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Abstract
A key question in many network studies is whether the observed correlations between units are
primarily due to contagion or latent confounding. Here, we study this question using a segregated
graph (Shpitser, 2015) representation of these mechanisms, and examine how uncertainty about the
true underlying mechanism impacts downstream computation of network causal effects, particu-
larly under full interference—settings where we only have a single realization of a network and
each unit may depend on any other unit in the network. Under certain assumptions about asymp-
totic growth of the network, we derive likelihood ratio tests that can be used to identify whether
different sets of variables—confounders, treatments, and outcomes—across units exhibit depen-
dence due to contagion or latent confounding. We then propose network causal effect estimation
strategies that provide unbiased and consistent estimates if the dependence mechanisms are either
known or correctly inferred using our proposed tests. Together, the proposed methods allow net-
work effect estimation in a wider range of full interference scenarios that have not been considered
in prior work. We evaluate the effectiveness of our methods with synthetic data and the validity of
our assumptions using real-world networks.
Keywords: Interference, Segregated graphs, Social networks

1. Introduction

A key question that arises in many network studies is whether observed correlations between units
arise primarily due to contagion (peer-to-peer influence) or latent confounding (unobserved back-
ground factors that lead to similar characteristics for connected individuals) (Jackson and López-
Pintado, 2013; Rosenbusch et al., 2019). This mechanistic knowledge can inform different inter-
vention strategies to influence network-wide changes for certain outcomes of interest. We study this
question in full interference settings—settings where each unit may potentially depend on any other
unit in the network, and we only have a single realization of the network—and how this difference
can impact downstream computation of network causal effects.

There is a growing literature on studying interference problems through causal graphical mod-
els. Ogburn and VanderWeele (2014) proposed an approach to studying interference problems using
causal directed acyclic graphs (causal DAGs). Srinivasan et al. (2023) extend this approach to also
account for different types of non-ignorable missing data including missingness interference; Og-
burn et al. (2020); Bhattacharya et al. (2020); Peña (2020) use various interpretations of chain graphs
(CGs) to study interference. The aforementioned works focus primarily on the partial interference
setting. In the full interference setting, Tchetgen Tchetgen et al. (2021) propose a chain graph rep-
resentation for interference along with an estimation strategy, known as auto-g-computation, for
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network effects. However, chain graph models do not admit representations of latent confounding,
so the auto-g-computation algorithm cannot be applied in such settings. Full interference work in
Ogburn et al. (2024) and Clark and Handcock (2024) have similar limitations. Bhattacharya and
Sen (2024) propose a mean-field/message passing algorithms for auto-g-computation.

Here, we use causal interpretations of segregated graphical models (Shpitser, 2015) to model
interference. These models allow for the representation of both contagion and latent confounding.
Sherman and Shpitser (2018) provide a sound and complete identification algorithm for network
effects in a certain class of segregated graphs. Their proposed estimation strategy, however, relies
on directly applying auto-g-computation and so can only be applied in special cases where latent
confounding can be ignored for estimation purposes. Moreover, none of the aforementioned works
consider model selection procedures for separating contagion from latent confounding, a question
that is of great scientific interest, but relatively understudied in the current literature (Shalizi and
Thomas, 2011; Ogburn, 2018; Lee and Ogburn, 2021). We add to the existing literature as follows.

1. We propose likelihood ratio tests, based on a coding likelihood (Besag, 1974), that can be used
to distinguish between dependence due to contagion and latent confounding under certain
distributional assumptions and assumptions about asymptotic growth of the network.1

2. We also propose coding likelihood estimators for network causal effects that are consistent
and asymptotically normal under different regimes of dependence due to contagion and latent
confounding and operate under weaker network asymptotics than our tests.

Contribution (1) can be seen as extending the existing causal discovery literature in interference by
adding new hypothesis tests for distinguishing between contagion and latent confounding in segre-
gated graphical models under full interference. From a causal inference perspective, contribution
(2) extends the auto-g-computation method of Tchetgen Tchetgen et al. (2021) to handle latent
confounding. To our knowledge, neither of these directions have been pursued in prior work. We
envision that (1) and (2) will often be used in conjunction with each other—the tests serve as a check
to determine whether auto-g-computation is sufficient, or whether our extension of it is required.

2. Model and Problem Setup

We model interference using segregated graphs (SGs) (Shpitser, 2015), a class of loopless2 mixed
graphs where vertices can be connected by directed (→), bidirected (↔), and undirected edges (−).
A loopless mixed graph G(V ) is an SG if, (i) Any pair of vertices in V can be connected either by
a single edge of any type, or a pair of edges with one being directed and the other being bidirected;
(ii) There is no vertex in V that is an endpoint of both a bidirected and undirected edge; (iii) There
are no partially directed cycles—a partially directed walk starting and ending at the same vertex Vi

consisting of a mix of directed and undirected edges with at least one directed edge.3 We provide
some examples of graphs that do and do not satisfy the SG property in Appendix A. For brevity, we
use Vi ◦—◦Vj to denote uncertainty about whether Vi and Vj are connected via an undirected or
bidirected edge and denote G(V ) as simply G when the vertex set is clear from context.

1. In particular, we require that as the network grows, we also obtain a growing number of units that are at least 6
degrees of separation away from each other, a connection to the small-world principle (Watts and Strogatz, 1998).
This may not hold in all network settings, and we examine its viability in Section 6 using five real-world networks.

2. Graphs that have no edges of the form Vi *—*Vi.
3. As an example, A−B → C −A is considered a partially directed cycle, but A−B − C −A is not.
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Figure 1: (a) Example of a friendship network F on 10 units. (b) Partially determined SG pattern
G◦—◦ on 3 units (lighter edge colors in the figure are only used to improve readability).

2.1. Statistical models of an SG

A statistical model of an SG G(V ) is defined as the set of distributions p(V ) that segregated factorize
according to G, or equivalently, satisfy a global Markov property defined in terms of s-separation
(Shpitser, 2015), a generalization of the c-separation criterion (Studený, 1996) for chain graphs
(segregated graphs with no bidirected edges corresponding to no latent confounding). Briefly, s-
separation is similar to c-separation, but generalizes the notion of colliders and collider sections
(e.g., A→ B ← C and A→ B−C ← D) to also allow for bidirected edges (e.g., A↔ B ← C). A
more precise description of s-separation in terms of an augmented graph aka moralization criterion
(Lauritzen, 1996) is provided in Appendix B. The global Markov property of SGs is as follows: if
X ⊥⊥s-sep Y | Z in G(V ) then X ⊥⊥ Y | Z in p(V ). In our work, to facilitate mechanism discovery,
we assume that the converse is also true, which is akin to the faithfulness assumption made by
many constraint and score-based causal discovery methods (Spirtes et al., 2000). Thus for statistical
models of an SG considered here we have X ⊥⊥ Y | Z in p(V ) ⇐⇒ X ⊥⊥s-sep Y | Z in G(V ).

2.2. Modeling interference with SGs

Lauritzen and Richardson (2002) provided a causal interpretation for segregated graphs with no
bidirected edges, known as chain graphs (CGs). Under this interpretation, a directed edge Vi → Vj

indicates that Vi is a potential cause of Vj while an undirected edge Vi−Vj represents the possibility
of a symmetric causal relationship that reaches an equilibrium state. In the interference literature,
this symmetric causal relationship is often interpreted as being the result of a contagious process;
see for example Ogburn et al. (2020); Bhattacharya et al. (2020); Tchetgen Tchetgen et al. (2021).

The above interpretations of directed and undirected edges naturally carry forward to causal
interpretations of SGs. We now elaborate on the interpretation of bidirected edges. An SG G(V )
can be thought of as encoding the marginal distribution of a hidden variable chain graph G(V ∪H)
with observed variables V and hidden variables H , such that for every edge Vi ↔ Vj in G(V ), there
exists an exogenous hidden variable Hij connecting Vi and Vj in G(V ∪ H) as Vi ← Hij → Vj

(Shpitser, 2015).4 That is, bidirected edges in an SG represent latent confounding. Equipped with
these definitions, we describe the goals and assumptions of our work.

