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ABSTRACT

The connectionist temporal classification (CTC) training criterion optimizes the
conditional log probability of the label sequence given the input, which involves a
sum over all possible alignment label sequences including blank. It is well known
that CTC training leads to peaky behavior where blank is predicted in most frames
and the labels are focused mostly on single frames. Thus, CTC is suboptimal to
obtain accurate word boundaries. Hidden Markov models (HMMs) can be seen as
a generalization of CTC and trained in the same way with a generalized training
criterion, and may lead to similar problems. Label units such as subword units and
its vocabulary size or phoneme-based units also significantly impact the alignment
quality. Here we study different methods of obtaining an alignment with the goals
to improve alignment quality while keeping a good performing model, and to
gain better understanding of the training dynamics. We introduce (1) a synthetic
framework to study alignment behavior, and compare various models, noise and
training conditions, (2) a new training variant with renormalizing the gradients to
counteract the class imbalance of blank, (3) a novel CTC model variation to use a
hierarchical softmax and separating the blank label in CTC, as another alternative
to counteract class imbalance, (4) a novel way to get alignments via the gradients
of the label log probabilities w.r.t. the input features. This method can be used
for all kinds of models, and we evaluate it for CTC and attention-based encoder-
decoder (AED) subword based models where it performs competitive and more
robustly, although phoneme-based HMMs still provide the best alignments.

1 INTRODUCTION

Current sequence-to-sequence models (Prabhavalkar et al., 2023) such as connectionist temporal
classification (CTC) (Graves et al., 2006) can be trained from-scratch using the sequence-level cross-
entropy and summing over all alignments. However, CTC alignments tend to be dominated by
blanks, causing a peaky behavior (Zeyer et al., 2021; Huang et al., 2024), which can be suboptimal
to obtain good alignments.

CTC can be seen as a special case in the broader hidden Markov model (HMM) framework with
a simplified label topology including the blank label instead of silence, without label priors and
without explicit transition probabilities (Zeyer et al., 2017; Hadian et al., 2018; Raissi et al., 2022;
Zhao & Bell, 2022). When hybrid neural network (NN)-HMMs are trained with the sum over all
alignment paths, when no prior and no transition probabilities are used, the same peaky behavior
occurs (Zeyer et al., 2017; 2021). Previous work addressed the issue of peaky behavior by using
priors during training (Zeyer et al., 2021; Chen et al., 2023; Huang et al., 2024). When a prior is
used, it can also switch to the opposite extreme with no silence at all and very bad alignments (Zeyer
et al., 2017; Raissi et al., 2022).

It is known that the Gaussian mixture hidden Markov model (GM-HMM) alignments offer more
reliable segment and word boundaries. An input feature representation that is obtained from current
neural architectures that use self-attention or recurrent layers is substantially different from the one
used in GMM. The neural encoder has the freedom to displace the output label with respect to their
ground truth position. It can shift and compress parts of the signal, or even reverse the signal in
the time dimension (Schmitt et al., 2024). This expressive capacity ultimately also allows for peaky
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behavior and otherwise potential bad alignment quality. Thus, training dynamics and the training
criterion play an important role for the alignment behavior and quality.

Here we study different variations of the training criterion and training procedure with the goals:

• to improve alignment quality,

• to improve convergence rate and training robustness,

• to improve the recognition performance, and

• to gain better understanding of the training dynamics.

We compare the alignment quality in terms of time stamp error (TSE), which is the average absolute
distance of word left/right boundaries and word center positions, compared to a GMM alignment as
reference (Zhang et al., 2021; Raissi et al., 2022). We also measure the amount of silence (or blank)
in the alignment, where a high amount of silence indicates more peakiness. The model performance
is evaluated by the word error rate (WER).

Our contributions in this work are:

• A framework to study alignment behavior based on artificially generated data, and compare
various model, noise and training conditions.

• A new training variant: normalized gradients as an alternative to training with prior.

• A novel CTC model variation: Separating the blank label in CTC, as another alternative to
counteract class imbalance.

• A novel way to get alignments via the gradients of the label log probabilities w.r.t. the input
features, leading to higher alignment quality.

In terms of WER, we find only small improvements using the new training variant or model variant.

Note, there is a wide range of related works (see Appendix A.1). In many cases, when the alignment
quality is very good (e.g. using a prior as Huang et al. (2024), or GMMs), the model is bad in terms
of WER performance. Here we start with our best CTC models (in terms of WER) as baseline, and
try to extract good alignments from them. We want a model which is both good in terms of WER
and can generate a good alignment.

2 MODELS & TRAINING CRITERIA

Let xT
′

1 be the input sequence of length T ′, e.g. some log mel or Gammatone features. We use
a downsampling convolutional frontend with T = dT ′/F e for F = 4 or F = 6 together with a
Conformer encoder (Gulati et al., 2020):

x′
T
1 = Frontend(xT

′

1 ) (1)

hT1 = Encoder(x′
T
1 ) (2)

Let aS1 be the output sequence of labels of length S with as ∈ A. Let yT1 be the alignment label
sequence over the time frames with yt ∈ Y . In case of CTC, we use Y = A ∪ {ε}, i.e. y is either
one normal label (A) or otherwise the special blank symbol ε.

In case of CTC and HMM, then we define the (unnormalized) logits for the alignment labels Y in
time frame t together with the alignment label probability distribution as:

zt = Linear(ht) ∈ RY (3)
p(yt=y | ht) = softmaxY(zt)y (4)

CTC

LCTC = − log
∑

yT1 : aS1

∏
t

p(yt | ht) (5)
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HMM The (hybrid) HMM can be seen as a generalization of CTC in that various label topologies
are possible, i.e. the mapping of A to Y and what type of alignment labels Y are used. Usually,
there is no blank but a silence label instead, which is not allowed within words.

LHMM = − log
∑

(yT1 ,s
T
1 ) : aS1

∏
t

p(yt | ht)α

p(yt)β
· p(st | st−1)γ (6)

Note that we have scales α, β and γ here for the posterior, prior and transition models respectively.
When putting α = 1, β = 0, γ = 0, and when using the CTC label topology with blank, we see that
CTC is a special case of the HMM training criterion.

The prior model p(y) can be estimated given a reference alignment or the transcriptions. In alter-
native, it can also be average of the posterior over time frames for a given utterance or even on the
whole training data. The prior and/or the transition model both significantly impact the alignment
behavior and accuracy.

AED This model directly defines p(as | as−11 , hT1 ), which uses the cross-attention mechanism to
attend to hT1 , and then finishes with an end-of-sequence (EOS) label at the end Chorowski et al.
(2015); Chan et al. (2016). There are no explicit alignments in this model (no alignment labels y).
The loss is defined as:

LAED = − log
∏
s

p(as | as−11 , hT1 ) (7)

3 TRAINING WITH NORMALIZED GRADIENTS

The use of the prior in the HMM training criterion can also be interpreted as a way to rebalance the
loss with the inverse frequencies of the alignment classes. Specifically, blank or silence will be the
most common label (even when not peaky). Thus this will dominate in the training criterion and in
its gradients, and the prior rebalances this.

We studied the gradients of the normal CTC training criterion (when there is no prior used) and how
to modify (weight) the gradients such that the loss gradient influence is totally balanced across the
label classes. For CTC, the gradient of the loss w.r.t. the logits is

∇zt,jLCTC = p(y=j | ht)− υt,j (8)

where

υt,j =

∑
yT1 : aS1 ,yt=j

∏
t p(yt | ht)∑

yT1 : aS1

∏
t p(yt | ht)

(9)

is the soft-alignment1. The soft-alignment υt is a frame-wise probability distribution over the align-
ment labels Y , i.e.

