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ABSTRACT

Recent work has shown the promise of creating generalist, transformer-based,
policies for language, vision, and sequential decision-making problems. To create
such models, we generally require centralized training objectives, data, and com-
pute. It is of interest if we can more flexibly create generalist policies, by merging
together multiple, task-specific, individually trained policies. In this work, we
take a preliminary step in this direction through merging, or averaging, subsets of
Decision Transformers in weight space trained on different MuJoCo locomotion
problems, forming multi-task models without centralized training. We also pro-
pose that when merging policies, we can obtain better results if all policies start
from common, pre-trained initializations, while also co-training on shared aux-
iliary tasks during problem-specific finetuning. In general, we believe research
in this direction can help democratize and distribute the process of which forms
generally capable agents.

1 INTRODUCTION

Transformers, specifically those pre-trained with language, have been shown to learn general repre-
sentations and parameters that are amenable to transfer (Lu et al., 2021). In the context of offline
Reinforcement Learning, Reid et al. (2022); Takagi (2022) showed that initializing Decision Trans-
formers (DT) (Chen et al., 2021; Furuta et al., 2021) with pre-trained language models can increase
convergence speed and performance on the D4RL (Fu et al., 2020) MuJoCo (Todorov et al., 2012)
benchmarks, showing transfer between completely different modalities. Transformers can also learn
generalist policies for different Atari games in Multi-game Decision Transformer (Lee et al., 2022),
as well as for many modalities, tasks, and embodiments in Gato (Reed et al., 2022). Keeping our
focus on Decision Transformers, we question the nature of which multi-game, or more generally,
multi-task Decision Transformers are formed. Is it possible to more flexibly create multi-task DTs
with reduced demands for centralizing all data and training?

We believe a small step in this direction is investigating parameter similarities between single Deci-
sion Transformers trained on different reinforcement learning problems. Specifically, In this work,
we look at DTs trained on different MuJoCo locomotion problems. We begin by analyzing the sim-
ilarity of learned parameters but through a perspective of weight merging. Specifically, given two
trained DTs on different environments, merging refers to taking a subset of parameters, say those
associated with attention, and replacing the parameters in both models with an average of original
parameters. In this work, we look at merging without accounting for symmetries (Ainsworth et al.,
2022), but this could be a future direction.

We aim to answer several questions, forming our contributions:

1. We begin by investigating how merging individual layers and subsets of DTs affect model
performance and find that we can directly merge and swap the parameters of Decision
Transformers trained on different MuJoCo environments (HalfCheetah, Walker2D, Hop-
per) with, in some cases, minimal decrease in performance. This leads us to investigate the
role of attention in DTs, finding some DTs do not heavily rely on attention.
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2. We propose a method for creating multi-task DTs through merging certain parameters,
freezing those merged, and then independently finetuning un-merged parts (Merge-Freeze-
Finetune). This creates a multi-task DT without centralized data or training objectives.

3. We propose that common initialization and shared co-training on auxiliary tasks can lead
to better merging with Decision Transformers. Specifically, we use language modeling,
building on Reid et al. (2022).

2 BACKGROUND

2.1 TRANSFORMERS

Transformers (Vaswani et al., 2017) are a common neural network architecture for modeling se-
quences. We consider causal decoder-only transformers like GPT (Radford & Narasimhan, 2018).
A transformer is composed of several successive transformer blocks, which each consist of (multi-
headed) self-attention layers, multi-layer perceptron (MLP) layers, as well as layer normalization
(Ba et al., 2016). Given a sequence of inputs of length n and embedding size d X ∈ Rd×n, a
self-attention layer projects each input to queries (Q), keys (K), and values (V ) with parameters
{Wq, bq}, {Wk, bk}, {Wv, bv} respectively. We then perform Attention(X): softmax(QKT

√
d
)V . We

apply this operation for each head in parallel, stack outputs, resulting in Y ∈ RHd×n, where H is
the number of heads, which is then projected by Wo, resulting in X ′ = WoY ∈ Rd×n (Phuong
& Hutter, 2022). Decision Transformers, apply layer normalization before and after attention lay-
ers, where each layer has learnable affine transform parameters γ, β. Each MLP contains one hidden
layer (and one output layer), with parameters W1,W2. Transformers also have a residual connection
after each attention and MLP layer respectively, so the actual output consists of the transformation
from the layer added with its input.

