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Abstract

Follow-the-Regularized-Leader (FTRL) policies have achieved Best-of-Both-
Worlds (BOBW) results in various settings through hybrid regularizers, whereas
analogous results for Follow-the-Perturbed-Leader (FTPL) remain limited due to
inherent analytical challenges. To advance the analytical foundations of FTPL, we
revisit classical FTRL-FTPL duality for unbounded perturbations and establish
BOBW results for FTPL under a broad family of asymmetric unbounded Fréchet-
type perturbations, including hybrid perturbations combining Gumbel-type and
Fréchet-type tails. These results not only extend the BOBW results of FTPL but
also offer new insights into designing alternative FTPL policies competitive with
hybrid regularization approaches. Motivated by earlier observations in two-armed
bandits, we further investigate the connection between the 1/2-Tsallis entropy and
a Fréchet-type perturbation. Our numerical observations suggest that it corresponds
to a symmetric Fréchet-type perturbation, and based on this, we establish the first
BOBW guarantee for symmetric unbounded perturbations in the two-armed setting.
In contrast, in general multi-armed bandits, we find an instance in which symmetric
Fréchet-type perturbations violate the key condition for standard BOBW analysis,
which is a problem not observed with asymmetric or nonnegative Fréchet-type
perturbations. Although this example does not rule out alternative analyses achiev-
ing BOBW results, it suggests the limitations of directly applying the relationship
observed in two-armed cases to the general case and thus emphasizes the need for
further investigation to fully understand the behavior of FTPL in broader settings.

1 Introduction

In multi-armed bandit (MAB) problems, an agent plays an arm I; from a set of K arms at each round
t € [T):={1,...,T} over atime horizon T'. After playing an arm, the agent observes only the loss

¢, 1, of the played arm, where the loss vectors ¢, = (¢;1, .. ., étyK)T € [0,1]¥ are determined by the
environment. Given the constraints of partial feedback, the agent must handle the tradeoff between
gathering information about the arms and playing arms strategically to minimize total loss.

Although numerous policies have been developed for MAB, many of them can be largely classified
into two primary frameworks, namely Follow-the-Perturbed-Leader (FTPL) [Kalai and Vempala,
2005] and Follow-the-Regularized-Leader (FTRL) [Audibert and Bubeck, 2009]. While FTPL was
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inspired by a game theoretic approach [Hannan, 1957, Fudenberg and Kreps, 1993] and FTRL
emerged from the context of online optimization [Hazan et al., 2016], both frameworks have analogs
in discrete choice theory, a field in economics that models decision-making through probabilistic
frameworks to maximize utility over finite alternatives [Train, 2009]. In particular, FTPL is known as
the additive random utility model [Thurstone, 1927, Anderson et al., 1992], while FTRL corresponds
to the representative agent model [Anderson et al., 1988].

Beyond these conceptual analogies, a line of work has formalized the relationship between FTPL and
FTRL in discrete choice theory [Hofbauer and Sandholm, 2002, Fosgerau et al., 2020]. In particular,
when the joint perturbation distribution has a strictly positive density on R¥, the existence of a corre-
sponding regularizer, along with detailed results on its properties, has been established [Norets and
Takahashi, 2013, Feng et al., 2017]. A classical example is the multinomial logit model [McFadden,
1974], known to be equivalent to both FTPL with Gumbel perturbations (also known as Exp3 [Auer
et al., 1995, Stoltz, 2005]) and FTRL with a Shannon entropy regularizer [Anderson et al., 1988].
In the context of online learning, Abernethy et al. [2016] discussed this relationship for general
perturbations, where the formal theorem was later established for the independent and identically
distributed (i.i.d.) perturbations absolutely continuous with respect to Lebesgue measure by Suggala
and Netrapalli [2020, Proposition 3.1].

While the above results mainly discuss the transformation of FTPL into FTRL, Abernethy et al.
[2014, 2016] demonstrated that (nearly) every instance of FTRL can be viewed as a special case of
FTPL in one-dimensional online optimization and more general equivalences are discussed by Feng
et al. [2017]. Nevertheless, when K > 4, no FTPL counterpart exists for FTRL with log-barrier
regularizer [Hofbauer and Sandholm, 2002, Proposition 2.2] and Tsallis entropy regularizer [Kim and
Tewari, 2019, Theorem 8]. These findings indicate that FTRL strictly subsumes FTPL as a special
case.

Despite this narrower coverage, FTPL has gained significant attention due to its computational
efficiency and simplicity, making it suitable for a variety of problems in online learning, including
combinatorial semi-bandits [Neu and Barték, 2016], online learning with non-linear losses [Dudik
et al., 2020], and MDP bandits [Dai et al., 2022]. Still, while FTRL policies have achieved optimal
results in several problems such as graph bandits [Dann et al., 2023] and partial monitoring [Tsuchiya
et al., 2024], comparable progress for FTPL has been relatively underexplored.

This gap is primarily due to the complexity of expressing arm-selection probabilities of FTPL,
which poses significant analytical challenges despite its computational efficiency in practice. In
the standard analysis of FTRL and FTPL, a key factor in achieving the optimal adversarial regret
is evaluating the stability of the arm-selection probability against the changes in the estimated
cumulative loss. Abernethy et al. [2015] tackled this challenge by leveraging the hazard function
of perturbations, but it only resulted in near-optimal regret of O(v/KT log K). Later, motivated
by the observation in two-armed bandits that FTRL with 8-Tsallis entropy roughly correspond to
Fréchet-type perturbations with tail index (1 — 3)~!, Kim and Tewari [2019] conjectured that FTPL

with Fréchet-type distributions could achieve optimal O(v/ K'T') regret. Recently, this conjecture has
been partially validated, as it was shown that FTPL with nonngetative Fréchet-type distributions,
under certain conditions, indeed obtain the optimal O(v/ K T') regret and even Best-of-Both-Worlds
(BOBW) result [Honda et al., 2023, Lee et al., 2024, Chen et al., 2025]. Here, unfamiliar readers can
think of a Fréchet-type as any distributions whose right tail decays polynomially.

2 Results and contributions

Since hybrid regularizers are typically constructed by summing distinct regularizers [Zimmert et al.,
2019, Ito, 2021], a natural analogue for FTPL is to construct hybrid perturbations, either by summing
perturbations drawn from different distributions or by specifying different behaviors for the left and
right parts of the density. This motivates the study of asymmetric or unbounded perturbations, where
“unbounded” distributions in this paper refers to distributions that are unbounded on both the positive
and negative sides and “semi-infinite” refers to those unbounded on only one side. However, the
requirement for existing results is easily violated when the perturbation has strictly positive density
on R since existing results require the ratio of density to cumulative distribution function, f/F, to be
monotonically decreasing over the entire support.



In this paper, we first relax these previous conditions for the BOBW guarantee by providing milder
conditions under which FTPL with unbounded perturbations achieves optimal O(v/ KT') regret and
even logarithmic stochastic regret, thereby achieving the BOBW result. As shown below, the key
conditions are related to the difference in tail indices of right and left tails, where (right) tail index
roughly corresponds to the order of polynomial decay, Prx.p[X > x] = z 7.

Proposition 2.1 (asymmetric, informal). Let D, denote the unimodal Fréchet-type distribution fully
supported on R under mild conditions, with right and left tails characterized by tail indices 2 and
a > 0, respectively. If a € R>4 U {oo}, FTPL with D, achieves BOBW guarantee for K > 2.

Here, Fréchet-type perturbation with infinite index denotes the Gumbel-type family, which is of
exponential tail such as exponential distribution and Gamma distribution. Consequently, D, with a =
0o can be seen as a hybrid perturbation, combining the Gumbel-type and Fréchet-type distributions,
analogous to the hybrid regularizers widely used in FTRL [Bubeck et al., 2018, Jin et al., 2023].
While it remains unclear which regularizers are associated with these hybrid perturbations, we
expect that our findings can provide insights into developing an FTPL policy that serves as an
alternative to a hybrid regularizer for FTRL. For example, we expect it can approximately reproduce
the combination of Tsallis entropy with Shannon entropy, —x log x, or Shannon entropy for the
complement, — (1 — ) log(1 — ), where the latter has been used in FTRL policies [Zimmert et al.,
2019, Tsuchiya et al., 2024].

While asymmetry appears natural in the context of hybrid perturbations, one may wonder whether it
is essential or just a technical artifact. To explore this, we revisit the original motivation for using
Fréchet-type perturbation, specifically its equivalence to FTRL with Tsallis entropy in the two-armed
bandit setting [Kim and Tewari, 2019], where the latter is a well-known BOBW policy [Zimmert and
Seldin, 2021]. Although the exact distribution is not available in closed form, our numerical analysis
suggests that the perturbation associated with 1/2-Tsallis entropy for K = 2 can be realized by a
symmetric Fréchet-type distribution. Therefore, it is natural to expect that the BOBW guarantee can
be extended to symmetric Fréchet-type at least for K = 2, and perhaps even K > 3. However, our
analysis reveals a limitation in the latter case.

Proposition 2.2 (symmetric, informal). For FTPL with Fréchet-type distributions with both left and
right tail indices equal to 2, the BOBW result holds when K = 2. However, for K > 3, the key
conditions required by standard BOBW analyses are violated unlike the asymmetric tail indices.

Details on this key condition are provided in later sections. Here, it is worth noting that no perturbation
exactly reproduces Tsallis entropy for K > 4 [Kim and Tewari, 2019]. Yet, the regularizer induced
by the symmetric Pareto distribution, the simplest example of symmetric Fréchet-type with density
f(x) = 1/(|z| + 1)3, behaves like the Tsallis entropy even in the counterexample for K > 3.
Although alternative, non-standard techniques might be able to establish general BOBW guarantees
for symmetric Fréchet perturbations, our findings, together with the impossibility result in Kim and
Tewari [2019], highlights the difficulty of extending the BOBW guarantees beyond K = 2. Further
investigation is therefore needed to develop a deeper and more comprehensive understanding of FTPL
in broader settings. For a quick overview of the position of this paper, see Figure 1.

Contribution One contribution of this paper is the extension of prior BOBW guarantees to a broad
class of asymmetric perturbations. While this may appear simple extension, when combined with
results for symmetric perturbations it provides additional implications through connections to discrete
choice theory, as follows.

FTPL-FTRL correspondence and regret analysis beyond known cases

One motivation of our work is to explore when the recent successes of FTRL, particularly with
Tsallis entropy and hybrid regularizers, can be replicated by FTPL policies, which are simpler and
optimization-free. In this regard, we revisit the relationship between regularization and perturbation
and investigate under what conditions such design is possible in Appendix B, which may inspire the
future design of FTPL.

In the two-arm setting, we show that FTRL with Tsallis entropy corresponds to FTPL with symmetric
Fréchet-type tails, which numerically resemble symmetric Pareto distributions (Appendix D.2). We
then establish the first BOBW guarantee for this symmetric unbounded case not covered in previous
FTPL work (Proposition 2.2).
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Figure 1: Perturbation landscape summarizing distributions studied in the literature.

Revealing limitations for symmetric perturbations in the general case

In contrast to the positive two-arm result, Proposition 2.2 further shows that FTPL with symmetric
perturbations fails to achieve BOBW guarantees for K > 3 under very widely used framework.
Specifically, it shows that key stability terms can be unbounded in this case, revealing a concrete
limitation of current analysis techniques. This suggests that perturbation designs effective in two-arm
settings may not generalize to larger action spaces, revealing the limitation on the approach that relies
on the FTRL-FTPL correspondence established in the two-arm case [Abernethy et al., 2016, Kim
and Tewari, 2019].

Bridging to discrete choice theory

We also see our results as contributing to a broader unification of FTPL design and discrete choice
models extensively studied in econometrics and operations research. While prior FTPL analyses in
the ML literature were often focused on perturbations with nonnegative support, our generalization
to perturbations on R aligns more naturally with well-established (discrete choice) models like the
multinomial logit or nested logit. This connection enables the application of insights and techniques
from those mature fields, which may inspire future FTPL design in online learning contexts.

3 Conclusion

In this paper, we first extended the BOBW guarantee of FTPL to asymmetric perturbations under
mild conditions, including a hybrid of Gumbel-type and Fréchet-type perturbations. Given the
development of several FTPL policies with hybrid regularizers, a promising direction for future work
is designing computationally efficient FTPL counterparts to FTRL policies by incorporating hybrid
perturbations in complicated settings. While FTRL with 1/2-Tsallis entropy regularizer (numerically)
corresponds to FTPL with symmetric Fréchet-type perturbations, and FTPL with its tail-equivalent
perturbations achieves BOBW guarantee in two-armed bandits, we found that this result does not
straightforwardly extend to general case. This finding highlights the limitations of directly extending
the relationship observed in two-armed bandits to the general case, emphasizing the need for further
investigation to better understand the behavior of FTPL in broader settings.
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A Preliminaries

In bandit problems, the loss vectors ¢; are determined typically in either a stochastic or adversarial
manner. In the stochastic setting, the loss vector ¢; is i.i.d. from an unknown but fixed distribution
over [0, 1]%. Hence, one can define the expected losses of arms y; := E[/; ;] and the optimal arm
i* € argmin,c g p;. The suboptimality gap of each arm is denoted by A; = ; — pj and the
optimal problem-dependent regret bound is known to be ;. 1 o O(log T'/A;) [Lai and Robbins,
1985]. On the other hand, in the adversarial setting, an (adaptive) adversary determines the loss
vector based on the history of the decisions, and thus no specific assumptions are made about the loss
distribution. In this environment, the optimal regret bound is O(v/ KT') [Auer et al., 2002]. A policy
is called a BOBW policy when the policy achieves (near) optimal guarantee for both stochastic and
adversarial setting [Bubeck and Slivkins, 2012].