∑
j υt,j = 1. The soft-alignment υt,y is the target for p(y | ht) in training

(the optimum is reached when p(y | ht) = υt,y). Thus, the inverse of the expected value of the
soft-alignment2

υ = Etυt ∈ RY (10)

can be used to rescale the loss. In practice, we only modify the gradient here and not the loss itself.
Specifically, we use

∇zt,jLNormedGradCTC = ∇zt,jLCTC ·min
(
max

(
(υ · |Y|)−1 , υmin

)
, υmax

)
. (11)

1Also called Baum-Welch alignment. This can be computed via the forward-backward algorithm, i.e. us-
ing dynamic programming. Or this can be computed implicitly using the forward algorithm and automatic
differentiation.

2It can be calculated over the time frames t of the current sequence, or also the current mini-batch. We
found that the mini-batch works a bit better.
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The factor |Y| scales υ back to its original range3, and the clamping is added to make it more robust
against outliers4. Note, this is now a scaling per vocab. dimension in Y , unlike some other methods
which would perform the scaling per time frame. However, for framewise CE training, where such
scaling by prior is sometimes used, these are equivalent.

This is very related to the training criterion with a prior: Instead of the prior (which is e.g. estimated
on the average of p(y | h)), now we use the prior estimated on the average of the soft alignment υ.

Consider also the case of framewise CE training

Lframewise = −
∑
t

log p(yt | ht) (12)

for a given alignment y. We get the gradient

∇zt,jLframewise = p(y=j | ht)− υ′t,j (13)

υ′t,j = δj=yt , (14)

and υ′ when estimated on the whole training data becomes the classical count-based prior.

Consider also the case of very clean synthetic data together with a simple single-layer feed-forward
neural network (FFNN) (see Section 6.1), where we can initialize W = 1 and b = 0. This initial-
ization will provide a perfect alignment for this synthetic task. It will stay perfect as long as b stays
uniform. Now, ∇bLCTC is not uniform, thus the model will not keep good alignment behavior. But
∇bLNormedGradCTC is uniform by construction. When using CTC with prior, ∇bL would also not be
uniform, i.e. LNormedGradCTC is really the best possible loss you can have here.

4 SEPARATION OF THE BLANK LABEL IN CTC

In this modeling approach, we use a separate sigmoid unit for the blank label ε, and the softmax over
all remaining non-blank labels A. Specifically:

p′Y(yt=y | ht) =
{
pε(ε | ht), y = ε

(1− pε(ε | ht)) · pA(y | ht), y ∈ A (15)

pε(ε | ht) = σ(zt,ε) (16)
pA(y | ht) = softmaxA(zt,A)y (17)

where σ(z) = 1
1+exp(−z) is the sigmoid function.

This has been used before for transducer models (Variani et al., 2020; Zeyer et al., 2020), however,
it has never been used for CTC. This is like a hierarchical softmax (Morin & Bengio, 2005) where
the first decision is between blank and all other labels.

Consider the case of framewise CE training with a reference alignment yT1 , i.e. the loss

Lframewise = −
∑
t

log p(yt | ht). (18)

In this case, the classes in pA are much more balanced compared to the classes in pY , as blank is
usually the most imbalanced class.

Independent of the separation, for the gradient of the sequence loss LCTC w.r.t. the logits z, we get

∇zt,jLCTC = −∇zt,j
∑
i

stopgrad(υi) · log p(y=i | ht) (19)

where υ is the soft alignment (see Equation (9)).

For the full softmax (non-separated blank), we get

∇zj
∑
i

stopgrad(υi) · log pY(y=i | ht) = υj − softmaxY(z)j . (20)

3Consider υ = 1
|Y| when uniform.

4We use υmin = 0.5, υmax = 1.1.
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(a) CTC model
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(b) AED model
Figure 1: The gradient norms used for alignment generation, specifically log softmaxt(G) ∈ RT×S ,
i.e. the log softmax of log norm of p(as | as−11 , xT

′

1 ) w.r.t. the input frames xT1 . Sequence train-
clean-100/103-1240-0000.

With separated blank, we get5:

∇zj
∑
i

stopgrad(υi) log p
′
Y(y=i | ht) =

{
υε − σ(zt,ε), j = ε,(

υj
1−υε − softmaxA(zt,A)j

)
· (1− υε), j 6= ε

(21)

We can see that υj
1−υε becomes the soft target for pA(y | ht), and this loss is scaled by 1− υε.

This also allows for faster greedy decoding and faster framewise CE training (given a fixed reference
alignment). See Appendix A.7 and Appendix Table 15.

5 ALIGNMENTS VIA GRADIENTS

The encoder is often so powerful that it can shift around the signal (e.g. with streaming models) or
even reverse the time dimension (Schmitt et al., 2024)6. When this happens, the normal forced align-
ment quality degrades, while the gradient-based alignment always gives a meaningful alignment, as
this uses the gradient w.r.t. the input signal.

We can calculate the gradient of the log probability of some target label given some input frame
p(as | as−11 , xT

′

1 ) w.r.t. the input frame xt. Comparing the norm of these gradients over the time
frames t will give us some indication on the importance of each frame for this specific output label
as. Specifically, we calculate the log norm7

Gs,t := log
∥∥∥∇xt log p(as | as−11 , xT

′

1 )
∥∥∥
p
∈ R. (22)

An example of the matrix log softmaxtG can be seen in Figure 1a and Figure 1b. The alignment
can clearly be seen in this matrix.

Note that this is straightforward to compute for an AED model (we exclude the EOS label here), and
was done in a similar way in Schmitt et al. (2024). It is possible for a CTC model or HMM as well,

5For the full derivation, see Appendix A.2.
6Arguably reversing the time dimension will not happen for CTC, though.
7We found that the log norm was better scaled than the norm, and yielded better results. We also tested

different p-norms, and found p = 0.1 in most cases to perform best.
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using the prefix scores (Hori et al., 2017)

log pCTC(as | as−11 , xT
′

1 ) = log
∑

t≤T,yt1 : as1

p(yt1 | ht1)− log
∑

t≤T,yt1 : a
s−1
1

p(yt1 | ht1). (23)

which can be calculated efficiently using dynamic programming8. As a further tweak, we slightly
modify the gradients of the logits by masking out the gradients of the blank logit. I.e. in the automatic
differentiation, we hook after the gradient computation of∇zL, and then (∇zL)ε ← 0. This slightly
improves our results (see Appendix A.8).

To use this to get some alignment, we need to define what kind of alignment label topology we allow
(mapping aS1 to yT1 ) and how to score one particular alignment yT1 such that we can search for the
one with the highest score.

For the label topology, we use Y = A ∪ {ε} (like CTC). We allow any number of ε (blank) labels
between any of the real labels, we allow the real label to be repeated multiple times over the time
frames t. This is very similar to the CTC label topology except that we do not enforce an ε between
two equal labels (when as = as+1). This can be formulated as a finite state automaton with enu-
merated states Y 2S+1

1 = (ε, 1, ε, 2, . . . , S, ε). We search for an allowed state sequences rT1 : aS1 for
state indices rt ∈ {1, . . . , 2 · S + 1} which maximizes

GradScore(rT1 ) =

T∑
t=1

GradScore(rt) (24)

GradScore(rt) =

{
log softmaxt(G)Yrt ,t, Yrt 6= ε,

γε, Yrt = ε
(25)

for some fixed blank score γε hyperparameter (usually γε = −6). The best rT1 can be found via dy-

namic programming. We obtain the final alignment label sequence yT1 with yt =
{
aYrt , Yrt 6= ε,

ε, Yrt = ε
.