4. The pattern of hidden variables in the chain graph need not exactly match this description for there to be a bidirected
edge. For example, a path Vi ← H1 → H2 → Vj involving multiple hidden variables is also possible. However,
these are all equivalent as they imply the same marginal model, so we opt for the simpler representation.
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2.3. Goals and Graphical Assumptions

We observe N potentially interconnected units in a network, representing full interference. This
network of connections or friendships can be represented by an undirected graph F with N vertices
labeled 1, . . . ,N and edges i − j for every pair of units i, j that are connected to each other.
For each unit i in the network, we observe a vector of baseline covariates Li, their treatment Ai,
and their final outcome Yi. That is, our observed data consists of (possibly) dependent realizations
(L,A, Y ) = (L1, A1, Y1), . . . , (LN , AN , YN ). In this setting, we set our target of inference to be the
expected value of unit-level potential outcomes of the form E[Yi | do(A = a)] for i = 1, . . . , N.
The quantity E[Yi | do(a)] represents the expected outcome of i when all units in the network
receive the treatment assignment vector A = a. Once these are known, it is easy to compute a
variety of other network effects, such as the population average overall effect and spillover effect.

To make this task feasible, we make the following simplifying assumptions: (1) We assume
that the friendship network F is known; (2) The data (L1, A1, Y1), . . . , (LN , AN , YN ) are drawn
from a distribution that is Markov and faithful with respect to an SG G that is consistent with
the partially determined SG pattern shown in Figure 1(b) for three units, with the restriction that
variables of the same type (L, A, or Y ) are always connected by the same type of edge (partially
determined refers to the fact that there is uncertainty about whether the ◦—◦ edges are bidirected
or undirected). The latter restriction implies, for example, that if the outcome is contagious for
two connected units, then it is also contagious for all other connected units (and similarly for latent
confounding). These assumptions are similar to those adopted in prior work (Bhattacharya et al.,
2020; Tchetgen Tchetgen et al., 2021; Ogburn et al., 2024), but have the benefit of allowing for
certain patterns of latent confounding.

Besides implying different mechanisms, we show in Section 5 that, depending on the exact
target of inference, the presence of undirected or bidirected edges in different layers5 of the SG may
also necessitate the use of different identification and estimation strategies that must be used for
computing network causal effects, especially under full interference.

We end this section by noting an important limitation of our assumptions—by using an SG
representation, we apriori rule out the simultaneous existence of contagion and latent confounding
in the same layer of G. While this is certainly possible in the real world, smooth globally identified
parameterizations of such models have not been proposed yet, and indeed may not be possible in
certain cases, as has been shown for linear Gaussian models for graphs that contain “bows,” i.e.,
pairs of vertices such that both Vi → Vj and Vi ↔ Vj exist (Drton et al., 2009; Shpitser, 2015).

3. Motivating Example

Before presenting technical details of our method, we present a hypothetical example inspired by the
Networks, Norms and HIV/STI Risk Among Youth (NNAHRAY) study (Khan et al., 2009; Fried-
man et al., 2008), of how it might be used. Suppose we aim to examine the effect of incarceration on
HIV risk. Let Li represent an individual’s past intravenous drug use (note Li could also be a vector
of baseline confounders, but we consider it to be a single variable in this example for simplicity),
Ai represent past incarceration status, and Yi denote HIV status. Connections in the network F on
N individuals in the study population correspond to sexual or drug-use partnership, i.e. i − j

5. We use the term layer to refer to a collection of variables which could be L (the covariate layer), A (the treatment
layer), or Y (the outcome layer).
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exists in F if the two individuals are such partners. The underlying unknown segregated graph G is
assumed to be one that can be represented by the pattern in Figure 1(b).

A public health policy maker might ask the following questions: (i) Does intravenous drug use
in the population spread primarily due to social contagion, or is dependence due to latent factors
such as household incomes? (ii) Does incarceration of an individual cause an increased likelihood
of incarceration for their partners, or is this dependence also primarily explained by latent factors?
Finally, (iii) Is the disease itself (HIV) contagious? The answers to each of these questions can lead
to very different policy on containing future infections.

Our tests proposed in Section 4 can be used to distinguish between such mechanisms and the
methods proposed in Section 5 can be used to estimate E[Yi | do(a)] and other network effects of
interest, such as spillover effects of incarceration of partners. In the example above, our method
would confirm background knowledge for (iii) that HIV is in fact a contagious disease that can
spread via sexual contact and sharing needles. The answers to (i) and (ii) that pertain more to
social science are less well established, and our test helps answer these from observational data.
Moreover, even if the mechanisms can be fully determined through background knowledge, if latent
confounding is present in the L or Y layer, our estimators that extend auto-g-computation are still
required for unbiased estimation of the true network effects.

4. Likelihood Ratio Tests for Determining the SG

In this section we present likelihood ratio tests that can be used to distinguish between contagion
and latent confounding in each layer of a partially determined SG G◦—◦ as shown in Figure 1(b). In
order to design valid tests for this purpose, the first step is to to find an independence restriction that
holds under contagion, but not under latent confounding (or vice versa). However, due to the de-
pendent nature of our data, this alone is not sufficient to design a valid test with standard asymptotic
properties. One popular approach to obtaining standard asymptotics with dependent data is to use
coding likelihood estimators (Besag, 1974; Tchetgen Tchetgen et al., 2021)—estimators where the
likelihood factorizes based on selecting conditionally independent samples from the network. We
pursue this coding likelihood approach in our work, both for the design of likelihood ratio tests in
this section, and for downstream estimation of network effects in the next section.

In the following, we consider contagion to be our null hypothesis and latent confounding to
be the alternative. We follow this convention as contagion is often the assumed mechanism in
prior work (Ogburn et al., 2020; Tchetgen Tchetgen et al., 2021; Bhattacharya et al., 2020). We
design three coding likelihood ratio tests to determine the mechanism in each layer L,A, and Y of
a partially determined SG G◦—◦. Ideally, to prevent propagation of errors, the results of each test
should be independent of each other (i.e., the results of one test should not depend on the output
of others). In order to design such tests, we first propose conditional independence restrictions for
each layer that hold under the null but not the alternative, regardless of the mechanism in other
layers. In the following, we will use F (k)

i as short-hand for all units j that are exactly k degrees
of separation away from the unit i in F , i.e., the shortest path from i to j in F consists of k
edges. By convention, F (0)

i corresponds to i itself. We will also use X
F(k,k′,...)

i

as shorthand for

the X variables of all units j that are k, k′, . . . degrees of separation away from unit i. That is,

X
F(k,k′,...)

i

= {Xj | j ∈ F (k)
i ∪ F (k′)

i ∪ . . .}.
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Lemma 1 Given a friendship network F and a corresponding partially determined SG G◦—◦, the
following independences hold in each layer under the null hypothesis of contagion but not under the
alternative hypothesis of latent confounding, regardless of the mechanism present in other layers.
For any unit i in F for which F (1)

i and F (2)
i are not empty, we have,

Li ⊥⊥ LF(2)
i

| LF(1)
i

(1)

Ai ⊥⊥ AF(2)
i

| AF(1)
i

, LF(0,1,2,3)
i

(2)

Yi ⊥⊥ YF(2)
i

| YF(1)
i

, AF(0,1,2,3)
i

, LF(0,1,2,3)
i

. (3)

All proofs can be found in the Appendix. Intuitively, the distinct patterns of independence arise due
to the presence/absence of colliders depending on the kind of edge that is present in each layer.

As an example, a conditional independence statement that holds under the null in the A layer
for 4 in the friendship network F in Figure 1(a) and its corresponding SG is,6

A4 ⊥⊥ AF(2)
4

| AF(1)
4

, LF(0,1,2,3)
4

=⇒ A4 ⊥⊥ {A1, A6} | {A2, A5}, {L4, L1, L2, L5, L6, L7, L8}.

