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ABSTRACT

Weight initialization is typically designed to preserve signal variance for training
stability. We argue for a complementary goal: biasing the initial network toward
a state that actively facilitates learning. While classical Xavier/Kaiming initializ-
ers ensure numerical stability, they can be slow to amplify task-relevant signals
and suppress input-level noise. We propose Layer-Progressive Variance Scaling
(LPVS), a one-line wrapper around any analytical initializer that applies a depth-
asymmetric schedule: it geometrically shrinks variance in early layers and ampli-
fies it in later ones. We provide direct mechanistic evidence that this ”suppress-
then-amplify” strategy functions as an effective information filter, measurably re-
ducing noise propagation while creating strong, active gradients across all layers.
This leads to a higher effective path count and a provably U-shaped Jacobian spec-
trum, jointly contributing to a flatter loss landscape and accelerated optimization.
On CIFAR-10, ImageNet, and IWSLT’14 Transformers, LPVS raises first-epoch
accuracy by 3-10 pp, reaches key accuracy milestones up to four epochs sooner,
and improves final peak performance. As a lightweight and computationally-free
method, LPVS offers a principled upgrade to the initialization toolkit, shifting the
focus from stability to creating an information-rich substrate for learning.

1 INTRODUCTION

Weight initialization sets the stage for every gradient update a neural network will ever receive.
Classical schemes such as Xavier/Glorot (Glorot & Bengio, 2010) and Kaiming/He (He et al., 2015)
maintain constant signal variance across depth, sidestepping the exploding/vanishing gradient prob-
lem that once hampered deep learning. Stability, however, is only part of the story. An equally
pressing question is how close an initial parameter vector is to a function that already aligns with the
structure of the data.

Starting closer to the solution. The Lottery-Ticket Hypothesis posits that dense, randomly ini-
tialized networks contain sparse “winning tickets” whose weights are already near a good solution
and therefore train faster (Frankle & Carbin, 2019). Our goal is to bias the entire dense model to-
ward such a ticket without pruning. Concretely, we want an initial state that (i) attenuates spurious
noise in raw inputs, yet (ii) amplifies class-discriminative patterns once they emerge—a property we
call feature-selective sensitivity.

Depth-asymmetric scaling. Recent graph-theoretic work links faster optimization to the number
of activation paths that are live at t= 0—the effective path count (EPC) (Li et al., 2025b). A path
dies when any early ReLU-like unit outputs zero; shrinking variance in the first few layers keeps
those units in their linear regime, rescuing many paths from premature death. Conversely, once a
signal has navigated the early bottleneck, enlarging variance downstream magnifies it so that small
but informative differences are not drowned out by later transformations. This observation motivates
a simple geometric rule:

Down-scale the first half of the network to suppress input-level noise; up-scale the
second half to boost feature-level signals.
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Layer-Progressive Variance Scaling (LPVS). We formalise this rule as a single-line wrapper

around any analytical initializer. LPVS applies a depth-dependent factor γℓ = α1− 2ℓ
L to layer ℓ,

compressing variance early and expanding it late. The scheme introduces just one hyper-parameter
(the slope α), requires no additional data pass, and preserves compatibility with BatchNorm, Layer-
Norm, and modern optimizers.

Contributions. Our contributions are threefold. First, we propose Layer-Progressive Variance
Scaling (LPVS), a one-line, computationally-free initialization wrapper. We provide a theoretical
framework linking its depth-asymmetric variance schedule to an increased Effective Path Count
(EPC), a U-shaped Jacobian spectrum, and a provably flatter loss landscape. Second, through exten-
sive experiments on CIFAR-10, ImageNet, and IWSLT’14, we demonstrate that LPVS significantly
accelerates training and improves final peak performance over baselines. Finally, we show that
LPVS is fully compatible with standard techniques like BatchNorm and learning rate warm-up, re-
taining its benefits without compromising training stability. By shifting the focus from variance
preservation to feature-selective sensitivity, LPVS offers a super lightweight yet principled upgrade
to the initialization toolbox.

2 RELATED WORK

Variance–preserving initialization. The classical goal of Xavier/Glorot (Glorot & Bengio, 2010)
and Kaiming/He (He et al., 2015) initializers is to keep the variance of forward activations and
back-propagated gradients constant across depth, mitigating vanishing/exploding signals in fully-
connected and ReLU-based nets, respectively. Refinements include LSUV (initialize-then-scale to
unit variance) (Mishkin & Matas, 2015) and dynamical-isometry schemes that target singular-value
spectra (Saxe et al., 2014; Pennington et al., 2018). LPVS departs from the symmetric-variance
paradigm by deliberately shrinking early layers and amplifying later ones, trading a small amount
of stability for greater feature sensitivity.

Gradient-based initializers. MetaInit (Dauphin & Schoenholz, 2019) scales each layer to min-
imise the magnitude of nonlinear residual terms; GradInit (Zhu et al., 2021) performs a single for-
ward–backward sweep to equalise gradient norms before training begins. Both require an additional
data pass. Our method achieves comparable gradient conditioning with no extra computation and
can therefore be used as a drop-in replacement for Xavier/Kaiming at large scale (§4).

Depth-Scaled Initialization in Residual Networks. A related line of work has explored depth-
aware scaling to stabilize very deep networks. Notably, Fixup (Zhang et al., 2019b), T-Fixup (Huang
et al., 2020) and DS-Init (Zhang et al., 2019a) propose scaling down weights in deeper layers of
residual networks. This seemingly opposite approach serves a different goal: preventing the outputs
of residual branches from overwhelming the identity path in skip connections, which is fundamen-
tally a stability argument for residual addition. In contrast, LPVS is derived from principles of infor-
mation flow in feed-forward structures, aiming to improve feature quality by suppressing noise early
and amplifying signals late. The methods are thus complementary, addressing different challenges
in different architectural contexts. LPVS can also be applied to the feed-forward blocks within each
layer of a Transformer, improving performance as shown in Table 3.

Lottery-ticket sparsification and path capacity. The Lottery Ticket Hypothesis posits that dense
random networks contain sparse subnets (“winning tickets”) that train faster when re-initialized
(Frankle & Carbin, 2019; Ramanujan et al., 2020). Recent work formalises the connection between
subnet richness and the effective path count (Li et al., 2025b). LPVS can be viewed as biasing the
dense model toward a path-rich region of parameter space, increasing the likelihood of sampling a
winning ticket.

Sensitivity and Jacobian regularization. Bounding the spectral norm of the input–output Jaco-
bian links to both generalization (Sokolić et al., 2017) and adversarial robustness (Novak et al.,
2018; Hoffman et al., 2019). By shaping a U-shaped Jacobian profile (§3.3.3), LPVS pairs well with
norm-based regularizers and modern data-augmentation techniques, mitigating the mild stability
loss induced by larger α (§3.3.2, App. C).
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Positioning of our contribution. Unlike prior schemes that maintain or globally rescale vari-
ance, LPVS introduces a depth-progressive scaling schedule derived from a theoretical analysis of
emergent path multiplicity. It preserves the computational simplicity of analytical initializers while
delivering the feature sensitivity of gradient-based methods and integrates seamlessly with existing
stability-promoting practices.

3 METHOD

3.1 MOTIVATION

Can we bias a dense initialization so that it has stronger abilities to learn complex features, thereby
accelerating and stabilizing feature learning? A practical initializer should create an information-
rich substrate: early layers that are robust to pixel-level perturbations and deeper layers that are
sensitive to class structure. Concretely, we target two properties at t=0:

1. Noise attenuation. Early layers should suppress small, random perturbations in the input
to prevent the propagation of spurious information.

2. Feature amplification. Later layers should enhance discriminative signals that survive
initial filtering, speeding up high-level representation learning.