A.1 Follow-the-Perturbed-Leader and Follow-the-Regularized-Leader policies

Since the agent only observes the loss of the played arm, ¢; r,, one uses the loss estimator l,. Let

L= 22;11 {, denote the estimated cumulative loss up to round ¢, with L; = Zi;i £, as the true
cumulative loss. Then FTPL is a policy that plays an arm

I, € argmin {f;m _ D } where 1, ~ DX, (FTPL)
i€[K] Uiz
where 7, is the learning rate specified later and 7, = (71,1, ..., r+ k) denotes the random perturbation

vector drawn from the distribution D¥ over R¥ . In the case of i.i.d. perturbations, which are common
in the bandit literature, we denote the common distribution by D. The probability of playing an arm

i1 € [K] by FTPL, given L, is denoted by we; = ¢i(ntf1t§ DE), where for A € RE

6i(\;DE) .= Pr [z =argmin{\; — rj}]. e
r~DE je€(K]

When the perturbations are i.i.d., we denote ¢;(\; DX) by ¢;(\; D). We denote the distribution
function and density function of D by F' and f. Meanwhile, FTRL plays an arm according to the
probability vector py, i.e., I; ~ p;, defined as

pt = p(neLy; V) := argmin {<f/t,p> + V(p)}7 (FTRL)
PEPK -1 n

where Pk denotes K dimensional probability simplex and V' : Pg_1; — R>( denotes a regularizer

function. Therefore, FTPL and FTRL are equivalent if ¢;(\; D) = p;(\; V) holds for any A € RX,

For example, it is known that p(\; Vs) = ¢(\; Gumbel), where Vs(p) = Zie[K] p; log p; denotes

negative Shannon entropy [Anderson et al., 1988].

For the unbiased loss estimator, both FTPL and FTRL policies often use an importance-weighted
(IW) estimator ¢; = ¢;ey, / Pr[I; = 4] of the loss vector ¢;, where e; is the i-th standard basis vector.
In general, ¢; does not have a closed form, making computations of ¢; and the IW estimator /¢;

difficult. To address this, FTPL policies usually construct ¢, with a geometric resampling estimator
of 1/w; ;, instead of explicitly computing w; ; [Honda et al., 2023, Neu and Bartdk, 2016]. Unlike

FTPL, FTRL can directly use p; ; to construct /, since it plays an arm according to p, obtained by
solving an optimization problem.

A.2 Standard analysis techniques

The standard FTRL regret analysis proceeds by decomposing the regret (largely) into two pieces, (i)
a stability term, which is usually related to the p; itself, and (ii) a penalty term that is related to the
value of regularizer function V' (p;) [Tto et al., 2024, Lattimore and Szepesvéri, 2020, Orabona, 2019].
By choosing the regularizer and learning rate so that these two terms are of the same order, several
FTRL policies obtain the optimal performance [Dann et al., 2023, Ito, 2021, Jin et al., 2023, Zimmert
and Seldin, 2021]. In this context, it is known that a uniform bound on —p} (1, ﬁt) / pi/iz is a sufficient

condition to guarantee O(v KT') regret, where p(A) = dp;(A)/I\; [Bubeck, 2019], as this ensures
the stability and penalty terms remain of the same order. For FTRL with 3-Tsallis entropy, defined
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as — ﬁ S p?, refined analysis showed that a uniform bound on p/,/p>~” is sufficient to guarantee

O(VKT) regret for 5 € (0,1) [Abernethy et al., 2015]. Zimmert and Seldin [2021] further provided
a unified analysis that covers § € [0, 1], achieving O(/KT log K) regret for 8 = 1, O(v/KT logT)
regret for 3 = 0 and even BOBW guarantee for 5 = 1/2.

While FTRL with Tsallis entropy has achieved the optimal O(v/ K T') regret in MAB problems, Kim
and Tewari [2019] showed that no corresponding FTPL policy exists for FTRL with the Tsallis
entropy regularizer when K > 4. This makes it unclear how to apply the standard FTRL techniques
to FTPL to achieve the optimal results. As a result, only a near optimal O(v/KT log K) regret was
obtained by considering a uniform bound on —¢//¢; [Abernethy et al., 2015], rather than — ¢/ (bf_':'.
To address this challenge, Honda et al. [2023] and Lee et al. [2024] derived refined bounds on

¢;(ntﬁt) Jw, ; that depends on 1/ ZALM, which is indeed related to w;/ia, rather than relying on a
uniform constant. Here, a denotes the index of Fréchet-type perturbations. The dependency of 1/«
arises naturally from observations in two-armed bandits, where FTRL with 3-Tsallis entropy roughly
corresponds to FTPL with Fréchet-type perturbations with index o = (1 — 3)~!, which will be

elaborated in Section D.

This refined analysis enables the derivation of BOBW guarantees for FTPL policies, illustrating
optimal performance (up to multiplicative constant) in both stochastic and adversarial settings. In
particular, they derived that for adversarial regret, —¢/,(1;L;) /w; ; = O(o; 1 “) when L ; is the
o;-th smallest among the components of L, and for stochastic regret, —¢;(n; L) /wy; = O(1/Ly ;).
These bounds provide a more refined characterization of the sensitivity of arm-selection probabilities
to changes in estimated losses, leading to improved regret analyses for FTPL.

A.3 Previous assumptions on perturbations in FTPL literature

In econometrics, FTPL with i.i.d. Gumbel distribution has been extensively studied since its arm-
selection probability model can be written in the closed-form, known as the multinomial logit
model [Anderson et al., 1988, McFadden, 1974]. On the other hand, in the online learning literature,
Kalai and Vempala [2005] introduced FTPL with the exponential distribution. Following this work,
FTPL policies for bandits have mainly adopted exponential distributions [Kocak et al., 2014, Kujala
and Elomaa, 2005, Neu and Bartdk, 2016, Poland, 2005], where near-optimal results are established.

Beyond distribution-specific analysis, based on the relationship between FTRL and FTPL, Abernethy
etal. [2015] provided unified analysis for perturbations with bounded hazard function f/(1—F'). How-
ever, using this result with best tuning of parameters always leads to near-optimal O (/KT log K)
regret [Kim and Tewari, 2019], which provokes to explore different approaches to achieve the mini-
max optimality. While there is no corresponding FTPL for FTRL with Tsallis entropy in general,
Honda et al. [2023] showed that FTPL with Fréchet perturbation with shape 2 can achieve optimal
O(V KT) regret and even BOBW result, which is generalized to Fréchet-type perturbations satisfying
certain conditions [Lee et al., 2024]. To avoid unnecessary technicalities, we state here a minimal,
sufficient definition and the key relevant conditions, where the full and precise statements appear in
Appendix E for completeness.

Definition A.1 (Informal). A distribution is said to be Fréchet-type with index « if the tail function
satisfies 1 — F'(z) = O(z~%) for z > 0, where O hides polylogarithmic factors.

Assumption A.2. suppD C [0, 00) and the hazard function f/(1 — F') is bounded.

Assumption A.3. f/F is monotonically decreasing in the whole support.

Let ©, denote the set of distributions satisfying all the conditions in Lee et al. [2024], where index
a > 0 represents the tail index. It was shown that FTPL with D € ®,, can achieve O(v KT') adver-
sarial regret for any v > 1 and further O(Z#i* log T'/A;) stochastic regret for o = 2. Although the
nonnegativity assumption was introduced for simplicity, it is worth noting that Assumption A.3 can
be easily violated when suppD = R, which implicitly requires the use of semi-infinite perturbations.

B Relationship between FTPL and FTRL

In this section, we revisit classical results in discrete choice theory under the assumption that the
density is strictly positive on R”. While the existence of a corresponding regularizer for FTPL has
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been extended to general distributions [Feng et al., 2017, Suggala and Netrapalli, 2020], unbounded
perturbations remain the most thoroughly analyzed and thus offer a solid foundation for understanding
FTPL. We also note that, unlike the bandit settings where FTPL typically uses i.i.d. perturbations,
discrete choice models allow for correlated perturbations.

B.1 Classical results in discrete choice theory

For perturbations fully supported on R, the existence of a corresponding regularizer has been
established by classical results in discrete choice theory [Hofbauer and Sandholm, 2002, McFadden,
1980]. Following the conventions in discrete choice theory, where the objective is to maximize
rewards (which is analogous to minimizing losses), in this section, we redefine the arm-selection
probability for arm 7 in terms of cumulative rewards v instead of cumulative loss A as

¢i(v) =Pr |i = argmax {v; +r;}|, 2)
JEIK]

where 7;s are random perturbations. This definition relates to the loss-based definition ¢;(\) = ¢;(v)
as the gap of cumulative losses A; in (1) can be written in terms of the gap of cumulative rewards by
A; —min; A\; = max; v; — v;. Itis known that for any given FTPL policy, a corresponding FTRL
always exists, although the associated regularizer may lack a closed-form.

Lemma B.1 (Theorem 2.1 in Hofbauer and Sandholm [2002]). For ¢ defined in (2), let the joint
distribution of random vector r be of finite mean and absolutely continuous, and fully supported on
RX. Then, there exists a regularization function V : Int (Pg_1) — R such that

p(v) = argmax {(p,v) —V(p)},
p€lnt (Px—1)

where Int denotes the interior. Moreover, V' can be obtained as the Legendre transformation of the
potential function ® of ¢, i.e.,

V(p) = ®*(p) := sup (p,v) — ®(v), where VO(v)=p(v). 3)

veERK

Here, potential function of ¢(v), denoted by ®(v), is known as surplus function of the discrete choice
model [McFadden, 1981], which is defined as ®(v) = E,. [maXiE[K] v; + ri} so that 0®(v)/0v; =
E,[arg max; v; + ;] = ¢;(v). By definition, the location normalization on reward v does not change
the arm-selection probability. Therefore, we can assume vx = 0 without loss of generality.

B.2 Perturbations on the real line: connection to generalized entropy

Lemma B.1 requires DX to have strictly positive density on R¥, which might appear somewhat
restrictive. For this reason, Lemma B.1 was extended to general distributions with absolutely
continuous density in Feng et al. [2017] and Suggala and Netrapalli [2020]. Still, it is known that
several useful properties hold when we assume perturbations are fully supported on R¥ . For example,
Norets and Takahashi [2013] showed that ¢ is a bijection between RX~1 x {0} and Int (Px_1 ), that
is, for any p € Int (Px_1), there exists a unique v € RE~! x {0}, and vice versa. Furthermore,
Fosgerau et al. [2020] showed that the associated regularizer can be expressed as a generalized
entropy:

V(p) =p-logS(p), whereS : RI>_{O — RIZ(O is the inverse function of V,, (¢®®)).

They also showed that the arm-selection probability ¢ can be expressed by using expected Bregman
divergence under some distribution associated with the negative generalized entropy. Investigating
unbounded perturbations is therefore natural for two reasons: (i) it reconnects FTPL theory with
the perturbations already studied thoroughly, and (ii) it enables the design of analogues to hybrid
regularizers in FTRL. The following sections formalize this intuition and shows that a broad class of
asymmetric Fréchet-type perturbations is sufficient to achieve BOBW guarantees.

C BOBW guarantee with asymmetric perturbations

12



We now consider a class of hybrid perturbations whose left and right ~ **[oes

tails follow different types of distributions, a family of unimodal 002
asymmetric distributions U, g supported on R, defined by oo
8 5
1, F(z;Da) : -
5 + = ifz >0 _
F(z;Uap) = 1 r(ems) | ’ "
55— ——5 =, ifx <O,
where D, € D, and Dg € Dg are Fréchet-type distributions over o 5 0 5 10

[0, 00) with tail indices & > 0 and 3 > 0, respectively. For exam-  Figure 2: Density examples
ple, one can consider Laplace-Pareto distribution with density and
distribution defined by

2x

e, x <0, L x <0,
pr(x) = { 1 and FLP(JS) = { 2 (4)

1
W7 CEZO7 1_W, .’I;ZO

Although, strictly speaking, the Laplace distribution is Gumbel-type distribution, it can be seen as
a Fréchet-type distribution with o = oo, that is, D,. Another example is the asymmetric Pareto
distribution, which is equivalent to a generalized Pareto distribution with shape 3 on the negative side
and a Lomax distribution with shape 2 on the positive side, such that

M 0 27 1 <0
wspay = B2 TSU g Fugp, (2) = 4 8B ’ )
f SPs 3 {(w-&l):;? x> 07 SP2,3< ) 1— m7 x> 0.

For illustration, we provide the plot of density functions of fip and fa.sp, , in Figure 2.

In the previous BOBW analysis of FTPL, Assumption A.3, which requires the monotonic decrease
of f/F, played a crucial role in bounding —¢/}/¢;. However, for U, g, the interval where f/F
increases can be unbounded, e.g., asymmetric Pareto distribution in (5), and so we cannot directly
apply the previous analysis. To address this issue, we derive a tighter evaluation of — ¢, by explicitly
accounting for the negative term induced by — f'(z) for 2 < 0, which leads to the following result.