Lemma 1 suggests we can design a likelihood ratio test for each layer by proposing nested
models parameterized by a set of parameters β and γ respectively, where the model parameterized
by β encodes a set of restrictions in Lemma 1 (depending on the layer being tested) and the model
parameterized by γ is a strict supermodel that does not. Under full interference, however, proposing
such models for the conditional densities of each layer—p(L), p(A | L), and p(Y | A,L)—is
infeasible without some dimension reduction assumptions. Here, we will assume parameters for the
null and alternative models for each layer do not grow as a function of the size of the network and
are shared across all units in the network. For example, in the case of binary treatments in the A
layer, we may propose the following nested parametric models,

p(Ai = 1 | AF(1)
i

,LF(0,1,2,3)
i

;β) = expit(β0 + β1

∑
k∈F(1)

i

Ak + β1Li + β2

∑
k∈F(1,2,3)

i

Lk), (4)

p(Ai = 1 | AF(1,2)
i

,LF(0,1,2,3)
i

; γ) = expit(γ0 + γ1
∑

k∈F(1)
i

Ak + γ1Li + γ2
∑

k∈F(1,2,3)
i

Lk + γ3
∑

k∈F(2)
i

Ak), (5)

where the parameters β and γ are shared across all units i in the network. We note that other
parametric forms for these models are possible, e.g., having separate parameters for modeling de-
pendence of Ai on Lk for k ∈ F (1)

i ,F (2)
i , and F (3)

i (we use this more flexible model in our experi-
ments), as long as the number of parameters are not a function of the size of the network N and the
null and alternatives are nested hypotheses as in (4) and (5).

We now show that the parameters can be consistently estimated using a coding likelihood that
factorizes based on selecting units that are at least six degrees of separation away from each other in
F . We call such a set a 6-degree separated set and denote it as S6(F), i.e., every distinct i,j ∈
S6(F) are at least six degrees of separation apart. Later, we will also use Sk(F) to denote k-degree
separated sets.7 Below we present factorizations of coding likelihoods for the null and alternative
models and show they hold regardless of the true underlying mechanism—this is important as we
want standard asymptotics for estimation of the null even if the alternative is true and vice versa.

6. A simpler conditional independence Ai ⊥⊥ AF(2)
i

| AF(1)
i

, LF(0,1)
i

also holds under the null but not the alternative.
However, such independences cannot be used to factorize a coding likelihood, as seen in the proof for Lemma 2.

7. As concrete examples, {1,9} is an S6(F) set for Figure 1(a), while {1,3,4,6,10} is an S2(F) set.
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Lemma 2 Given data (L,A, Y ) drawn from a distribution that is Markov and faithful wrt to a
partially determined SG G◦—◦, the coding likelihood functions for the null and alternative models
factorize as follows regardless of the true underlying mechanisms in each layer of G◦—◦,

CL(βL) =
∏

i∈S6(F)

p(Li | LF(1)
i

;βL)

CL(βA) =
∏

i∈S6(F)

p(Ai | AF(1)
i

, LF(0,1,2,3)
i

;βA)

CL(βY ) =
∏

i∈S6(F)

p(Yi | YF(1)
i

, {A ∪ L}F(0,1,2,3)
i

;βY )

CL(γL) =
∏

i∈S6(F)

p(Li | ·, LF(2)
i

; γL) (6)

CL(γA) =
∏

i∈S6(F)

p(Ai | ·, AF(2)
i

; γA) (7)

CL(γY ) =
∏

i∈S6(F)

p(Yi | ·, YF(2)
i

; γY ) (8)

where (·, ) in each case above denotes conditioning on the same set in the null.

Intuition for the factorizations is as follows: for any i, we condition on a set of variables in
F (0,1,2,3)
i . Thus, the rest of the variables appearing in the coding likelihood functions belong to units

that are at least 4 degrees of separation away from i (by the antecedent that all units in S6(F) are
at least 6 degrees separated from each other). Thus, factorization of, for e.g., CL(βY ) is established
by showing that Yi ⊥⊥ Lj , Aj , Yj | · for all j that are at least 4 degrees of separation from i.
Having established factorization of the coding likelihood functions, we can now rely on standard
maximum likelihood asymptotic theory (similar to Besag (1974)) for constructing coding likelihood
ratio tests for each layer, as long as the number of units in S6(F) grows with the size of the network.
This leads us to a statement about our assumptions on network asymptotics for designing our tests.

Network asymptotics for testing Let G◦—◦N be a sequence of partially determined SGs with
associated friendship networks FN for N = 1, 2, . . . such that as N → ∞, the size of at least one
6-degree separated set obtained from FN also tends to infinity, i.e. |S(FN )| → ∞.

Under the above network asymptotics and mild regularity conditions stated in the Appendices
of Tchetgen Tchetgen et al. (2021), the estimates for the unknown parameters of correctly specified
null and alternative models obtained by maximizing the coding likelihood functions in Lemma 2 are
consistent and asymptotically normal. In Algorithm 1 we then propose our final coding likelihood
ratio tests for determining the mechanism in each layer of a partially determined SG G◦—◦.

Based on Lemma 1 and Lemma 2 and the consistency of the coding likelihood ratio estimates
for the parameters of correctly specified null and alternative models, the test for each layer possess
the desired asymptotic properties: type-I error control at a specified significance level α and power
tending to 1 as N →∞. This is also confirmed empirically with our experiments in Section 6.

Note that many possible S6(F) sets of potentially different sizes can be obtained from a single
network F . Ideally, we would want to find the largest such set for estimating our parameters.
However, finding the maximum sized k-degree separated set is well-known to be NP-hard (Robson,
1986; Myrvold and Fowler, 2013; Eto et al., 2014). Here, we opt for a greedy approach to finding
maximal k-degree separated sets and find that this works well in practice. We also note a well-
known tradeoff of coding likelihood estimators is that asymptotic guarantees come at the cost of
sample efficiency (Besag, 1974). The network asymptotics for our tests are particularly interesting
in this regard—the small-world principle is a popular hypothesis that in real-world networks every
pair of units is no more than 6 degrees of separation apart (Watts and Strogatz, 1998). Fortunately,
our tests make use of units in S6(F) that exactly meet this upper bound, presenting an interesting
connection between the connectedness of networks and the testability of mechanisms.

7
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Algorithm 1 for determining edge types in G◦—◦
1: Inputs: Partially determined SG G◦—◦; Network F ; Data L,A, Y ; Significance level α.
2: Obtain a maximal S6(F) such that for each i in the set, F (1)

i and F (2)
i are not empty

3: for each type of variable X in “L”, “A”, “Y ” do

4: β̂X ← argmaxβX
CL(βX) and γ̂X ← argmaxγX CL(γX)

5: Λ← −2(log CL(β̂X)− log CL(γ̂X)) and k ← |βX | − |γX |

6: if P
(
χ2
k ≥ Λ

)
< α) then replace each Xi ◦—◦Xj in G◦—◦ with Xi ↔ Xj

7: else replace each Xi ◦—◦Xj in G◦—◦ with Xi −Xj

8: return the now fully determined G◦—◦

5. Identification and Estimation of Network Effects

The identification and estimation methods presented in this section assume a known SG G, or one
that is correctly inferred using Algorithm 1. We start with an identification result for the target.

Theorem 3 Given a hidden variable CG G(V ∪ H) whose observed margin can be represented
by any SG G(V ) that is compatible with the assumptions of Figure 1(b), the target parameter is
identified as, E[Yi | do(A = a)] =

∑
L,Y p(L)× p(Y | A = a, L)× Yi.

That is, network ignorability (Tchetgen Tchetgen et al., 2021) is satisfied regardless of mech-
anisms present at each layer. While the identifying functional for our target parameter does not
depend on mechanisms, we see in Section 5.1 that mechanistic knowledge, particularly in the L and
Y layer, is still essential for estimation purposes. For completeness, we also provide an example of
a different target parameter where the identifying functional can change depending on mechanisms.

