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Abstract Bias mitigators can improve algorithmic fairness in machine learning models, but their effect
on fairness is often not stable across data splits. A popular approach to train more stable
models is ensemble learning, but unfortunately, it is unclear how to combine ensembles with
mitigators to best navigate trade-offs between fairness and predictive performance. To that end,
we extended the open-source library Lale to enable the modular composition of 8 mitigators,
4 ensembles, and their corresponding hyperparameters, and we empirically explored the
space of configurations on 13 datasets. We distilled our insights from this exploration in
the form of a guidance diagram that can serve as a starting point for practitioners that we
demonstrate is robust and reproducible. We also ran automatic combined algorithm selection
and hyperparmeter tuning (or CASH) over ensembles with mitigators. The solutions from the
guidance diagram perform similar to those from CASH on many datasets.

1 Introduction

Algorithmic bias in machine learning can lead to models that discriminate against underprivileged
groups in various domains, including hiring, healthcare, finance, criminal justice, education, and
even child care. Of course, bias in machine learning is a socio-technical problem that cannot be
solved with technical solutions alone. That said, to make tangible progress, this paper focuses on
bias mitigators, which improve or replace an existing machine learning estimator (e.g., a classifier)
so it makes less biased predictions (e.g., class labels) as measured by a fairness metric (e.g., disparate
impact [16]). Unfortunately, bias mitigation often suffers from high volatility, meaning the estimator
is less stable with respect to group fairness metrics. In the worst case, this volatility can even cause a
model to appear fair when measured on training data while being unfair on production data. Given
that ensembles (e.g., bagging or boosting) can improve stability for accuracy metrics [38], we felt it
was important to explore whether they also improve stability for group fairness metrics.

Unfortunately, the sheer number of ways in which ensembles and mitigators can be combined
and configured with base estimators and hyperparameters presents a dilemma. On the one hand,
the diversity of the space increases the chances of it containing at least one combination with
satisfactory fairness and/or predictive performance for the provided data. On the other hand, finding
this combination via brute-force exploration may be untenable if resources are limited.

To this end, we conducted experiments that navigated this space with 8 bias mitigators from
AIF360 [7]; bagging, boosting, voting, and stacking ensembles from the popular scikit-learn li-
brary [11]; and 13 datasets of various sizes and baseline fairness (more than prior algorithmic fairness
papers). Specifically, we searched the Cartesian product of datasets, mitigators, ensembles, and
hyperparameters both via brute-force and via Hyperopt [8] for configurations that optimized fairness
while maintaining decent predictive performance and vice-versa. Our findings confirm the intuition
that ensembles often improve stability of both accuracy and group fairness metrics. However, the
best configuration of mitigator and ensemble depends on dataset characteristics, evaluation metric of
choice, and even worldview [18]. Therefore, we automatically distilled a method selection guidance
diagram in accordance with the results from both brute-force search and Hyperopt exploration.
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To support these experiments, we assembled a library of pluggable ensembles, bias mitigators,
and fairness datasets. While we reused popular and well-established open-source technologies, we
made several new adaptations in our library to get components to work well together. Our library is
open-source (https://github.com/IBM/lale) to encourage research and real-world adoption.

Related Work

Some prior work used ensembles for fairness, but they used specialized ensembles and bias mitigators,
whereas our work uses off-the-shelf modular components. The discrimination-aware ensemble uses
a heterogeneous collection of base estimators [26]; when they all agree, it returns the consensus
prediction, otherwise, it classifies instances as positive iff they belong to the unprivileged group.
The random ensemble also uses a heterogeneous collection of base estimators, and picks one of
them at random to make a prediction [21]. The paper offers a synthetic case where the ensemble
is more fair and more accurate than all base estimators, but lacks experiments with real datasets.
Exponentiated gradient reduction trains a sequence of base estimators using a game theoretic model
where one player seeks to maximize fairness violations by the estimators so far and the other player
seeks to build a fairer next estimator [1]. In the end, for predictions, it uses weights to pick a
random base estimator. Fair AdaBoost modifies boosting to boost not for accuracy but for individual
fairness [9]. In the end, for predictions, it gives a base estimator higher weight if it was fair on
more instances from the training set. The fair voting ensemble uses a heterogeneous collection
of base estimators [29]. Each prediction votes among base estimators ¢, ¢ € 1..n, with weights
Wy =a-A:/(Z]_Aj) + (1 -a) - F;/(3]_F;), with A; an accuracy metric and F; a fairness metric.
The fair double ensemble uses stacked predictors, with a final linear estimator, with a novel approach
to train the weights of the final estimator to satisfy a system of accuracy and fairness constraints [31].