2.2 OFFLINE REINFORCEMENT LEARNING WITH DECISION TRANSFORMER

We consider problems that are modeled by a Markov decision process (MDP) with states s ∈ S ,
actions a ∈ A, unknown transition dynamics p(s′|s, a) and reward function r(s, a). Tradition-
ally in RL, we aim to learn an optimal policy that maximizes expected (discounted) return through
interaction with the environment. Instead, in offline RL, we learn without interaction using a
static dataset. A dataset consists of a set of trajectories, where each trajectory has the form
τ = (s0, a0, r0, s1, a1, r1, ..., sN , aN , rN ), consisting of a sequence of states, actions, and return
at each timestep until timestep N . With this data, we aim to find a policy π(a|s, ·) that maximizes
expected return E[

∑N
t=0 rt], where the expectation is over the distribution induced by transition

dynamics and the policy π. Decision Transformer casts offline RL as a sequence modeling prob-
lem using causal auto-regressive transformers. Particularly, DT models the actions in the sequence
τ = (R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT ), where the return-to-go (RTG) is the undiscounted sum
of future reward: R̂t =

∑T
t′=t rt′ . To make a prediction, each input is embedded using linear pro-

jections with added positional encoding and normalization, passed through the transformer, and then
a final linear layer predicts the action. We refer to transformer parameters as those only associated
with transformer layers and not input/output projections. During test time, we condition on an initial
RTG such as the maximum in the dataset multiplied by some constant, querying the DT to generate
an action that leads to high-quality performance. At each timestep, we condition on a sequence
consisting of (truncated) past transitions, as well as the remaining RTG to achieve.

2.3 MERGING

Given two trained neural networks with the same architecture, and their sets of parameters or weights
ΘA,ΘB , we can interpolate between weights, getting a new model Θλ = (1 − λ)ΘA + λΘB .
With λ = .5, we directly average weights, obtaining a merged model Θλ=.5 = ΘM = .5(ΘA +
ΘB). Directly interpolating between parameters of randomly initialized models results in models
with high loss (Entezari et al., 2021; Ainsworth et al., 2022). Instead of applying merging over
all parameters, we can apply this same principle over a subset of parameters. In this work, we are
interested in merging transformer parameters discussed in Section 2.1.
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In the case that models ΘA,ΘB are from two finetuned models from a common initialization, Θpre,
merging is equivalent to task arithmetic for creating multi-task models (Ilharco et al., 2022). Specif-
ically, a task vector τx = Θx − Θpre stores the difference between a finetuned and pre-trained
model. We can form a multi-task model by adding the averaged task vectors to the original model:
Θpre+ .5(τA+ τB) = Θpre+ .5((ΘA−Θpre)+(ΘB −Θpre)) = .5(ΘA+ΘB) = ΘM . While dis-
cussed prior work considers merging models trained on the same or overlapping data distributions,
we begin by using merging as a tool to see the similarity of DTs trained on different data.

3 MERGING IN OFFLINE RL WITH DECISION TRANSFORMERS
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Figure 1: Normalized return after merging a single layer at a time, averaged between all pairs of
Walker, Hopper, HalfCheetah. Return is normalized by original performance before merging. We
evaluate at p = .5. an average, and p = 1, swapping in a layer from another DT.