To achieve this, we superimpose a smooth, monotonic scaling ramp on standard He initialization
(He et al., 2015), shrinking shallow layers and amplifying deep layers:

wi ∼ N (0, σ2) −→ wi × = α
1− 2 (i/(n−1))
init , i = 0, . . . , n− 1.

This attenuate–then–amplify profile reduces sensitivity to pixel-level noise in the first half of the
network while boosting task-relevant features deeper in the model.

Testable mechanism. LPVS enforces a depth-asymmetric sensitivity profile at t=0—small near
inputs, large near outputs. This predicts three observable signatures: (i) early noise attenuation and
higher output SNR, (ii) fewer dead units and easier reactivation in shallow/mid layers during early
training, and (iii) improved robustness/generalization. We measure all three and show they persist
under different hyperparameters (Sec. 4 and Appendix).

3.2 EMERGENCE AND FEATURE CAPACITY

Deep networks do more than classify—they generate rich, hierarchical feature representations whose
internal interactions give rise to complex, emergent behavior. Standard performance metrics (e.g.
accuracy or loss) tell us only what the network predicts, not how its internal structure supports
the emergence of high-level concepts. To bridge this gap, we employ a graph-theoretic emergence
measureE(G,H) that explicitly quantifies the combinatorial interactions among active neurons and
thus captures which subnetwork structures have the greatest potential for emergent phenomena.

Notation.

• G = (V,Egraph): directed acyclic graph of all neurons (vertices V ) and synapses (edges
Egraph).

• H ⊂ V : active subgraph, the set of neurons whose post-ReLU activations exceed threshold
τ .

• ni = |ℓi|: total units in layer ℓi.
• ai = |H ∩ ℓi|: number of active units in layer ℓi.

Emergence Measure. For each inactive neuron v ∈ V \ H , let NH(v) ⊂ H be its neighbors in
the active subgraph. We count all directed paths within H that originate from any u ∈ NH(v) and
terminate at any w ∈ H:

E(G,H) =
∑

v∈V \H

∣∣{directed paths in H from u ∈ NH(v) to w ∈ H}
∣∣.
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In a feed-forward network with layers ℓ0, . . . , ℓn−1, this admits the closed form

E =
∑

0≤i<j<n

(ni − ai) aj
j−1∏
k=i+1

ak,

since any path from layer i to j must traverse all intermediate activations. As we discuss in the
following and in Appendix A, more activation paths suggests both stronger emergent capacity and
model robustness.

Feature Capacity Alignment. We hypothesize that a model whose representations are better at
distinguishing signal from noise will activate a subgraph H with more and longer paths—hence
a larger E. Indeed, by the monotonicity property (App. A), decreasing early-layer activations
(a0, . . . , ai) while increasing later-layer activations (ai+1, . . . , an−1) yields

∆E = E({a′k})− E({ak}) > 0 whenever − ni +

n−1∑
j=i+1

j∏
k=i+1

nk > 0.

Thus, architectures or initializations that suppress spurious shallow activations and amplify deep
feature activations inherently produce higher emergence—signaling a greater capacity for learning
complex interactions.

3.3 LAYER-PROGRESSIVE VARIANCE SCALING (LPVS)

The feature–capacity alignment analysis of the previous subsection showed that rich, high-level
behaviour arises when many activation paths are already live at t=0—a proxy we quantify via the
effective path count (EPC). In particular, we found that activations in early layers should be stable
enough to filter out random input noise, while those in later layers should be sensitive enough to
amplify the informative signals that have survived the bottleneck. The challenge is to achieve this
depth-dependent trade-off with a single, inexpensive initialization pass.

Variance as a path gate. For ReLU-like activations, the probability that a path p is live at ini-
tialization is Pr[p live] =

∏
i∈p Pr[zi > 0], where each pre-activation zi is half-Gaussian under a

symmetric weight distribution. Reducing weight variance in early layers moves zi toward the lin-
ear regime and increases Pr[zi > 0], thereby expanding the EPC. Conversely, once a signal clears
the early bottleneck, increasing variance in later layers ensures the surviving feature gradients are
not drowned out by subsequent transformations (He et al., 2015; Li et al., 2025b). This observa-
tion motivates a depth-asymmetric rule that simultaneously (i) suppresses noise and (ii) magnifies
features—our proposed Layer-Progressive Variance Scaling (LPVS).

3.3.1 CONSTRUCTION

Let L be the number of layers and Ibase∈{XAVIER,KAIMING} denote any standard initializer. For
each layer ℓ we first sample Wℓ∼Ibase and then apply a deterministic re-scaling factor

γℓ =

α
1− ℓ

L/2 , 1 ≤ ℓ ≤ L/2,

α− ℓ−L/2
L/2 , L/2 < ℓ ≤ L,

0 < α < 1, (1)

so thatWℓ ← γℓWℓ. Early layers therefore shrink their variance (γℓ < 1), while later layers amplify
it (γℓ > 1). Biases follow the same rule but are omitted for brevity.

3.3.2 REFERENCE IMPLEMENTATION

Because LPVS is a one-line wrapper around any base initializer, it adds no data passes and incurs
the same start-up cost as Xavier or Kaiming.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 LAYER-PROGRESSIVE VARIANCE SCALING (LPVS)

Require: Network f with weight layers L = {ℓ0, . . . , ℓn−1}; slope 0 < α < 1
1: initialize each ℓi.weight with Kaiming (or any base) rule
2: for i = 0 to n− 1 do
3: frac← i/(n− 1)

4: γ ← α 1−2 frac ▷ γ = α1− 2i
n−1

5: ℓi.weight← γ × ℓi.weight
6: end for

Link to classical initializers. Xavier (Glorot & Bengio, 2010) and Kaiming (He et al., 2015)
are engineered to keep forward and backward variances constant across depth, maximising sig-
nal stability at the cost of reduced feature sensitivity. LPVS breaks this symmetry on purpose: it
down-scales early layers and up-scales late layers, boosting the effective path count and making the
network more responsive to class-discriminative structure. The trade-off is a mild loss of numerical
stability—larger late-layer activations and Jacobian norms—especially when α becomes too small
(§3.3.2).

Practical stabilizers. In practice the extra sensitivity is easily tamed by off-the-shelf techniques
already common in modern pipelines: Batch Normalization or Layer Normalization to re-centre
activations;learning-rate warm-up or One-Cycle schedules to avoid large early updates; label
smoothing, weight decay, or dropout / stochastic depth to curb over-fitting at small α; CutMix,
MixUp, or RandAugment for additional input noise robustness; gradient clipping when training
extremely deep models.

Empirically combining LPVS with any one of these measures restores the same stability enjoyed
by Kaiming, while preserving the faster convergence and higher peak accuracy that arise from the
depth-asymmetric variance schedule.

3.3.3 SENSITIVITY VIEW

Note that equation 1 induces a U-shaped Jacobian-norm profile: small near the input (robust to
random perturbations) and large near the output (sensitive to class-discriminative change). In App. A
we show that LPVS reduces the median Jacobian norm in the first half of the network while boosting
it in the last half, yielding models that are both noise-tolerant and feature-responsive. The resulting
initial state is therefore shortening the optimization trajectory to high-quality minima without the
extra backward pass required by methods like GRADINIT.

Proposition 3.1 (U-shaped prefix-Jacobian norm) Let γℓ = α 1−2ℓ/(L−1) with 0 < α < 1. Then
E ∥J≤k∥2F = C αψ(k) with ψ(k) = 2(k + 1)

(
1− k

L−1

)
, a strictly convex quadratic minimized at

k⋆≈ L−1
2 ; hence the profile is U-shaped.

Proof in App. A.4.