We experimented with variations of GradScore and came up with GradScoreExt where we use a
better estimate of the blank score and then also renormalize over the labels including blank. The
exact definition is in appendix Equation (49).

6 EXPERIMENTAL SETUP

Both the phoneme-based models and subword-based models use a Conformer encoder (Gulati et al.,
2020). See Appendix A.4 for further details. All the code for all the experiments will be published.

6.1 SYNTHETIC DATA

We can create synthetic data and simulate the speech recognition task to various degrees of com-
plexity and difficulty. This allows to study the alignment behavior under very controlled conditions.
The data synthesis starts by sampling a ground truth reference alignment from a given probability
distribution, and then creates corresponding input features very directly from the alignment, such
that the model just needs to learn an identity function. When the data is designed to be as simple
and clean as possible, and by design unambiguous, which variant of training criterion and modeling
converges to the ground truth alignment? The training criterion does not have any explicit aspect
about the alignment, and there are many global optima which would yield a very bad alignment.
Specifically, we design the framework such that we control:

• The ground truth alignment. We construct the input features accordingly.
• Noise in the input features.
• The vocabulary and labels, and statistics on how many words per sequence.
• Statistics about how much silence there is and the duration of labels. This indirectly simu-

lates different framerates of the input features.
8In fact, calculating the prefix scores is already part of the usual CTC loss calculation itself.
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Then we support a variety of model types (GMM, CTC, hybrid HMM; various neural encoders;
different prior model variants; transition probabilities), CTC and HMM label topology, and different
training criteria.

See Appendix A.4.5 for a detailed description of how we sample an input-target pair from the dataset.
An input feature x is just a one-hot encoding of the corresponding target label y. From this construc-
tion, there is a trivial optimal mapping from the (non-noisy) input features to the target probability
distribution p(y | x):

popt(y=i | xt) = xt,i (26)

Now, when we use a simple single layer feed-forward neural network (FFNN), i.e. the model

pFFNN(y | x) = softmaxY(x ·W + b), (27)

with W ∈ RD×Y , b ∈ RY , we reach a similar optimal solution as close as we want with the scaled
identity matrix W = 1 · c for some large constant c and b = 0.

7 EXPERIMENTAL RESULTS

7.1 PRIORS AND TRANSITIONS FOR HMM AND CTC

7.1.1 EXPERIMENTS ON SYNTHETIC DATA

We compare different types of prior probabilities using a simple feed-forward neural network
(FFNN) (Appendix Table 7). The static prior (using the real ground truth) interestingly performs
bad, even after tuning the scales. The average of the posterior model with stop gradient works best.
This is the only prior type which really works here. We also see that the scales are important here.
It works without them but it is slightly suboptimal. No prior also has problems here. Normally, no
prior would work and result in peaky behavior, but this is not really possible with the FFNN here,
and also the HMM label topology is suboptimal for that.

We compare different dataset distributions (Appendix Table 10). Note that the number of frames
per label relates to the framerate on real data. For Switchboard, the average length of a phoneme
is 80ms. When the model operates on a 40ms framerate, that corresponds to about 2 frames per
phoneme label. We see that the convergence problems mostly occur only with a high number of
frames per label, i.e. with a high frame rate (see Appendix Table 10). Specifically, for the high
framerate (Nword = 10), using prior together with posterior is important to get good results, and
using posterior alone does not work at all9 while for low framerate (Nword = 2), prior together with
posterior still works, but is slightly suboptimal, and using the posterior alone reaches the optimal
result.

Here we are using more realistic settings: Using noise, a more powerful posterior BLSTM model
(Schuster & Paliwal, 1997; Hochreiter & Schmidhuber, 1997), HMM label topology, a higher batch
size and a more realistic dataset distribution. Results are in Table 1. Using a too high posterior scale
breaks it, but otherwise, it usually works. There are configurations where only the transition model
is helpful, and same with only prior, although only transition model seems better. The best result is
achieved with using both the prior and the transition model. Note that we are never able to achieve
zero LER or zero TSE here. The amount of noise might be unrealistically high now.

7.1.2 PHONEME-BASED MODELS

The results presented in this section for the zero order label context phoneme based models using
real data (LibriSpeech and Switchboard) show the effect of transition probability and prior for the
HMM based systems.

The experiments that are conducted for phoneme based models share the same experimental setups
for both HMM and CTC. However, they are not directly comparable to the experiments on CTC
presented in following sections. Here, we use fewer epochs on LibriSpeech (25 instead of 100) and
we use a different software framework. We show the effect of the reduction of number of epochs in
Appendix Table 11.

9This is still a FFNN; it does work with more powerful models.
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Table 1: Comparing the posterior/prior/transition scales with HMM label topology in the presence
of noise (σξ = 0.5) on synthetic data with a 2-layer BLSTM posterior model and higher batch
size 100. Prior is via posterior average with stop gradient. The experiment is repeated over 10
random seeds to measure the mean µ and standard deviation σ. The label-error-rate (LER) provides
an indicator of the performance of the model. We calc. framewise (fw.) CE using the reference
alignment, and average blank/silence posterior output Ep(ε | x). Nwords ∈ {1, 2, 3} and fixed
Nrep = 2, rsil = 0.3. The reference alignment has 21% silence. TSE is in number of frames. All
detailed definitions are in Appendix A.4.2. An extended version of this table is Appendix Table 8.

Posterior Prior Transition LER Fw. Ep(ε | x) TSE
Scale Scale Scale [%] CE [%]
α β γ µ σ µ σ µ σ µ σ

0.5 0.2 0.0 5.9 4.7 0.51 0.06 23 4 0.3 0.1

0.5 0.3 0.2 4.7 4.4 0.50 0.10 18 4 0.3 0.1

0.5 0.0 0.5 5.0 5.0 0.45 0.06 20 3 0.2 0.1

0.5 0.0 0.0 6.7 6.5 0.60 0.13 30 3 0.5 0.1

1.0 0.0 0.0 63.7 14.3 3.57 0.63 11 20 1.3 0.3

Table 2: Comparing phoneme-based HMM/CTC on Switchboard 300h. Overview of time stamp
error (TSE) on word boundaries of the alignments with respect to a GMM alignment, the percentage
of silence (Si) in HMM and blank (B) in CTC, as well as the average phoneme duration (Phon). We
show different modeling approach variants for Switchboard 300h using label posterior, prior, and
transition scales, α, β, and γ respectively. All decoding experiments use a 4gram LM.