Each of the above-listed approaches used an ensemble-specific bias mitigator, whereas we exper-
iment with eight different off-the-shelf modular mitigators. Moreover, each of these approaches used
one specific kind of ensemble, whereas we experiment with off-the-shelf modular implementations
of bagging, boosting, voting, and stacking. Using off-the-shelf mitigators and ensembles facili-
tates plug-and-play between the best available independently-developed implementations. Unlike
these earlier papers, our paper specifically explores fairness stability and the best ways to combine
mitigators and ensembles. We auto-generate a guidance diagram from this exploration.

We are not the first to use automated machine learning, including Bayesian optimizers, to
optimize models and mitigators for fairness [32, 39]. And it is widely accepted that ensembling
is a critical part of AutoML (see for example auto-sklearn [17] and AutoGluon [14]). But unlike
prior work, we focus on applying AutoML to ensemble learning and bias mitigation to validate our
guidance diagram and results.

There are previous empirical studies of fairness techniques [10, 19, 20, 24, 30, 35, 36, 40].
However, only one explores fairness with ensembles [20], and it does not consider bias mitigators.

Our work also offers a new library of bias mitigators. While there have been excellent prior
fairness toolkits such as ThemisML [4], AIF360 [7], and FairLearn [1], none support ensembles.
Ours is the first that is modular enough to investigate a large space of unexplored mitigator-ensemble
combinations. We previously published some aspects of our library in a non-archival workshop with
no official proceedings, but did not discuss ensembles [23]. In another non-archival workshop paper,
we discussed ensembles and some of these experimental results [15], but no Hyperopt results and
only limited analysis of the guidance diagram. Such results and further analysis are included here.
After collecting 13 fairness datasets for this paper, we collected 7 more, bringing the total to 20 [22].

Library and Datasets

One of our contributions is compatibility between mitigators from AIF360 [7] and ensembles from
scikit-learn [11]. To provide the glue and facilitate searching over a space of mitigator and ensemble
configurations, we extended the Lale open-source library for semi-automated data science [5, 6].
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Figure 1: Combinations of ensembles and mitigators. Pr(e) applies a pre-estimator mitigator before an
estimator e; In denotes an in-estimator mitigator, which is itself an estimator; and Post(e) applies
a post-estimator mitigator after an estimator e. Bag(e, n) is BaggingClassifier with n instances of
estimator e; Boost(e, n) is AdaBoostClassifier with n instances of e; Vote(e) is VotingClassifier with
a list of estimators e; and Stack(e, e) is StackingClassifier with a list of estimators (first e) and a
final estimator (second e). For stacking, the passthrough option is shown by a dashed arrow.

Metrics. This paper uses metrics from scikit-learn, including precision, recall, and F; score (harmonic
mean of precision and recall). In addition, we implemented a scikit-learn compatible API for several
fairness metrics from AIF360 including disparate impact (the ratio of positive outcomes for the
unprivileged group versus those for the privileged group as described by Feldman et al. [16]). We
also measure time (in seconds) and memory (in MB) utilized when fitting models.

Ensembles. Ensemble learning uses multiple weak models to form one strong model. Our ex-
periments use four ensembles supported by scikit-learn: bagging, boosting, voting, and stacking.
Following scikit-learn, we use the following terminology to characterize ensembles: A base estimator
is an estimator that serves as a building block for the ensemble. An ensemble supports one of two
composition types: whether the ensemble consists of identical base estimators (homogeneous, e.g.
bagging and boosting) or different ones (heterogeneous, e.g. voting and stacking). Similarly, each
ensemble supports one of two training styles: whether the ensemble trains base estimators one at a
time sequentially (series, e.g. boosting) or independently from each other (parallel, e.g. bagging,
voting, and stacking). For the homogeneous ensembles, we used their most common base estimator
in practice: the decision-tree classifier. For the heterogeneous ensembles (voting and stacking), we
used a set of typical base estimators: XGBoost [13], random forest, k-nearest neighbors, and support
vector machines. Finally, for stacking, we also used XGBoost as the final estimator.

Mitigators. We added support in Lale for bias mitigation from AIF360 [7]. AIF360 distinguishes
three kinds of mitigators for improving group fairness: pre-estimator mitigators, which are learned
input manipulations that reduce bias in the data sent to downstream estimators (we used Disparatelm-



Table 1: Qualitative and quantitative summary information of the datasets. The datasets are ordered
by first partitioning by whether they contain at least 8,000 rows (we picked 8,000 to get a
roughly even split; the partition is represented by the horizontal line in the middle of the table)
and then sorting by descending baseline disparate impact (DI). Values for feature importance
ranking of most predictive protected attribute according to XGBoost (Importance), the number
of columns (N,.5), number of rows (Ny,ys), and baseline disparate impact (DI) displayed here
are computed affer preprocessing techniques are applied.