Theorem C.1. Let o; be the rank of \; in the nondecreasing order of \1, ..., Ak (ties are broken
arbitrarily). When o > 1 and 8 > o + 2, then FTPL with the unimodal distribution U, g satisfies

forany \ € Rlz{o that
—¢i(A) ~1/a 1
< . —_— .
di(\) —O("Z )AO X — Aoy

Theorem C.1 shows that when the left tail of the distribution (associated with negative perturbations)
is lighter than the right tail, the standard analysis techniques used in Honda et al. [2023] and Lee et al.
[2024] can be largely applied, leading to the following results.

Corollary C.2. If o > 1 and B > o + 2, then FTPL with U, g and a learning rate of order
K «~2 /\/t achieves O(NKT) adversarial regret for all o > 1. Moreover, if & = 2, FTPL achieves
a stochastic regret of Y. O(log T'/ A;) provided there is a unique optimal arm.

Similarly to Theorem C.1, establishing Corollary C.2 requires a more refined evaluation to address
the unbounded interval where f/(x) > 0 in the regret decomposition. As a concrete example of Us o,
by explicitly substituting the formulations of the distributions, we derive the following results.

Theorem C.3. FTPL with learning rate n; = % and the Laplace-Pareto distributions in (4) satisfies
VK7

2m
whose dominant term is optimized as Reg(T) < 49.25v/' KT + O(VK + K log T) when m = 0.23.

Reg(T) < <60mﬁ + E;j) VKT + <22I7{ + e2) log(T +1) +

Using the techniques from Theorem C.1, which address additional terms due to negative perturbations,
we can also obtain logarithmic regret in the stochastic setting with unique optimal arm.

Theorem C.4. Assume that i* = arg min, e g pi Is unique and let A = min; 4 A;. Then, FTPL
with learning rate n; = m/+/t for m > 0 and Laplace-Pareto perturbation in (4) satisfies

(60m +m=1)21log T <2K (107m+3/m)2K)

< ahi
Reg(T) < ; 00354, o e ) log(T + 1) + ®< S
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Although the dominant term in Theorem C.4 is larger compared to that of FTRL policies, it can be
further optimized by using the same arguments as in Honda et al. [2023, Remark 12]. Theorems C.3
and C.4 highlight the potential of using hybrid perturbations, as Laplace-Pareto perturbations can be
roughly viewed as hybrid regularizers combining Shannon and Tsallis entropies. This is because the
Laplace distribution belongs to the Gumbel-type, which are associated with the Shannon entropy.
Remark C.5. While we provided concrete results for asymmetric perturbations with different tails,
it is also natural to consider hybrid perturbations formed by summing perturbations generated
from different distributions. In many such cases, the density may not be available in simple form.
Nevertheless, our conditions are sufficiently general to be verified even in such settings.

D FTPL with symmetric perturbations

While asymmetric unbounded perturbations would suffice for constructing hybrid perturbations, it is
important to examine whether the asymmetry is truly essential or merely technical artifact for better
understanding of FTPL. To this end, we revisit the original motivation for using Fréchet-type, namely,
its equivalence to FTRL with Tsallis entropy in the two-armed bandits [Kim and Tewari, 2019]. Since
FTRL with Tsallis entropy is a well-established BOBW policy, this connection would provide a
natural starting point for investigating this question, even though such equivalence is established only
for K = 2.

When K = 2, P; becomes a line segment, where we can write p = (2,1 — z) for some « € (0,1).
In this case, there exists a unique reward vector v(p) = (¢(x), 0) for (c(z),0) = ¢~ (p) [Norets and
Takahashi, 2013]. Accordingly, we can define a regularizer V' : R — R that coincides with V(p) in
terms of x as

V(z):=V((x,1—2)) = zc(x) — ®((c(x),0)), Vz e (0,1),
which satisfies V/(z) = c¢(z). On the other hand, we have Prc(z) + r1 > 73] = 2 in two-armed
bandits by definition, which implies that V’(x) is equivalent to the quantile function of ro — 7.
When Vg (p) = —ﬁ > pf denotes B-Tsallis entropy regularizer for 8 € (O: 1), let ﬁgs denote the
distribution of ro — r; and F'(-; D) be a CDF of D. Then, we have F'(¢(x); Dgs) = z, that is

ﬁ - — N 1's
F<1—5(1’B L-(1-2) 7D ) =, ©)
which shows that @gs is symmetric. By letting z = ¢(z), we obtain for 5 € (0,1)
N (G W (Gl U Y e v i
lim — = = lim = )]
z%wl—F(z;Dﬁs) z—1 1—=x 1-p3

Here, (7) is known as von Mises condition for Fréchet-type, which is a sufficient condition for a
distribution to be Fréchet-type [Haan and Ferreira, 2006]. This implies that DES, i.e., the distribution

of a difference between two random variables, is Fréchet-type with index (1 — 3) L.

While a distribution (rq,72) ~ D? satisfying (6) can be easily constructed by dependent perturbations
in Feng et al. [2017] as explained in Appendix E.3, it remains unclear whether Dgs is realizable
by two i.i.d. perturbations 71,72 ~ Dg. Kim and Tewari [2019] simply conjectured that it can be
realized by i.i.d. Fréchet-type D. Though it is still difficult to show the existence of i.i.d. perturbation,
we can formally show that D, if it exists, is indeed Fréchet-type, as stated below.

Lemma D.1. Let —D denote the distribution of —X. Let (r1,72) be i.i.d. from D and D be
distribution of r1 — ro. Then, if D is Fréchet-type, then either D or —D is Fréchet-type.

The proof of this lemma is given in Appendix K.1, where we analyze the tail behavior of distributions
using results from extreme value theory and tail convolutions. Recall that all these observations are
made under the assumptions of Lemma B.1, which implies that DES is also fully supported on R and
absolutely continuous if it exists.

D.1 Perturbation associated with Tsallis entropy: numerical observation

In two-armed bandits, we can view FTRL with Tsallis entropy as FTPL with some Fréchet-type
perturbations. While the existence of i.i.d. perturbation reproducing Tsallis entropy is not formally
shown, numerical approximations suggest the following conjecture.
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Figure 3: Cumulative sum of IFT, Figure 4: Output of IFT and densities.

Conjecture D.2. There exists a symmetric distribution such that the corresponding FTPL reproduces
FTRL with 1/2-Tsallis entropy regularizer.

To prove Conjecture D.2, it suffices to consider the characteristic function of distributions. Let
g(t) be the characteristic function of ﬁgs, i.e., E[e**("1=72)] and g be that of DES. By definition of
D, we have g(t) = g(t)g(—t). Since D} is symmetric by (6), g(t) is real and positive function.
Therefore, proving Conjecture D.2 is equivalent to showing that /g is a characteristic function of
some probability distributions. We expect that this conjecture can be proved by showing that /g is

positive definite, which is a necessary and sufficient condition, according to Bochner’s theorem [Feller,
1991].

Numerical validation By definition, g can be expressed in terms of the quantile function c(-) as

o) 1 1

at) = / e f(; DI}y)da = / ¢t dp = / exp(—it(p~/2 = (1-p)"1/2))dp,
—0o0 0 0

which can be computed numerically for any ¢ € R. If /g is a valid characteristic function, then

applying the inverse Fourier transform (IFT) to /g should yield the appropriate density function.

Note that /7 is real-valued regardless of symmetry of D?/SQ as g(t) itself is real and positive.

Figure 3 shows that the cumulative sum of the IFT numerically converges to 1, suggesting that
+/g would be a valid characteristic function. In Figure 4, the blue solid line represents the IFT of
/g, while the red dashed and green dotted lines represent the density functions of the symmetric
Pareto with shape 2 (Fréchet-type) and standard Laplace (Gumbel-type) distributions, respectively.
As shown there, the IFT of /g closely resembles the density of a symmetric Pareto distribution
with shape parameter 2, though minor fluctuations appear due to numerical approximations. This
behavior supports the conjecture that DIT/SQ is symmetric and Fréchet-type with index 2. Details on

the numerical evaluation and further results including the imaginary part are provided in Appendix J.
D.2 Two-armed bandits

The numerical observations indicate that FTRL with 1/2-Tsallis entropy, a BOBW policy, corre-
sponds to FTPL with a certain unimodal symmetric Fréchet-type distribution with index 2. While
Theorem C.1 and the previous analysis do not extend to the symmetric Fréchet-type perturbations, it
is reasonable to expect that FTPL with certain unimodal symmetric Fréchet distributions can achieve
BOBW, at least in two-armed bandits. One of the simplest examples of such distributions is the
symmetric Pareto distribution, illustrated in Figure 4, where we obtain the following positive result as
expected.

Proposition D.3. Let the perturbations be i.i.d. from the symmetric Pareto distribution with shape 2
whose density function and distribution function are defined as

1 % r <0
S d F(z)=/{320-2)% ’
J@ = e o @ { 2> 0.
Then, —¢§(A)/¢?/2(A) is uniformly bounded for any A € R% and i € {1,2}.
Corollary D.4. FTPL with symmetric Pareto perturbations with shape 2 in Proposition D.3 achieves
O(VKT) adversarial regret and O(log T /A;.;i+ ) stochastic regret when K = 2.

Note that f(x)/F(z) = ﬁ for < 0, which is increasing on R_. This observation demonstrates

that Assumption A.3 and asymmetry of the perturbation are not necessary conditions, as far as K = 2.

1
2(z+1)2>
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D.3 Generalization to multi-armed bandits

While standard Fréchet and Pareto perturbations whose support is R do not correspond to FTRL
with Tsallis entropy, they can indeed attain optimal results for general K [Honda et al., 2023, Lee
et al., 2024]. Although there is no perturbation associated with Tsallis entropy for K > 4 [Kim and
Tewari, 2019], one may expect the optimality of FTPL with symmetric Fréchet-type perturbations as
achieved by asymmetric (Corollary C.2) and nonnegative perturbations [Lee et al., 2024]. One would
guess the main difficulty for K > 3 arises when ¢; or \; are not identical to each other, a complexity
that does not occur in K = 2. Surprisingly, however, we find that the problem happens even when
the losses of the currently suboptimal arms are identical, i.e., when ¢ lies on the line segment as in
K =2.

Proposition D.5. Let the perturbations be i.i.d. from a unimodal Fréchet-type Uy, o, With oj = 2,
satisfying  f (z; Da,)/(1 — F(2;Dy,)) < 2 forany x > 0and j € {1,2}. If X € RE sarisfies
A= (0,c,...,c), thenfori# 1and c > 2K,

) Bl

Although the condition in Proposition D.5 may seem restrictive, it is known to hold for well-known
Fréchet-type distributions such as Fréchet, Pareto and Student-¢ [Lee et al., 2024]. The LHS of
(8) means that —¢'/¢*/? = O(1) does not hold, which is the key tool to obtain O(v/KT) regret
with simple learning rate [Bubeck, 2019, Zimmert and Seldin, 2021]. In addition, while the RHS
of (8) does not contradict another key tool —¢’/¢ = O(1) for O(v/KT log K) regret [Abernethy
et al., 2015], it violates the key property, —¢'/¢ = O(1/);), used for achieving logarithmic regret
in the stochastic setting [Honda et al., 2023, Lee et al., 2024]. The proof of Proposition D.5 and
additional results for K = 3 with any o > 1 and with symmetric Pareto distributions are given in
Appendix K. These results suggest that perturbations with equally heavy tails lose some essential
properties preserved in FTPL with asymmetric Fréchet-type perturbations and FTRL with Tsallis
entropy.

Building on this result, it might be reasonable to expect that the corresponding regularizer for
symmetric Pareto distribution behaves differently from 1/2-Tsallis entropy when K > 3. However,
we obtain similar results even in cases in Proposition D.5 where the symmetric Pareto fails.

Proposition D.6. When K = 3 and p = (z, 5%, 152) forx € [1/3,1), let Vip(z) be a correspond-

2 12
ing regularizer of the symmetric Pareto distribution with shape 2 considered in Proposition D.3. Then,
it holds that
1 _ 22
1< Vp(z) < V2 -1,

2\/1—1:_ . 1—x
which implies limqq VS’P(QJ) is of the same order up to multiplicative constant with the limit of

derivative of 1/2-Tsallis entropy regularizer since V{/Q(x) =V2/V1T—x—1//x.

Proposition D.6 shows that similar results to the ' = 2 case can be obtained even when the
probability vector lies on the line segment in P,. Notably, the case considered in Proposition D.6 is
the same as that in Proposition D.5, which serves as a counterexample where the standard analysis
cannot be applied. This suggests that there are limitations to arguments based solely on analogies
from the equivalence in two-armed bandits.

Remark D.7. These results do not rule out the possibility of FTPL with symmetric Fréchet-type
distributions achieving BOBW guarantees or optimal adversarial regret. Still, the ratio between
¢' and ¢ have been believed to be the key for the regret bound. For example, it is conjectured by
Abernethy et al. [2015, Conjecture 4.5] that FTPL with Gaussian perturbation suffers linear regret
because of the unbounded —¢’/¢. Our conjecture is in parallel to this conjecture when we try to

achieve O(v K'T) regret instead of O(v/KT log K) regret considered in Abernethy et al. [2015].