Consider the unit level potential outcome where we intervene on the outcomes of all other units
except i, i.e., E[Yi | do(Y−i = y−i)]. When contagion is present in the Y layer, the identifying
functional for this query is,

∑
L,A,Yi

p(L,A)×p(Yi | Y−i = y−i, A, L)×Yi; when latent confound-
ing is present in the Y layer, the identifiying functional is simply

∑
Yi
p(Yi)×Yi. These functionals

align with the interpretation of undirected and bidirected edges—interventions on Y−i may have an
effect on Yi under contagion but not latent confounding. The proofs are in Appendix F.

5.1. Extending auto-g-computation to account for latent confounding

We now present a new method for network effect estimation that extends the auto-g-computation
method of Tchetgen Tchetgen et al. (2021) to account for latent confounding. We first provide a
brief description of auto-g-computation before describing our modifications. We return to our target
of inference, identified in Theorem 3, which depends on densities p(L) and p(Y | A,L).

Auto-g-computation overcomes the challenge of having access to only a single realization of
the network under full interference by drawing a number of independent samples of L and Y from
the densities p(L) and p(Y | A,L). The method proposes a Gibbs sampler that draws independent
realizations of L and Y from these densities given access to just univariate conditionals p(Li | L−i)
and p(Yi | Y−i, A, L) for each i in the network. To make estimation of these conditionals feasible
from a single realization, Tchetgen Tchetgen et al. (2021) assumes that the L and Y layer are
connected by undirected edges, which simplifies these conditionals to depend only on adjacent units

8
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Algorithm 2 for estimating E[Yi | do(A = a)] for every i in the network
1: Inputs: SG G; Friendship network F ; Data L,A, Y ; Treatment assignment vector a.
2: Obtain a maximal S2(F) set
3: if each Li ◦—◦Lj in G is undirected then
4: θ̂Li−Lj ← argmaxθLi−Lj

CL(θLi−Lj ) and Ldraws ← Gibbs sampler L
(
G; θ̂Li−Lj )

)
5: else
6: Obtain a maximal S̃2(F) set of isomorphic local structures
7: θ̂Li↔Lj ← argmaxθLi↔Lj

CL(θLi↔Lj ) and Ldraws ← draws from p(L; θ̂Li↔Lj )

8: if each Yi ◦—◦Yj in G is undirected then
9: θ̂Yi−Yj ← argmaxθYi−Yj

CL(θYi−Yj ) and Ydraws ← Gibbs sampler Y
(
G; θ̂Yi−Yj ;Ldraws, a

)
10: else
11: Fit an outcome regression model E[Yi | AF(0,1)

i

, LF(0,1)
i

; θYi↔Yj ] using CL(θYi↔Yj )

12: // Below L(m) denotes the mth row of Ldraws
13: Ydraws ←M ×N matrix where entry m, i = E[Yi | a, L(m); θ̂Yi↔Yj ]

14: return Ê[Yi|do(a)], . . . , Ê[YN |do(a)]← empirical averages of outcomes for each i in Ydraws

in the network, i.e. p(Li | LF(1)
i

) and p(Yi | YF(1)
i

, AF(0,1)
i

, LF(0,1)
i

) respectively. Finally, similar to
our assumptions in Section 4, auto-g-computation assumes that the parameters θLi−Lj and θYi−Yj

used to parameterize these univariate conditional distributions are shared across the network.
Thus, to estimate E[Yi | do(a)] for each i, auto-g-computation proceeds by (i) Estimating

parameters of the univariate conditionals via maximizing coding likelihoods; (ii) Using Gibbs sam-
pling to draw several, say M , independent realizations of L and Y from p(L) and p(Y | A = a, L),
where each realization from the sampler is an N × 1 vector corresponding to values of L and Y
for every unit in the network under a treatment assignment A = a; and (iii) Taking the empirical
average of each Yi from these M draws as the final estimate for each E[Yi | do(a)].

While auto-g works well when edges among L and Y are undirected, it leads to biased esti-
mates if either layer contains bidirected edges. This is because the simplification of the univariate
conditionals used for Gibbs sampling no longer holds due to conditioning on colliders. By a simple
s-separation argument, p(Li | L−i) ̸= p(Li | LF(1)) when the L layer contains bidirected edges and
p(Yi | Y−i, A, L) ̸= p(Yi | YF(1)

i

, AF(0,1)
i

, LF(0,1)
i

) when the the Y layer contains bidirected edges.
We propose modifications to auto-g-computation to account for these cases. Our full procedure is
described in Algorithm 2; the Gibbs samplers are described in Appendix H. If the else statements
in our algorithm do not execute, then there are undirected edges in both the L and Y layer, and
our procedure reduces to the original auto-g-computation method (CL(θLi−Lj ) and CL(θYi−Yj ) in
lines 4 and 9 are coding likelihood functions used to compute parameter estimates when the edges
in both layers are undirected). Thus, we focus on explaining the else statements in Algorithm 2.

Define a local structure S as a frequently occurring isomorphic subgraph of F (i.e., a subgraph
with the same structure if the labels of the nodes are ignored). Examples of local structures include
dyads and triangles (cliques consisting of 3 units, e.g., 2,4,5 in Figure 1(a)). For a chosen
granularity of local structures, we then propose a parameterization of local structures p(LS ; θLi↔Lj )
that is shared across the network. For example, under a multivariate normal assumption on p(L)
where we parameterize dyad local structures, we would propose θLi↔Lj to be the parameter vector
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(µi, σii, σij) corresponding to the mean, variance, and covariance shared across all units (this en-
codes marginal independences between non-adjacent units, as the covariance between non-adjacent
units is 0 in the model definition). In the case of discrete data, one could also use log-linear param-
eterizations described in Rudas et al. (2010); Forcina et al. (2010); Evans and Richardson (2013).8

Consistently estimating the parameters p(LS ; θLi↔Lj ) allows us to draw independent realiza-
tions of L from a distribution p(L) that is Markov wrt GL(V ) when the L layer has bidirected edges.
This is done in line 7 of Algorithm 2 after obtaining maximum coding likelihood estimates of the
parameters. The coding likelihood CL(θLi↔Lj ) in line 7 is defined over a collection of local struc-
tures S̃2(F) such that for any S, S′ ∈ S̃2(F) and for every pair of units, i ∈ S and j ∈ S′, i

and j are at least 2 degrees of separation away from each other.9

After line 7 of Algorithm 2, we have M independent draws of L from either an undirected or
bidirected model of p(L). The remaining steps do not depend on which one we drew from. We now
focus on how the algorithm finishes effect estimation when the Y layer has bidirected edges. Notice
that the functional in Theorem 3 can be further simplified to

∑
L p(L) × E[Yi | A = a, L]. Given

M independent draws of L, the only task that remains then is to estimate the outcome regression
E[Yi | A,L] from which we can get M predictions Yi given each draw of L and A = a and average
these predictions to obtain an estimate of E[Yi | do(a)]. When the Y layer contains bidirected edges,
we can easily obtain maximum coding likelihood estimates for this outcome regression model using
a function CL(θYi↔Yj ) defined on units in S2(F). The estimation and prediction steps are executed
in lines 11 and 13. For completeness, we present the factorizations of all coding likelihood functions
in Algorithm 2 in the following Lemma. The difference in factorizations below emphasize the need
to know the underlying mechanisms in the L and Y layer, but not necessarily the A layer.

Lemma 4 Given data (L,A, Y ) drawn from a distribution that is Markov wrt to an SG G that is
compatible with the assumptions in Figure 1(b), the coding likelihood function for modeling p(L)
and p(Y | A,L) factorize depending on the edges present in the L and Y layers as,

CL(θLi−Lj ) =
∏

i∈S2(F)

p(Li | LF(1)
i

; θLi−Lj )

CL(θLi↔Lj ) =
∏

S∈S̃2(F)

p(LS ; θLi↔Lj )

CL(θYi−Yj ) =
∏

i∈S2(F)

p(Yi | YF(1)
i

, {A ∪ L}Fi(0,1); θYi−Yj )

CL(θYi↔Yj ) =
∏

i∈S2(F)

p(Yi | {A ∪ L}Fi(0,1); θYi↔Yj )

Maximizing the above functions gives us consistent and asymptotically normal estimates of the
corresponding parameters, and thus the target parameters through Algorithm 2, as long as we have
the following asymptotic growth of the network (which could be considered weaker than the one
proposed for our tests, since it only relies on 2-degree separated sets and local structures).