We begin by partially merging Decision Transformers to investigate if similar parameters may be
learned across environments, ignoring input and output projection layers which have unique dimen-
sionality and function for different environments as each robot has unique state and action spaces.
We use settings for MuJoCo experiments from Chen et al. (2021); Reid et al. (2022), as well as
their implementations. Following their configuration, we use transformers with an embedding size
of 128, 1 head, and 3 layers. We provide further hyperparameters in Appendix A. We randomly ini-
tialize and train a model for HalfCheetah, Hopper, and Walker2D on Expert D4RL datasets. Given
two trained models on different environments, we call the model which is having a layer altered the
target model with parameters Θt, and the model where the layer is taken from, which is trained on
another environment, the source model with parameters Θs.

When averaging a single layer at a time, we keep all other layers in the target model unaltered, and
then rollout the policy (for 25 episodes), evaluating the impact of partially, or fully, utilizing the
parameters from the other model. For one layer θi ∈ Θ, we use the update θit = (1− p)θit + p(θis),
where p ∈ {.5, 1}, relating to averaging and swapping. We merge between each pair of models,
and for each pair, we look at merging in each direction, swapping source and target models. This
leads to six instances of evaluation per layer, which we average and display in Figure 1. We report
normalized return, where 1 corresponds to the original return before any merging (p = 0).

We can both average (p = .5), or directly use a layer from another transformer (p = 1), showing that
Decision Transformers trained on different MuJoCo tasks may learn functionally similar parameters.
We see a larger drop-off from merging parameters within the multi-layer perception (MLP) layers
of the transformer as opposed to attention parameters. Additionally, as we go further in depth or
set p = 1, we see a drop-off when merging MLPs. Surprisingly, we can directly use the attention
weights from another trained model at any depth with little to no decrease in empirical return.

3.1 SIMILARITY IN PARAMETER SPACE

Over the same experiments in Figure 1, we report the L2 distance between the source and target
model, shown in Figure 2. We see that L2 distance does not quite correlate with better results. For
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Figure 3: Incremental merging with p = .5 merging from HalfCheetah to Hopper (left) and Hopper
to HalfCheetah (right), where the set of merged layers grows as moving further in depth.

example, the first attention layer consisting of weights of key, query, and value projections, has a
large distance, comparable to that of the MLP layers. However, when merging this layer, we see a
minimal decrease in return, while we saw reduced return when merging MLP layers.

3.2 MERGING SUBSETS OF MULTIPLE LAYERS
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Figure 2: L2 distance between source
and target models, averaged over bi-
directional pairs of HalfCheetah, Hop-
per, and Walker2D.

We should draw attention to that in Figure 1 we are only
merging one layer at a time, and possibly, a transformer
could be robust to single-layer interference. We must see
how well merging performs with multiple layers at a time,
as errors could compound. We look at this from two per-
spectives. We begin by following a similar procedure to
the former per-layer merging, but instead incrementally
add an additional layer, forming a larger subset as we go
move further in depth, in Figure 3. Instead of averaging
across different environment pairs, we show this within a
single pair to be able to clearly see the trajectory formed
by adding layers. We see that as we add layers, per-
formance decreases, reaching close to zero performance
when merging the entire transformer. We also tend to see
large drop-offs at MLP layers, but less so at attention lay-
ers, and varying results with layer normalization.

3.2.1 MERGING ALL ATTENTION LAYERS

When merging individual layers, we see the least reduction in performance with attention layers.
Thus, we see what happens when merging all attention layers (the parameters associated with the
query, key, value, and output linear projections). Attention parameters consist of ∼ 33.18% of the
3 transformer layers which have a total size of 596K parameters. We display results in Figure 4.
On the x-axis, we interpolate between parameters where λ = 0, 1 correspond to using attention
parameters from just one environment. We hold unmerged parameters constant and evaluate on both
environments at each λ. It appears that Decision Transformers trained on different MuJoCo can
learn functionally similar attention weights. We can directly swap in the weights of HalfCheetah
into the Walker2D transformer, and vice versa, with no decrease in return. We do not see this hold
as strongly between Hopper/Walker2d, and Hopper/HalfCheetah, but we still see good results.