E Additional details

Here, we provide the details omitted in the main paper due to space constraints for completeness.
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Notation Throughout the appendix, we define the gap of each vector element from its minimum
using underlines, i.e, A = A —1 minie[ K] Ai. Therefore, the arm-selection probability based on
the gap of the cumulative loss can be interchanged with that based on the cumulative rewards since
A; = max; v; — v; holds. When D is absolutely continuous, ¢(-; D) can be written as

¢p;(\; D)= Pr i:argmin{/\j—rj}} z/RHF(z—F/\j)dF(Z—l—/\i).

T1lyeeny TK ~D J c [K] ];éz
Also, we denote the geometric resampling estimator of w, il by w, il.

Definition of Fréchet-type perturbation Here, we readily follow the notation used in Lee et al.
[2024]. To define the Fréchet-type perturbation, we first require the notion of regular variation defined
as below.

Definition E.1 (Regular variation [Haan and Ferreira, 2006]). An eventually positive function g,
which becomes positive after a certain point, is called regularly varying at infinity with index «a,
g € RV, if

~

t
lim gtz
w0 g(x)

=t% Vt > 0.
If g(z) is regularly varying with index 0, then g is called slowly varying.

Then, a necessary and sufficient condition for a distribution to be Fréchet-type is expressed in terms
of regular variation as below.

Proposition E.2. A distribution D is Fréchet-type with index o« > 0 iff its right endpoint is infinite
and the tail function, 1 — F, is regularly varying at infinity with index —«, i.e., 1 — F € RV_,. In
this case,

exp(—x~ %), x>0,

n — o0
0, x <0, ’

F"(apx) — {
where a,, = inf{z : F(x) >1—1/n}.

Moreover, if D is Fréchet-type, we can express the tail distribution with a slowly varying function
Sr € RVg as

1—-F(x)=a2"%Sp(x), Vz>0.
Note that by definition, a slowly varying function Sr(z) grows at most polylogarithmically. For
further details on Fréchet-type distributions, see Haan and Ferreira [2006] and Resnick [2008].

E.1 Previous assumptions for BOBW guarantee

In the previous analysis, Lee et al. [2024] showed the optimality of FTPL with perturbations satisfying
following assumptions.

f(x)

T—F(z)

Assumption A.2 suppD, C [Tmin, 0) for some Tmin > 0 and the hazard function
bounded.
f(x)

Assumption A.3 F(2) is monotonically decreasing in x > Xpin.

Assumption E.3. F(x) has a density function f(x) that is decreasing in & > x( for some o > Zmin-
Assumption E.4. There exist positive constants M,, = M, (D,,) and M; = M;(D,,) satisfying

forap, = inf {x : F(z) > 1 — 1/k} and it satisfies Ajks < ap < Ayk+ for some positive constants
Ap, Ay

Assumption E.5. lim,_, _g}{;()z) = a+1and _7[ (lx) is bounded almost everywhere on [Zin, 00).

17



To simplify the analysis and avoid technical complications related to the boundedness of the hazard
function, this paper focuses on a tail-equivalent distribution satisfying the assumption by considering
the truncated version F'* of ' when we consider the general distributions. Specifically, we define the
truncated distribution function as

F(z+1)— F(1)

F*(z)=Pr[X >1+2|X >1] = 1= F(1) )

x>0,

which is supported on R. This truncation technique was also used to provide O(v/KT log K)
regret [Abernethy et al., 2015]. Then, for any D, € ®,, its distribution function can be written as

1—F*(x;Dy) =0((z+1)"%), x>0,

For simplicity, we denote F'* by F' since we only consider truncated one in this paper.

Note that by Corollary C.2, Assumption A.3 can be relaxed to the existence of g > Ty such that
f/F is decreasing in > x unless the left tail is lighter than the right tail.

E.2 Derivation of potential function

For any i.i.d. perturbations under assumptions in Lemma B.1, we can express the potential function as

Z / z—l/i)HF(Z—Vj)dZ, )

i€[K] JFi

By definition of potential function ® and its convex conjugate V', itholds ®(v) +V (p) = > ;¢ k) Pivi
iff p € 0P (v). Chiong et al. [2016] showed that

i = argmax(v; +1;)|.
Jje[K]

V(p sz r~Dg |fﬁ

7

Let us assume v is of decreasing order, i.e., v; > vy > - -+ > v holds without loss of generality,
where )\, = v; — v; holds. By definition, when we consider the perturbation distributions supported
on R, we obtain

d(v) = /00 E{max(ri +uv)|r = x}f(x)dx

— 00 g

= /jo (x+ 1) f(x) HF(:E+1/1 —v;)dx

o0 i#1
/ DX [ ) IT Flot v - )iy
i#1 YTty J#L,i
:/ ch(x—yl)HF(x—Vj)dx
- J#1
/ Z/ — ;) H F(y —vj)dydx
i1 1’*’“ A1,
:/ xf(x — 1) HFx—V])dx
J#1
/ flz—11) Z/ yf(y —vy) HF —v;)dydz.
i#1 J#L
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By changing the order of integral, we obtain that

[ S [ ot T o=

i#1 VT j#1,i
o y
— [ Swtw-w) ] Fo-vp) [ sa=vdedy
T £l AN i
= Z/ yf(y—vi) [[ Fly—vy)dy.
i#l Y T J#i
Therefore,
o(v) = Z / zf(z—z/i)HF(z—Z/j)dz.
ie[K] " T j#i
Since p and v are bijective, as discussed in Section B.2, we have
V(p) =Y pivi(p) = ®(v(p), Vp € Int(Px 1) (10)
1€[K]

Therefore, by (10) and letting w = ¢(\) = p(v), it holds that

_V(w):Zwi (v —vi)+ > /oo fz+0) [[Fz+2)) |dz

JEIK]Y ™ I#35

=> wi| A+ Z/w 2f(z+ 7)) [[F(z+A))dz
i 177

JEIK I#j
Note that the above potential function and corresponding regularization function can be obtained for
any perturbations with density f and distribution F’ supported on R.

Here, one can check that

ag)l(:) = /Z —2f(z — 1) EF(Z —v;)dz
Jr/oo fz,zf(zfuj)f(zfz/i) H F(z —v;)dz
T g I#i,]
:[ f(zfyi)HF(szj)dz:gai(u), 11

i
where (11) holds by partial integral. To be precise, we have

/OO —2f'(z — ;) HF(Z —vj)dz
- J#i B

:—zf(z—Vi)HF(Z—Vj)

i z=—00
—|—/ f(Z—Vi)HF(Z—I/j)+ZZf(Z—Vi)HF(Z—Vl)dZ
—co P i 1#1,j
z/ f(z—ui)HF(z—Vj)+sz(z—1/i)HF(z—l/l)dz.
e J#i J#i I#i,5

E.3 Equivalence results in two-armed bandits: the existence of correlated perturbations

In discrete choice theory, as the assumptions in Lemma B.1 implies, the additive random utility
model (ARUM) admits correlated perturbations, whereas FTPL in bandit problems typically assumes
i.i.d. perturbations. The equivalence between ARUM and FTRL in two-dimensional case was
established as follows.
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Lemma E.6 (Theorem 4 in Feng et al. [2017]). For any differentiable choice welfare function
C(vy1,v2), there exists a distribution D of {r1, ro2} such that

C(v1,v2) = By ry)~p[max {v + 71, 10 + 72 }].

While the notation of choice welfare function in Feng et al. [2017] is a general notion to define
discrete choice model, it suffices to interpret it as a type of potential function @ in this section, such
that the choice model (arm-selection probability) is given by ¢(v) = V& (v).

This lemma shows the equivalence between differentiable choice functions and ARUM. Furthermore,
Theorem 2 in Feng et al. [2017] shows the equivalence between differentiable choice function and
FTRL with (essentially) strictly convex regularizer in general case, implying that for any FTRL with
strictly convex regularizer V, there exists a differentiable choice function such that p(v; V') = VC(v),
and vice versa. Since S-Tsallis entropy regularizer is strictly convex function, this implies that there
exists a corresponding ARUM. It is important to note that this result does not necessarily imply the
independence of r; and 9, as suggested by Lemma E.6. Specifically, one can define a distribution D
of (ry,72) as
(r1,72) = (C(0,0) —max {&,0},C(0,0) — max {—¢,0}),

where ¢ is a random variable with distribution function F¢(x) = ¢(z). In this case, whenever 71 is
observed, the value of 73 is determined by definition of D, which shows dependency. While this
example illustrates how strictly convex regularizers can be associated with correlated perturbations,
we expect that the 5-Tsallis entropy regularizer corresponds to i.i.d. perturbations, as such constructed
examples appear artificial and were introduced to address a broad class of (essentially) strictly convex
regularizers.

F Proof of Theorem C.1: asymmetric perturbations

Here, we assume A\ < ... < Ag without loss of generality, where o; = ¢ holds.
By definition, for any i € [K],
—gb;()\) S = (24 A )2 F(z+2;)dz
¢i(N) SO fz+ ) M1z F(z+4)dz
f—éi —f'z+ X)) Hj;éi F(z —l—Aj)dz

= . nimodality of
T TG A A T F 1 2y)d (unimodality of /)
Then, we first show the existence of constant ¢ > 0 satisfying
f)\ —fz+ A) 1w F(z+A;)dz 12

fo —f'(z+ ) H_j;&i F(Z—FAj)dZ -

for any \. When i = 1, it holds trivially. Let us consider i # 1. Define G(2) = [[,,, ; F(2 + J)),
which is increasing with respect to z. Then,

f)\ z+)\)Hj¢iF(z+Aj)dZ f)\ f'(z+ X)) F(2)G(2)dz
Jo P GEHMTLuFE+A)dz  f7 =2+ X)F(2)G(2)dz
_ J25 —F(z+2)F(2)G(0)dz
Ty P+ X)F(2)G(0)dz
0 T G A F()dz
e A F()de
Since F'(z) > 1/2 and —f'(z + );) > 0 hold on z > 0, we have

/ A F( > / T (et A
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Hence,

E —f(z4+ \)F(2)dz 0
Joy, ~Fet PRz 2)/ P2+ A F(2)dz.

Jo =1+ X)F(2)dz — F(QA) Sy,
By Assumption E.5, it holds that for z > 0

1
_ — -
f'(z) 6<(z+ 1)a+2>.
Also, by definition of F' of U, g, we have

1—-F(-zD 1

1 1 1 1

seloanol (2t 2 + D)2 (L= 2)F (4 + )% (3 + 1)7
Therefore, whenever 8 > o + 2,

2 0, 2 0 1
) /_Ai —f'(z+A)F(z)dz = @O (/—A7 (z4+ X +1)2(1 - z)ﬁdz>
2 A
< 7o (arar=)
A + 1)
-o( Mgy ) o,

Here,

Therefore, by applying (12), we obtain

—¢l(N) Jo =1+ 2) ] F(z+ A))dz
a0 = Y T A PG Ay
- (C-l—l)f =2+ A) 12 F(2 4 A;)dz

fo e+ 2) I F(2 + Aj)dz

Since U, is equivalent to D, € D, on z > 0, which satisfies all assumptions in Appendix E.1
(with i, = 0), Lemmas 9 and 10 in Lee et al. [2024] concludes the proof.

G Proof of Theorem C.3: Laplace-Pareto perturbation

The proof given in this section readily follows those given by Honda et al. [2023] and Lee et al.
[2024], with the main distinction being terms related to the negative perturbations. For clarity, we
omit notation related to LP, as we focus solely on the Laplace-Pareto distribution defined in (4).

We begin by decomposing the regret. Using Lemma 7 from Lee et al. [2024], the regret can be
decomposed as follows.

E,, ~Lp [InaxiE[K] 71,4

[M]=

T
/5 ] 1 1
Reg(T) < E <€t’wt - wt+1> + Z ( - )E[Ttﬂ,lt =] +

t=1 : Ne+1 M i ™
< gT ]E<é ] + ET ( )E[ ]+ L [maXiE[K] 71,4
> ty Wt 7wt+1> - — Tt+1,1, — T4l i*

=1 o=\ e A ™

T T
< E <€t,wt *’LUt+1> + < >E[rt+171 L= Teglir] s (13)

t=1 a—— nt+1 ui o ’ 2m

stability penalty

where the second inequality follows that the block maxima of LP can be upper bounded by that of
the Pareto distribution with shape 2, P.

Then, it remains to bound two terms, stability term and penalty term. For the stability term, we can
further decompose it into two terms.
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Lemma G.1. It holds that

éEK&,U& — wt+1>} < éEK&, ¢(7ltﬁt) - (ﬁ(m(ﬁt + ét))ﬂ + (42]7( +2¢ ) 10g(

Uit
NTr+1

)

To prove this lemma, we must address certain terms that were ignored in previous approaches, which
considered only positive perturbations. This is necessary because, due to symmetry, there exists a

semi-infinite interval where f’ > 0, resulting in a loose upper bound.

Then, the first term can be bounded as follows.

Lemma G.2. Foranyi € [K], lffzm is the o;-th smallest among {ﬁt,j } then

5 - 30 106\/5
| 4yi(¢i(neLe) — di(m(Le + 1)) | L 1 \/g L,
In the proof of Lemma G.2, we apply the same techniques as in the proof of Theorem C.1, which
ensures that the terms — % are of the desired order.