Network asymptotics for estimation Let GN be a sequence of SGs compatible with Figure 1(b)
and with associated friendship networks FN for N = 1, 2, . . .∞ such that as N →∞, the sizes of
at least one 2-degree separated set of individuals and one 2-degree separated set of isomorphic local
structures obtained from FN also tend to infinity, i.e. |S2(FN )| → ∞ and |S̃2(FN )| → ∞.

8. As the size of the local structure increases, so does the size of the parameter vector, corresponding to more flexible
modeling assumptions. In our experiments, we use the simplest possible local structure of dyads, however, we only
require that the size of the parameter vector does not grow as a function of the size of the network.

9. An example of S̃2(F) in Figure 1(a) when considering dyads as local structures is {1 − 2,6 − 7,9 − 10}.

10
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Figure 2: Performance of coding likelihood ratio tests with varying sample sizes.

6. Experiments, Discussion, and Conclusions

We performed experiments to evaluate the correctness of the proposed methods using both synthetic
data and semi-synthetic data with known ground truths10. Additionally, we tested the validity of our
key network assumption—that sufficiently large sets S6(F) can be found—using various real-world
social networks. Code for our experiments is available in this GitHub repository.

6.1. Evaluation of Likelihood Ratio Tests

We first evaluate our likelihood ratio tests in Algorithm 1 using effective sample sizes of 200, 500,
1000, 2000, 3000, 4000, and 5000. These numbers represent sizes of a maximal S6(F) obtained
from a synthetic network of 200, 000 units, where each unit has 1 to 6 randomly assigned neighbors.
We create two configurations of SGs compatible with the partially determined SG in Figure 1(b),
one with undirected edges in all layers and another with bidirected edges in all layers; details of the
underlying data generating processes are in Appendix I.

We run 200 trials at each effective sample size to calculate power and type-I error rate. Figure 2
shows the results. The results show that our tests are well calibrated, with power approaching 1 quite
quickly as the size of S6(F) increases and type-I error controlled at the desired level of α = 0.05.

Since real-world networks can be smaller and denser, we also evaluate whether sufficiently large
S6(F) can be retrieved in practice by analyzing 10 real networks from the Stanford Large Network
Dataset Collection (SNAP) (Leskovec and Krevl, 2014). In each network, we identify 100 maximal
6-degree separated sets, discard units for whom Fi

(1) and Fi
(2) are empty, as our tests rely on data

from these neighborhoods, and retain the largest maximal set, denoted as |S6(F)|∗. Table 1 shows
that node usage varies significantly with network density. In denser networks like Twitch Gamers,
we could use only 0.02% of units as effective samples for our tests, but in sparser networks such as
Deezer RO, we could use 2.85% of the units. These findings indicate that our tests perform best in
networks that are both large and relatively sparse. There is also some evidence that virtual social
networks are more dense than non-virtual ones (Bakhshandeh et al., 2011; Cheng, 2010; Edunov
et al., 2016) due to the ease of forming connections on the internet, so our method may have more
samples in non-virtual settings (such as our motivating example).

10. While it would be ideal to evaluate our methods with real-world data, accompanying ground-truths are typically not
available in the absence of a gold standard randomized trial (see Keith et al. (2023) for discussion). Finding publicly
available network trial data, however, is challenging, and we were unable to find a suitable one for our experiments.

11
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Dataset # of Nodes # of Edges |S6(F)|∗ Node Usage
Social Circles: FB (Leskovec and Mcauley, 2012) 4,039 88,234 3 0.07%
GitHub Social Network (Rozemberczki et al., 2019a) 37,700 289,003 211 0.56%
Deezer Europe (Rozemberczki and Sarkar, 2020) 28,281 92,752 476 1.68%
Deezer HR (Rozemberczki et al., 2019b) 54,573 498,202 327 0.60%
Deezer HU (Rozemberczki et al., 2019b) 47,538 222,887 488 1.03%
Deezer RO (Rozemberczki et al., 2019b) 41,773 125,826 1,192 2.85%
GEMSEC FB Artists (Rozemberczki et al., 2019b) 50,515 819,306 206 0.41%
GEMSEC FB Atheletes (Rozemberczki et al., 2019b) 13,866 86,858 96 0.69%
LastFM Asia (Rozemberczki and Sarkar, 2020) 7,624 27,806 159 2.09%
Twitch Gamers (Rozemberczki and Sarkar, 2021) 168,114 6,797,557 29 0.02%

Table 1: Maximal S6(F) sets in SNAP networks. Node Usage = |S6(F)|∗/# of Nodes.

L Layer A Layer Y Layer
Network Average |S6(F)|∗ Type I Power Type I Power Type I Power
LastFM Asia (Rozemberczki and Sarkar, 2020) 139.4 0.056 0.416 0.058 0.198 0.038 0.124
Deezer HR (Rozemberczki et al., 2019b) 297.7 0.046 0.490 0.028 0.358 0.052 0.044
Deezer Europe (Rozemberczki and Sarkar, 2020) 451.1 0.044 0.392 0.046 0.324 0.056 0.416
Deezer HU (Rozemberczki et al., 2019b) 464.6 0.058 0.878 0.058 0.398 0.058 0.652
Deezer RO (Rozemberczki et al., 2019b) 1147.0 0.050 0.998 0.030 0.916 0.038 0.872

Table 2: Performance of Likelihood Ratio Tests on semi-synthetic data. Average |S6(F)|∗ is simply
the mean of effective sample sizes across. Type I represents type I error rate.

To evaluate the effectiveness of our likelihood ratio tests on a variety of network topologies, we
also conducted semi-synthetic experiments using five real-world networks from Table 1. For each
network, we generate synthetic data on L, A, and Y using the same rules as in the synthetic version,
and we run Algorithm 1 500 times. The results are summarized in Table 2.

We make the following observations: 1) Type I error rate is well controlled at the desired signif-
icance level (α = 0.05) across all networks; 2) For a given layer, the power of our test is generally
higher for networks where we are able to obtain larger effective samples; and 3) For a given network,
the power of our test is generally the highest at the L layer. Distinguishing latent confounding from
contagion is slightly more challenging for the A layer and the most challenging for the Y layer.

These results are consistent with the synthetic experiment results in Figure 2, showing that our
likelihood ratio tests work well on a variety of network topologies. Our synthetic experiments
generate networks where each unit has 1 to 6 randomly assigned neighbors. In real-world networks,
however, the maximal degree and average degree are much higher. For example, in Deezer HR, the
maximum and average degrees are 420 and 18.26; in LastFM Asia, these numbers are 216 and 7.29.

6.2. Evaluation of Causal Effect Estimation Method

There are a total of eight possible SGs compatible with the partially determined SG G◦—◦ shown
in Figure 1(b). For brevity, we denote these SGs using a three-letter code, where each letter cor-
responds to a layer and is either ‘U’ (for undirected) or ‘B’ (for bidirected). For example, BUB
represents the case where the L layer is connected by↔, the A layer by −, and the Y layer by↔.

We do not evaluate the UUU case because this is already studied in prior work. For each of
the other cases, we repeat the following 100 times: 1) Randomly generate friendship networks of
different sizes (500, 1000, 2000, 3000, 4000, and 5000) where units have an average of 5 and at most

12
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Figure 3: Network effect estimation results for our method and auto-g-computation.

10 neighbors, and 2) Using data generated from these networks, estimate the population average
overall effect as the contrast E[Y | do(1)]−E[Y | do(0)] = 1

N

∑N
i=1

(
E[Yi | do(1)]−E[Yi | do(0)]

)
,

where bold-faced 1 indicates a vector of treatment assignments where everyone in the network
receives Ai = 1, and similarly for 0, using both Algorithm 2 and standard auto-g-computation.