Model
Posterior Prior Transition Align model on SWB 300h WER [%]

Scale Scale Scale TSE [ms] Si/B [%] Phon.[ms] HUB5‘00 HUB‘01
α β γ

GMM
1.0 0.0

1.0 0.0 25.1 86.5 18.9 -
CTC 0.0 89.5 65.6 40.0 12.8 11.8

HMM
0.7 0.0

0.3 73.0 38.0 71.2 12.4 11.6

0.0
107.6 22.5 89.3 12.3 11.5

0.5 0.3 350.0 2.6 112.1 12.8 11.9

0.7 0.1 0.1 139.1 10.0 103.5 12.2 11.5

We use fixed normalized transition probabilities with four values for speech and non-speech for-
ward/loop. We make use of the knowledge of 80ms average duration for phonemes based on our
best GMM alignments and therefore choose a loop/forward probability of 0.5 when using 40ms
downsampling. The silence transition values are estimated based on the sentence begin/end silence
frames averaged on all utterances, for roughly 0.04 forward probability. We considered three dif-
ferent prior estimation method: (1) fixed and estimated based on transcriptions (Raissi et al., 2022),
(2) averaged over time frames of the current sequence (3) or similarly averaged over the whole
batch. A comparison between the different models is shown in Appendix Table 12. We use the
sequence-based estimation for our experiments.

Switchboard (Godfrey et al., 1992) The comparison of different modeling approaches for
phoneme-based HMM is shown in Table 2. We see that the use of prior leads to higher TSE, espe-
cially when no transition model is used. The approach with lowest TSE and WER avoids the use of
prior during training but makes use of the transition model. Regarding the duration model, none of
the approaches could match the GMM statistics in terms of silence percentage and average phoneme
duration. The model using both transition model and prior obtains the best WER, however due to
the silence prior correction the alignment suffers the lack of silence frame and therefore has higher
TSE. Similar observations have been done in prior work (Raissi et al., 2022).

LibriSpeech (Panayotov et al., 2015) As shown in Appendix Table 13, for this task we observe
similar results for the use of prior in terms of high TSEs. The best WER and TSE combination
for HMM also in this case uses only the transition model. This result is consistent not only with
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Table 3: Results using normalized gradient for the CTC model using SPM10k vocab on Lib-
riSpeech. TSE is w.r.t. the same GMM alignment as in Table 13. We penalize the blank probability
and divide by prior for obtaining the alignments (for TSE / sil. ratio).

υmin υmax Etυt Est. TSE [ms] Sil. ratio
[%]

WER [%]
LR Center dev-other test-other

Reference GMM alignment 0 0 18.0 - -
1.0 1.0 - 68.2 52.0 21.8 5.77 6.03
0.5 1.1 Batch 78.9 66.7 22.7 5.71 5.87
0.1 1.1 Batch 154.7 151.9 22.3 6.21 6.55
0.5 1.1 Seq. 70.7 54.6 23.7 5.83 5.91

Table 4: Comparison of blank separation and normalized gradient (υmin = 0.5, υmax = 1.1)
on CTC models with varying vocabularies. TSE is w.r.t. the same GMM alignment as in Tables 2
and 3. The reference GMM alignment has 18.0% silence ratio. We penalize the blank probability
and divide by prior for obtaining the alignments (for TSE / sil. ratio).

Vocab. Method TSE [ms] Sil. ratio
[%]

WER [%]
LR Center dev-other test-other

SPM 512 - 58.2 47.8 13.5 5.97 6.21
Blank sep 58.7 50.5 16.8 6.02 6.04

SPM 10k - 68.2 52.0 21.8 5.77 6.03
Blank sep 84.4 75.4 26.6 5.73 6.02

Normed grad, seq. 70.7 54.6 23.7 5.83 5.91
Normed grad, batch 78.9 66.7 22.7 5.71 5.87
Normed grad, batch

+ blank sep 72.9 58.8 28.8 5.73 6.08
BPE 10k - 66.2 56.3 22.5 6.18 6.35

Blank sep 72.5 65.3 26.7 5.98 6.13

Switchboard experiments. This model has also the best WER. However, the best TSE in this set of
experiments is obtained by the CTC model. We also observed a slight difference in use of the label
and transition scales for LibriSpeech task.

7.2 NORMALIZED GRADIENT

Results with our CTC model on LibriSpeech with the normalized gradient training criterion are in
Table 3. While we can get some small improvement over the baseline in terms of WER, we also see
that it is sensitive to the clamping values υmin and υmax. There is only a small difference between
batch-based or sequence-based estimation of υ = Etυt, maybe batch-based being slightly better.
Unexpectedly, there does not seem to be any improvement in terms of alignment quality (TSE).
Also, in terms of convergence rate, there was no difference (see Appendix Figure 2).

7.3 BLANK SEPARATION IN CTC

We tested different blank penalties and prior scales to obtain the alignments (see Appendix A.7,
Appendix Table 14). Here we present the best variant using blank penalty −10 and with prior scale
1. Results when separating the blank symbol in comparison to the baseline and also to normalized
gradients can be seen in Table 4. Unexpectedly, there does not seem to be any improvement in terms
of alignment quality (TSE) and the baseline has the best TSE. The improvement in terms of WER is
small, but there seem to be a consistent improvement in most cases. Note, in terms of convergence
rate, there was no difference here (see Appendix Figure 2).

7.4 ALIGNMENTS VIA GRADIENTS

We collect our CTC gradient-based alignment results in Table 5. GradScoreExt performs a bit
better than GradScore for SPM/BPE 10k, but slightly worse for SPM 512. Compared to the CTC
forced alignment quality (Table 4), we see a small improvement in TSE in most cases except of
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Table 5: TSE for CTC gradient-based alignments. These are the same models as in Table 4. We use
p = 0.1 for the grad norm. We use prior but no blank penalty for all but the blank-sep. models.

Vocab. Method Align
Variant

TSE [ms] Sil. ratio
[%]LR Center

SPM 512 - GradScore 76.6 60.2 17.4
GradScoreExt 77.6 61.0 14.0

Blank sep GradScore 73.9 58.8 18.5
GradScoreExt 75.9 60.5 13.6

SPM 10k - GradScore 69.9 51.1 21.1
GradScoreExt 67.9 50.2 15.9

Blank sep GradScore 77.1 58.4 24.1
GradScoreExt 72.5 55.7 15.3

Normed grad GradScore 70.7 53.5 20.4
GradScoreExt 69.2 53.0 15.5

BPE 10k - GradScore 72.9 55.3 21.2
GradScoreExt 71.3 54.7 16.2

Blank sep GradScore 72.7 55.3 23.8
GradScoreExt 67.3 51.1 15.2

Table 6: TSE for AED gradient-based alignments. SPM10k vocab. The AED model has 4.98% and
5.49% WER on dev-other/test-other respectively. The ref. GMM alignment has 18.0% sil. ratio.

Align Variant TSE [ms] Sil. ratio
[%]LR Center

GradScore 66.3 50.5 23.7
GradScoreExt 64.7 50.3 14.9

SPM 512. The alignment quality seems to be more robust in comparison to CTC forced alignments,
where it can vary widely depending on the conditions like vocabulary size and scales.

We also apply the method on an AED model, and show the AED gradient-based alignment results in
Table 6. The AED model is expectedly a bit better than the CTC model (5.5% on test-other vs. 6.0%
on test-other). In comparison to CTC, the alignment quality seems to be better here in terms of TSE.
Again GradScoreExt performs a bit better than GradScore. We also test a hybrid AED/CTC model
in Appendix A.8.

8 CONCLUSIONS

The use of synthetic data provides us with a very useful tool. We find that the framerate and amount
of noise play a crucial role on the training dynamics. The prior is most important for higher framer-
ates and not needed for lower framerates. In the noisy synthetic case, the combination of posterior,
prior and transition model works best. For real data, use of prior results in alignment quality degra-
dation and use of transition model together with posterior is sufficient.