3.3 MERGE, FREEZE, FINETUNE

In previous sections, even when merging over a compatible subset, such as attention layers, we still
see some drop-off in return after merging (such as between Hopper and HalfCheetah), as shown
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Figure 4: Merging all attention parameters of transformer across pairs of MuJoCo environments.
λ is varied, which interpolates between just parameters for the first environment λ = 0 and just
parameters from the second environment λ = 1. Other parameters are unique for each environment.

in Figure 4. We aim to see if we can merge without losing performance, proposing Merge-Freeze-
Finetune (MFF): Merging over a subset of two networks, freezing these layers, and then separately
finetuning transformer un-merged parameters and linear input/output projections in both original
models, to separately adapt to changes in shared parameters. We test this idea on several subsets,
reporting the performance of the merged model as a percent of the original performance. We also
report the size increase of the multi-task model within transformer layers, which does not include
linear input/output projections that are kept unique for each task. For example, without any merging,
we maintain original performance (100% on each task) but need unique transformer layers for each
task (200%). We use subsets of all attention related parameters, MLP and attention parameters, and
the entire transformer which also adds layer normalization layers. We also report attention merging
without finetuning (M), as previously shown in Section 3.2.1, and an alternative to equally merging,
where we keep one transformer unmodified, but copy and freeze its parameters to the DT in the
second environment, and have this second DT finetune its non-transformer parameters.

Configuration Hopper HalfCheetah Transformer Size

Original 100% 100% 200%
Frozen Transformer from Hopper 100% 3% 100%
Frozen Transformer from HalfCheetah 48% 100% 100%
Transformer (MFF) 61% 86% 100%
Attention+MLP (MFF) 90% 98% 100.26%
Attention (MFF) 101% 101% 166.82%
Attention (M) 79% 98% 166.82%

Table 1: Evaluating performance after merging between HalfCheetah and Hopper Expert models
with Merge-Freeze-Finetune (MFF) and just merging (M), over different model subsets.

When merging with attention plus finetuning (MFF), we can recover the original performance. We
can also retain greater compression with Attention+MLP merging, obtaining a multi-task model,
with only 1.0026 times more transformer parameters, but with some reduced performance. Later,
we see how we can improve with common initialization and co-training in Section 3.5.

3.4 ANALYSING ATTENTION MERGING

We aim to understand why attention merging is successful. Particularly, we find it surprising that we
can swap the parameters of a DT trained on one environment with another and have a relatively small
or no decrease in performance. To understand this phenomenon, we begin by visualizing attention
weight patterns. This refers to the weights produced after softmax, which specify how much each
input attends to other inputs. Because DT uses a causal mask, each input in a sequence can only
attend to itself and previous inputs. We look at merging between Walker2d and HalfCheetah, using
the same models previously used in Figure 4. We visualize using a context size consisting of 10
transitions (where each transition consists of RTG, states, and actions). We plot attention weights
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Figure 5: Attention weight visualizations on HalfCheetah (Expert), with original parameters (p =
0), averaged with Walker2D (p = .5), and replacing attention parameters with those from Walker2D
(p = 1). Under all settings, even as attention weights change, the Decision Transformer retains
performance close to that of the original as shown in Figure 4.

separately for each layer, and average weights over a single trajectory sampled from the original
training data. We show original attention patterns (p = 0), after merging (p = .5) and directly
using Walker2D parameters (p = 1). We can see that at p = .5, we have relatively similar attention
patterns to p = 0, but attention patterns completely change at p = 1. This means that the DT can
still operate well even when the representations produced by attention change. This could indicate
several things. One possibility is that in DTs trained on certain MuJoCo locomotion tasks and dataset
combinations, the attention mechanism plays little impact. This could be possible if a model learns
to pass more information through residual connections, skipping attention layers. Alternatively,
MLP layers following attention could handle variation in representations.