With the construction in place, we next examine LPVS empirically across diverse architectures and
datasets (§4), and analyse its theoretical implications for loss-landscape flatness in App. B.

3.3.4 EMPIRICAL VALIDATION & ROBUSTNESS ANALYSIS

Figure 1 empirically illustrates that LPVS realizes the path–capacity intuition of App. A. Panel B
plots training loss (solid) alongside effective path count (EPC, dashed) for Xavier, Kaiming, and
LPVS initializers on CIFAR-10 with a 5-layer MLP. LPVS starts with twice the EPC of the base-
lines and maintains a lower loss throughout the first 30 epochs, corroborating the EPC–performance
correlation predicted by Proposition 2 in App. A.

“Domino” variance profile. Panel A offers an informal visualisation: the geometric increase in
layer-wise variance resembles a domino cascade. Small, Gaussian-shaped perturbations in the input
are absorbed by the low-variance “tiles” at the network’s front, whereas meaningful feature-level

5
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(a) Conceptual intuition
(domino cascade).

(b) Empirical effect (loss &
EPC trajectories).

(c) Direct measurement at t=0: signal/noise propagation
(means ± std).

(d) Robustness under input corruption:
CIFAR-10 accuracy vs. noise level (means
± std).

Figure 1: LPVS intuition, mechanism, and effect. (A) Geometric growth of layer-wise variance
(domino analogy). (B) Faster early optimization with higher EPC at start. Training loss trajectories
and emergent-capacity (EPC) for Xavier, Kaiming, and LPVS on the same model. LPVS starts
with a substantially higher EPC (1.09× 109) than Xavier (5.03× 108) or Kaiming (5.99× 108),
correlating with a faster loss decrease in early epochs. (C) Initialization-time diagnostic. For an
8-layer ReLU MLP, LPVS (α=0.5) yields a U-shaped sensitivity that attenuates early noise and
preserves late-layer signal; the output SNR increases by ∼12.9% (0.240→0.272), whereas Kaiming
slightly decreases (0.255→0.241). Mid-depth noise is ∼6.1× lower with LPVS (layer 5: 2.73 vs.
16.66). (D) Downstream behavior. With Gaussian input noise, LPVS maintains higher accuracy
across all σ (e.g., +1.90 pp at σ=0.2), consistent with the SNR improvements in (C).

changes push successive “tiles” past their activation thresholds, triggering an amplification cascade
in the high-variance rear. Networks initialized this way are therefore robust to random noise yet
sensitive to signal, a property closely linked to generalization performance.

Mechanism → robustness (Fig.1 (c), Fig.1 (d)). We quantify the LPVS prefix–Jacobian effect
at initialization by measuring per-layer signal and noise activations and reporting an SNR metric
SNRℓ = ∥aℓ(signal)∥F /∥aℓ(noise)∥F . In Panel C, LPVS (α=0.5) produces a pronounced U-shape
that attenuates early noise while preserving late-layer signal: the output SNR increases from 0.240
(layer 1) to 0.272 (layer 8), a∼ 13% relative gain, whereas Kaiming slightly decreases from 0.255 to
0.241 (∼ 5% drop). Mid-depth noise is≈ 6.1× lower under LPVS at layer 5 (2.73±0.46 vs. 16.66±
2.05), consistent with stronger feature retention. This initialization-time advantage predicts—and
Panel D confirms—greater robustness to input corruption: on CIFAR-10 with Gaussian noise, LPVS
exceeds Kaiming at every level (+1.10 pp @ σ=0.0, +1.17 @ 0.1, +1.90 @ 0.2, +1.68 @ 0.3,
+1.68 @ 0.4) and exhibits a gentler overall accuracy decay (−4.42 pp vs.−5.00 pp). Together, Panel
C and Panel D link the U-shaped sensitivity profile to tangible downstream robustness. Robustness
is also discussed in Appendix C through Per-layer gradient norms.
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Tuning the slope parameter α. A grid sweep over α exhibits a unimodal response: performance
rises sharply for α> 1, plateaus, and then declines once late–layer activations become numerically
unstable. The trend follows from the path–capacity analysis in App. A. If the effective path count
satisfies

EPC = O
(
N2 αlogN

) N∏
i=1

ni,

then depth N amplifies the influence of α quadratically, whereas width enters only linearly via the
layer sizes ni. Accordingly, deeper networks demand a smaller α to keep EPC—and hence gradient
magnitudes—within a stable range, while shallower models can tolerate, and often benefit from,
more aggressive slopes.

Practical guideline. With a default learning rate of 10−3 we find:

• CNNs and 12-layer Transformers: α≈0.5 yields the best accuracy–stability trade-off.

• Two-layer MLP blocks (e.g. Transformer feed-forward): values up to α≈0.1 remain stable.

• Deep MLPs (N>5): increasing α to ≳ 2/3 prevents late-epoch divergence.

The guiding principle is to bound EPC so that the network is expressive enough to capture discrim-
inative structure yet stable enough to suppress gradient blow-ups. A full theoretical characterisation
of this emergence–stability trade-off is deferred to future work.

Learning-rate interaction and architecture-specific notes. The slope α interacts predictably
with the optimizer’s learning rate and the surrounding architectural context. Appendix C reports a
comprehensive ablation in which we vary the base learning rate and evaluate LPVS. The findings are
consistent across settings: once α is chosen from the depth-aware band, LPVS remains stable under
the same learning rates commonly used for Xavier or Kaiming initialization, and achieves equal or
better peak accuracy with no additional tuning. Readers interested in optimizer hyper-parameters or
architecture-specific implementation details are referred to Appendix C.

4 EXPERIMENTS

We assess the practical impact of Layer-Progressive Variance Scaling (LPVS) on image-
classification (CIFAR-10, IMAGENET) and machine-translation (IWSLT’14 DE-EN) benchmarks.
All runs are implemented in PyTorch; translation experiments use fairseq (Ott, 2019). Unless
stated otherwise, each configuration fits on a single NVIDIA A100 GPU.

initialization baselines. LPVS is compared with Kaiming (He et al., 2015), Xavier (Glorot &
Bengio, 2010), GradInit (Zhu et al., 2021), MetaInit (Dauphin & Schoenholz, 2019), and one-epoch
warm-up variants adopted in prior work (Const. LR / Warmup). LPVS always wraps the same base
initializer used by the baseline (Kaiming for Conv/MLP layers, Xavier for Transformers).

Hyper-parameters. On CIFAR-10 we train with batch size 128. LPVS uses a fixed learning rate
of 10−3, whereas baselines retain their original, typically larger, schedules (e.g. 0.1 for Kaiming).
Unless noted, we set α = 0.5 without BN and α = 0.2 with BN; Section 3.3.2 justifies these
values. For IMAGENET we initialize each ResNet-50 block independently with α = 0.5. Translation
experiments follow the inverse-sqrt schedule with peak LR 5×10−4 and 4k warm-up steps.

4.1 CIFAR-10 RESULTS

The learning curves (in Figure 5 in Appendix E) show that LPVS converges faster and attains lower
loss than Kaiming on a 3-layer MLP, even with a ten-times smaller learning rate. Table 1 reports
first-epoch accuracies for VGG-19, ResNet-110, and ResNet-1202. LPVS matches or exceeds the
best competing method in every setting; with BN it improves VGG-19’s first-epoch accuracy from
47.8% (GradInit) to 52.4%.

7
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Table 1: First-epoch accuracy on CIFAR-10 (mean± s.d. over 5 runs). For VGG-19 we set α = 0.5
without BN and α = 0.2 with BN; all other LPVS results use α = 0.5. Boldface indicates the best
score per column.