Finally, the penalty term can be bounded as follows.
Lemma G.3. It holds that

LJ<57WAZ

E [Tt I, — Ttix
iAi* nth Ji

By applying Lemmas G.1-G.3 into (13) with n; = % we obtain

Reg(T)
T K T
B (2o ()2
< + — — = )5 VK + [ == +2¢? ) log +
;;nt Vi tz::l Me+1 M 27 NT 11
T
1
<37 30n/A(1+2(VE ~ 1) +Z( —)+5.7\/?
t=1 =1 \The+1 M
+ <4K +2€2> log<m) + = K
27 NT41 2m

< WVt m.o = 27

t

S

vVEKm
om

5.7 2K
< (120m\/7?+ m) KT + (27 - e2> log(T + 1) +

G.1 Proof of Lemma G.1

For generic L € RX define L = L — 1 min; L,. Then, by definition of ¢, we have

0
a—nqbi(nL):/_ L, f'(z+nL;) ]1;[7F z+nL; )dz

/ flz+nL;) Zsz+77L HFz+77L) dz. (14)

J#i l#i,j
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ZT:GOm\/Tr 5.7@%:(\/? )+(2K+6>10g(T+1)+

120mVERT + 2TV I HIZD Tmﬂ)>xﬁ+ <+e >log(T+1)+ \/2?




By definition of f, one can see that f'(z) > 0 for z < 0 and f'(x) < 0 for > 0. Therefore, we
have

| L) [TFG+ L)
> J#i

0
e J#i

= Lif(z+nL) [ F(z +nLy)
i

z=0

Z=—00

—/ Lif(z+77Li)Zf<Z+77Lj) H F(z+nLy) |dz

- JF l#i,5
0

=L;f(nL;) [[ F(nL;) - / Lif(z+nL) > flz+nL) | [ Fz+nL) |dz
JFi B JFi l#i,j5

I 0
< s = | LfGraLl) Y S +aLy | [T FGz+nLy) |dz
(nL; +1)3 /—oo pr ’ I#i,j l

0
= ﬂ_/ Lif(z—i_néi)zf(z"_nLj) H F(z+nL;) |dz. (15)
- i 1#i,]

By injecting the result of (15) into (14), we obtain for any i € [K]

a%gbi(nm S / T i 4nL) YL (s 4 0Ly) (H F(z +nLl>) dz

J#i 10,5

(1)

0
+ [ f(z+nLi>Z(Lj—Li)f(z+nLj)(H F<z+nLl))dz. (16)

i 1#4,j

(1)

Similarly to the proof of Lemma 8 in Lee et al. [2024], we obtain for z > 0 that

I F+aL) = [T -0 -FE+aL))

1#i,5 I#i,5
<exp| — Z(I—F(Z+77Ll))
1#4,5
1
<cexp| = Y (1-Flz+nL)) | = exp| = Y 20z +nL)? |’
e[k 1€[K] &
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where the last inequality follows from F(z) € [0,1] for all z € R, i.e., e!"F'(*) < ¢ and the last
equality follows from the definition of F'(z) for = > 0. Therefore, we have

() < ¢ /Ooof<z+nLi> 2 LiJG+nLy) | ep| - 3 % "

i lE[K] 2(z +nLy)

sé/o fetni) | S Lf L) | exp —Z% dz

2
JEIK] l€[K] 2(z + L)
> 1 L. 1
e Do e R Ep o !
€ 3 3 | SXP Z 7 | 4%
o (#4nLy)*\ S (2 40L)) 1 2z k)

< 1 2 1
<e2/ [ Y e | - Y 5 |de. D)
= 3 2 2 ’
o (#4nl)*\ o 2(z+nL;)*n 1 2z k)

which implies

2e2 [ 1 1 1
EEY D> <+T,L>3(Z W) 'GXP( > 2<+nLl>)d

i€[K] i€[K] JElK] le[K]
2¢? —w
< T ) we” “dw (byw:ZlE[K] m :ZlE[K] F(Z+77Ll))
2¢?
<=
n

On the other hand, we have
/ D F4aLly) Y (L~ L)f(z+nLy) | [] Fz+nLy) |dz=0. (8)
i€ K] i€[K] J#i l#i,5
This is because the value of f(z +nL;)f(z +nL;) (Hl;‘éz (2 + nLl)) remains unchanged when
1 and j are swapped, which makes the integrand zero.

Let L = f/t + ft. Then, we obtain
EK@ S(ne(Le + 01)) — Sl (Lo + Zt))>] =Y E 1[I = il iw,; (63 (L) — ¢i(77t+1L))}

— Mt a
= > EI[L = il v} 5,9 (nL)dn

By combining the results in (17) and (18) with (16), we obtain

B[l 0ln(Le+00)) = 0 (B +0)))] < - B
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Therefore,

XT:E[<ét,¢(nt(it+ét))_¢(77t+1(Lt—|—€t))>} (42[7(+26 )k)g( m )

t=1 Nr+1

G.2 Proof of Lemma G.2
By injecting f and F, it holds that

-, o 1
_ 2(2+2,;
¢i(A)_[m o )HF(z—G—Aj)dz—F//\ (Z+)\_+1)31;[iF(z+Aj)dz

i 2 =i j
and

a —A; (s oo -3
24 —0o0 i -, A i

Therefore, we obtain for any A € [0, 00)&

° 1
—@i(A) = — || F A )dz — 2(z+2,) F( )\
1

IR )
) J#i 1
< 3//\1_ WLEF(ZJr)\j)

Moreover, we have for any > 0,

—dL(A + ze;) < 3/0o T

dz.

1
2+ N +x+1)4

HF (z+A;)dz

IN

e 1
— || F A, —ax)d

> 1
< I S » . |
_3/)\i (Z+Ai+1)4]1;[i (z+A;)dz (19)

Based on these results, we can derive the upper bounds on ¢(A) — (A + 1,44 )) for any A € [0, 00)K
as

R Neleiw, ; R
() — S+ 1dy) = / (= (e Le + we:))dz

ntet,iw;il oo 1
< ———T[F(z+2,)d=d by (1
_/0 B/AZ (Z+>\Z-+1)4]H_ (z +A;)dzdz (by (19))
J

__ poo 1
—1
< 37]t£t,iwt,i \ (Z T+ 1)

/\1 oo 1
=3l wy; Ty 14

—A; (Z +A’L + 1)4 j

#1
F(z +;)dz.

by
+
Here, let us decompose the integral above into two terms.

(oo}
1
7||F A)d
/—&- (Z+Ai+1)4#i (Z-F,J) z

0 o0

1 11 1

/—A G LLFETA) Z+/0 (z 4+ +1)* H (2 +4;)dz
7 J#i

h Iz ;
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By explicitly considering the formulation of distribution in Proposition C.1, we can obtain for all
i € [K] that

L <4,V € [0,00)K, (20)

whose detailed computation is given in Section G.5 for completeness.

By (20), we obtain

1

. 3 o0
d(N) = SN+ nely) < 15mly gy ; /0 CESE EF(Z +A;)dz.

For notational simplicity, we define

> 1
Yi(\) = /0 EESwET JI;IF(Z +Aj)dz.

—

Since w,_ Ilt follows the geometric distributions with expectation w,_ Ilt given Ly and I, it holds that

—2|. 2 1 2
E[w;} Lt,It] =5 — < ——. (21)
o Wy o WIr, o Wi,

Therefore, when I; = ¢ and {);} are sorted, we obtain

|

— S 1 N R
<E|1[I; = ill; ;w L - 15mly jw; / _ F(z+4+mL, .)dz|L
Iy = il w, g, - 15mely jwy ; ; (2+77tLt,i+1)4H (2 +mLy j)dz| Ly

E @t,i(d)i(ntﬁt) - (bi(nt(fft + ét)))

JFi
G bi(meLy) | .
< 30m:E wt,iimw (gntit) t
Wy
i .
< 30nE % Ltl (by £e,; € 0,1])
t,i
- (nk )
= 3077t]E ) = 1/} (ntit) = Lt‘|
_f_oo flz+ mLm) Hj;éi F(z + ntLt,j)dZ
i i(e L - (L) |-
S 3077tE 1/1 (ntft) _ Lt — 3077tE 1{] (ntjt) Lt )
fo (= + 77t t z) Hj;éi F(z+ ntLt,j)dZ i (e Ly
where ¢; () fo (2 + Ai) [12: F'(= + Aj)dz. Then, the following lemma concludes the proof.

Lemma G.4. If \; is the o;-th smallest among {\;} (ties are broken arbitrarily), then

f V2e 1
<5i(A)_\/(Ti ERY




G.3 Proof of Lemma G.3

Since Expp[X] = i it holds that
E|:Tt,lt — rt,i* :| |: It = Z]T’t I, i/ ]
iF£L*
S Z E|:]].[If = 7;]]].[7",57]‘ Z O}Tt,ft i/t:|
ii*
1
S (et 0 ) )
0 i (z+ WtLt i+ 1)2 J#i 2(z + el j + 1)
D L
i Z + ntLt i + 1)
1
dz = —.
/ ;:* Z + 77t #22:* nth,,i

Let f(z) =), 2(2+mim+1)2 € (07 2(z§1)2] Then, we can also bound (22) by

1
/ S———T11(1- : az
(z + mLt 12 2(z + Ly ; +1)?

1AL VED)

<e / 3 S (CAE
iti* (Z + ntLt 4 + 1)
< 26/ f(z)e 13d

\/Q(K—l 1 o0 K K
SQ@/ e~ dz+2€/ exp(—)dz
0 2(K—1) 2(2 + 1)2 2(2 + 1)2

1

=2V2VK — 1+ %\/ﬁ/ wY2e " dw
0

<57VK.

G.4 Proof of Lemma G.4

We first show that %E ; is monotonically increasing in \; for any j # i and A € [0, 00)%.

By definition, it holds that

bi(A) _ Jo” g s Pz + A)dz
50 S A A L0 F o+ A)dz

_ Jo (z+)\1;+1)4 Hj;éi (1 - 2(z+,\,~+1)2)
oo 1 1
Jo e (1 - 72(2+A1+1)2)d2
e} 1 1
B N [CEBWE: L4 (1 - 2(z+)\j)2)dz

oo 1 1 .
i o i (1 - W>dz

dz

1

that :i’ Ef\‘g is monotonically decreasing in ;.
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—— is monotonically decreasing for z > 1, applying Lemma 9 in Lee et al. [2024] implies



By the monotonicity of 1;()\)/;(\), we have

i) _ i(A)
di(A) T di(A*)’

Aiv J <,
0o, j>1t.

79

where )\;f = {

By definition, we have

* - ) 1 i—1
wz@):/o (z+Ai+1)4(1_2(Z+&+1)2) -

1
. 2 .
= /2@#1) \@w%(l — w)z_ldw

0

1 3
NG : | P ———
Ve (MH)Q,Q,Q,

(by w = 533 71y%)

where B(x;a,b) = fox t2=1(1 — t)>~1dt denotes the incomplete Beta function. Similarly, we obtain

e 1 o
¢z‘(>‘)7/0 (Z+>\i+1)3(12(2+)‘i+1)2) -

Pewsy ,
= /2@#1) V2u®(1 — w)~tdw

0

:\@B(M;M)

Therefore, we can directly apply the result in Lee et al. [2024, Appendix C.2.2.] with o = 2 and
m instead of ﬁ which gives

Pi(A") < VT /\@i

¢i(X) T Vo 3 A

G.5 Proof of (20)

When i = 1, it holds trivially by I;; = 0. Assume i > 1. Let Gi(z) = [[; 4, ; F'(z + A;). Since
A, = 0 and G,(2) is increasing, we have

Therefore,

0 1 e?*
I < f—gi (z+A, +1)7 Sdz

oo 1

;T 1
’ o [CESWESHT: (1 - 2(x+1)2)d2

2z

0 1 e
oy, e 7 de

<2—%
fo (z—&-Ai—‘rl)‘LdZ

0
1
— ) 13 2z .
3N+ 1) /Ai(z+)\i+1)4e dz
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d 1 2 2622(Z+Ai71) . . . .
Here, PP P wr Ly P wer holds, whose maximum in the interval of integral occurs at
either z = — )\, or z = 0. Therefore, we obtain that

30 +1)° /

0 1
_a, (A1)

e*dz < 3(\ +1)3), (e_”‘i \Y

where V denotes the max operator. Since )\; > 0, it is easy to see

3+ 1A 3,

i3

(A +1)4

On the other hand, by simple calculus, we obtain for z > 0

<3

_Ai‘f’l_ '

9
3(x +1)3ze ™ < 1(12 + 7\/§)6_1_\/§ < 4.

where equality holds when x = # This completes the proof.

(N +1)4

)

H Proofs of the stochastic regret for Laplace-Pareto perturbations

In this section, we provide the proof of Theorem C.4 based on the self-bounding techniques, where
we adopt idea in Honda et al. [2023] and Lee et al. [2024]. Firstly, define a event D; by

where on D,

D=y

ii*

(1+ ntLt,i)Q

1
<77
— 4

Li;-=0 and nL,;>1,Vj#i"

H.1 Regret lower bounds

(23)

(24)

Here, we provide the regret lower bounds, which are used for the self-bound technique.
Lemma H.1. Let A := min; ;- A;. Then, it holds that

. 1
(i) On Dy, 370 DiWri > 5575 D iy [CNANE

(ii) On Df, i Diwyy > Ay (1 — e V/4),

A

5 and wy ;+ >

—1/4
2

€

Although the proof is largely the same as in Lemma 22 of Lee et al. [2024], we include the details
here for completeness.