Figure 3 illustrates the consistency of our proposed method in the BBB case. In contrast, the
auto-g-computation yields biased results due to violations of its assumptions. Experimental results
for other cases are deferred to the Appendix, as they are quite similar.

6.3. Discussion and Conclusion

In this work we developed hypothesis tests to differentiate between associations due to contagion
and latent confounding in networks with full interference. We also extend auto-g-computation to
settings where sets of variables may be dependent due to either contagion or latent confounding.
We demonstrated our method’s effectiveness using a mixture of synthetic and real network data.

Future work on this topic include exploring more sample efficient estimators (for example, those
designed using pseudolikelihood functions Besag (1974)) and methods that are robust to uncertainty
in the friendship network F . An interesting future direction would also be to explore the feasibility
of mechanism testing and network effect identification and estimation in models where contagion
and latent confounding co-occur in the same layer. Sadeghi (2016) studies separation criteria for
graphs depicting such co-occurrences, however, to our knowledge, it is currently unknown whether
smooth globally identifiable models for this class of graphs is possible in general. If global identi-
fication is not possible, developing sensitivity analysis methods for the assumption that contagion
and latent confounding cannot co-occur would be an interesting future direction.
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Appendix A. Examples and Non-Examples of Segregated Graphs

A B

C D

(a)

A B

C D

(b)

A B

C D

(c)

A B

C D

(d)

A B

C D

(e)

Figure 4: The graphs shown in (a) and (b) are examples of segregated graphs. The graphs shown in
(c), (d), and (e) are not segregated graphs.

The two graphs in Figures 4(a) and (b) are indeed SGs as they satisfy properties (i-iii) listed in
the definition of SGs in Section 2. The graph in Figure 4(c) is not an SG due to the existence of
a partially directed cycle, violating property (iii). The graph in Figure 4(d) is not an SG due to A
and B being connected by both a bidirected and undirected edge, violating property (i). Finally,
Figure 4(e) is not an SG as there exist vertices that serve as the endpoints of both a bidirected and
undirected edge, violating property (ii).

Appendix B. Detailed Description of s-separation

To describe s-separation in an SG G(V ) with vertices V , we require the following graphical defi-
nitions. For brevity, we sometimes use *—* to denote situations where any of the three types of
edges is valid and *→ to indicate that only a directed or bidirected edge is valid.

B.1. Graph terminology

A walk in G(V ) is an alternating sequence of vertices and edges V1 *—*V2 · · · *—*VK , where
every Vk *—*Vk+1 is an edge present in G. A path is a walk consisting of unique vertices and
edges. A section of a walk is defined as a maximal subwalk that only consists of undirected edges
(by definition a section could consist of just a single vertex). Two vertices Vi and Vj are said to be
connected by a collider section if there exists a walk between Vi and Vj of the form Vi *→σ←*Vj ,
where σ is a section. A partially directed walk between vertices Vi and Vj is a walk starting at Vi

and ending at Vj where every edge is either an undirected edge or a directed edge pointing from Vk

to Vk+1. The anterior of a set of variables S denoted as antG(S), is the set S as well as any vertices
in G that have a partially directed walk to any vertex in S. We use GS to denote a subgraph of G(V )
consisting of only vertices in S and the edges between them. Finally, given a subgraph GS we use
GaS to denote an undirected graph—sometimes called an augmented graph—containing vertices in
S and edges Si−Sj if any edge Si *—*Sj exists in GS or Si and Sj are connected by a walk in GS
consisting of just collider sections.11

Finally, given disjoint sets of vertices X,Y, Z such that (X ∪ Y ∪ Z) ⊆ V , the sets X and Y
are said to be s-separated given Z in an SG G(V ) if at least one vertex in Z is present in each path
between X and Y in GaantG(X∪Y ∪Z). In the main text, we described the relation between s-separation

11. Two examples of such walks are Si ↔ A↔ B ↔ Sj and Si → A−B − C ← Sj .
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and the global Markov property of SGs. In our proofs, we also occasionally invoke the following
standard result in undirected graphs (these undirected graphs arise as a consequence of augmentation
when checking s-separation queries). The Markov blanket of a vertex Vi in the undirected graph
G(V ), denoted mbG(Vi), is defined as the set of all vertices Vj that share an undirected edge with
Vi. In an undirected graph G(V ), we have Vi ⊥⊥ V \mbG(Vi) ∪ {Vi} | mbG(Vi) in p(V ).

Appendix C. Proof of Lemma 1

Proof We first prove (3) holds under the null hypothesis, i.e., edges in the Y layer are all undi-
rected. Let antG(·) denote the anterior of the vertices in the independence query (3). Under the null,
(regardless of connections in other layers) there are no walks from Yi to any other vertex in antG(·)
that consist of just collider sections, since all walks starting at Yi must start with either Yi ← · · · or
Yi − · · · which leads to at least one non-collider section. Based on this observation, the only edges
incident to Yi in the augmented graph GaantG(·) are undirected versions of those that already exist in
GantG(·). This leads to the following edges in the augmented graph: edges Yi − Lk ∀ Lk ∈ LF(0,1)

i

,
edges Yi−Ak ∀ Ak ∈ AF(0,1)

i

, and edges Yi− Yk ∀ Yk ∈ YF(1)
i

. The conditioning set in (3) is then
a superset of vertices that have edges incident to Yi. Further, no Yj ∈ YF(2)

i

is contained in this set.
The result then follows, since Yi and in YF(2)

i

are separated in GaantG(·) given the conditioning set.

We now show that (3) does not hold under the alternative hypothesis, i.e., edges in the Y layer
are all bidirected. In this case, there exist walks in GantG(·) from Yi to Yj ∈ YF(2)

i

consisting of just
collider sections—for example, ones of the form Yi ↔ Yk ↔ Yj , where Yk ∈ YF(1) . Under the
assumption of faithfulness, the result follows immediately as there now exists Yi − Yj in GaantG(·)
and the two vertices are not s-separated based on the proposed conditioning set.

The proofs for (1) and (2) are nearly identical using the appropriate GantG(·) and GaantG(·) based
on vertices provided in the respective conditional independence queries.

Appendix D. Proof of Lemma 2

Proof We first show that the factorizations in (8) hold under both the null and alternative hypotheses.
Let LCL, ACL, YCL be variables that appear in the coding likelihoods in (8), and for each i ∈
S6(F) let Oi = LF(0,1,2,3)

i

∪ AF(0,1,2,3)
i

∪ YF(0,1,2)
i

and O−i = (LCL ∪ ACL ∪ YCL) \ Oi. Notice

for any i ∈ S6(F), the variables O−i belong to units at least 4 degrees of separation away from
i. If this were not the case, there would be a path between i and j in F that is shorter than 6
edges, contradicting the antecedent that they are 6 degrees apart. Thus, to show factorizations of the
coding likelihood function, it is sufficient to show that for each i ∈ S6(F) and any j more than 3
degrees of separation away fromi, we have that Yi ⊥⊥ Lj , Aj , Yj | · and Yi ⊥⊥ Lj , Aj , Yj | ·, YF(2)

i

under both the null and alternative hypotheses.
Under the null, we have only undirected edges in the Y layer so the anterior for Yi could poten-

tially be the entire graph. However, similar to the proof for Lemma 1, the vertices in YF(1)
i

∪AF(0,1)
i

∪
LF(0,1)

i

form the Markov blanket of Yi in Ga(L∪A∪Y ). As the conditioning sets in (8) are supersets of

the Markov blankets of each Yi and variables of j are not included in them, the aforementioned
independences for factorization hold.
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Under the alternative, we have only bidirected edges in the Y layer. Thus, for some i ∈ S6(F)
and any j more than 3 degrees of separation away from i in F , YF(3)

i

is not included in the
following two augmented graphs: Ga1 ≡ GaantG(Yi,Lj ,Aj ,Yj ,·) and Ga2 ≡ GaantG(Yi,Lj ,Aj ,Yj ,·,YF(2)

i

). In

G1, the variable Yi has a walk consisting of just collider sections to Lk ∈ LF(2)
i

and Ak ∈ AF(2)
i

,
which implies the existence of edges Yi − Lk and Yi − Ak in the augmented graph Ga1 . Together
with variables {Vk | Yi←*Vk ∈ G1}, the neighbors of Yi in Ga1 are: Lk ∈ LF(0,1,2)

i

, Ak ∈ AF(0,1,2)
i

,

and Yk ∈ YF(1)
i

. Since they are a subset of ‘·’ in the query Yi ⊥⊥ Lj , Aj , Yj | ·, the coding likelihood

CL(βY ) factorizes under the alternative. Similarly in G2, Yi has a walk consisting of just collider
sections to Lk ∈ LF(2,3)

i

, Ak ∈ AF(2,3)
i

, and Yk ∈ YF(2)
i

(but not Yk ∈ YF(3)
i

as mentioned earlier).