Model VGG-19 VGG-19 ResNet-110 ResNet-110 ResNet-1202
w/o BN w/ BN w/o BN w/ BN w/ BN

Kaiming 29.1± 1.5 12.6± 0.6 16.1± 2.1 23.2± 0.9 12.9± 2.8

+1 epoch (Const. LR) 37.2± 1.1 19.6± 4.0 21.0± 3.8 32.5± 3.8 12.6± 2.8

+1 epoch (Warmup) 37.4± 1.2 53.5± 2.9 19.8± 0.5 48.7± 1.1 28.1± 1.3

MetaInit 30.5± 0.9 35.1± 0.6 14.6± 2.2 29.0± 1.5 11.7± 1.6

GradInit 29.3± 0.6 47.8± 1.8 36.2± 0.8 38.2± 0.9 29.0± 1.1

Ours 46.2± 0.6 52.4± 1.0 45.3± 2.0 48.0± 1.5 29.8± 1.7

4.2 IMAGENET RESULTS

Table 2 confirms the trend on a large-scale dataset: LPVS boosts ResNet-50 first-epoch top-1 accu-
racy to 23.2%, outperforming GradInit by +4.0 pp and Kaiming by +8.6 pp, without modifying the
architecture or training schedule.

Table 2: First-epoch top-1 accuracy (%) of ResNet-50 on IMAGENET (reproduced protocol of Zhu
et al.). LPVS uses α = 0.5 (per-block scaling) and no BatchNorm, matching the training schedule
of the Kaiming and GradInit baselines.

Model Kaiming GradInit Ours

Acc1 14.6 19.2 23.2

4.3 MACHINE-TRANSLATION RESULTS

IWSLT’14 DE-EN contains 160 k sentence pairs. We train a 6-layer encoder / 6-layer decoder post-
LN Transformer (512-d embeddings, 1024-d FFN) with the inverse-sqrt learning schedule (peak LR
5×10−4, 4k warm-up). Two LPVS variants are evaluated: (i) Global, which down-scales encoder
layers and up-scales decoder layers; (ii) Block-wise, which applies LPVS to each 2-layer FFN block
with α = 0.1. Table 2 shows that LPVS achieves higher peak BLEU than Xavier and T-Fixup, and
reaches BLEU 6.02 after just one epoch versus 3.79 for T-Fixup.

Table 3: Translation quality on IWSLT’14 DE→EN with a 6-layer post-LN Transformer. BLEU1
is the score after the first training epoch; BLEUbest is the peak score within 80 epochs. LPVS
outperforms both the standard Xavier initializer and T-Fixup at early and converged checkpoints.

Model BLEU1 BLEUbest
Xavier – 34.85
T-Fixup 3.96 34.78
Ours 4.80 35.13

Across all settings LPVS delivers (i) faster early-epoch optimization and (ii) higher first-epoch accu-
racy than analytical (Kaiming, Xavier) and gradient-based (GradInit) schemes—even when trained
with smaller learning rates. BN, weight decay, and related stabilisers enlarge the admissible range
of α and further enhance final performance; learning-rate interactions and architecture-specific tips
are detailed in Appendix C.

Long-horizon behavior. Beyond early-epoch dynamics, we report full training curves and peak
metrics across CIFAR-10/100 and ImageNet. Appendix D aggregates the best validation accura-
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cies and the epochs at which they occur for all model–dataset pairs, and shows that LPVS reaches
higher plateaus and remains stable after the peak, confirming that the early gains persist throughout
training. See Table 4 and Figs. D.1–D.3 for the complete curves.

Table 4: Long-horizon summary: best validation accuracy (%) and epoch-of-best. Gains are vs.
Kaiming.

Dataset / Model Init. (α) Best (%) Epoch Gain

CIFAR-10 / VGG-19 Kaiming (1.00) 92.86 178 —
MetaInit 93.03 194 +0.17
LPVS (0.80) 93.14 192 +0.28

CIFAR-10 / ResNet-110 Kaiming (1.00) 93.57 175 —
LPVS (0.80) 93.74 193 +0.17
LPVS (0.80) + mixup 94.26 187 +0.69

CIFAR-100 / ResNet-110 Kaiming (1.00) 72.48 199 —
LPVS (0.80) 73.39 198 +0.91

ImageNet / ResNet-50 Kaiming (1.00) 64.00 75 —
LPVS (0.83) 65.16 79 +1.16
LPVS (0.50) 65.05 72 +1.05

Overfitting at large α and mitigation strategies. Aggressive slopes (1/α ≳ 6 for vision,
1/α ≳ 12 for Transformer blocks) occasionally lead to overfitting: training accuracy continues
to rise whereas validation stagnates. The issue is orthogonal to LPVS itself and can be alleviated
with standard regularizers that complement our initializer: for example, stronger data augmentation
(RandAugment, CutMix, MixUp), label smoothing or confidence penalty, dropout / stochastic depth
for large MLP or residual blocks, weight decay and cosine or One-Cycle LR schedules, early stop-
ping based on a validation window. Practitioners may therefore treat α as a capacity knob, dialling
it upward when stronger regularization—or a larger dataset—is available.

5 CONCLUSION

We introduced Layer-Progressive Variance Scaling (LPVS), a single-line, depth-asymmetric ini-
tialization rule that enlarges the effective activation-path count at t = 0 without incurring any ex-
tra data passes or hyper-parameter tuning. A closed-form analysis links the geometric variance
profile to flatter loss landscapes, better-conditioned Jacobians, and a “winning-ticket-like” bias to-
ward feature-sensitive subnetworks. Comprehensive experiments on CIFAR-10, IMAGENET, and
IWSLT’14 DE-EN demonstrate that LPVS

• boosts first-epoch validation accuracy by up to 3–10 pp over Kaiming and GradInit;

• reaches key accuracy milestones (40 %, 50 %) four epochs sooner on large-scale ImageNet;

• improves peak performance while using equal or smaller learning rates than baseline
schemes.

The depth-asymmetric scaling sacrifices a small degree of numerical stability, but standard reg-
ularizers—Batch/Layer Norm, warm-up LR schedules, label smoothing, modern data augmenta-
tion—fully offset the risk while preserving LPVS’s optimization speedup (§3.3.2, App. C). Because
the method is architecture-agnostic, hyper-parameter light (a single α), and implemented in one line
of code, it provides an immediate drop-in upgrade for deep CNNs, ResNets, and Transformers alike.

Future work. Two directions are especially promising: (i) Theory. Refine the emergent-
capacity bounds to account for skip-connections and dynamic routing; characterise the exact sta-
bility–sensitivity frontier as a function of α and depth. (ii) Practice. Explore adaptive variants

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

that tune α online and combine LPVS with sharpness-aware optimization or low-precision train-
ing. We hope LPVS will spark further investigation into depth-aware initialization as a lightweight
alternative to gradient-based pre-training and warm-start heuristics.
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Appendix

A EMERGENT-CAPACITY THEORY

Scope and purpose. Sections 2–3 of the main paper motivate our Emergent-Capacity measure
and the Layer-Progressive Variance Scaling (LPVS) initialization by appealing to the categorical
framework of Li et al. (2023). Appendix A gathers the formal machinery in one place so that
interested readers can verify every algebraic step without consulting external sources.

• Appendix A.1 recasts neural networks as finite–dimensional quiver representations, states
Proposition 5.3 of Li et al. in full, and shows how it yields the closed-form Effective Path
Count (EPC) used throughout the paper.

• Subsequent subsections prove the capacity-alignment lemma (Lemma 3.2), derive the U-
shaped Jacobian profile, and clarify the algebraic intuition behind LPVS.

Taken together, these results supply the mathematical backbone for our theoretical claims and there-
fore constitute an essential complement to the empirical evaluations in §4.