Proof. Let Ll = min;z;- L“ Then, by definition of w, we have

oo

Z Aiwt,i = /

i —

/.

Y

v v
—~
g & g 8

Z Aif(z+ nth-) H F(z+mL,

ii*

Z Aif(z+mnLy ;)
i

Z Aif(z+mLy ;)
i

Z Aif(z+nLy ;)
i

J#i

JE[K]

29

exp —Z

exp —Z

JElK]

7]-) dz

H F(z +mLy ;)dz

1—F(z+ mLt,i)

F(z+ ntim)

1—F(z+nLy ;)

i

F(z+ ntLt,i)

o

(25)

(26)



where (25) holds since e~ T% < 1—z holds for z < 1.
(i) On D;, we obtain

- 2 1_F(Z+77tLti) 1-F(2)
Aif(z+mL, ;) | exp| — — exp (—)dz
/;oo ,L;:* ( t t, ]; F(Z + ntLt,i) F(Z)

>e / Z Aif(z+ ntLt,i) exp [ —2 Z (1-F(z+ ntLt,i)) dz
0 iti* VEH

:e—l/oo Aifz—i—nﬁi exp| — dz
0 Z ( ed) Z(1+7ltL i)

it J#
> o5/ / S A+ ml,) | dz (by definition of D, in (23))
o\ iz
=Y A (1- F(nth))
i£i*
_ 70/4 ( i - > 1 f ] . D
. neL, . > 1for j # i* on Dy)
; 2(1+ L 865/4 Z 77tLt )2 "

On the other hand, on D;, we have

/ (z+1 3HFZ+T7thJ)d

/

Z+77tL ;)
o[- i
s Fz—|—77tL )

23" (1 F(z +mly ) |dz

A
/ I L
j;ﬁz* +"7tL )
1 1
>e 1 —dz by definition of D; in (23
> /0 7 (by , in (23))
e—1/4
= ~ 0.3894

which concludes the proof of the case (i).
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(ii) From (26), on D{, we have

= - 1-F oL, — F(s
[ (S astewmde e - 30 o EET ) o ((LFON,

=00 \ i jAi* F(ernth) (2)
o0 . 1— F(z+mnL,; ;) 1—F(z)
> A/ F(z+meLy ;) | exp| - u=s exp(—)dz
0 z;ézz:* § ]; F(z+niLy ;) F(z)
>ac [ S fetmbe) | ew| <2300 Pl b)) |
0 i G
et N
=A—|1-exp| -2 Z (1= F(mL, ;)
J#
e ! 1
=A— | 1—exp| — —_—
2 J; (1+ ntLt,j)2
-1
€ —1/4 1 1 c
2 A—-(1—e"/), Qjie rmi, 2 = 1 o0 DD
which concludes the proof. O

H.2 Regret for the optimal arm

To apply the self-bounding technique, we need to express the regret of the optimal arm using the
statistics of the other arms. Although the proof is largely the same as in Lemma 11 of Honda et al.
[2023], we include the details here for completeness, accounting for some additional terms due to
negative perturbations.

Similarly to the proof in Lee et al. [2024], we begin by introducing the following lemma.

Lemma H.2 (Partial result of Lemma 11 in Honda et al. [2023]). For any Ly and ¢ €(0,1), it holds
that

E |:]]. |:ét7¢* > <:| Etﬁ'*
nt

. 1 < (¢

Li| < l—e Hm | >
t]_l—e‘l( ) (m+e)
and when 1, = 7z and =1 — (4e/21)'/3, it holds that

o0

1

E — (1—6_1)% £—|—e < 2743m?* + TTm.
1—e 1 Mt

t=1

Based on this result, we obtain the following lemma.

Lemma H.3. On Dy, for any ¢ € (0,1), it holds that

A . s s 13¢!/4 1 1 < (¢
E[lzw (05 (mLo) = b (Lo + 1)) ‘Lt] a9 J; g Tt ok < +e>.

Proof. Recall that Lm* = 0 and Lt’j > 0 for all j # i* on D;. Moreover, from (24), Lm >1/n

holds for all j # i* on D;. Then, we consider two cases separately: (i) Wy Z-l* < % and (i) Wy | il* > %
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(i) When w, il* < %, we have éAt i g by definition. For any = < and 1 # 1", we have

®i (nt(f/t + xep) / f(z+mLy; HF(Z + Loy +2l[j = ])dz
JFi
/ Fz+mly,) HF(erntLthr:z:]l[ ])dz
JFi
/ f( Z+77tLt JF (z +mx) H F(erntLtJ)dz.
J#L

Here, note that whenever 2z < %, IA/M- —z>(1- Oit,i holds for all ¢ # i* on D;. Then, by
differentiating with respect to x, we obtain

f<z+mLt,i)f(z+ntx) H F(z+77tL )

oo

%@‘ (m(ﬁt + Jiei*)) = Ut[

= nt/ f(z (L — x)) (Z +me (L ))dZ
- JF#L*
O A
< / f(z +ne(Ly; — z)dz 4+ / z4+n(L x)) f(z)dz.
—o00 0
ti 1

27
For 1; term, since nt(lﬂw— — ) > 0in case (i), we obtain for any 7 # 7* that
1

1 <n /Oo ! dz
o (4 me(Les — ) +1)3 (2 + 1)3

1 e 1
< = zdz
L+ 1 =Omly)* o (2+1)
<M L
6(1 — )il " 6(1 - Q)L
On the other hand, T; term can be decomposed into two terms by

Ti = /__”t(im_x) f(z + 77t<Lt,i - x))f(z)dz—i—nt/

> -t (Ltﬂ; -z

0

(il =) (2)d.

tin ti2
Since f(z) = ¢?® on x < 0, it holds that

nt(étﬂ, ) .
Til = nt/ exp (42 +ne(Ly; — SU))dZ

oo
—3n+ (Lt,iiz)

4
_37]t(1_C)Lt,i

4
N 1
4301 = OmeLy; +1

nie

e
<

IA
\

—x 1
by e ™ < 113 forx > —1)

T 120-Q)Ly,
For the second term, we have

622

0
‘/nt(i’t,iz) (= + Ut(Lt,i —x)+1)3

Ti2 =m dz

)
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. 2z . . . . .
where the maximum of (2:67“)3 on z € [—c, 0] occurs at either z = —c or z = 0 since its minimum

is achieved at z = —c + % This implies that
622 1 ~
] g _y exp(—?nt(Lm — x)) (28)
(z4+ne(Ly; —2) +1)3  (mu(Lly,; —2) +1)3
Here, since ﬁ > e~ 2Y for all y > 1.15, we obtain
- Nt (Lt i — )
Ujmi(Les = 2) 2 115 fi2 < et
i (ne(Ly; — ) +1)°
<
(meLy (1 —¢) + 1)
1
< —. (29)
21 =)Ly ;

On the other hand, when 7 (Lm —x) € (0,1.15), we need more careful approach to provide a tight
bound. Similarly to (20), we first evaluate 1—2 on D; N {77t (Lm —xz) < 1.15}, which satisfies

ti
0 027
f—m@m—w) (z+me(L, ;—7)+1)3 dz 1/2
oo 1 1 — oo 1 1 :
b e e T b G, o e d

When 7 (L, ; — ) < 1.15, the denominator can be evaluated as

o 1 1 o0 1 1
- dzZ/ - dz
/o (z+me(Ly; — ) +1)2 (2 +1)° o (2+215)3 (2 +1)3

> 0.028.
Therefore, on D; N {Ut (L“ —1z) < 1.15}, we obtain
0.5 3
Tig < ———-1i <18 < ————.
0.028 (1~ Ok,
Combining this result with (29), on Dy, it holds that
3
Tig < ————.
(1= Q)L

s

Therefore, for any ¢ £ i*, we obtain

d . 3+1/4
art (b)) < G0
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Combining this with ), ¢;(\) = 1, we have
E []l[gt,i* < C/nt]‘ét,i* <¢z* (ntf/t) — Qi (nt(it + ‘ét))) it}
=E []l[ft =% Ly ix < /i)l v (¢z‘* (mLy) — b (e (L + ét)))

=E {H[It =i lpie < (i)l - (¢i* (L) — i (e (L + @)))

=E 1L =i* b < C/millris Y (Qbi(ntﬁt) — ¢i(m(Le + ét))) Ly
i

2

2

e 3+1/4 |.
<E|1[L =23 ﬁ Ly
iAi* ( - C)ft,i

902 . .
<p|fe oy~ 3HUL (by 21
We,ix iAi* (1 - C)Lt,i
1
< 4e'/4(3 4+ 1/4) Z _ (by (i) of Lemma H.1)

i#i* (1 - C)Lt,i
For the case where x > (/n;, we can directly apply Lemma H.2, which concludes the proof. O

H.3 Proof of Theorem C.4

We begin by revisiting the regret decomposition in (13) and Lemma G.1, where we obtain

Reg(T) < XT:EK@ $(neLe) — d(me(Ly + gt))>} + XT: ( L I)E[rt-i-l,IHl —Te1,40] + C1

t=1 =1 \Tht+1 e

1 1

= — | (Pe1,10 — Te41,i0)
Mt+1 Ut) ‘

-YE [E[@ dlmLe) — s (Lo + 1)) + (

L” e

T .*
< ZE |:E|:<gt7 ¢(mﬁt) — ¢(77t(.i/t + l?t))> n THLI;;L\/;HI’Z

ﬁtH +C4 (30)

for Oy = YET 4 (25 + ¢?) log(T + 1) and n; = m/V/1.

2m

If L, satisfies D, defined in (23), then the inner expectation is bounded by
E Két, G(mLe) — S (Ls + ét))> + th]

Tt+1,141 — Tt+1,i*

2my/t
10eyv/2  13e'/4 1 1 1 1 <<C )

< = + — + - + T—e w2 +e

ZZ;* ( L, (1-90 Ly, m2Lt,¢ 1—e-1 ( ) e

(by Lemmas G.2, G.3, and H.3)
60 -2 1

:Z —i:m + 1(1_6_1)é(c+e>a (31)

iEi* Lt,i 1-e i

where we set { = 1 — (4e/21)'/3 following Honda et al. [2023].

On the other hand, on D¢, the inner expectation can be bounded by

E |:<étv d(neLe) — (m(Le + ét))> IS (AR e

!

2mA/t
Kr 57 |K
< 60my) = 4 ooy [ = (by Lemmas G.2 and G.3)
t 2m V t
[K
< (107m + 3/m) e (32)
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By combining (31), (32) and Lemma H.2 with (30) and ¢ = 1 — (4e/21)'/2, we obtain

T

Reg(T Z 10 " D (107m + 3/m)ﬁ

=1 Ly 4

+ Cy + 2743m?% + T7Tm. (33)

On the other hand, by the lower bound given in Lemma H.1, we have

T 1— —-1/4
Reg(T Z 1[D,] 65/4 Z 1ps] L= A (34)

i# mth i 2e
From (33) — (34)/2, we obtain
Reg(T)

IA
(]~

~
Il
—_
.
S
iy
%

60 + m’2 tmiQAi . K 1 671/4
=t,i

16e5/4L; ;
+ Cy + 2743m? + TTm

d m 4+ m~1)? _el/4
<D (DY W + 1[Dg] <(107m + 3/m)ﬁ— 126A>

t=1 i#i*

+ C1 + 2743m? 4+ TTm (by az — bx? < a?/4b for b > 0)

(60m +m~1)2(1+1logT) (107m +3/m)?K
0.07A, 0.04A

T
(60m +m™!
5;; 0.07IA, +Zma><{ (107m + 3/m)\/K/t — 0.04A O}+C’1+2743m +7Tm
> + Cy +2743m* + TTm

logT

rllEAY
i#£*

+ KlogT + K |,

which concludes the proof.

I Proofs of Corollary C.2

Here, we provide the proof of Corollary C.2, based on the discussion given in Appendices G and H.
The main idea is to recast our arguments in the form analyzed in previous works [Honda et al., 2023,
Lee et al., 2024].

Firstly, as in (13), we can decompose the regret as follows:

Reg(T)
T T
" 1 1 1 Er ~ut, 5 [max;erx] 1]
< ZE <€tawt - wt+1> + Z < — >E[rt+1,1t+1 — Tep ] F L €IK]
P o\ T m
T T
M/ T 1 1 E;, ~p, [Mmax;e[x] 71,
< E <£t’ wy — wt+1> + < - >E[Tt+1,l L~ Tegie] + = :
L 1/ 1 1 M, ANK
= E <£t’ w — wt+1> + < - >E[Tt+17lr - Tt+17i*] + i 5
; - . ; Ne+1 M o m

where the last inequality directly follows from Lemma 7 in Lee et al. [2024] since D,, is assumed to
satisfy all the conditions.
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I.1 Adversarial regret analysis

As shown in Appendix G, it suffices to generalize Lemmas G.1-G.3. Here, the generalization of
Lemma G.2 can be obtained by Theorem C.1.

The generalization of Lemma G.1 is straightforward by discussion after (16), where the main
difference comes from the additional (i;) term induced by the negative parts. Specifically, the first
two terms in (16) can be directly bounded by using Lemma 8 in Lee et al. [2024], and as shown in
(18), the sum of I; terms over all ¢ is zero for any distribution.