Dataset Description Privileged group(s) Imp- N,y Nyows DI
ortance
Compas violent Correctional offender violent recidivism White women 4 10 3,377  0.822
Credit-g German bank data quantifying credit risk Men and older people 22 58 1,000 0.748
Compas Correctional offender recidivism White women 5 10 5278 0.687
Ricci Fire department promotion exam results White men 6 6 118  0.498
TAE University teaching assistant evaluation Native English speakers 1 6 151  0.449
Titanic Survivorship of Titanic passengers Women and children 2 37 1,309  0.263
SpeedDating  Speed dating experiment at business school ~ Same race 24 70 8,378  0.853
Bank Portuguese bank subscription predictions Older people 17 51 45211 0.840
MEPS 19 Utilization results from Panel 19 of MEPS White individuals 22 138 15,830 0.490
MEPS 20 Same as MEPS 19 except for Panel 20 White individuals 18 138 17,570 0.488
Nursery Slovenian nursery school application results ~ “Pretentious parents” 325 12,960 0.461
MEPS 21 Same as MEPS 19 except for Panel 21 ‘White individuals 10 138 15,675 0.451
Adult 1994 US Census salary data White men 19 100 48,842 0.277

pactRemover [16], LFR [41], and Reweighing [25]); in-estimator mitigators, which are specialized
estimators that directly incorporate debiasing into their training (AdversarialDebiasing [42], Ger-
ryFairClassifier [28], MetaFairClassifier [12], and PrejudiceRemover [27]); and post-estimator
mitigators, which reduce bias in predictions made by an upstream estimator (we used CalibratedE-
qOddsPostprocessing [33]).

Fig. 1 visualizes the combinations of ensemble and mitigator kinds we explored, while also
highlighting the modularity of our approach. Mitigation strategies can be applied at the level of either
the base estimator or the entire ensemble, although not all combinations are feasible.

First, post-estimator mitigators typically do not support predict_proba functionality required
for some ensemble methods and recommended for others. Calibrating probabilities from post-
estimator mitigators has been shown to be tricky [33], so despite Lale support for other post-estimator
mitigators, our experiments only explored CalibratedEqOddsPostprocessing.

Additionally, it is impossible to apply an in-estimator mitigator at the ensemble level, so we
exclude those combinations. Finally, we decided to omit some combinations that are technically
feasible but less interesting. For example, while our library supports mitigation at multiple points,
say, at both the ensemble and estimator level of bagging, we elided these configuration from Fig. 1
and from our experiments.

Datasets. We gathered the datasets for our experiments primarily from OpenML [37]; the exceptions
come from Medical Expenditures Panel Survey (MEPS) data [2, 3] and ProPublica data [34] not
hosted there. Some have been used extensively as benchmarks elsewhere in the algorithmic fairness
literature. We pulled other novel datasets from OpenML that have demographic data that could be
considered protected attributes (such as race, age, or gender) and contained associated baseline levels
of disparate impact. In addition, to get a sense for the predictive power of each protected attribute,
we fit XGBoost models to each dataset with five different seeds and found the ranking of the average
feature importance (where 1 is the most important) of the most predictive protected attribute for
that dataset. In all, we used 13 datasets, with most information summarized in Table 1 and granular
feature importance information summarized in the Appendix. When running experiments, we split
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the datasets using stratification by not just the target labels but also the protected attributes [23],
leading to moderately more homogeneous fairness results across different splits. The exact details
of the preprocessing are in the open-source code for our library for reproducibility. We hope that
bundling these datasets and default preprocessing with our package, in addition to AIF360 and
scikit-learn compatibility, will improve dataset quality going forward.

Methodology

Given our 13 datasets, 4 types of ensembles, 8 mitigators, and all relevant hyperparameters, we
wanted to gain insights about the best ways to combine ensemble learning and bias mitigation in
various problem contexts and data setups. We compared the results of searching over the Cartesian
product of these settings in two ways: a manual grid search to determine optimal configurations for
each dataset and an automated search via Bayesian optimization in Hyperopt [8].

Grid Search
We organize our grid search experiments into two steps: a preliminary search that finds the “best”
mitigators without ensembles, and subsequent experiments using those mitigator configurations.