3.4.1 PERTURBING ATTENTION PARAMETERS

In this section, we perturb attention parameters after training to see how much randomly initialized
DTs rely on the attention mechanism. We replace the attention weights of trained DTs using both
random parameters (fixed for all experiments), identity parameters (weights set to 1, and biases equal
to 0), and removing attention, having information pass through residual connections. We show the
results of these variations in Table 2. We see varied results depending on the environment and dataset
pair. On HalfCheetah, we generally see little impact when perturbing attention on all datasets. Given
these results, may conclude that attention is not relevant on HalfCheetah. However, Takagi (2022)
shows that while HalfCheetah Medium can converge without relying on attention, but it is slower
than training with attention. Thus, even when the context may not be needed during inference time,
attention over past context can be relevant during training. With Walker2D, we see little impact on
homogeneous datasets, Medium and Expert, but see reduced performance from perturbation with
Medium-Expert. With Hopper, we see perturbation reduce performance across all settings. This
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Dataset Environment Original Random Identity Removed Attention

Medium-Expert
HalfCheetah 42.9 41.9 40.9 40.5
Hopper 108.3 77.2 66.8 74.1
Walker2D 109.4 84.6 82.6 86.9

Medium
HalfCheetah 40.2 39.3 40.5 39.1
Hopper 76.4 52.2 52.6 52.2
Walker2D 75.3 74.1 76.2 74.3

Expert
HalfCheetah 89.8 89.2 89.2 86.2
Hopper 108.8 67.1 67.9 68.8
Walker2D 109.4 109.7 109.8 109.8

Table 2: We report the impact of altering attention parameters of trained DTs. We report original
performance, replacing attention parameters with randomly initialized parameters, identity parame-
ters, and removing attention, relying on residual connections.

also lines up with Takagi (2022), where training without context in Hopper medium causes training
to fail, and not achieve more than 0 mean return.

3.5 MERGING WITH LANGUAGE PRE-TRAINING AND CO-TRAINING

While we have so far studied merging two randomly initialized DTs as a baseline, we would get
much better results if we merge two (or more) models which share a common initialization, as they
will likely be much closer in weight space. Additionally, if models are encouraged to stay close to
this original initialization, then we may also see better merging results. This could be accomplished
through any regularization process, such as adding a shared auxiliary loss, so that we co-train while
finetuning. We believe these two strategies are useful for merging DTs, and transformers in general.

We decide to pre-train and co-train with language, as Reid et al. (2022) shows convergence and
performance benefits from initializing DTs with ChibiT, a small transformer pre-trained on the
Wiketext-103 dataset (Merity et al., 2016). ChibiT has the same architecture and parameter count
(596K) as DTs previously used. Training a DT with ChibiT initialization uses the objective
L = LMSE + λ1Lcos + λ2LLM, where LMSE is the original DT objective, LLM is the language
modeling objective, and Lcos encourages cosine similarity between DT input embeddings and clus-
tered centers of language token embeddings. While λ1 is decayed to 0.0 after 5000 steps in Reid
et al. (2022), we maintain λ2 = 1 throughout training.

We train models using this procedure for HalfChetah, Hopper, and Walker2D Medium tasks and
evaluate both merging, and Merge-Freeze-Finetune (MFF) as in Section 3.3, displaying results in
Table 3. We merge across all three models, and between pairs, as in previous experiments. Across
all pairs, we find we can merge attention layers without any decrease in performance. We find addi-
tionally merging MLP layers works well, and with finetuning, we maintain original performance on
both HalfCheetah and Walker2D as well as ∼ 94% performance on Hopper. For example, by merg-
ing Walker2D and HalfCheetah, we obtain a multi-task model with transformer layers about the size
of a single model (100.26%), with no decrease in performance compared to single models, without
ever centrally training for both environments. Finally, we see that we can merge all three models at
once. This works well with attention merging, and we see significantly reduced performance when
adding MLP layers, but we can recover most performance if we also finetune. When applying MFF
in this scenario, we obtain an average of 96.27% of original performance across the three environ-
ments, with only 1.0052 times the transformer parameters of a single model (as we retain unique
layer normalization layers for each environment, but share MLP/Attention parameters).