Similarly, the generalization of Lemma G.3 follows directly from Lemma 13 in Lee et al. [2024].
The introduction of negative parts only decreases the expected value of perturbations, which in turn
reduces the penalty term unless the expected value is positive, as shown in Appendix G.3.

L2 Stochastic regret analysis

To obtain BOBW guarantee, we further need to generalize Lemmas H.1 and H.3. For Lemma H.1,
we can directly apply Lemma 22 in Lee et al. [2024], since the lower bound can be obtained by
restricting the integral interval to the positive side.

To generalize Lemma H.3, one can see that it suffices to bound the term
O A~
= [ 7z miLe - 0) fa)d

when 2 < (/n; since the induced part by ; term in (27) can be analyzed by Lemma 25 in Lee et al.
[2024]. Then, we can decompose T; into two terms by

Ti = /_”t(im_”) f(z + nt(Lt,i - x))f(z)dz—i—nt/

—0o0 —Tlt(LM—I

0

g (= mLes = ) f ()2

fi tiz

Since f(x) is the density of Dg on z < 0, we have

=Ly ;=) . _”lt(Lt,i_w)
w [ £(z+ Ly, - ) F) < mf ) [ f()d
= fO)F (L )
< e f(O)F(—me(1 — C)Ltv)

1
= t 6 I
n:£(0) <(1 _ C)ﬁ(mLt,i)ﬁ>

1
_ f(0)9<(1<m>

as desired. For the second term, we can do the similar derivations in (28) by considering the maximum

1
of Crorp Groe
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Figure 5: Imaginary part after IFT. Figure 6: Sanity check with normal distribution.
J Details on numerical validation
In this section, we provide the Matlab code for the inverse Fourier transform (IFT) and additional

plots to confirm whether the obtained IFT is real-valued. The code is implemented based on the code
of cf2DistFFT in CharFunTool [Witkovsky, 2016, 2017].

/4 Genmerate IFT given quantile function c(z).

x_min = -20.0; x_max = 20.0; / z-azis

N= 2~11; k = (0:(N-1))"'; / number of samples

w = (0.5-N/2+k) * (2*pi / (x_max-x_min)); / frequency azis

quantile_func = @(p) -(p~(-1/2)-(1-p)~(-1/2)); / given c(z)

4 compute characteristic function g

fun = @(w, p) exp(li * w .* quantile_func(p));

cffun = @(w) arrayfun(@(w_val) sqrt(integral (@(p) fun(w_val, p)
, 0.0001, 0.9999, 'ArrayValued', true)), w);

cf = cffun(w(N/2+1:end));

cf = [conj(cf(end:-1:1));cf]l; / for the mnegative side

/ Do inverse Fourier Transform

dx = (x_max-x_min)/N;

C (-1) .~ ((1-1/N)*(x_min/dx+k))/(x_max-x_min) ;

D (-1) .~ (-2*(x_min/(x_max-x_min) ) *k);

ifft = C.*fft(D.xcf);

pdf = real (ifft); img_part = imag(ifft); cdf = cumsum(pdfx*dx)

>

Note that in line 8, we compute the square root of the integral, i.e., the square root of the characteristic
function g. As illustrated in Figure 5, the imaginary part resulting from the IFT is negligible, with the
y-axis scale on the order of 10716, which can be attributed to numerical errors.

To validate the correctness of our code, we perform a sanity check by modifying the quantile function
in the Matlab code to that of the standard normal distribution, given by ¢(z) = v/2erf (22 — 1),
where erf ! denotes the inverse error function. Since the characteristic function of N'(0,0) is
exp(—o?t?/2), the characteristic function of (0, 1) is g(t) = exp(—t?/2). Therefore, applying
the IFT to /g should yield the density of AV'(0,1/+/2). As shown in Figure 6, the result confirms the
correctness of our implementation.

K Proofs of results under symmetric perturbations
Here, we provide proofs for results in Section D.

K.1 Proof of Lemma D.1

Lemma D.1 (restated) Let —D denote the distribution of —X. Let (ry,r3) be i.i.d. from continuous
D and D be distribution of 11 — r2. Then, if D is Fréchet-type, then either D or —D is Fréchet-type.
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Proof. According to the Fisher-Tippett-Gnedenko (FTG) theorem [Fisher and Tippett, 1928, Gne-
denko, 1943], if the distribution of normalized maximum converges, such limit distributions must
belong to one of three types of extreme value distributions: Fréchet, Gumbel, and Weibull. Distri-
butions with polynomial tails (i.e., heavy tails) are classified as Fréchet-type distributions, while
distributions with exponential tails are Gumbel-type, and bounded tails (i.e., bounded maximum)
belong to either the Gumbel-type or the Weibull-type [Resnick, 2008].

Whenever the tails of distribution of X are either exponential or bounded, the distribution of X — Y
also has either an exponential right tail or a bounded right tail. It is straightforward to verify this
when the distributions have bounded tails. In the case where both distributions have exponential tails,
classical results on convolution tails indicate that their convolution also exhibits an exponential tail,
where the general proof can be found in Cline [1986] and references therein. This implies that if tails
of Dgs are either Gumbel-type or Weibul-type, DES does not have a heavy-tail, meaning that it is not
Fréchet-type. O

K.2 Proof of Proposition D.3

Here, we assume A\; < A9, so that A; = 0 and A\, = ¢ for some constants ¢ > 0 without loss of
generality. For ¢ = 1, by the unimodality of symmetric Pareto distribution, we have

—$1(\) _ JS I (RF(+e)dz
O (1 p)F (e + 0az)
< Jo —F(2)F(+ c)dz:;/Q (unimodality of f)
(S P+ c)az)
<ova [ —f'(2)F(z + ¢)dz (¢1(A) = 1/2)
0
e 3 1
B 2\/5/0 (z+ 1) (1 T 2ztc+ 1)2)dz
< 2V2. (35)
For 7 = 2, we have
—¢h(N) _ [ = f'(z+ ¢)F(2)dz
(f2(N))3/2 (ff‘;o flz+ c)F(z)dz) G
For the denominator term, we have
/OO f(z4+o)F(2)dz > /OO f(z4+)F(2)dz
—00 0
1 [ 1
= 5/0 (z+c+1)3dz
1
= 74(04_ e (36)

For the numerator term, we consider two cases separately, where (i) ¢ € (0,1.5) and (ii) ¢ > 1.5.
When ¢ € (0,1.5), we have

1

[m f(z+c)F(z)dz > CHERE

and

| —rGrore= [ -rEFe- o

sAm—ﬂ@F@—@w

< /00 —f'(2)F(z+c)dz < 1. (by (35))
0
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Therefore, we have

—¢5 (M)

< 125.
(P2(N)3/2
When ¢ > 1.5, we decompose the numerator into three terms.
o0 —C _3
—f F(z)dz = d
/_OO f'(z+ c)F(2)dz /_002(1—2—6)4(1—2)2 z
1
0 o
3 3 1
d —_— (1 - ——=|d
*/ 2(z e+ A1 - 2)? ”/o <z+c+1>4( 2<z+1>2> :
2 3
For the last term, we have
o 3 1
< dz = . 37
T3—/0 (c+z+41)* (c+1)3 37
For the first term, by partial fraction decomposition, we obtain
1 1/c? -2/c3 3/ct —4/c> 4/ n 1/c*

(I—z—-0)*1-2)2 (1—z—c)4+(1—z—c)3+(1—z—c)2+1—z—c 1—2z (1—2)2
Therefore, we have

2 —° 1/c? -2/c3 3/ct —4/c® 4/c® 1/c*
—fh:/ [, K /L — [, Ve g,
3 o l=z=0)* (1—2z—-¢3? (1—-2-¢? 1—z—-c 11—z (1-2)?

1/c? —1/c? 3/ct 4 1—z—-c¢ 1/c* |F77°¢
— / + / 5 + / + — log /
31—z—¢3® (1-z-2¢) (1—z—-¢) ¢ 1—z 1—z|,_
1 1 3 4 1
=— -+ —-—-—=1 N+ ————,
32 B * ct P og(c+1) + cte+1)
which implies
1 3 9 6 3
=——+4+ ——-——+ =1 1) — ————
f1 2¢2 + 2¢3 2c¢* + b og(c+1) 2c¢t(c+1)
1 3/1 1
§202+2(03+C4>. (by log(c+1) <)
Similarly, for the second term, partial fraction decomposition gives
1 42 | 2+ 3/e+D A+ 4e+2P 1/(c+)?

(z+c+1DA1—2)2  (z4+c+1)4 (z+c+1)3 (z4+c+1)2 z4+c+1 1—2 (1—2)2°
Therefore, we have

2 —1/(c+2)?2  —1/(c+2)?3 —3/(c+2)* 4 z4c+1\  1/(c+2)* 70
§T2:3(2+c+1)3 (z+c+1) z+c+1 (c+2)510g< 1—2 >+ 1—z |,__,
B 1 1 4 8log(c+1)
T 3cr2? (ex2p (ex2d T T (ex2p
1 1
B (3(c+1)3(c+2)2 Tler et (er 1)(c+2)4>’
which implies for ¢ > 0
1 3 6 12log(c+1)
2= s T aerap T er i T et 2P
ot etz o)
2\3(c+1)3(c+2)2  (c+1)2(c+2)2 (c+1)(c+2)*
< 1 i 3 4 18 _ 3( 1 n 1 n 4 )
22 2(c+2)8  (e+2)* 2\3(c+1)3(c+2)?  (c+1)2%(c+2)3  (e+1)(c+2)*)
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Therefore,

Jf +T < i + L + i + 18
PTI98 T o+ 23 T2t T (e +2)8
3 1 1 4
- = 38
2 (3(c+ 0P+ 22 T er)2er2? (et 1)(c+2)4> 38)
By combining (36) and (37) with (38), we have for any ¢ > 0 that
v 3 3 3
dh(A) <12 c+1 N c+1 +(c—|—1)
(p2(N))3/2 c c+2 ct
144(c+1)3 4 12(c+1)  48(c+1)* s

(c+2)%  (c+2)? " (c+2)? (c+2)*

—¢2(N)

Then, for ¢ > 1.5, we have

@z =120

which concludes the proof.

K.3 Proof of Proposition D.5

Consider symmetric perturbation distributions {5 2, whose tails of both sides are Fréchet-type with
index 2. Let Dy ; and D, ,. denote the distribution of left and right sides, respectively. Here, we
assume that forall z > 0

;D ;D
SCf(I’, 2,l) S 92 and If(I, 2,7’) )
1 —F(m;DQ’l) 1 _F(«T§D2,r)
This condition is known as a sufficient condition to satisfy Assumption A.3. Also, it is not that
restrictive conditions as several well-known Fréchet-type distributions, such as Fréchet, Pareto,

and Student-¢ distributions, satisfy this condition [Lee et al., 2024, see Appendix A]. Under this
assumption, we have for x > 0

Sk (z) SF, (x)
2(x +1)2 2(x +1)2’
where the corresponding slowly varying function Sp () is an increasing function for > 0. Here, a
slowly varying function g(x) satisfies lim,_, oo ggEff) = 0 for any a > 0, so that it is asymptotically
negligible compared to any polynomial function.
By definition of ¢, we have for i # 1

6:) = [ e+ 20PE) T] Pt
e J#i,1
Then, we obtain for K’ > 3 and A = (0,c...,c) with ¢ > 0 that

S0 = /OO CF(e 4 OF(2) FE2(z + o)dz

— 00

F(—,’L‘;Z/{Q,z) = and 1 — F(CU;Z/[Q’Q) =

= /oo —f(2)F(z — c)FE72(2)d»

— 00

= /OO (K —2)F(z— c)fz(z)FK_?’(z)dz—i—/_OO flz— c)f(z)FK_Q(z)dz

—00

> / TUK —2)F (s — o) f2 () FE 3 (2)dz

— 00

st Z F(z ) j;(()) (K — 1) f(2)FE(2)dz
K—2 (2K f(z) K2
> X1 /\/?—1 F(z— C)F(z) (K =1)f(z2)F* 2 (2)d=



Then, since S is increasing, we have for ¢ > WK
1-vVvK 1-vVK K+1
Fz—) > F(VE —1-¢) = 20t VE) 5 Snlet1-VE) , Sn(VE+1)
2(c — VK)? 2c? 2c?
uniformly over z € [\/? —1,2VK — 1].

By Assumption A.3, f/F is decreasing for 2 > 0. Therefore, we have for 2 € [VK — 1,2VK — 1]
that

flz) o VK 1) < St (2VK - 1)
F(z) — F(2VK — 1) AKVK

since F(2V/K — 1) > 1/2 and f(z) = Sy, (z)/(z + 1)3. Therefore, we obtain
_ 2vVK -1 2
[Ig—?/\/gl F(z— C)F((z)) (K —1)f(2)FE2(2)dz
(K -2Sn(VE+1) (25 1) o K-
> Bl /f B S RGERCLR O
(K ~2)Sp(VE +1)S5, VK —1) (2K K-
= SKVE(K —1)c? \/\/71 H = DiEFz)dz

(K =2)8r(VE + 1), 2VE — 1
- SKVK(K —1)c?
. Sn(VE+1)S;, 2VE — 1
- 16KV Kc?