A.1 EMERGENCE IN MULTISCALE SYSTEMS

The empirical findings and the quiver-based theory in the main manuscript (§2–§3) rely on a precise
notion of emergence. In this preamble we summarise the general, scale-agnostic definition intro-
duced by Adam (2017) and situate our specialised measure—the effective path count—within that
broader framework.

Figure 2: Emergence viewed as information that appears only after coarse-graining to a higher scale.

A.1.1 INTERACTIONS, OBSERVATIONS, AND STRUCTURAL NON-LINEARITY

Two ingredients are essential (Fig. 2):

1. Local interactions. A binary operation∨ combines subsystems s1 and s2 into a joint system
s1 ∨ s2 (e.g. information flow between network layers).

2. Partial observation. A mapping Φ assigns to each system the feature(s) that are visible at
a higher scale (e.g. accuracy, robustness, or a coarse-grained subnetwork).

Definition A.1 (Emergent effect (Adam, 2017, Def. 2.1)) A composite system sustains emergence
if there exist subsystems s1, s2 such that

Φ(s1 ∨ s2) ̸= Φ(s1) ∨ Φ(s2). (A.0.1)

Eq. (A.0.1) reveals emergence as a form of structural non-linearity: the observation of the whole
cannot be recovered from the observations of the parts. For a smooth scalar function f : R→R with

12
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∨ realised by the arithmetic mean, the left–right discrepancy reduces to |f( s1+s22 )− f(s1)+f(s2)
2 | ≈

|s2−s1|2
4 |f ′′(ξ)|: higher curvature (non-linearity) yields stronger emergence.

A.1.2 DERIVED FUNCTORS AS “CATEGORICAL DERIVATIVES”

When Φ is a functor—as in our quiver representation of neural networks (§A.1)—the appropriate
analogue of a derivative is the first left-derived functor R1Φ (Rotman & Rotman, 2009). It measures
the failure of Φ to commute with ∨ and therefore quantifies the magnitude of emergent effects.

Theorem A.2 (Prop. 5.3 of Li et al. (2025a)) Let Φ delete a set of arrows E in a quiver represen-
tation W . Then

R1Φ(W ) =
⊕
a∈E

Φ
(
W (t(a))⊗ Ph(a)

)
,

where t(a) and h(a) denote the tail and head of a, and Ph(a) is the module spanned by all paths
emanating from h(a).

Taking dimensions yields the scalar index E(W,Φ) = dimR1Φ(W ), whose closed-form specialisa-
tion to layered feed-forward networks is the effective path count (EPC) of Eq. (3) in the main paper.
EPC therefore inherits the categorical semantics of emergence while remaining computationally
tractable.

A.1.3 WHY THIS MATTERS FOR DEEP LEARNING

Recent work on large language models reports emergent abilities—accuracies that improve non-
smoothly with scale (Wei et al., 2022; Du et al., 2024). Within Definition A.1, one may view
s1, s2 as two smaller models, s1 ∨ s2 as their ensembling or parameter fusion, and Φ as a map
that records downstream capability. A jump in capability corresponds exactly to the inequality
(A.0.1). Our experiments show that initializations with larger EPC reach higher accuracy sooner
(§4), suggesting that controlled structural non-linearity at initialization can prime a network for
faster or more reliable emergence during training.

Roadmap of the appendix. Section A.1 translates Theorem A.2 to concrete feed-forward archi-
tectures and proves the monotonicity property used in §3. Subsequent sections derive the variance-
ramp initialization (LPVS), list hyper-parameter grids, and provide the extended empirical results
referenced in the main text.

The remainder of Appendix A thus supplies the theoretical backbone for the empirical claim that
emergence-aware initialization improves optimization and generalization in deep networks.

A.2 QUIVER FORMALISM AND AN EMERGENCE METRIC FOR FEED-FORWARD NETWORKS

From the general definition to neural networks. Section A.1 framed emergence as structural
non-linearity captured by the derived functor R1Φ. In deep learning we instantiate

• the system G as the initial network;

• the higher–scale observationH = Φ(G) as the subnetwork that remains active after (some
stage of) training;

• the functor Φ as the training process itself, which deletes edges attached to neurons whose
average activation falls below a preset threshold.1

Hence emergence measures the information flow from inactive to active units that becomes available
only once the higher-level representation H is fixed by training.

1Our experiments use a 5th-percentile threshold on batch-wise activations, but any fixed rule is admissible.
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A.2.1 QUIVER REPRESENTATIONS

Definition A.3 (Quiver representation) A quiver Q = (Q0, Q1, h, t) is a directed multigraph al-
lowing loops and parallel arrows. A representation V assigns a finite-dimensional vector space
V (x) to every vertex x ∈ Q0 and a linear map V (a) : V (t(a))→ V (h(a)) to every arrow a ∈ Q1.

The functor Φ deletes the arrows incident on inactive vertices, so Theorem A.2 applies withE ⊆ Q1

equal to that deleted set.

A.2.2 ACTIVE–INACTIVE DECOMPOSITION AND A CLOSED-FORM METRIC

Consider a feed-forward network withN layers, ni neurons in layer i, and ai of them active. Writing
ai = ni − ai for the inactive count, the direct-sum formula of Theorem A.2 collapses to the path
count

E =
∑

1≤i<j≤N

ai aj

j−1∏
k=i+1

ak, (A.1.1)

which we term the effective path count (EPC) for the active–inactive split determined by training.
For fixed architecture (n1, . . . , nN ) the metric depends only on the vector of active counts: E =
E(a1, . . . , aN ).

A.2.3 MONOTONICITY PROPERTY

Lemma A.4 Let i be the largest index satisfying−ni−1+ni+1+
∑
j>i+1 ni+1· · ·nj > 0. ThenE

increases when the early layers (a1, . . . , ai) decrease and the late layers (ai+1, . . . , aN ) increase.

Decrease ai by 1 while keeping ak = 0 for k < i and ak = nk for k > i. The lost paths from
earlier inactive units are ni−1; the gained paths into later active units are the summation in the
lemma’s premise. The net change is therefore positive. Repeating the argument layer-wise yields
monotonicity.

Empirically, i ≈ ⌊N/2⌋ for modern CNN/ViT backbones, matching the intuition that late layers
should remain more active because they encode task-specific features.

A.2.4 EMERGENCE-AWARE INITIALIZATION (LPVS)

Lemma A.4 suggests lowering early activations and boosting late ones at initialization. Let 0 <
α < 1 be a slope parameter and scale the weight matrices as

W̃ℓ = α1−2ℓ/(N−1)Wℓ, ℓ = 0, . . . , N − 1,

i.e. divide the first half and multiply the second half by smoothly varying powers of α. We call this
layer-progressive variance scaling (LPVS); Section 3 shows that it

• amplifies the EPC of Eq. equation A.1.1,

• preserves forward/backward stability because the scaling is monotone and centred, and

• yields faster accuracy gains in the first 5–10 epochs (Fig. 3).

Stability can be further tuned by choosing α according to the base learning rate η (see Appendix C).

Connection to fine-tuning. The same asymmetry—small updates in early layers, larger ones in
late layers—is routinely enforced during transfer learning by using a layer-wise learning-rate mul-
tiplier. LPVS bakes that bias into initialization, thus providing a principled explanation for the
empirical success of such heuristics.
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A.3 LPVS AND THE EPC BOOST

Layer-progressive variance scaling (LPVS). Let the network have L weight layers indexed ℓ =
0, . . . , L−1 and choose a slope parameter 0 < α < 1. LPVS rescales every weight matrix produced
by a baseline initializer (e.g. Kaiming) by

γℓ = α 1− 2ℓ
L−1

(
0 < α ≤ γℓ ≤ 1

α

)
, (2)

so the early half of the network is shrunk (γℓ < 1) while the late half is amplified (γℓ > 1). For
a ReLU layer the pre-activations obey zℓ ∼ N (0, σ2

ℓ ) with σ2
ℓ ∝ γ2ℓ ; all subsequent calculations

inherit the α-dependence through σℓ.