The separation of the blank symbol and the normalized gradient do not improve the alignment qual-
ity (TSE) but they slightly improve the WER. The blank separation allows for faster greedy decoding
and faster framewise training. Our novel gradient-based method to find an alignment improves the
alignment quality in case of larger vocabularies. The alignment quality also seems to be more robust
in comparison to CTC forced alignments.

Forced alignments using smaller vocabularies and also phoneme-based models, specifically small
models, or even GMMs, still provides the best alignments though, but with potentially much worse
WER. With the gradient-based alignment method, the alignment quality interestingly seems to cor-
relate much better with WER.
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9 REPRODUCIBILITY STATEMENT

All the code for all experiments, including the whole setup pipeline with dataset preparation, training
and recognition will be published.

We further list all relevant details about our setup, including software and hardware, in Section 6
and Appendix A.4.

The used hardware and software should be easily available to everyone.

Thus, it should not be any problem to reproduce our results, within the limit of randomness in the
used training algorithms, and small differences when using different hardware or different software
versions.
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effect of label topology and training criterion on ASR performance and alignment quality. In
Proc. Interspeech, 2024.

Rotem Rousso, Eyal Cohen, Joseph Keshet, and Eleanor Chodroff. Tradition or innovation: A
comparison of modern asr methods for forced alignment. In Interspeech 2024, pp. 1525–1529,
2024. doi: 10.21437/Interspeech.2024-429.

R. Schlüter, I. Bezrukov, H. Wagner, and H. Ney. Gammatone features and feature combination for
large vocabulary speech recognition. In Proc. IEEE ICASSP, 2007.

Robin Schmitt, Albert Zeyer, Mohammad Zeineldeen, Ralf Schlüter, and Hermann Ney. The
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A.1 RELATED WORK

The work by Zeyer et al. (2017; 2021); Raissi et al. (2022); Chen et al. (2023); Huang et al. (2024);
Raissi et al. (2024) is very related in that they also investigate the alignment behavior of CTC
or HMM, and improve by using a prior in training. The way how the prior is estimated differs:
E.g. Huang et al. (2024) reestimates the prior every epoch. Initially it is uniform, and then the model
softmax output average. Zeyer et al. (2017) estimates the prior by a running exponential average of
the model softmax output. Raissi et al. (2022) estimates the prior from the transcriptions and keeps
it fixed. In this work here, we mostly use a prior estimated based on the current sequence, but we
compare several variants (see Tables 7 and 12).

The work by Zeyer et al. (2021); Raissi et al. (2022); Zhao & Bell (2023); Raissi et al. (2024);
Zhao & Bell (2024) studies the influence of label topology, e.g. CTC with the special blank, or the
standard HMM, or other variations. Here we also compare different variants, specifically standard
HMM and CTC, but our synthetic framework also allows to study any other variant. Zhao & Bell
(2023) notes that the frame rate also determines what label topology is optimal. We also find that
the frame rate is very important on what training criterion works best, e.g. with prior or without.

The work by Huang et al. (2024); Rousso et al. (2024) compares the alignment quality of different
model types.

Deep learning algorithms can fare poorly when the training dataset suffers from heavy class-
imbalance. The blank or silence label in speech recognition is very imbalanced compared to the
other labels. There is a lot of related work on how the problems and potential solutions when there
is class-imbalance (Johnson & Khoshgoftaar, 2019; Chen et al., 2024). Both the normalized gradient
method and the blank separation modeling are closely related to other variants of class-balancing
the loss such as (Lin et al., 2018; Cao et al., 2019).

The work by Schmitt et al. (2024) introduces the same method to extract alignments from the gra-
dients w.r.t. the inputs. However, this was done only for AED models. Here it is extended for CTC
models and further improved.

A.2 DERIVATION OF GRADIENTS FOR SEPARATED BLANK IN CTC

Recall the definition of separated blank in the CTC model:

log p′Y(y | ht) =
{
log σ(zε), y = ε

log σ(−zε) + log softmaxA(zA)y, y ∈ A (28)

For log σ, we get the gradient:

log σ(x) = − log(1 + exp(−x)) (29)

∇x log σ(x) = −
1

1 + exp(−x)
· exp(−x) · (−1) (30)

=
1

1 + exp(x)
(31)

= σ(−x) (32)
= 1− σ(x) (33)

∇x log σ(−x) = −
1

1 + exp(−x)
· exp(−x) (34)

= − 1

1 + exp(−x)
(35)

= −σ(x) (36)
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For the softmax, we get the gradient:

∇zj log softmax(z)i = δi=j − softmax(z)j (37)

with the Kronecker delta δ.

Putting it together:

∇zj log p′Y(y=i | ht) =


1− σ(zε), j = ε, i = ε,

−σ(zε), j = ε, i 6= ε,

0, j 6= ε, i = ε,

δi=j − softmaxA(zA)j , j 6= ε, i 6= ε

(38)

I.e., for some given soft alignment / target probability distribution υ ∈ RY , we get:

∇zj
∑
i

υi log p
′
Y(y=i | ht) =

{
(1− σ(zε)) · υε − σ(zε) · (

∑
i 6=ε υi), j = ε,

υj − softmaxA(zA)j · (1− υε), j 6= ε
(39)

=

{
υε − σ(zε), j = ε,

(
υj

1−υε − softmaxA(zA)j) · (1− υε), j 6= ε
(40)

In comparison, for the full softmax (not separated blank), we get:

∇zj
∑
i

stopgrad(υi) · log pY(y=i | ht) = υj − softmaxY(z)j (41)

A.3 TRAINING SCORES

We plot the CTC training scores in Figure 2 on Librispeech with SPM10k vocab. There don’t seem
to be any difference.

A.4 EXPERIMENTAL SETUP DETAILS

A.4.1 CORPORA

Switchboard We use the 300h Switchboard-1 Release 2 (LDC97S62) (Godfrey et al., 1992). We
evaluate our models on Switchboard and CallHome subsets of Hub5‘00 (LDC2002S09), the three
subsets of Hub5‘01 (LDC2002S13).

LibriSpeech For a larger set of experiments we considered the 960h LibriSpeech (Panayotov et al.,
2015), with evaluations on dev-other and test-other.

A.4.2 METRIC DEFINITIONS

Label-error-rate (LER) / Word-error-rate (WER) The label-error-rate (LER) and word-error-
rate (WER), also called edit distance or Levenshtein distance, is given by

LER =
Nsub +Nins +Ndel

Nref labels
,

where Nsub, Nins, Ndel refer to number of substitutions, insertions and deletions, and represent the
minimum amount of edits needed to perform to transform the recognized label sequence into the
reference label sequence. For speech recognition, the WER (calculated on word-level) is one of the
most important metrics. It does not measure the alignment quality in any way though, and a model
can have a good WER but bad alignment quality (CTC models often have this), or a model can have
good alignment quality but bad WER (e.g. a GMM).

Time-stamp-error (TSE) The TSE is the sum of distances between start and end frames for each
word w.r.t. some reference alignment (always from a GMM here) divided by number of words times
2. This is calculated over some set of sequences.

TSE =

∑
w |tw,start,ref − tw,start,model|+ |tw,end,ref − tw,end,model|

2 ·Nwords
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Figure 2: CTC training scores on Librispeech dev. Using SPM10k vocab.

For the synthetic experiments, t is in terms of frame index, while for all the real data experiments,
we use the real time (seconds or milliseconds).

The TSE can be calculated also when the model operates on BPE and the reference alignment is on
phonemes, as long as both allow to determine the word boundaries.