Thus, mbGa
2
(Yi) = LF(0,1,2,3)

i

∪AF(0,1,2,3)
i

∪YF(1,2)
i

. These neighbors is exactly the conditioning set

in Yi ⊥⊥ Lj , Aj , Yj | ·, YF(2)
i

, which proves the independence property needed to factorize CL(γY )
under the alternative.

The proofs for (6) and (7) are nearly identical using the appropriate independence queries based
on the variables that appear in the (6) and (7).

Appendix E. Proof of Theorem 3

Proof Let B(G) denote the set of maximal undirected connected components of G(V ∪H). Given
a set of variables A ⊂ (V ∪ H), the post-intervention distribution where we intervene on A is
obtained via an extension of the g-formula (Pearl, 2009; Robins, 1986) for chain graphs (Lauritzen
and Richardson, 2002),

p(V \A | do(a)) =
∏

B∈B(G)

p(B \A | paG(B), B ∩A)

∣∣∣∣
A=a

.

While these post-intervention distributions are always identified when there are no hidden variables
(H = ∅), this is not the case in general.

Under the assumptions of Figure 1(b), we can partition H into distinct exogenous sets HL, HA, HY

(any of which could be empty if the respective layer contains undirected edges instead of bidirected
edges) that have outgoing edges to vertices in L,A, Y respectively. Then, by the CG g-formula,

p(L, Y | do(a)) =
∑

HL,HA,HY

(
p(HL)× p(L | HL)

× p(HA)× p(HY )× p(Y | HY , A = a, L)
)
.

By evaluating the sum over HA and gathering like terms we can simplify the right hand side to,(∑
HL

p(HL, L)

)(∑
HY

p(HY )× p(Y | A = a, L)

)
.

Finally, since HY ⊥⊥ A,L by applying s-separation in G(V ∪H) we can further simplify to,(∑
HL

p(HL, L)

)(∑
HY

p(HY , Y | A = a, L)

)
.
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This gives the following identifying formula in terms of just observed variables,

p(L, Y | do(a)) = p(L)× p(Y | A = a, L).

The result follows as,

E[Yi | do(a)] =
∑
L,Y

p(L, Y | do(a))× Yi =
∑
L,Y

p(L)× p(Y | A = a, L)× Yi.

Appendix F. Proof of Different Identifying Functionals for E[Yi | do(Y−i = y−i)]

Proof First consider the case when the edges in the Y layer are undirected. In this case HY = ∅,
while HL and HA may or may not be empty. Applying the chain graph g-formula gives us,

p(L,A, Yi | do(y−i)) =
∑

HL,HA

p(HL)× p(L | HL)× p(HA)× p(A | HA, L)× p(Yi | y−i, A, L).

Since HA ⊥⊥ L in G(V ∪H) we can simplify the above and gather like terms to get,(∑
HL

p(HL, L)

)(∑
HA

p(HA, A | L)
)
× p(Y | y−i, A, L).

This gives the following identifying formula in terms of just observed variables,

p(L,A, Yi | do(y−i) = p(L)× p(A | L)× p(Y | y−i, A, L).

The result follows as,

E[Yi | do(y−i)] =
∑

L,A,Yi

p(L,A, Yi | do(y−i))× Yi =
∑

L,A,Yi

p(L,A)× p(Y | y−i, A, L)× Yi.

Now we turn to the case when the edges in the Y layer are bidirected. Applying the chain graph
g-formula in this setting gives us,

p(L,A, Yi | do(y−i)) =
∑

HL,HA,HY

p(HL)× p(L | HL)× p(HA)× p(A | HA, L)× p(HY )× p(Yi | HY , A, L).

Simplifying this functional based on independences HA ⊥⊥ L and HY ⊥⊥ A,L gives us,

p(L,A, Yi | do(y−i)) = p(L)× p(A | L)× p(Yi | A,L) = p(L,A, Yi).

The result follows as,

E[Yi | do(y−i)] =
∑

L,A,Yi

p(L,A, Yi | do(y−i))× Yi =
∑
Yi

p(Yi)× Yi.

Appendix G. Proof of Lemma 4

The proof for this is very similar to the proof in Appendix D and involves checking some relatively
simple s-separation conditions compared to those in Appendix D as we never condition on variables
in colliders or collider sections. Thus, we omit further details of the proof.
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Appendix H. Gibbs Samplers for L and Y

The Gibbs samplers for drawing samples from p(L) and p(Y | A,L) when the edges in the L and
Y layer are undirected are described in Algorithms 3 and 4. In these algorithms, < i denotes all
units in F that precede unit i in a total ordering of all units and > i denotes all units that come after
unit i. In our experiments we set the number of draws M from the Gibbs sampler to be 0.3 × N ,
the thinning interval T to be 3, and the burn-in period m∗ to be 200.

Algorithm 3 Gibbs sampler L
1: Inputs: SG G; Parameters θLi−Lj

2: Initialize an empty list Ldraws of size M corresponding to number of draws we want
3: Initialize a random vector L(0)

4: for m = 0, 1, . . . , T ×M +m∗ do // m∗ is the burn-in period; T is the thinning interval
5: for i = 1, . . . , N do
6: L

(m+1)
i ← draw from p(Li | L(m+1)

<i , L
(m)
>i ; θLi−Lj )

7: if (m > m∗) and (m mod T = 0) then
8: Append L(m) to Ldraws

9: return Ldraws

Algorithm 4 Gibbs sampler Y
1: Inputs: SG G; Parameters for θYi−Yj ; Previously sampled Ldraws, a size M list; Treatment

assignment vector a.
2: Initialize Ydraws, an empty list of size M
3: for m = 1, . . . ,M do
4: L(m) ← the m-th element of Ldraws
5: Initialize a random vector Y (0);
6: for m′ = 0, 1 . . . ,m∗ do // m∗ is the burn-in period.
7: for i = 1, . . . , N do
8: Y

(m′+1)
i ← draw from p(Yi | Y (m′+1)

<i , Y
(m′)
>i , A = a, L(m); θYi−Yj )

9: Append Y (m∗) to Ydraws

10: return Ydraws
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Appendix I. Experiment Details

I.1. Data Generating Process (DGP) for Evaluating the Likelihood Ratio Tests

In this section, we outline the DGPs for the two configurations of G: one with undirected edges
in all three layers and the other with bidirected edges in all layers; and directed edges in both
configurations follow the set up in the partially determined SG G◦—◦ in Figure 1 (b).

For the configuration where all layers contain undirected edges, we generate L, A, and Y as
vectors of binary values using the following Gibbs factors:

Li ∼ Bernoulli(expit(−0.1 ∗
∑

j∈F(1)
i

Lj));

Ai ∼ Bernoulli(expit(0.8 ∗ Li − 0.1 ∗
∑

j∈F(1)
i

Lj − 0.1 ∗
∑

j∈F(1)
i

Aj));

Yi ∼ Bernoulli(expit(0.8 ∗ Li + 1.7 ∗Ai − 0.1 ∗
∑

j∈F(1)
i

Lj − 0.1 ∗
∑

j∈F(1)
i

Aj − 0.1 ∗
∑

j∈F(1)
i

Yj)).