First step. It is difficult to define “best” (in an empirical sense) given different dimensions of
performance and datasets. We first run grid searches over each dataset, exploring mitigators and their
hyperparameters with basic decision-trees where needed. We run 5 trials of 3-fold cross validation
for each configuration. For each dataset, we choose a “best” pre-, in-, and post-estimator mitigator
and (1) filter configurations to ones with acceptable fairness, (0.8 < mean disparate impact < 1.25);
(2) filter remaining to ones with nontrivial precision; (3) filter remaining to ones with good predictive
performance, defined as mean F; score (across 5 trials) greater than both the average and median of
all mean F; scores; (4) finally, select the mitigator with maximum precision (for Compas, prioritizing
true positives) or recall (other datasets, avoiding false negatives). Tables 12 and 13 in our Appendix
list the chosen pre-estimator and in-estimator configurations (the only post-estimator configuration is
CalibratedEqOddsPostprocessing).

Second step. Given the “best” mitigator configurations, this step explores the Cartesian product
of ensembles and mitigators of Fig. 1 plus ensemble hyperparameters. For bagging and boosting,
the only ensemble-level hyperparameter varied between configurations was the number of base
estimators: {1,10,100} for bagging and {1,50,500} for boosting. Voting and stacking use lists
of heterogeneous base estimators as hyperparameters. In our experiments, these lists contained
either 4 mitigated or 4 unmitigated base estimators. For the in-estimator mitigation case these were
{PrejudiceRemover, GerryFairClassifier, MetaFairClassifier, and AdversarialDebiasing}. Lastly,
stacking also has a passthrough hyperparameter controlling whether dataset features were passed to
the final estimator. If passthrougn is set to False, it is impossible to mitigate the final estimator due
to lack of dataset features; otherwise we mitigate either the base estimators or final estimator, but not
both. The second step also uses 5 trials of 3-fold cross validation for each experiment, running on a
computing cluster with Intel Xeon E5-2667 processors @ 3.30GHz. Every experiment configuration
run was allotted 4 cores and 12 GB memory.

Hyperopt Search

We used Hyperopt to perform another model configuration search, this time in a single step guided
by an objective that combined predictive performance and fairness. We defined a single search space
that includes all ensembles and mitigators and their hyperparameters. Then, we defined the blended
scorer in Fig. 2 (L7 measures symmetric disparate impact and F; score; L8 scales both of these
based on ranges determined in L4-L5; L9-L.10 amplifies low outcomes to encourage AutoML to
avoid them; and L11 returns the arithmetic mean). Finally, we ran Lale’s Hyperopt wrapper, passing
the plended_scorer as the objective to maximize and setting timeouts of 10 minutes per trial and
20 hours total for each dataset, on the same cluster as for grid search.
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def symm di(model, X, y): # symmetric disparate impact
di = di_scorer(model, X, vy)
return di if di <= 1 else 1 / di
min_di, max_di = symm di.score_data(X=X, y_pred=y), 1
min_f1, max fl = f1_scorer(dummy, X, y), fl_scorer(xgboost, X, y)
6 def blended _scorer (model, X, y):

AW =

w

7 di, fl = symm di(model, X, y), fl_scorer(model, X, y)
8 di, f1 = (di — min_di) / (max di — min_di), (f1 — min_f1) / (max_fl — min_f1l) # scale
9 if di < 0.66: di —= 0.66 — di # amplify low DI outcomes so AutoML avoids them

10 if f1 < 0.66: f1 —= 0.66 — f1 # amplify low F1 outcomes so AutoML avoids them
11 return 0.5 x (di + £f1) # blend to joint objective

Figure 2: Blended objective for Hyperopt search.

Table 2: Standardized Disparate impact Outcome (DO) and Volatility (DV). DO, DV use different scales.

No Mit. Pre- In- Post-
DO DV DO DV DO DV DO DV
Noensemble 0.42 0.18 073 038 087 044 053 024

Bagging 031 0.08 054 0.19 080 028 044 0.08
Boosting 033 018 0.69 039 087 0.26 041 0.12
Voting 029 009 051 035 040 045 021 020
Stacking 039 019 061 027 044 039 050 027

Results

This section includes quantitative results of our two searches and qualitative guidance regarding
future model development based on these results.

Grid Search Results

Result preprocessing. To facilitate cross-dataset comparisons, we applied the following procedure
on a per-dataset basis for each metric of interest: (i) given all results, map all values to the same
region of metric space around the point of optimality if needed (i.e. for disparate impact, we use the
reciprocal of a value if it is larger than 1 for downstream calculations, but for F;, no modification is
needed), and (ii) min-max scale the mean and standard deviation of the metric of interest, separately.
After doing this for all datasets, we group remaining results by mitigator kind and ensemble type, and
average the scaled values over all datasets for each group. Given a metric M, we refer to the result
of this procedure using mean values as “standardized M outcome” and using standard deviation as
“standardized M volatility”. The tables and figures that follow report values normalized as described.