Here, for y = 2v/ K — 1, we obtain

)FK—1(2\/?— 1)

)FK”(Q\/Ef 1). (K >3)

FEy) = (1- (1= F(y)" " =exp((K —1)log(1 — (1 — F(y))))
>e p( - gy ) (39)
> exp(=2(K —1)(1 - F(y))) (. F(z)=1/2forz >0)
B ( AK -1 +(21/; >
> exp(—sp(zf - 1)/2), (oy=2VE — 1)

where (39) follows from log(1 — ) > =% for x € (0, 1]. This implies

Sk (VK +1)S;, (2f— 1) C(D, K)
—gi(x) > 20 exp(—Sr, VK = 1)/2) = =2 (40

(bz(f) 16K\/702 p F'r‘( )/ 16K\/§C2 ( )
Here, C(D, K) is a constant that only depends on the distribution and K. Even though C(D, K)
depends on K, it is important to note that its dependency is at most logarithmic order since both

Sp and Sy are slowly varying functions. For example, C(D, K) = 2 exp(—1/2) holds when D is a
symmetric Pareto with shape 2.

Next, we have

A) = /jo F(2 + O)F(2)FE=2(z + o)dz

= Cf(z+c)F(z)FK72(z+c)dz+ ' f(z+c)F(2)FE=2(z + ¢)dz

— 00 —C

f2
- K—2
+ /0 fE+)F(2)F**(z+c)dz.

i3
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Then, we have

For the second term, we obtain

= ’ z z— ) FE2(2)dz
= [ 1GPGE- 9P

c/2 c
_ /0 F(2)F (2 — ) FK—2(2)dz + RELCE ) FK2(2)dz

c/2 0o
<Peof2) [ FERE s+ | FeMz < 2F(er2)

where the last inequality follows from symmetry so that 1 — F/(z) = F(—z) for z > 0. For the last
term, we have

I3 < /000 Fz+ O F(2)FE~2(2 + ¢)dz < /000 f(z+¢) <1-F(c) = F(—c).

Therefore, we have for K > 3 that

$i(A) < @ +2F(—¢/2) + F(—c) < %F(—c/?)

25 Sp(c/2) _ 25 8m(c/2)
8 (¢/241)? 2 (c+2)2°
By combining (40) and (41), we have for ¢ > 2v/K that
—@L(A) S 2(c+2)? C(D,K) _ Q( 1 >
¢i(d) T 255m(c/2) 16K VK c? KVK)’
where Q hides any logarithmic dependency. Note that Assumption A.3 implies lim SUP, 00 SF(T) <

00. Moreover, 0
—¢(A ~(c+2
G0 Q<Kﬁ<>

(41)

which concludes the proof.

K.4 Proof of Proposition D.6

Since ¢(v) is a bijective function, there exists a unique c(z) satisfying

¢((c(2),0,0)) = (xl—ff 1—x>

2 7 2
forany = € [,1). When z < g, there exists a unique c(x) satisfying
l—z 1—-2
p((0,¢(x), c(x))) = | &, ——,
2 2
Note that ¢(1/3) = 0 holds since the perturbations are independently identically distributed. Let us

define another function V : (0,1) — R« satisfying V(z) = V((z, (1 — 2)/2,(1 — z)/2). From
(3), it holds that

() — ze(x) — @((c(x),0,0)), ifez>1/3
Viz) {(1 —z)e(z) — 2((0,¢(x), c(x))) ifx<1/3°

Let us consider x > 1/3 case, where arg max; v; = 1 as Proposition D.3. By explicitly considering
the potential function in (9), we have
oo

®((c(x),0,0)) = / 2f(z — c(z))F?(2)dz + 2/ 2f(2)F(z)F(z — ¢(x))dz.

—0o0 — 00

o0
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Therefore, by relationship between regularization function and potential function given in (10), for
x > 1/3, we have

V'(2) = c(x) + 2c (z) — () ( / T (e — (@) F2(2)ds + / T ) - c(x))F(z)dz)

— 00 — 00

(z) + ad(z) — ¢(x)p1((c(x),0,0)) (by (11))
().

c
c
Thus, the derivative of V() depends on ¢(x), which is related to the inverse function of ¢.
Fix ¢ > 0. Then, it holds that

@1((Ca 0) O)) =1- 2@2((67 07 O))
From (42), it holds that
¢2((c,0,0)) = ¢2((0, ¢, ¢))

3+1/16< 4
~ (c+1)2 T (c+1)%

On the other hand,
?2((0,¢,¢)) = /00 f(z+)F(2)F(z + ¢)dz
0

> 3 fz4+)F(2)F(z+ ¢)dz + /000 fz4+)F(2)F(z+ ¢)dz

0

> F(—c) i f(z+c)F(z + c)dz + F(0) /000 fz+c)F(z+c¢)dz
— ;<F2(C)F(—C) - F(;C) + %(1 - Fz(c)))
> 3 (Poreo - T4 a-ro) (F(e) < 1)
L( o F(=¢)  F(=¢)
= 2<F (c)F(—c) — 1 T )
> 109 (F(e) € (1/2,1)
Therefore, we obtain
! ((¢,0,0) < —
8(c+ 1)z = PANORE =
which implies that for z € [1/3,1)
8 1
1= (c(x)+1)2 — zsl- 4(c(z) +1)2

Hence, we obtain

ofx) = @(\/11_73) _1

. . 1 . 1—z 1— .
Note that the derivative of 5-Tsallis entropy at p = (x, =5, T’”) is

V1//2<P) = —% + \/1\[%7

which implies that the derivative of V (p) roughly coincides with that of %-Tsallis entropy when
z— 1.
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K.5 Counterexample for general index in three-armed bandits

Proposition K.1. Let the unimodal symmetric Fréchet-type perturbation D, with index o > 1
defined on R, which is equivalent to a distribution in ®©,, on R, and

f(z,D,) <0,Vz >0, (Unimodality)
1
F(—2D,) =1—F(z;D,) = @(W), Vz > 0 (Symmetric Fréchet-type)
0
fGz4+¢Dy)F(2;Dy)F(z+ ¢; Dy )dz < C(Dy)F(—¢;Dy), Ve > 0. (Condition)

for a constant C(D,,) that depends only on the distribution and is independent of c. When K = 3
and A € R3. satisfies A = (0, ¢, ¢) for some ¢ > 0, then for i # 1, it holds that

80 | S0 (c 4+ 1)°7
() Zf%ka+1xx0a)’ and ¢W%A>ZQ(«x+ncuawﬂ)'

(3

Proof. By definition of ¢, for any \ € [0, 00)%, we have
—i(N) ST~z A) [T Flz +A))dz
di(N) [ fE+N) [T, F(z+A;)dz .

Let us consider K = 3 and A = (0, ¢, ¢) for some ¢ > 0. Then, for i # 1, the numerator is written as

/Oo —f'(z+A) [[F(z + A;)dz

e J#i

= /oo —f'(z+c)F(2)F(z + c)dz

— 00

—c 0
— [ P aF@FGEOdt [ —ft PGP+ ods

T1 T2
+ /OO —f'(z+c)F(2)F(z+c)dz.
0

T3
For the first term, since f'(z + ¢) > 0 for z < —c¢, we have

le/%—ﬁ@+®ﬂ@F@+®®

— 00

oo

> F(—c) /__c —F(e 4 O)F (2 + ¢)dz = F(—c) /0 —F(2)F(2)dz.

For the second term, since f'(z + ¢) < 0 for 2 > —c¢, we have
0
To = —f'(z+)F(2)F(z + c)dz

—C

0 c
>F(—c) | —f(z+c)F(z+c)dz = F(—c)/0 —f(2)F(2)dz.

—C

For the third term, we have
ti= [ —fe+ OFEIFE +od:
0

> F(—c) /OOO (2 4 O)F (2 + )z = F(—c) /Oo () F(2)d.
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Therefore, we obtain

/oo ) HF(Z +A;)dz > F(—c) /:’O —f'(2)F(2)dz

- J#i

= F(—c)/ﬁ F2(z)dz
=2F(—c) /OO f2(2)dz (symmetry)
0

where Sy(z) denotes the corresponding slowly varying function. Note that the slowly varying
function is a function g satisfying

lim g(tz)

=1,Vt>0,
v—=o0 g(x)

which implies S;(z) = o(z?) for any a > 0. Moreover, by Assumption E.5, liminf,_, Sy(z) > 0
holds (refer to Lee et al. [2024, Appendix A] for more details). Here, S¢(z) > 0 holds for all z > 0
since we consider the unimodal symmetric distribution. Therefore, there exists a constant ¢y > 0
such that Sy(z) > ¢, for all z > 0. Hence, we have

- 262;54(;6) B @<(a + 1)104— 1)a)’

since F' is the distribution function of symmetric Fréchet-type with F'(—z) = 1—F(z) = © (ﬁ)
for z > 0.

For the denominator, for i # 1, we have

/Oo FE+A) [[F =+ A))dz
e J#i
_ /jo F(z + O)F(2)F (= + c)dz
—c 0
=/ fz4+)F(2)F(z+ ¢)dz+ 3 fz4+)F(2)F(z + ¢)dz
f1 iz

—|—/0 fz+)F(2)F(z+c)dz.

s

For the first term, we obtain

= __C f(z+)F(2)F(z+ c)dz
< F(—c) __c f(z4+o)F(z+c)dz
< @ - fz4+odz= F(;C)

— 00

45



The second term is directly bounded by condition, i.e., 1o < C'(D,)F (—c). For the third term, we
obtain

Is= /00O fz+)F(2)F(z+ c)dz

< /ch(z—i—c)dz: 1—F(c) = F(-¢).
0
Therefore,

| 1+ 20 [T Pl + 402 < F-0(C(Da) +5/4),
e J#i

Therefore, we obtain

—¢i(A) _ tiH+Tt2+13 S 2c}

5N hthtd - @arDCmy e W
and
—¢i(A)  fi+ta+ 13 2c; —al(e «/2
o2 htitis = (2a + 1)(C(Da) + 5/4)3/2\/F(—c) Q(( 1) )

K.6 Specific results for symmetric Pareto distribution

Here, we explicitly substitute the density function and distribution function of symmetric Pareto
distribution.

Proposition K.2. Let the perturbations be i.i.d. from the symmetric Pareto distribution with shape 2
considered in Proposition D.3. When K = 3 and \ € Ri satisfies A = (0, ¢, ¢) for some ¢ > 0, then
fori # 1, it holds that

—9i(A)

bi(N)

> and

L
31

Proof. Let us use the same notation used in the proof of Proposition K.1 For the first term of the
numerator, we obtain

- 3 1 1
Tl:/_oo 0—z—0i20 222 —z—cp¥
3 (¢ ~1
:1/_00 1=z op( 22"

.3 /—C -1 . -3
et 12 ) L 0—2— 8T 200+ 12

For the second term, we obtain

0 3 1 1
b= vy (1‘ 2<z+c+1>2>dz

L T —
4 ) (et D1 -2)2 (z4c+1)S(1 - 2)2 :
3

0
1 .. 1
21/,6 Grerid-a7 C Grerpr S L Vz€[-e0D

3 /0 1 1 1
> dz = — .
de+1)? J_, (z+c+ 1) dc+1)2  A(c+1)°
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For the third term, we obtain

1
= 1- 1-——_d
fs /0 z—l—c—|—1 ( z—i—l >( 2(z—|—c—|—1)2) ?
2/ 1—- dz
0 z+c—|—1 z+c—|—1)

1 3
20c+ 1) 20(c+1)5°

Therefore,

oo , 1 1 8
_ . . > -
/_w I (””E”Mﬂdz ZT0(c+ 12 2+ 1P 20(c+ P

1
> .
~ 10(c+1)?

For the denominator term, we obtain

—¢ 1 1 1
11:/,00 A—z—cP20—222(1—z—cp¥

_ 1 /—C 1L g1
Sder12 ) A —2—ep T 16(ct+ 1)

For the second term, we obtain

0 1 1 1
2 :/,c (z et 1)32(1—2)? (1_ 2zt e+t 1>2>dz

< /0 1 1 dz.
T ez e+1)P2(1 - 2)?
By partial fractional decomposition, one can obtain
1 1 1/(c+2)? 2/(c+2)3 3/(c+2)* 1/(c+2)?

(z+cec+1)3(1—-2)2 (24+c+1)3 (z4+c+1)2 z+c+1 (1—-2)2

Therefore,

0 1 1
dz
/,C(z +c+1)32(1 — 2)?

3/(c+2)4.

B 1 1 1 1 3log(c+1)
_4(c+2)2<1 (c+1)2)+(0+2)3<1 c+1>7L 2(c+2)4

1 1 3log(c+1)
+ 2(c+2)3 (1 et 1) + 2(c+2)4
< 1 n 3 n 3c
T 4(c+2)2  2(c+2)3  (c+2)*
< 1 n 9
Sder2)? T2er2p
10 )

S 4ct+2)2 =20+ 02

For the third term, we obtain

> 1 1 1
j;3:/0 (z+c+1)3(1_2(z+1)2>(1_2(z+c+1)2)dz
> 1
S/O Grerip®”
1

< ———.
~ 2(c+1)?
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Therefore, for K = 3, when A = (0, ¢, ¢)

> 3+1/16
flz+ N Fz+M)dz < ———.
Jreea TTFe e < T
In sum, for K = 3, when A = (0, ¢, ¢), we obtain
/
gy 11 1
¢;(N) T 103+1/16 — 31
Moreover, we obtain
—&
<;>Z(A)2 1/10 (et ):96\/5(6_’_1)204—1.
622\ T (48 -3V3) 1715 11
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