Framewise cross entropy (Fw. CE) Given a reference alignment, i.e. for some label sequence aS1 ,
the alignment label sequence yT1 , the framewise cross entropy (fw. CE) for CTC models or HMMs
is defined as

LCE = −
T∑
t=1

log p(yt | ht).

For hybrid NN-HMM, it is common to also use this criterion in training, based on a given external
alignment (which often comes from a GMM). But even when this criterion is not used for training,
it provides a measure on how close the model is to this alignment.

Thus it’s another alternative to TSE (when the vocab matches, i.e. the given alignment can be eval-
uated directly like that; when the alignment is on phonemes, and the model operates on BPE, this
does not work).

Average blank/silence posterior output Ep(ε | x) The average blank/silence posterior output is
given by

Ep(ε | x) = 1

T

∑
t

p(yt=ε | x).

This is calculated over a set of sequences. This probability number indicates how much the model
prefers silence or blank. A realistic amount of silence is 20%. If we get a much larger number for
the average amount of blank (e.g. 80%), it means we have peaky behavior.
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A.4.3 SOFTWARE

We use PyTorch 2.1.0 Paszke et al. (2019) for the experiments on synthetic data and for the subword-
based models, and TensorFlow 2.310 Abadi et al. (2015) for the phoneme-based models. We use
Slurm Yoo et al. (2003) for the cluster job queueing.

A.4.4 HARDWARE

We use two types of GPUs: Nvidia 1080 or 2080. The phoneme-based models were trained using a
single GPU, and the subword-based models are always trained with 4 GPUs distributed training.

The experiments on synthetic data are mostly executed on a single Apple M1 Pro CPU.

A.4.5 SYNTHETIC FRAMEWORK

We define a set of words and their mapping to a sequence of labels inA. In most of the experiments,
we use the artificial words “helo”, “world”, “howe”, “are”, “you”, and map each word to their
characters, so we end up with |A| = 10 possible labels. The alignment labels augment those by
blank or silence: Y = A ∪ {ε}. To sample a reference alignment: First sample the number of
words Nwords from a uniform distribution [Nwordsmin, Nwordsmax] ⊂ N. Then map the word to the
sequence of labels in A. Then, for each label, sample its number of repetitions from a uniform
distribution [Nrepmin, Nrepmax] ⊂ N. Next, sample the silence factor rsil from a uniform distribution
[Rsilmin, Rsilmax] ⊂ R. Given the length of the sequence counting the repetitions as TA, this factor
tells how much silence to add as Tε = rsil ·TA. The silence frames ε are added uniformly before/after
words, so at Nwords + 1 possible positions. This procedure will construct a ground truth alignment
label sequence yT1 ∈ YT with T = TA + Tε.

We use the input feature dimension D = Y . The input features xT1 ∈ RT×D are simply constructed
from the alignment label sequence by the one-hot encoding11 with optional noise ξi ∈ N (0, 1) and
noise scale σξ:

xt,i = (1− σξ) · δi=yt + σξ · ξi. (42)

From this construction, there is a trivial optimal mapping (with σξ = 0) from the input features to
the target probability distribution p(y | x):

popt(y=i | xt) = xt,i (43)

With no noise, this is a global optimum to most of the training criteria variations (especially for the
standard CTC), and this model will also provide a perfect alignment.

For the trained model, we use either the HMM label topology, where ε is only allowed before/after
words, which also matches how we construct the ground truth alignment, or we use the CTC label
topology, where ε is allowed anywhere.

A.4.6 PHONEME-BASED MODELS

The phoneme-based experiments for HMM and CTC are carried out on Switchboard and Lib-
riSpeech. The speech signal is extracted using a 25ms window with a 10ms shift, yielding Gam-
matone filterbank features with dimensions of 40 (Schlüter et al., 2007). All Conformer models
use a downsampling of factor 4. SpecAugment is applied across all models (Park et al., 2019). All
encoder architectures consist of a 12-layer Conformer encoder with 75 million parameters (Gulati
et al., 2020). All models are trained for 50 epochs on Switchboard and 25 epochs on LibriSpeech.
We use one cycle learning rate schedule (OCLR) up to peak LR of 6e-4 over 90% of the training
epochs, followed by a linear decrease to 1e-6 (Smith & Nicholay, 2019; Zhou et al., 2022). An
Adam optimizer Nesterov momentum, together with optimizer epsilon of 1e-8 are used (Kingma &
Ba, 2015; Dozat, 2016).

10Yes, this is old...
11This is similar to the work in Zeyer et al. (2021).
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A.4.7 SUBWORD-BASED MODELS

We use byte-pair-encoding (BPE) (Sennrich et al., 2016) or sentence-piece models (SPM) with
unigram LM (Kudo, 2018) as subword units. Our CTC model uses a Conformer encoder (Gulati
et al., 2020).

We use Adam (Kingma & Ba, 2015) with decoupled weight decay (AdamW) (Loshchilov & Hutter,
2019). In multi-GPU training, we average the parameters every 100 steps. We use one cycle learning
rate schedule (OCLR) up to peak LR of 1e-4 over 90% of the training epochs, followed by a linear
decrease to 1e-6 (Smith & Nicholay, 2019).

We use SpecAugment (Park et al., 2019), speed perturbation, dropout (Hinton et al., 2012), we
sample different subword segmentations, and we use an auxiliary AED loss (but without using more
data) (Hentschel et al., 2024).

A.5 EXPERIMENTS ON SYNTHETIC DATA

Effect of prior for simple FFNN, high framerate See Table 7.

Table 7: Comparing the effect of the prior and different posterior/prior scales α/β, on synthetic
data without noise, using a simple FFNN, HMM label topology. No transition model here. The
experiment is repeated over 10 random seeds to measure the mean µ and standard deviation σ. We
use the fixed Nwords = 1, Nrep = 10 and rsil = 1.0, thus the reference alignment has always 50%
silence. We provide the label-error-rate (LER) as an indicator of the performance of the model. We
calculate the framewise CE w.r.t. the reference alignment, and the average blank/silence posterior
output Ep(ε | x). TSE is in number of frames.

Prior Posterior LER [%] Fw. CE Ep(ε | x) [%] TSE
Type Stop Grad β α µ σ µ σ µ σ µ σ

Posterior avg. Yes 0.5 0.5 0.0 0.0 0.00 0.00 50 0 0.0 0.0

1.0 1.0 0.5 1.1 0.05 0.10 50 0 0.1 0.2

No 0.5 0.5 33.8 26.0 1.79 1.94 45 15 0.4 1.2

Static - 0.5 0.5 108.2 10.1 11.39 0.74 0 0 19.5 0.0

0.1 0.5 8.7 20.8 0.39 0.86 52 3 0.6 1.2

0.03 0.1 11.8 11.0 0.28 0.11 50 8 0.9 1.4

- - 0 0.5 36.9 25.3 2.19 1.78 64 13 5.7 5.1

1.0 65.9 32.0 5.28 4.26 68 27 11.2 5.5

Comparing posterior/prior/transition scales in the presence of noise See Table 8.

Comparing HMM vs. CTC label topology How does HMM and CTC label topology compare
in training? Note, the difference between HMM and CTC is just where you allow ε (which is
called “blank” for CTC and is treated as silence for HMM). See Figures 3 and 4 for the finite state
automata (FSA) of HMM and CTC label topology for some example sequence. How does this
difference influence the training? Here we focus on standard case of the CTC training criterion with
posterior scale α = 1 and no prior and no transition model (prior and transition scale β = γ = 0).
We compare several cases in Table 9.