Do ensembles help with fairness? Table 2 shows the disparate impact results. Mitigation almost
always improved disparate impact outcomes, but ensemble learning generally incurred a slight
penalty, while generally reducing disparate impact volatility. In some contexts, this increased stability
may be preferred over better yet more unstable predictions.

Table 3: Standardized F; outcome (FO) and volatility (FV). FO, FV use different scales.

No Mit. Pre- In- Post-
FO FV FO FV FO FV FO FV
Noensemble 0.70 020 054 039 051 049 063 0.19
Bagging 093 o013 o050 019 o061 011 o065 0.13

Boosting 0.84 028 049 025 052 028 063 0.13
Voting 077 0.09 040 036 045 050 058 0.19
Stacking 083 026 0.56 050 0.67 059 0.66 027
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Figure 3: Resource consumption.

Do ensembles help predictive performance when there is mitigation? Table 3 shows F; results.
Even with ensemble learning, mitigation decreases predictive performance, but relative to standalone
mitigators, mitigated ensembles typically have better outcomes or stability, but not both. Except for a
few cases, mitigated ensembles can help with predictive performance outcomes or volatility.

How do ensembles affect resource consumption? Fig. 3 reports the time and memory for training
ensembles of in-estimator mitigators. We did not measure the overhead of the bias mitigators
themselves, since it is determined by their implementation in AIF360 [7]. Time and memory are
averaged over all datasets and all in-estimator mitigators in our experiments. Error bars reflect
averages of standard deviations (each standard deviation calculated across all trial-folds for a given
dataset and configuration). No min-max scaling was used to create this figure. Not surprisingly, more
base estimators consume more resources, so we address this consideration in our guidance diagram.

Guidance for method selection
To advise future practitioners based on our results, we generated Fig. 4 from optimal configurations
for particular metrics and data setups. To generate it, we do the following:

1. Organize all results by dataset.

2. Filter results for each dataset to ones that occur in the top 33% of results for both standardized
disparate impact outcome and standardized F; outcome.

3. Place each result into one of four quadrants based on the dataset’s baseline fairness and size.
4. Average each metric in each quadrant while grouping by model configuration.

5. Report the top 3 configurations per quadrant and metric.

Leave-one-out evaluation. One way in which we evaluate our guidance diagram is, for each dataset,
to follow the diagram generation steps while leaving out the results pertaining to that dataset, and
examine differences in terms of the recommended model configurations and their performances
between the new diagram and the one generated from all of the datasets. Because our guidance
diagram has three recommendations per metric, the largest number of differences between a leave-
one-out diagram and the full dataset diagram for a given metric is three. We also compute signed
differences of metric values by subtracting the metric value of the best model recommended by
the leave-one-out diagram from that of the full dataset diagram. If the diagram creation method
generalizes well, these differences should be close to zero. Table 4 displays both types of these
differences for all omitted datasets and the metrics disparate impact mean, disparate impact standard
deviation, and F; mean. Based on these differences, some datasets have more of an effect on the
guidance diagram than others. This phenomenon will be covered in our discussion section.
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Figure 4: Guidance diagram for a good starting configuration given dataset properties and target metric.

5.3 Hyperopt Result Comparison
We purposely designed a scorer for Hyperopt (see methodology section) similar to the method we
used to filter grid search results to produce the guidance diagram. Therefore, Hyperopt’s solutions
provide another way to evaluate the guidance diagram’s suggested configurations.

Table 5 shows, for each dataset, the configurations returned by Hyperopt and recommended by the
guidance diagram when average disparate impact or average F; score is the metric of interest. Fig. 5
shows the corresponding average F; score and disparate impact with standard deviations. A close
inspection reveals that while the guidance diagram rarely recommends the exact same configuration
as that found by Hyperopt, it often recommends one with similar performance.

6 Discussion

This section describes the impacts of our search results and guidance in addition to hypotheses
informed by our results regarding biased data.

Guidance diagram utility and robustness. The previous section showed that the guidance diagram
and Hyperopt search recommended configurations with relatively similar performance on most of
the datasets. This suggests that the guidance diagram can recommend to practitioners starting points
for model development based on their data setup and metric(s) of interest. Consulting the guidance
diagram can be done quickly, without needing the time and compute resources of a search.

Our leave-one-out dataset experiments also suggest that our diagram generation algorithm is
relatively robust to changes in the input data. This further supports the notion that our guidance
diagram has useful recommendations. However, those experiments also showed that the presence or



Table 4: Number of configuration and signed metric differences between leave-one-out and full dataset
guidance for omitted datasets. Note: metric differences are not standardized.