Using these Gibbs factors, we generate values layers by layers in topological order. First, we
perform Gibbs sampling to generate L. Next, we fix the L vector and use it as inputs to generate A.
Finally, L and A are used as inputs to generate Y . For the Gibbs sampling process at each layer, we
use a burn-in period equaling 200 multiplied by the number of units in the network F .

For the configuration where all layers contain bidirected edges, we generate L, A, and Y as
vectors of binary values by first explicitly generating the hidden variables HL

ij , H
A
ij , and HY

ij corre-
sponding to the bidirected edges Li↔Lj , Ai↔Aj , and Yi↔Yj , respectively, for each connected
pair (i, j) inF . After L, A, and Y are generated, we discard the H values to make them unobserved.
The parameters of this DGP are as follows:

HL
ij , H

A
ij , H

Y
ij ∼ Normal(0, 1);

Li ∼ Bernoulli(expit(5 ∗
∑

k∈F(1)
i

HL
ik));

Ai ∼ Bernoulli(expit(0.2 ∗ Li + 0.1 ∗
∑

k∈F(1)
i

Lk + 5 ∗
∑

k∈F(1)
i

HA
ik));

Yi ∼ Bernoulli(expit(0.2 ∗ Li − 0.3 ∗Ai + 0.1 ∗
∑

k∈F(1)
i

Lk − 0.2 ∗
∑

k∈F(1)
i

Ak + 5 ∗
∑

k∈F(1)
i

HY
ik));

I.2. Parametric Models for Evaluating the Likelihood Ratio Tests

When conducting the likelihood ratio tests, we use the following nested parametric models. Models
(9) and (10) correspond to the null and alternative models we fit when conducting the likelihood
ratio test for the L layer. Similarly, (11) and (12) are the null and alternative models for the A layer,
and (13) and (14) are for the Y layer.
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p(Li = 1 | LF(1)
i

;β) = expit(β0 + β1
∑

k∈F(1)
i

Lk) (9)

p(Li = 1 | LF(1,2)
i

; γ) = expit(γ0 + γ1
∑

k∈F(1)
i

Lk + γ2
∑

k∈F(1)
i

Lk) (10)

p(Ai = 1 | AF(1)
i

, LF(0,1,2,3)
i

;β) = expit(β0 + β1
∑

k∈F(1)
i

Ak+ (11)

β2Li + β3
∑

k∈F(1)
i

Lk + β4
∑

k∈F(2)
i

Lk + β5
∑

k∈F(3)
i

Lk)

p(Ai = 1 | AF(1,2)
i

, LF(0,1,2,3)
i

; γ) = expit(γ0 + γ1
∑

k∈F(1)
i

Ak + γ2
∑

k∈F(2)
i

Ak+ (12)

γ3Li + γ4
∑

k∈F(1)
i

Lk + γ5
∑

k∈F(2)
i

Lk + γ6
∑

k∈F(3)
i

Lk)

p(Yi = 1 | YF(1)
i

, AF(0,1,2,3)
i

, LF(0,1,2,3)
i

;β) = expit(β0 + β1
∑

k∈F(1)
i

Yk+ (13)

β2Ai + β3
∑

k∈F(1)
i

Ak + β4
∑

k∈F(2)
i

Ak + β5
∑

k∈F(3)
i

Ak + β6Li + β7
∑

k∈F(1)
i

Lk+

β8
∑

k∈F(2)
i

Lk + β9
∑

k∈F(3)
i

Lk)

p(Yi = 1 | YF(1,2)
i

, AF(0,1,2,3)
i

, LF(0,1,2,3)
i

; γ) = expit(γ0 + γ1
∑

k∈F(1)
i

Yk + γ2
∑

k∈F(2)
i

Yk+ (14)

γ3Ai + γ4
∑

k∈F(1)
i

Ak + γ5
∑

k∈F(2)
i

Ak + γ6
∑

k∈F(3)
i

Ak + γ7Li + γ8
∑

k∈F(1)
i

Lk+

γ9
∑

k∈F(2)
i

Lk + γ10
∑

k∈F(3)
i

Lk)

I.3. DGPs for Evaluating the Causal Effect Estimation Method

We now outline the DGPs for L, A, and Y in this experiment. Recall that N denotes the number
of units in F . For layers with undirected edges, we use Gibbs sampling with a burn-in period of
m∗ = 200. We keep the sample immediately after the burn-in period as the sampled data. When
deriving the ground-truth expectations E[Y | do(A = 1)] and E[Y | do(A = 0)], we continue
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running the Gibbs sampler to obtain M = 0.3 × N draws with a thinning interval of T = 3 to
reduce auto correlation. Thus, we average over 0.3×N samples of Y to derive the ground-truths.

When the L layer is connected by undirected edges, the distribution of Li for all i ∈ F is given
by:

Li ∼ Bernoulli(expit(−0.3 + 0.4 ∗
∑

k∈F(1)
i

Lk)).

When the L layer is connected by bidirected edges, the distribution of the entire L vector is given
by:

L ∼MVN(µ,Σ),

where µ is a vector with all entries equal to 0.7, and Σ is a matrix with diagonal elements equal to
3.5. For an off-diagonal location (x, y) in Σ, the value is 0.2 if x and y are neighbors in F and
is 0 otherwise. When the A layer is connected by undirected edges, the distribution of Ai for all
i ∈ F is given by:

Ai ∼ Bernoulli(expit(5 + 4 ∗ Li − 1.2 ∗
∑

k∈F(1)
i

Lk − 2 ∗
∑

k∈F(1)
i

Ak)).

When the A layer is connected by bidirected edges, we generate A by first explicitly sampling
hidden variables HA

ij for each connected pair (i, j) in F and then determining each entry of A using
the following distributions (the hidden variables are discarded after A is generated):

HA
ij ∼ Normal(2, 1);

Ai ∼ Bernoulli(expit(1.3 + 0.2 ∗
∑

k∈F(1)
i

HA
ik − 0.4 ∗ Li − 0.7 ∗

∑
k∈F(1)

i

Lk)).

When the Y layer is connected by undirected edges, the distribution of Yi for all i ∈ F is given by:

Yi ∼ Bernoulli(expit(2 + Li + 1.5 ∗Ai − 5.3 ∗
∑

k∈F(1)
i

Lk +
∑

k∈F(1)
i

Ak − 4 ∗
∑

k∈F(1)
i

Yk)).

When the Y layer is connected by bidirected edges, we first generate hidden variables HY
ij for each

connected pair (i, j) in F and then generate Y accordingly, using the following distributions:

HY
ij ∼ Normal(0, 1);

Yi ∼ Bernoulli(expit(−1 + 2 ∗
∑

k∈F(1)
i

HY
ik + 0.1 ∗ Li +Ai − 0.3 ∗

∑
k∈F(1)

i

Lk +
∑

k∈F(1)
i

Ak)).
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I.4. Additional Experimental Results

In the main text, we have shown that our method produces consistent and unbiased causal estimates
when all layers are connected by bidirected edges. In this section, we will show that our method is
also consistent and unbiased for the other 6 cases not yet discussed in the main text—UBB, BUB,
BBU, BUU, and UUB.

Figure 10 only has a single plot because causal effects in the UBU setup can be estimated
directly using the auto-g method, as discussed in the main text. For the other plots below, we see
that our methods are consistent and unbiased, as the distribution of the estimates becomes narrower
as the sample size increases, and the distributions all center around the ground truth. However, naive
application of the auto-g-computation method to scenarios where layer L or Y is connected by latent
confounding leads to biased results. We also find that the auto-g method has some robustness against
model misspecification, as its estimates in Figure 8 are centered around the ground truth. We believe
this robustness is likely due to the particular DGP we have chosen, since we have demonstrated
in the main text that it is theoretically incorrect to apply the auto-g-computation method when
bidirected edges exist in the L layer.

Figure 5: Network effect estimation results for the UBB setup.

Figure 6: Network effect estimation results for the BUB setup.
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Figure 7: Network effect estimation results for the BBU setup.

Figure 8: Network effect estimation results for the BUU setup.

Figure 9: Network effect estimation results for the UUB setup.
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Figure 10: Consistency the auto-g-computation in the UBU setup.
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