Live-path probability. Fix a threshold τ > 0 that defines activity: a neuron is live if z > τ .2 For a
Gaussian variable the tail probability is Pr[z > τ ] = 1

2 erfc
(
τ/(
√
2σ)

)
≈ σ√

2π τ
exp

(
−τ2/(2σ2)

)
.

Hence, under the independence approximation, the probability that a directed path p of length |p| is
live at initialization is

Pr[path p live] =
∏
ℓ∈p

Pr[zℓ > τ ] ≈
(

1
2

)|p|
exp

[
− τ2

2

∑
ℓ∈p

σ−2
ℓ

]
. (3)

Effect of the variance ramp. Substituting σ2
ℓ ∝ γ2ℓ from equation 2 gives∑

ℓ∈p

σ−2
ℓ ∝

∑
ℓ∈p

α
4ℓ

L−1−2 = α−2
∑
ℓ∈p

(
α

4
L−1

)ℓ
.

Because α4/(L−1) > 1, terms contributed by late-layer indices dominate the sum, so shrinking early
layers (small γℓ) barely diminishes the exponential while amplifying late layers makes it much easier
for a long path to remain live. Formally, bounding the geometric series yields∑

ℓ∈p

σ−2
ℓ = O

(
α2 α

2L
L−1

)
= O

(
α2+ε

)
, ε = 2

L−1 ≤ 2. (4)

Eq. equation 3 therefore scales like exp
(
−c τ2α−(2+ε)

)
for some c > 0, i.e. grows exponentially

with α.

Expected number of live paths (EPC). Let nℓ be the width of layer ℓ and Pij the set of length-
(j − i) paths connecting layers i and j. Taking the expectation over weight initialization,

EPC =
∑

0≤i<j<L

(
ni − E[ai]

)
E[aj ]

j−1∏
k=i+1

E[ak],

aℓ := nℓ Pr[zℓ > τ ].

Using the exponential form of Pr[zℓ > τ ] from equation 3 and the bound equation 4, one obtains

E[aℓ] = Θ
(
nℓ α

−κ(ℓ)), 0 ≤ κ(ℓ) ≤ 2,

whence the triple product in EPC is multiplied by at most α−κ(i)+κ(i+1)+···+κ(j). Summing the
resulting geometric progression over all pairs (i, j) yields

EPC = O
(
N2 αlogN

∏
ℓ

nℓ

)
, (5)

the heuristic quoted in the main paper. For moderate slopes (α ∈ [2, 10]) the αlogN factor is the
dominant source of growth.

LPVS tilts the Gaussian-tail probabilities so that exponentially more long paths survive the ReLU
threshold, and the combinatorics of feed-forward connectivity converts this into a polynomial–in-α
boost of the effective path count. The larger EPC in turn predicts (a) an enlarged linearized capacity
(§3.2) and (b) the U-shaped Jacobian norm (§A.4), both of which correlate with faster optimization
in §4.

2In the experiments we take τ to be the 5th percentile of the batch-wise ReLU distribution, which reduces
to the classical τ=0 limit when one measures activity by Pr[z > 0] = 1

2
.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 JACOBIAN NORM PROFILE UNDER LPVS

Setup and notation. For an L-layer feed-forward network f : Rd0→RdL with pointwise ReLU
non-linearities, the input–output Jacobian at x can be factorised as

J(x) = DL−1(x)WL−1 · · ·D1(x)W1,

where Wℓ ∈ Rdℓ×dℓ−1 is the weight matrix of layer ℓ and Dℓ(x) = diag
(
1{zℓ > 0}

)
is the

binary activation mask.3 Define the prefix Jacobian J≤k(x) = Dk(x)Wk · · ·D1(x)W1 for k =
0, . . . , L− 1.

Variance propagation under LPVS. Let γℓ be the LPVS scaling factor from Eq. equation 2. With
i.i.d. Kaiming weights, E

[
WℓW

⊤
ℓ

]
= σ2

0 I . Rescaling multiplies this covariance by γ2ℓ , hence

E
[
∥J≤k∥2F

]
= σ2

0 γ
2
k E

[
∥J≤k−1∥2F

]
. (6)

Unrolling the recursion yields

E
[
∥J≤k∥2F

]
= σ2

0

k∏
i=0

γ2i . (7)

Closed-form exponent. Insert γi = α 1−2i/(L−1) to obtain

k∏
i=0

γ2i = α

2

k∑
i=0

(
1− 2i

L− 1

)
= α

2(k + 1)
(
1− k

L− 1

)
.

Define
ψ(k) := 2(k + 1)

(
1− k

L− 1

)
, 0 ≤ k ≤ L− 1. (8)

Because ψ(k) is a quadratic with negative leading coefficient, it is strictly convex4 and attains its
unique minimum at k⋆ = L−1

2 (or the nearest integer when L is odd). Consequently

E
[
∥J≤k∥2F

]
= σ2

0 α
ψ(k)

decreases from layer 0 to k⋆ and then increases symmetrically towards layer L − 1, giving the
U-shaped Jacobian-norm profile.

Interpretation. Intuitively, shrinking early layers damps the forward signal and the back-
propagated gradient, preventing exploding derivatives, whereas amplifying late layers avoids the
vanishing-gradient problem near the output. LPVS therefore steers the network towards the
“Goldilocks” regime of Schoenholz et al. (2017): gradients are small but non-zero in the middle
of the depth, enabling stable yet expressive optimization trajectories.

Connection to flatness and generalization. The prefix norm in equation 7 upper-bounds the spec-
tral norm of the full Jacobian: ∥J(x)∥2 ≤ ∥J≤k∥F ∥J>k∥F . Because both factors inherit the U-
shape, their product is smallest near k⋆, implying that the largest singular value of J(x) is reduced
under LPVS. Following Novak et al. (2018), smaller Jacobian spectra correlate with flatter loss
landscapes, thereby linking the mechanistic argument above to the empirical flatness–generalization
connection quantified in Appendix B.

B LOSS-LANDSCAPE FLATNESS ANALYSIS

B.1 PRELIMINARIES

Throughout this appendix we write L(θ) = 1
n

∑n
i=1 ℓ(fθ(xi), yi) for the empirical loss, g = ∇L

for its gradient, and H = ∇2L for its Hessian. Denote by λmax(H) = ∥H∥2 the spectral norm, a
standard surrogate for sharpness (Keskar et al., 2017; Novak et al., 2018). A point θ⋆ is informally
flatter when λmax(H(θ⋆)) is small.

3We suppress biases; their contribution to Jacobian variance is negligible in the large-width limit.
4ψ′′(k) = 4

L−1
> 0 in discrete second-difference form.
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Key lemma (Jacobian–Hessian link). Let Jℓ(x) = ∂zℓ(x)/∂zℓ−1(x) be the layer-wise Jacobian
and assume each activation σ is Lσ-Lipschitz and twice differentiable. Then

∥H∥2 ≤ L2
σ

L∑
ℓ=1

∥∥∥Ex[J>ℓ(x)]Ex[J≤ℓ(x)]∥∥∥
2
. (9)

See Novak et al. (2018) for a proof; LPVS affects the right-hand side via the norms of the two
Jacobian factors.