DI Mean DI StdDev F1 Mean

Omitted Dataset Num Metric Num Metric Num  Metric

COMPAS Violent 0 0 0 0 0 0
Credit-g 3 0.29 3 -0.03 3 0.23
COMPAS 0 0 0 0 0 0
Ricci 0 0 0 0 0 0
TAE 2 0.20 1 0 1 -0.19
Titanic 1 0 1 -0.12 1 0
SpeedDating 0 0 2 0 3 0.05
Bank 3 0.11 1 -0.01 1 0
MEPS 19 0 0 0 0 0 0
MEPS 20 1 0.01 2 0 0 0
Nursery 0 0 0 0 0 0
MEPS 21 1 -0.04 1 0.03 1 0
Adult 0 0 0 0 0 0

Table 5: Configurations recommended by Hyperopt search and guidance diagrams optimized for fairness
and predictive performance.

Dataset Hyperopt Guidance F1 Guidance DI
COMPAS V. Pr(Stack(e, e)) Bag(In, 10) In
Credit-g Vote(Pr(e)) Bag(In, 10) In
COMPAS Bag(Post(e), 72) Bag(In, 10) In
Ricci Pr(e) Bag(In, 10) In
TAE In Boost(Pr, 500) Post(e)
Titanic Pr(Vote(e)) Boost(Pr, 500) Post(e)
SpeedDating In Pr(Stack(e, e)) In
Bank Post(Boost(e, 206))  Pr(Stack(e, e)) In
MEPS 19 In Pr(Stack(e, e)) In
MEPS 20 Stack(e, In) Boost(In, 10)  Boost(In, 50)
Nursery Pr(e) Boost(In, 10)  Boost(In, 50)
MEPS 21 In Boost(In, 10)  Boost(In, 50)
Adult Pr(e) Boost(In, 10)  Boost(In, 50)

absence of certain datasets affected the resulting diagram more than others. For instance, the Credit-g
and Bank datasets have more effects on the recommended configurations and model performance
than the Adult or COMPAS datasets.

We attribute this phenomenon to the filtering of model results that takes place during diagram
generation and properties of the datasets themselves. Most of the datasets in Table 1 that have large
effects on the diagram have baseline disparate impact close to 0.8 (meaning they are relatively fair),
and their protected attributes are not strongly predictive (based on feature importance ranking). This
implies that with mitigation, it is possible to fit these datasets fairly and accurately. This in turn
means model fitting results from those datasets comprise most of the results for the given quadrant
after filtering to reasonable fairness and predictive performance. Therefore, when those datasets are
missing, the generated diagram differs greatly from the one generated with all data. (The exceptions
to this rule are TAE and Titanic. Given that those are the only two datasets in their quadrant and
protected attributes are strongly predictive, it is difficult to fit either well in a fair manner. Therefore,
neither contributes many fitting results after filtering, and both have tangible effects on the diagram.)

In light of how protected attribute feature importance of input datasets affects recommendations
of the guidance diagram, one limitation of our diagram is its lack of branches for this property (thus
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Figure 5: Average (with standard deviation) of F1 and DI for the recommended configurations (see
Table 5) for each dataset from Hyperopt search, guidance diagram to optimize for predictive
performance, and guidance diagram to optimize for fairness.

not providing recommendations based on this property). Determining this property requires training
XGBoost models, which can take time and resources, while the other properties utilized can be
quickly calculated. Thus, we still argue that our guidance diagram is useful to future practitioners.

What is “good data?”’” As mentioned by Holstein et al. [24], “future research” in the area of
algorithmic fairness should “[develop] processes and tools for fairness-focused debugging” and
“should also support practitioners in collecting and curating high-quality datasets in the first place”.
These recommendations suggest how to collect good data? and what even is ‘good data’? are
questions with which the field is currently grappling.

We believe our results shed some light on these fronts. First, our findings suggest that converting
“bad data” to “good data” may not (just) involve making datasets larger in number of examples but
(also) making them larger in number of features. Prevailing notions of algorithmic fairness may
imply that the best way to fix an unfair dataset is to add examples to reduce bias. While this may
work, it could be difficult to do in practice (especially given societal mechanisms behind bias), and
Holstein et al. [24] also raise that “How much data [one] would need to collect?” does not typically
have a clear answer. However, our results imply that collecting more data to alleviate bias should be
done by gathering more features instead of simply gathering more examples with the same features.

That being said, datasets like Adult and Ricci included attributes that were more predictive than
protected attributes, yet they still did not strongly influence our guidance diagram. We conjecture that
the more predictive attributes were highly correlated with protected attributes, and feature importance
tables included in our Appendix seem to support this. Therefore, when collecting more features to
reduce bias, one needs to ensure that these features are not correlated with protected attributes.