4 RELATED WORK

Several papers have studied merging models with shared initialization in language and vision for
the purpose of improving generalization and task capabilities (Li et al., 2022; Ilharco et al., 2022;
Chronopoulou et al., 2023; Jin et al., 2022), increasing robustness to distribution shift (Wortsman
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Method Models Hopper HalfCheetah Walker Size

Attention (M)
Hopper-HalfCheetah 99.9% 101.6%

166.82%HalfCheetah-Walker2D 100.3% 102.0%
Walker2d-Hopper 101.4% 102.0%

All 98.9% 99.4% 103.1% 233.64%

Attention+MLP
(M)

Hopper-HalfCheetah 54.5% 83.0%
100.26%HalfCheetah-Walker2D 64.2% 95.5%

Walker2d-Hopper 70.5% 0.3%

All 62.0% 45.5% 0.0% 100.52%

Attention+MLP
(MFF)

Hopper-HalfCheetah 94.4% 101.3%
100.26%HalfCheetah-Walker2D 100.6% 100.3%

Walker2d-Hopper 94.9% 100.7%

All 88.4% 99.9% 100.5% 100.52%

Table 3: Merging Decision Transformers trained with language model initialization (ChibiT)
and co-training , on D4RL Medium datasets. We evaluate just merging attention, and attention
+ MLP layers. We also evaluate Merge-Freeze-Finetune (MFF), where we freeze merged layers,
and separately finetune the remaining layers. We report merging between both pairs of models and
merging all three models at once (All). We report performance relative to before merging which are
D4RL normalized scores of 64.5, 40.7, 77.9 for Hopper, HalfCheetah, and Walker2D.

et al., 2021), and for distributed training (McMahan et al., 2016; Don-Yehiya et al., 2022). Other
work has improved methods for merging weights by utilizing Fisher information for weighted av-
eraging (Matena & Raffel, 2021), and accounting for symmetries, such as permutation (Ainsworth
et al., 2022; Jordan et al., 2022; Peña et al., 2022), to effectively merge weights found through opti-
mizing the same loss but with different initialization. To our knowledge, we are the first work that
considers merging for decision-making or robotic control settings, which presents unique challenges.
Many recent works have considered creating multi-task or general models for decision-making prob-
lems (Lee et al., 2022; Kumar et al., 2022a; Reed et al., 2022; Jiang et al., 2022; Du et al., 2023), but
rely on simultaneous and centralized training over all tasks. While we focus on experiments framed
as multi-task problems, merging, especially without task-specific finetuning, could be explored for
continual (reinforcement) learning (Khetarpal et al., 2020), which has long-standing goals of creat-
ing systems that can continuously adapt to new tasks.

5 DISCUSSION & CONCLUSION

We believe several extensions and follow-ups would be useful to see if our findings more generally
hold. We may expect merging, especially with co-training, to work better on larger models which
have more capacity. When merging, we also report results between single task-specific Decision
Transformers, and it could be useful to train and report results averaged over several starting models.
We also have interests to evaluate merging DTs in other multi-task settings (Lee et al., 2022), testing
other kinds of pre-training (Kumar et al., 2022b; Bonatti et al., 2022) besides language, or merging
other kinds of models in the RL settings which incorporate pre-training and finetuning (Kumar et al.,
2022a; Taiga et al., 2023; Xu et al., 2022).