We note that the results here depend a lot on the specific settings. Specifically, the model size, the
dataset distribution (amount of noise, amount of frames per label, etc.), the amount of training, the
training hyper parameters all influence the results. Already the training dynamics will vary a lot,
and thus also the alignment behavior (very peaky or not). Depending on this, it’s not always the case
that the CTC label topology is better for these scales (α = 1, β = γ = 0). There is more ongoing
work on getting a more complete picture of all these aspects, but this is going beyond the current
presented work here.

Effect of the synthetic dataset distribution See Table 10.
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Table 8: Extended version of Table 1. Comparing the posterior/prior/transition scales with HMM
label topology in the presence of noise (σξ = 0.5) with a 2-layer BLSTM posterior model with
20 dimensions in each direction, and higher batch size 100. We use the posterior average as prior
with stop gradient. The experiment is repeated over 10 random seeds to measure the mean µ and
standard deviation σ. We provide the label-error-rate (LER) as an indicator of the performance of the
model. We calculate the framewise CE w.r.t. the reference alignment, and the average blank/silence
posterior output Ep(ε | x). We use Nwords ∈ {1, 2, 3} and fixed Nrep = 2, rsil = 0.3. The reference
alignment has 21% silence. TSE is in number of frames.

Posterior Prior Transition LER Fw. Ep(ε | x) TSE
Scale Scale Scale [%] CE [%]
α β γ µ σ µ σ µ σ µ σ

0.5 0.5 0.0 10.5 5.2 0.54 0.09 15 2 0.3 0.1

0.5 0.2 0.0 5.9 4.7 0.51 0.06 23 4 0.3 0.1

0.5 0.5 0.1 9.4 5.8 0.55 0.05 15 3 0.3 0.1

0.5 0.5 0.2 7.7 5.4 0.52 0.05 16 2 0.3 0.0

0.5 0.5 0.3 7.8 5.7 0.53 0.08 15 3 0.3 0.1

0.5 0.3 0.2 4.7 4.4 0.50 0.10 18 4 0.3 0.1

0.5 0.0 0.5 5.0 5.0 0.45 0.06 20 3 0.2 0.1

0.5 0.0 0.2 7.8 9.7 0.52 0.15 24 2 0.3 0.2

0.5 0.0 0.1 7.2 5.0 0.57 0.08 26 4 0.4 0.1

0.5 0.0 0.0 6.7 6.5 0.60 0.13 30 3 0.5 0.1

1.0 0.0 0.0 63.7 14.3 3.57 0.63 11 20 1.3 0.3

start
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f o o b a rε ε ε

Figure 3: FSA for HMM label topology for characters in “foo bar”
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Figure 4: FSA for CTC label topology for characters in “foo bar”
Table 9: Comparing HMM vs. CTC label topology in the presence of noise (σξ = 0.5) with a 2-
layer BLSTM posterior model with varying number of dimensions, and higher batch size 100, with
posterior scale α = 1 and no prior and no transition model (prior and transition scale β = γ = 0).
The experiment is repeated over 10 random seeds to measure the mean µ and standard deviation
σ. We provide the label-error-rate (LER) as an indicator of the performance of the model. We
calculate the framewise CE w.r.t. the reference alignment, and the average blank/silence posterior
output Ep(ε | x). We use Nwords ∈ {1, 2, 3} and fixed Nrep = 2, rsil = 0.3. The reference alignment
has 21% silence. TSE is in number of frames.

LSTM Label LER Fw. Ep(ε | x) TSE
# Dim. Topology [%] CE [%]

µ σ µ σ µ σ µ σ

20 HMM 63.7 14.3 3.57 0.63 11 20 1.3 0.3

CTC 14.2 8.2 0.41 0.07 39 4 1.3 0.5

100 HMM 14.8 9.7 2.04 0.56 41 7 1.1 0.1

CTC 5.5 4.7 0.21 0.05 29 3 0.5 0.6
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Table 10: Comparing the effect of the synthetic dataset distribution without noise, using a simple
FFNN, HMM label topology. No transition model here. We use the posterior average as prior
with stop gradient. The experiment is repeated over 10 random seeds to measure the mean µ and
standard deviation σ. We provide the label-error-rate (LER) as an indicator of the performance of the
model. We calculate the framewise CE w.r.t. the reference alignment, and the average blank/silence
posterior output Ep(ε | x). TSE is in number of frames.

Dataset Prior Posterior LER [%] Fw. CE Ep(ε | x) TSE
Num frames Silence [%] Scale Scale [%]

/ label factor ratio β α µ σ µ σ µ σ µ σ

10 100 50 0.5 0.5 0.0 0.0 0.00 0.00 50 0 0.0 0.0

20 17 0.5 0.5 0.0 0.0 0.00 0.00 17 0 0.0 0.0

0.0 1.0 45.6 29.2 4.90 4.01 51 26 7.9 6.0

2 14 0.5 0.5 1.5 3.2 0.09 0.05 15 3 0.0 0.0

0.0 1.0 0.0 0.0 0.00 0.00 14 0 0.0 0.0

50 19 0.0 1.0 0.0 0.0 0.00 0.00 19 0 0.0 0.0

Perfect initialization Note that in all cases, we can initialize the model parameters in a way that
we get as close as we want to perfect alignment behavior. The model needs to be initialized in such
a way that it performs a scaled identity function. This is possible with all the studied models.

A.6 PHONEME-BASED MODELS

See Table 11 for the effect of the number of epochs.

Table 11: Evaluation for Conformer based HMM with only transition model and no prior trained
from scratch for 25 and 100 epochs on LibriSpeech 960h and decoded using 4gram LM.

Model Epochs WER [%]
dev-other test-other

HMM 25 6.6 7.1
100 5.9 5.8

See Table 12 for the effect of the type of prior.

Table 12: Effect of use of different prior for from-scratch trained Conformer based HMM with
only prior and with no transition model. The model is trained from scratch Switchboard 300h
for 50 epochs and evaluated on Hub5‘00 using 4-gram LM. The fixed prior is estimated on the
transcriptions.

Model Prior dev-other [%]

HMM
Fixed 13.3
Batch 13.3
Seq. 12.8

See Table 13 for a comparison of different models and label topologies (GMM, CTC, HMM) and
different posterior, prior and transition scales.

A.7 BLANK SEPARATION IN CTC

This is an extension to Section 7.3.

Multiple variants to obtain an alignment We tested different blank penalties (just adding a con-
stant bias to the logits of blank) and prior scales on the influence of the alignment quality when doing
forced alignment with the CTC model. The results are in Table 14. As expected, without prior, with-
out blank penalty, the CTC model is very peaky. The best TSE is obtained with a combination of
both: Blank penalty shift -10 and prior scale 1.
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Table 13: Comparing phoneme-based HMM/CTC on LibriSpeech 960h. Overview of time stamp
error (TSE) on word boundaries of the alignments with respect to a GMM alignment, the percentage
of silence (Si) in HMM and blank (B) in CTC, as well as the average phoneme duration (Phon).
We show different modeling approach variants for LibriSpeech 960h using label posterior, prior,
and transition scales, α, β, and γ respectively. All decoding experiments use a 4gram LM. Similar
experiments as presented in Table 2 for Switchboard.