Lastly, we want to highlight that regardless of the form such data collection may take, it is
imperative to consider the ethics of doing so and respect wishes and privacy of the individuals whose
data are utilized during the model building process and who are affected by the model predictions.

Conclusion

This paper introduces a library of modular bias mitigators and ensembles and details experiments
that confirm ensembles can improve fairness stability. We also provide generalizable guidance to
practitioners based on their data setup.
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A Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative
impacts to society or the environment.

B Submission Checklist

1. For all authors. ..

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [ Yes]

(b) Did you describe the limitations of your work? [Yes] Section 6 discusses the utility and
robustness of the guidance diagram.

(c) Did you discuss any potential negative societal impacts of your work? [N/A| As mentioned
in Section A we believe this work presents no notable negative societal impacts.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper conforms
to them? https://automl.cc/ethics/ [ Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A ]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version),
an instructive README with installation, and execution commands (either in the supple-
mental material or as a URL)? [Yes] The repository https://anon-github.automl.cc/r/fair_
ensembles-BC93 has the required details.

(b) Did you include the raw results of running the given instructions on the given code and data?
[Yes] The raw results can be found at the repository mentioned above in a directory called
‘results’.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] The
repository mentioned above has scripts for getting the numbers for the tables. Some of the
figures were manually drawn so there are no scripts for those.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See Section 4.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes]

(g) Did you run ablation studies to assess the impact of different components of your approach?
[N/A]

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

(i) Did you compare performance over time? Performance over time here could have
meant learning curves during grid search or hyperopt search. For grid search, this would not
be meaningful. For hyperopt, we prioritized other results to fit the page limit.
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hence cannot report, random seeds.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] Tables 2 and 3 report DV (disparate impact volatility) and FV (F;
score volatility), and Tables 4 and 5 report standard deviations. These are tantamount to error
bars.

(1) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] We used
datasets that are tabular and real and the evaluation was feasible with real datasets without
needing to resort to surrogate ones.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUSs, internal cluster, or cloud provider)? [Yes] Section 4 describes the cluster and timeouts
used.

(n) Did you report how you tuned hyperparameters, and what time and resources this required (if
they were not automatically tuned by your AutoML method, e.g. in a NAS approach; and also
hyperparameters of your own method)? [Yes] See the “Hyperopt Search” part of Section 4.
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(a) If your work uses existing assets, did you cite the creators? [Yes] The paper builds on
the libraries scikit-learn [11], AIF360 [7], Hyperopt [8], and Lale [6], and uses OpenML
datasets [37]. All of these citations also appear in the main body of the paper as appropriate.

(b) Did you mention the license of the assets? We did not mention the licenses in the
main body of the paper, but here they are: scikit-learn, OpenML, and Hyperopt use the
BSD (3-Clause) license, and AIF360 and Lale use the Apache-2.0 license.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] We
have open-sourced our library but omitted the URL for double-blind review.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A| We use public anonymized datasets that were
already stripped of any personally identifiable information before we accessed them. Of
course, the datasets contain protected attributes. As far as we can tell, apart from their bias
as required for this study, the datasets contain no offensive content.

5. If you used crowdsourcing or conducted research with human subjects. ..

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]
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(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]
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C.1 Additional Tables
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Table 6: Granular feature importance rankings of protected attributes for each dataset.

Dataset Protected Attribute Rankings
COMPAS Violent sex: 4
race: 7
. age: 22
Credit-g sex: 43
COMPAS Sex: 5
race: 7
Ricci race: 6
TAE native_english_speaker: 1
Titanic sex: 2
. importance_same_race: 24
SpeedDating samerace: 69
Bank age: 17
MEPS 19 RACE: 22
MEPS 20 RACE: 18
Nursery parents: 3
MEPS 21 RACE: 10
sex: 19
Adult race: 30

Table 7: Feature importance information for first-ranked feature for each dataset.

Feature 1

Dataset Name Imp.
COMPAS V.  priors_count=More than 3 0.49
Credit-g checking_status_no checking 0.11
COMPAS priors_count=More than 3 0.54
Ricci combine 1

TAE native_english_speaker 0.33
Titanic boat_13 0.79
SpeedDating  like 0.08
Bank poutcome_success 0.18
MEPS 19 WLKLIM=2.0 0.34
MEPS 20 WLKLIM=2.0 0.26
Nursery health_not_recom 0.59
MEPS 21 WLKLIM=2.0 0.19

Adult marital-status_Married-civ-spouse ~ 0.42




Table 8: Feature importance information for second-ranked feature for each dataset.