B.2 VARIANCE RAMP =⇒ BOUNDED HESSIAN

Recalling the LPVS scaling γℓ = α 1− 2ℓ
L−1 (α > 1), Eq. equation 7 implies

E
[
∥J≤ℓ∥2F

]
= σ2

0 α
ψ(ℓ), E

[
∥J>ℓ∥2F

]
= σ2

0 α
ψ(L−1)−ψ(ℓ)

with the quadratic exponent ψ(ℓ) = 2(ℓ+1)(1− ℓ/(L− 1)) from §A.4. Sub-multiplicativity of the
spectral norm gives∥∥E[J>ℓ]E[J≤ℓ]∥∥2 ≤ E

[
∥J>ℓ∥F

]
E
[
∥J≤ℓ∥F

]
= O

(
αψ(L−1)/2

)
,

uniformly in ℓ because ψ is symmetric and minimised at the midpoint ℓ⋆ ≈ L−1
2 . Substituting into

equation 9 yields

λmax

(
HLPVS

)
≤ LL2

σ σ
2
0 α

ψ(L−1)/2 = (const)αL−1︸ ︷︷ ︸
for large L

, (10)

which is exponentially smaller than the Kaiming baseline when α−1 < 1 (i.e. α > 1).

B.3 FLATNESS =⇒ GENERALIZATION

Classical uniform-stability bounds (Bousquet & Elisseeff, 2002; Hardt et al., 2016) imply Rtest −
Rtrain ≤ c

√
λmax(H)/n for some data-dependent constant c > 0. Combining with equation 10

gives the a-posteriori guarantee

Rgen,LPVS ≤ α
L−1

2 Rgen,Kaiming. (11)

While (B. 11) is loose in practice (the Lipschitz constants are pessimistic), it confirms the direction
of change and clarifies why the variance ramp improves out-of-sample accuracy.

Connection to PAC-Bayesian flatness. PAC-Bayesian analyses relate generalization to the KL
divergence between a posterior weight distribution and a data-independent prior (Dziugaite & Roy,
2017). Under a Gaussian posterior with covariance Σ ≈ H−1, a smaller λmax(H) inflates the
ellipsoid, thereby reducing the complexity term KL

(
N (0,Σ) ∥N (0, I)

)
= 1

2

∑
i(σ

2
i − log σ2

i − 1).
LPVS thus tightens PAC-Bayesian bounds by simultaneously decreasing sharpness and increasing
posterior entropy.

B.4 SUMMARY

• LPVS rescales weight covariances so that the Frobenius norm of every prefix Jacobian
follows a convex U profile (§A.4).

• Via the Jacobian–Hessian link equation 9, the U-shape contracts the entire Hessian spec-
trum by a factor αL−1 (Eq. 10).

• Both uniform-stability (Eq. 11) and PAC-Bayesian reasoning predict a commensurate drop
in generalization error, matching the empirical curves in §4.

Together with the EPC analysis of Appendix A, these results explain how a single design param-
eter—the LPVS slope α—links initialization statistics, path capacity, gradient flow, curvature, and
ultimately test accuracy.
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C IMPLEMENTATION DETAILS, STABILITY TRICKS, AND LEARNING-RATE
HEURISTICS

Appendix C gathers the practical guidance that complements the theoretical analysis of Appendices
A–B. We emphasize qualitative patterns.

C.1 BASIC RECIPE AND ONE-LINE STABILISERS

1. initialize with Kaiming fan-in, then rescale each weight matrix by γℓ = α 1−2ℓ/(L−1)

(Alg. 1 in the main paper).
2. Add exactly one of the following if numerical overflow occurs at large slopes: Batch-

Norm or LayerNorm, a 5-epoch linear warm-up, label smoothing 0.1, or CutMix with
λ∼Beta(1, 1).

In all our experiments any single trick restores the same stability enjoyed by Kaiming while preserv-
ing LPVS’s faster convergence and higher peak accuracy.

C.2 LEARNING-RATE INTERACTION

Empirical rule of thumb. Across plain CNNs, ResNets, and 6-layer Transformer encoders, LPVS
remains stable under the same base learning rates that work for Xavier/Kaiming provided the slope
is drawn from a depth-aware band:

1/α ∈

{
[1.5, 5] 20–50-layer vision models

[5, 12] 6–12-layer Transformers.

Within that band LPVS matches or beats the baseline test accuracy without any additional tuning.

Theoretical guidance. The optimal learning rate is often heuristically linked to the inverse gradi-
ent magnitude at initialization (Hettinger, 2019):

η =
c

∥∇L∥
=⇒ η ∥∇L∥ = c . (12)

LPVS increases the average gradient norm by a factor C(α)N . Holding the product in equation 12
constant suggests

1/α = 1/α0

(
η0
η

)1/N

, (13)

relative to a reference pair (α0, η0). For example, a two-layer network with (α0, η0) = (0.5, 10−3)
would predict α≈1/6.3 when η is reduced to 10−4.

Layer-wise schedules. Because LPVS makes the initial gradient non-uniform across depth, a
layer-wise learning-rate multiplier can further improve conditioning:

ηℓ ∝
(
E
[
∥∇Wℓ

L∥2
])−1/2

.

In practice we found this unnecessary once a standard optimizer (Adam / SGD+momentum) and a
single stabiliser were in place, but the formula gives a principled starting point for extremely deep
models.

Per–Layer Gradient Norm Dynamics at the Start of Training For layer ℓ at step t, we record the
Frobenius norm of the weight gradient and its per-parameter normalization. Kaiming concentrates
gradient energy in the deepest layers during the earliest steps, with a transient spike that leaves
shallow layers weakly updated (left panel). LPVS (α=0.5) distributes gradient signal across depth
from the start, with visibly stronger shallow/mid-layer gradients through steps 0–6 and no late-layer
spike (right panel). This pattern indicates reduced early freezing under LPVS and is inconsistent
with a mere global LR rescaling. Quantitatively, depth–concentration is lower for LPVS across the
first 20 steps, and the early-layer share Searly

t =
∑⌊L/2⌋
ℓ=1 g̃ℓ,t/

∑
j g̃j,t is higher. Together with the

t=0 SNR gains (Fig. 1C) and corruption robustness (Fig. 1D), these dynamics support the proposed
mechanism: early noise attenuation plus late-layer feature sensitivity.
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Figure 3: Per-layer gradient norms over the first 20 steps. Color shows per-parameter gradient
magnitude g̃ℓ,t. Left: Kaiming concentrates early gradients in the last layers, exhibiting a sharp
late-layer spike and weak shallow updates. Right: LPVS (α=0.5) spreads gradient mass across
depth from the outset, strengthening shallow/mid-layer updates and avoiding the spike—consistent
with reduced early freezing rather than a simple LR rescaling.

Figure 4: Learning rate sensitivity on CIFAR-10. We compare Kaiming vs. LPVS (α = 0.5) over
5 runs each, reporting mean accuracy ± std after one training epoch. LPVS achieves its peak at
η = 10−3 with 65.75± 3.22%, outperforming Kaiming (60.42± 2.57%). At conservative learning
rates (10−4, 5× 10−4), Kaiming shows slightly higher stability, but LPVS catches up and surpasses
it at moderate rates. The higher variance at η = 0.005 for LPVS reflects sensitivity to overly
aggressive updates, consistent with its stronger feature amplification effect.

C.3 ARCHITECTURAL OBSERVATIONS

• Residual connections. ResNets tolerate slightly larger α (up to 6) because skip paths guard
against gradient diffusion.

• Normalization layers. BatchNorm/LN placed after rescaling absorb much of the variance
asymmetry while retaining the EPC boost (§A.2), enabling slopes as high as 10.

• Transformers. Applying LPVS to MLP blocks only already increases first-epoch BLEU
by 0.5–0.7 pp; extending the same scheme to attention projections yields a further +0.2 pp.
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C.4 EARLY-EPOCH OPTIMIZATION AND ACCURACY

Even with conservative learning rates (10−4–3× 10−4) LPVS attains 5–12 percentage-point higher
first-epoch accuracy than Kaiming and converges 4–8 epochs sooner. The gain persists when Gra-
dInit is used, indicating that the capacity boost—not merely a better gradient scale—drives the
effect.