Model
Posterior Prior Transition Align model on train 960h WER [%]

Scale Scale Scale TSE [ms] Si/B [%] Phon.[ms] HUB5‘00 HUB‘01
α β γ

GMM
1.0 0.0

1.0 0.0 17.5 85.0 19.8 -
CTC - 38.0 61.5 40.0 7.1 7.4

HMM

0.7
0.0

0.3 66.3 31.2 71.2 6.6 7.1

0.5
0.0

218.0 1.0 102.1 6.8 7.2

0.1
139.0 1.0 120.0 7.0 7.3

0.1 194.6 0.8 102.1 6.8 7.2

Table 14: Comparison of different blank penalty shifts and posterior and prior scales on our baseline
CTC model with SPM 10k, without blank separation and without normed gradient. TSE is w.r.t. the
same GMM alignment as in Tables 2 and 3. The reference GMM alignment has 18.0% silence ratio.
Posterior scale α = 1 always.

Prior
scale β

Blank
logit shift

TSE [ms] Sil. ratio
[%]LR Center

0.0 0 111.5 52.9 80.8
−5 110.7 53.0 78.6
−10 93.1 47.2 59.3
−15 93.7 61.1 37.3
−18 134.7 104.8 18.2

0.0 0 111.5 52.9 80.8
1.0 98.2 47.1 69.6
1.5 86.0 58.9 48.1
2.0 74.3 62.2 24.2
3.0 320.1 301.1 0.0

1.0 0 98.2 47.1 69.6
−5 73.0 46.2 44.8
−10 68.2 52.0 21.8
−15 105.6 89.6 1.2
−20 110.7 94.7 0.0

Speed comparison We benchmark12 the speed for greedy decoding (either only getting labels, or
getting labels with probabilities) and training with a random fixed given alignment which has 90%
blank frames, only measuring the final linear transformation from model dimension to vocabulary
dimension and the potential log softmax. In case of greedy decoding, we can first calculating the
logits for blank, without doing the full linear transformation for the other logits, and then skip this
frame when the blank probability is already larger than 50%. The results are given in Table 15. We
see quite nice improvements in all cases. For the overall training time, it depends on the encoder,
how much percentage of the compute occurs in the encoder and how much in the final transformation
and softmax.

12The code of the benchmark will be published.
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Table 15: Speed comparison of blank separation vs. a full softmax on CTC models. The speedup
is calculated as full softmax time

blank sep. time . Training is with a random fixed given alignment which has 90% blank
frames. This is set up in a way that we have a batch size of 10 sequences, a sequence length of 1000,
and a vocabulary size of 10000. This is evaluated on a NVIDIA A10 GPU.

Type of computation Blank
separation

Timings
Absolute [ms] Speedup [×]

Greedy decode only labels No 11.4 -
Yes 5.2 2.2

Greedy decode with probs. No 15.8 -
Yes 5.3 3.0

Framewise training No 37.2 -
Yes 5.7 6.5

A.8 GRADIENT-BASED ALIGNMENTS

GradScoreExt definition Define GradScoreExt as:

G′ = log softmaxt(G) ∈ RS×T (softmax over time) (44)

g = log
1

S

∑
s

exp(G′)s ∈ RT (non-blank score) (45)

l = percentile(g, γpercentile) ∈ R (flip point) (46)

g′ = 2 · l − g ∈ R (blank score) (47)

(G′′, g′′) = log softmaxS+1((G
′, g′)) (softmax over labels incl. blank) (48)

GradScoreExt(rt) =

{
(G′′)Yrt ,t, Yrt 6= ε,

g′′, Yrt = ε
(49)

Here, γpercentile is a hyperparameter (usually γpercentile = 60%).

Influence of zeroing the blank logits gradient for CTC models As a tweak, we slightly modify
the gradients of the logits by masking out the gradients of the blank logit. I.e. in the automatic
differentiation, we hook after the gradient computation of∇zL, and then

(∇zL)ε ← 0. (50)

See Table 16 for a comparison.

Table 16: Comparing the influence of zeroing out the blank logits gradient. TSE for CTC gradient-
based alignments, using p = 0.1. SPM10k vocab. The reference GMM alignment has 18.0% silence
ratio.

Align Variant Mask blank gradient TSE [ms] Sil. ratio
[%]LR Center

GradScore No 91.0 67.4 24.8
Yes 86.5 63.7 24.9

GradScoreExt No 89.6 67.4 16.6
Yes 84.0 62.8 15.9

Hybrid AED/CTC All our CTC models use an auxiliary AED loss (but without using more data)
(Hentschel et al., 2024), thus they can be used as hybrid AED/CTC models (Hori et al., 2017). We
can also use the joint probability for the gradient score, using the joint score as defined by Hori et al.
(2017):

Gs,t := log
∥∥∥∇xt (λCTC log pCTC(as | as−11 , xT

′

1 ) + λAED log pAED(as | as−11 , xT
′

1 )
)∥∥∥

p
∈ R. (51)
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usually with λCTC + λAED = 1.

Results are in Table 17. We see that the optimal weighting is reached with λCTC = 0, λAED = 1,
i.e. only the AED is used.

Table 17: TSE for hybrid AED/CTC gradient-based alignments. These are the same CTC models
(with joint/aux. AED loss) as in Tables 4 and 5. We use p = 0.1 for the grad norm. The CTC model
does not use a blank penalty and also no prior here.

Vocab. Method Align
Variant

Scale
λAED

Scale
λCTC

TSE [ms] Sil. ratio
[%]LR Center

Reference GMM alignment 0 0 18.0

SPM 10k - GradScore 0.0 1.0 86.5 63.7 24.9
0.1 0.9 87.1 64.3 24.9
0.2 0.8 86.5 63.6 25.0
0.3 0.7 86.5 63.4 25.0
0.4 0.6 85.0 62.5 25.1
0.5 0.5 82.9 61.0 25.1
0.6 0.4 80.9 59.9 25.0
0.7 0.3 78.7 58.7 25.0
0.8 0.2 74.9 56.1 24.9
0.9 0.1 70.9 53.0 24.8
1.0 0.0 66.6 49.5 24.6

GradScoreExt 0.0 1.0 84.0 62.8 15.9
0.1 0.9 84.4 63.2 15.9
0.2 0.8 84.4 63.1 15.9
0.3 0.7 84.1 62.8 15.8
0.4 0.6 82.8 61.8 15.7
0.8 0.2 70.7 53.5 15.1
0.9 0.1 66.9 50.8 14.8
1.0 0.0 63.4 48.0 14.4

BPE 10k Blank sep GradScore 0.0 1.0 72.7 55.3 23.8
0.7 0.3 73.4 57.8 24.5
0.8 0.2 73.4 57.8 24.4
0.9 0.1 72.5 56.8 24.4
1.0 0.0 71.6 55.9 24.4

GradScoreExt 0.0 1.0 67.3 51.1 15.2
0.7 0.3 64.4 50.1 14.6
0.8 0.2 63.6 49.2 14.6
0.9 0.1 62.9 48.4 14.6
1.0 0.0 61.9 47.4 14.6

A.9 COMPARISON OF ALIGNMENT METHODS

See Figure 5 for a comparison of the presented alignment methods, and Figure 6 for the influence of
blank penalty and prior.
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Figure 5: Comparing the different alignment methods. On the top, there are the log mel audio
features together with the word boundaries of the reference GMM alignment. Sequence train-clean-
100/103-1240-0000.
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Figure 6: Comparing the different alignment methods, using blank penalty or not, and prior or not.
On the top, there are the log mel audio features together with the word boundaries of the reference
GMM alignment. Sequence train-clean-100/103-1240-0000.
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