Feature 2

Dataset Name Imp.
COMPAS V.  age_cat=Less than 25 0.22
Credit-g other_parties_guarantor 0.03
COMPAS age_cat=Less than 25 0.25
Ricci position_Captain 0

TAE summer_or_regular_semester_1  0.29
Titanic sex 0.04
SpeedDating  attractive_o 0.05
Bank contact_unknown 0.08
MEPS 19 ARTHDX=1.0 0.06
MEPS 20 ARTHDX=1.0 0.06
Nursery has_nurs_very_crit 0.08
MEPS 21 ARTHDX=1.0 0.10
Adult education-num 0.05

Table 9: Feature importance information for third-ranked feature for each dataset.

Feature 3

Dataset Name Imp.
COMPAS V.  age_cat=Greater than45  0.15
Credit-g credit_history_all paid 0.03
COMPAS age_cat=Greater than 45  0.07
Ricci position_Lieutenant 0

TAE course 0.15
Titanic boat_A 0.04
SpeedDating  funny_o 0.04
Bank month_mar 0.05
MEPS 19 ACTLIM=1.0 0.03
MEPS 20 INSCOV=3.0 0.02
Nursery parents 0.07
MEPS 21 ACTLIM=2.0 0.04
Adult capital-gain 0.05

Table 10: Feature importance information for fourth-ranked feature for each dataset.

Feature 4

Dataset Name Imp.
COMPAS V. sex 0.05
Credit-g savings_status_no known savings ~ 0.03
COMPAS priors_count=0 0.06
Ricci oral 0

TAE course_instructor 0.13
Titanic parch 0.02
SpeedDating  attractive_partner 0.03
Bank month_jun 0.04
MEPS 19 ADSMOK42=-1.0 0.02
MEPS 20 ACTLIM=1.0 0.02
Nursery has_nurs_critical 0.06
MEPS 21 ACTLIM=1.0 0.03

Adult occupation_Other-service 0.03




Table 11: Feature importance information for fifth-ranked feature for each dataset.

Feature 5

Dataset Name Imp.
COMPAS V. age_cat=25 to 45 0.03
Credit-g property_magnitude_no known property  0.03
COMPAS sex 0.03
Ricci written 0

TAE class_size 0.11
Titanic body 0.02
SpeedDating  funny_partner 0.03
Bank duration 0.04
MEPS 19 JTPAIN=1.0 0.02
MEPS 20 ACTLIM=2.0 0.02
Nursery has_nurs_improper 0.03
MEPS 21 INSCOV=3.0 0.02
Adult relationship_Own-child 0.03

Table 12: Optimal pre-estimator mitigator configurations (with corresponding hyperparameters) per
dataset. Hyperparameter names are not provided if the mitigation technique only accepts one.
If a hyperparameter is not listed in the rightmost column, the configuration utilizes the default

value.
Dataset Mitigator Hyperparameters
COMPAS Violent  DisparateImpactRemover 1
Credit-g LFR k=5, Ax=0.01, Ay=10, Az=5
COMPAS DisparateImpactRemover 0.4
Ricci LFR k=5, Ax=0.01, Ay=5, Az=10
TAE LFR k=5, Ax=0.01, Ay=50, Az=5
Titanic DisparateImpactRemover 0.8
SpeedDating DisparateImpactRemover 0.2
Bank DisparateImpactRemover 0.2
MEPS 19 LFR k=5, Ax0.01, Ay=1, Az=10
MEPS 20 LFR k=5, Ax=0.01, Ay=1, Az=10
Nursery LFR k=20, Ax=0.01, Ay=1, Az=10
MEPS 21 LFR k=5, Ax=0.01, Ay=1, Az=10

Adult LFR k=5, Ax=0.01, Ay=1, Az=10




Table 13: Optimal in-estimator mitigator configurations (with corresponding hyperparameters) per

dataset. Hyperparameter names are not provided if the mitigation technique only accepts one.

If a hyperparameter is not listed in the rightmost column, the configuration utilizes the default

value.
Dataset Mitigator Hyperparameters
COMPAS Violent  MetaFairClassifier 0.5
Credit-g AdversarialDebiasing  classifier_num_hidden_units=10
COMPAS MetaFairClassifier 0.5
Ricci MetaFairClassifier 0.8
TAE MetaFairClassifier 0.8
Titanic MetaFairClassifier 1
SpeedDating MetaFairClassifier 0.9
Bank PrejudiceRemover 100
MEPS 19 PrejudiceRemover 1000
MEPS 20 AdversarialDebiasing  classifier_num_hidden_units=500
Nursery MetaFairClassifier 0.5
MEPS 21 AdversarialDebiasing  classifier_num_hidden_units=500
Adult PrejudiceRemover 1000
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