In this work, we studied merging Decision Transformers trained on different MuJoCo locomotion
problems. We found that it is possible to merge randomly initialized models, leading us to analyze
the role of attention in DTs. We also investigate merging with additional finetuning, showing we
can adapt to changed representations. Lastly, we present a method for obtaining multi-task models
utilizing pre-trained language model initializations and co-training. In this setting, we show that we
can merge three models, obtaining a multi-task policy without centralized training, and of similar
size as a single policy. In general, we view merging as a possible direction for more flexibly creating
multi-task DTs or generalist policies.
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Communication-efficient learning of deep networks from decentralized data. 2016. doi: 10.
48550/ARXIV.1602.05629. URL https://arxiv.org/abs/1602.05629.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation, 2022. URL
https://arxiv.org/abs/2212.12042.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. 2022. doi: 10.48550/ARXIV.
2207.09238. URL https://arxiv.org/abs/2207.09238.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Had-
sell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. 2022. doi:
10.48550/ARXIV.2205.06175. URL https://arxiv.org/abs/2205.06175.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning?, 2022. URL https://arxiv.org/abs/2201.12122.

Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and Marc G Bellemare.
Investigating multi-task pretraining and generalization in reinforcement learning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=sSt9fROSZRO.

Shiro Takagi. On the effect of pre-training for transformer in different modality on offline reinforce-
ment learning. 2022. doi: 10.48550/ARXIV.2211.09817. URL https://arxiv.org/abs/
2211.09817.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL https://arxiv.
org/abs/1706.03762.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
Schmidt. Robust fine-tuning of zero-shot models, 2021. URL https://arxiv.org/abs/
2109.01903.

10

https://arxiv.org/abs/2211.06407
https://arxiv.org/abs/2211.06407
https://arxiv.org/abs/2205.15241
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2103.05247
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2212.12042
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2201.12122
https://openreview.net/forum?id=sSt9fROSZRO
https://openreview.net/forum?id=sSt9fROSZRO
https://arxiv.org/abs/2211.09817
https://arxiv.org/abs/2211.09817
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/2109.01903


Reincarnating Reinforcement Learning Workshop at ICLR 2023

Yifan Xu, Nicklas Hansen, Zirui Wang, Yung-Chieh Chan, Hao Su, and Zhuowen Tu. On the
feasibility of cross-task transfer with model-based reinforcement learning, 2022. URL https:
//arxiv.org/abs/2210.10763.

11

https://arxiv.org/abs/2210.10763
https://arxiv.org/abs/2210.10763


Reincarnating Reinforcement Learning Workshop at ICLR 2023

A APPENDIX

A.1 HYPERPARAMETERS & IMPLEMENTATION DETAILS

Hyperparameters Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Batch size 64
Nonlinearity function ReLU/GeLU
Context length K 20
Dropout 0.1
Learning rate 10−4

Table 4: Hyperparameters used for training Decision Transformers. We use a dropout of 0.1 to
match Chen et al. (2021) while Reid et al. (2022) uses 0.2. While ReLU is used when training DTs
from scratch, GeLU is used when finetuning from ChibiT, as it uses GeLU activations.

For our experiments, we base our implementation on Reid et al. (2022): https://github.
com/machelreid/can-wikipedia-help-offline-rl, and provide hyperparameters in
Table 4.

A.2 CROSS-ENVIRONMENT INITIALIZATION
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Figure 6: Training with random initialization versus using initialization from other Decision
Transformers on a different environment, or merged weights from two different DTs. For merged
initialization, we evaluate both only initializing attention layers and initializing all transformer lay-
ers.

We see if when training a Decision Transformer, we can accelerate training through initialization
with another DT trained on another environment, or the merged parameters of multiple DTs. In
other work utilizing DTs, (Lawson & Qureshi, 2022) finds convergence benefits when transferring
one DT trained for partially-observed maze navigation with a specific robot for initializing training
a policy for another robot. We visualize training plots in Figure 6, plotting the mean return after
each epoch. We see varied, but not convincing results, where we find improvements on training
Walker2D, and minor improvements on HalfCheetah, but little impact on Hopper.
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