting that consistent
point correspondences are essential for preserving temporal
dynamics across multi-step interactions. Excluding explicit
manipulator grounding results in a modest drop in average
sequence length, from 2.96 to 2.83, indicating that while
segmentation and tracking are primary drivers of performance,
manipulator cues still play a meaningful role in providing
spatial context for action understanding. Overall, the full
ViSA-Flow configuration—integrating segmentation, tracking,
and manipulator grounding—achieves the best results across
all metrics, confirming that each component contributes to
capturing semantic action flow and enabling reliable long-
horizon, cross-domain task execution.

B. Real World Experiments

We evaluate the performance of ViSA-Flow in real-world
experiments across diverse settings, focusing on its effective-
ness and robustness in solving both single-stage and long-
horizon tasks.

Experiment Setup. We evaluate our ViSA-Flow method in
two real-world settings: two single-stage manipulation tasks
and one long-horizon manipulation task. The demonstrations
were collected by teleoperating a 7-DOF Franka Emika Panda
arm using the Oculus-based application. We use two cameras
(one eye-in-hand, one eye-to-hand) to provide RGB observa-
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Fig. 5: Real-world experimental results. Left: two

single-stage tasks; Right: a two-stage long-horizon task.

tions. The real-world experiment setup is shown in Fig. [
For single-stage tasks, we collected 46 and 54 demonstrations
for two tasks—MoveContainer and PickEggplant respectively.
We train the ViSA-Flow policy for each single-stage task.
For long-horizon tasks, we consider the same two subtasks,
MoveContainer and PickEggplant, requiring the robot to com-
plete the first task before sequentially solving the second. This
setup ensures consistency with the testing scenario used in
our simulation experiments. We evaluate each policy across
12 different initial positions.

Baselines. We compare our ViSA-Flow method with GR-MG
[19] and the visuomotor Diffusion Policy (DP) [6], both of
which leverage RGB and proprioceptive inputs. To ensure
fair comparison, all baseline models are trained on the same
real-world demonstration datasets for the two single-stage
tasks and the long-horizon task.

Quantitative Results and Analysis. The real-world experi-
mental results are presented in Fig. |5} For the single-stage tasks
MoveContainer and PickEggplant, ViSA-Flow significantly
outperforms the GR-MG model across 12 trials. Meanwhile,
DP achieves a comparable success rate of 75.0% on the Pick-
Eggplant task. In contrast, for the long-horizon task—which
sequentially combines MoveContainer and PickEggplant—our
method demonstrates superior performance, achieving 9/12
successful trials for each subtask and yielding an overall
success rate of 56.3% for the full sequence. By compari-
son, GR-MG and DP attain success rates of only 8.3% and
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Fig. 6: Qualitative results on the real world long-horizon task. We visualize the decoded ViSA-Flow prediction at 2
against the actual ViSA-Flow z;4; extracted from the next observation for four execution phases. Two rows correspond to the
two subtasks that make up the long-horizon evaluation: (Top) Subtask 1 — MoveContainer. (Bottom) Subtask 2 — PickEggplant.
Qualitatively, the model’s one-step predictions closely follow the true motion of the manipulator and task-relevant objects, even

as the scene evolves across distinct interaction stages.

13.8%, respectively. Notably, DP experiences a significant
performance drop when transitioning from single-stage to
long-horizon tasks, whereas ViSA-Flow maintains robust and
consistent performance.

Qualitative Results and Analysis. Fig. [f] qualitatively demon-
strates that the decoded ViSA-Flow one-step prediction Z;;
remains tightly aligned with the ground-truth flow throughout
the entire long-horizon execution: the model persistently fo-
cuses on the robot gripper and the task-relevant objects while
suppressing background clutter, its spatial support evolves
smoothly and coherently as the scene transitions from the
initial approach, through two intermediate contact phases,
to the completion state, and the same level of accuracy is
observed across the two sequential subtasks. This close match
between prediction and observation confirms that the cross-
domain dynamics prior learned during pretraining effectively
captures task-critical interaction structure and generalizes to
novel real-world embodiments.

V. LIMITATIONS AND FUTURE WORK

While ViSA-Flow demonstrates strong performance in ob-
servational robot learning, it currently lacks explicit modeling
of 3D geometry and contact dynamics, which may limit its
generalization to tasks involving fine-grained physical interac-
tions. The current framework also relies on pretrained VLM
components that potentially restrict adaptability to novel do-
mains. Future work includes enriching ViSA-Flow representa-
tions with contact physics and reducing reliance on pretrained
components by jointly training ViSA-Flow with VLMs. Ad-
ditionally, integrating ViSA-Flow’s priors with reinforcement
learning algorithms and scaling pretraining to web-scale video
corpora offer promising directions for advancing generalizable
robot learning.
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