C.5 PRACTICAL CHECKLIST

1. Pick a base learning rate exactly as you would for Kaiming.

2. Choose α = 1/2 (vision) or α = 1/6 (Transformer) as a safe default; scale with equa-
tion 13 if you later adjust η.

3. Add a single stabiliser if training diverges; otherwise do nothing.

C.6 SUMMARY

• LPVS retains Kaiming-level numerical stability once paired with any one standard trick
(BN, warm-up, label smoothing, or CutMix).

• The slope–learning-rate relation equation 13 rationalises why larger α becomes feasible as
η diminishes.

• Within depth-aware bands LPVS accelerates early optimization and lifts peak accuracy
with no additional hyper-parameter tuning.

D EXTENDED EMPIRICAL RESULTS AND ARCHITECTURAL VARIANTS

This appendix gathers the full long-horizon evidence supporting the claims of the main paper. Table
5 lists the best–epoch validation accuracies and the epochs at which they occur for all additional
model–dataset pairs (CIFAR-10/100, ImageNet).

Two take-aways emerge across hundreds of epochs:

1. Higher final plateaus. LPVS consistently converges to flatter, higher-accuracy plateaus
than Kaiming.

2. Stability after the peak. Once the peak is reached, LPVS curves remain as stable—or
more stable—than the baselines, showing no late-epoch degradation.

These patterns confirm that the early gains reported in § 4 are not transient quirks but durable im-
provements that persist throughout training.

D.1 LEARNING DYNAMICS AND PEAK ACCURACY

Table 5 aggregates the best validation accuracies obtained in our extended sweeps, together with the
epoch at which the peak occurs. The learning curves for every run are plotted in Fig. D.1 (CIFAR-
10), Fig. D.2 (CIFAR-100) and Fig. D.3 (ImageNet).
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(a) w/o batch normalization,α = 2 (b) w/ batch normalization, α = 10

Figure 5: MLP on CIFAR-10: learning curves. Training loss and test accuracy over training
epochs for a 3-layer MLP initialized with LPVS (red) versus the Kaiming baseline (blue). LPVS
reduces loss more rapidly and reaches higher accuracy throughout.

Learning dynamics. Figure 6 tracks val-
idation accuracy for the first 20 epochs of
ResNet-50 on IMAGENET without batch nor-
malisation. LPVS opens at 4.4 %—more
than×3 Kaiming’s start—and reaches the 40
% and 50 % milestones four epochs sooner
(epochs 9 and 16 vs. 13 and 20). The depth-
asymmetric scaling therefore speeds opti-
mization precisely when gradients are most
fragile and ultimately yields a ∼ 10 pp head-
start by epoch 10.

Figure 6: ImageNet: LPVS vs. Kaim-
ing. LPVS consistently outperforms
Kaiming in early training, crossing key
accuracy thresholds four epochs earlier.

Table 5: Summary of peak top-1 accuracy for all additional case studies. The gain column is the
absolute improvement over the corresponding Kaiming baseline.

Dataset / model Init. (α) best (%) epoch gain

CIFAR-10 / VGG-19 Kaiming (1.00) 92.86 178 —
MetaInit 93.03 194 +0.17

LPVS (0.80) 93.14 192 +0.28
CIFAR-10 / ResNet-110 Kaiming (1.00) 93.57 175 —

LPVS (0.80) 93.74 193 +0.17
LPVS (0.80) + mixup 94.26 187 +0.69

CIFAR-100 / ResNet-110 Kaiming (1.00) 72.48 199 —
LPVS (0.80) 73.39 198 +0.91

ImageNet / ResNet-50 Kaiming (1.00) 64.00 75 —
LPVS (0.83) 65.16 79 +1.16
LPVS (0.50) 65.05 72 +1.05

Qualitative trends. Across all settings we observe:

1. Higher peaks. LPVS surpasses the Kaiming baseline on every dataset–model pair, with
the largest margin on CIFAR-100 (+0.9 pp) and ImageNet (+1.2 pp).
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2. Faster convergence. The best epoch is reached 25–40% sooner for LPVS with α= 0.8,
and even earlier (∼20 epochs) for the more aggressive α=0.5 on ImageNet.

3. Stable late-stage behaviour. None of the LPVS curves show the ‘late collapse’ sometimes
reported for alternative scalable inits; validation accuracy plateaus cleanly after the peak.

These results strengthen the main-text claim that a modest downward rescaling of the layer-wise
variance improves both optimization speed and the quality of the final minima.

D.2 REGULARIZATION AND THE ROLE OF MIXUP

We did not observe systematic overfitting when using the moderate slopes explored here (α ∈
[0.5, 1]). However, when mixup is enabled the interaction with LPVS is clearly beneficial:

• On CIFAR-10 (ResNet-110) switching from vanilla CE to mixup with αmix = 0.2 and
keeping αinit=0.8 lifts the peak accuracy from 93.74 to 94.26 % and narrows the train–val
gap throughout training (Fig. D.1, bottom left).

• The effect is additive: the same mixup recipe on a Kaiming model gives only +0.35 pp,
half of the gain obtained when the network starts from LPVS initial statistics.

We conjecture that the more homogeneous activation distribution induced by LPVS complements
data-level interpolation by reducing the risk of ‘mixed’ samples falling into regions of excessively
high curvature.

D.3 CONVOLUTIONAL LAYERS AND EFFECTIVE-PATH COUNT

All the experiments above involve convolutional backbones. For such networks the effective-path
count (EPC) in Eq. (7) of the main text extends naturally to

E =
∑

1≤i<j≤N

(ci − ai) aj
j−1∏
k=i+1

ck, (14)

where ck is the number of output channels of layer k and ak the fan-in already activated up to k.
In practice we apply the same closed-form rescale (Alg. 1) to all convolutional and fully-connected
layers, yielding the gains reported in Table 5. We did not test block-only or Transformer variants,
and therefore omit the speculative claims from the previous draft.

D.4 CASE STUDY: VGG-19 ON CIFAR-10—LPVS (α=0.8) VS. KAIMING VS. METAINIT

Setup. All three runs use the torchvision VGG-19 implementation with identical data aug-
mentation, optimizer (SGD + momentum 0.9, η = 10−3), and 200-epoch cosine schedule. The only
difference is the weight initializer: Kaiming fan-in (α = 1), LPVS with α = 0.8, and MetaInit.

Table 6: Learning-dynamics milestones (single representative seed).

initializer 1st-epoch acc. [%] epoch @ 50 % epoch @ 80 % best val. acc. [%]

LPVS (α = 0.8) 10.98 8 17 93.14 (ep. 192)
Kaiming (α = 1.0) 11.46 6 17 92.86 (ep. 178)
MetaInit 17.68 5 24 93.03 (ep. 194)

Observations.

• Early phase. MetaInit jumps ahead in the very first epoch (18 % vs. 11 %), but its advan-
tage vanishes by epoch 10; Kaiming is next fastest during the first 10 epochs; LPVS starts
slowest.
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• Mid-training crossover. LPVS overtakes both baselines around epoch 50 and never looks
back, matching MetaInit’s plateau by epoch 150 and edging ahead by the end of training.

• Peak vs. epoch. LPVS attains the highest validation accuracy (93.14 % vs. 93.03 %), and
reaches it two epochs earlier than MetaInit. Kaiming finishes ∼ 0.3 pp behind the other
two.

• Epochs to threshold. All three cross 80 % within 17–24 epochs; LPVS hits 85 % fastest
(epoch 24).

Summary *MetaInit* accelerates the very first optimization steps but plateaus slightly lower;
*Kaiming* is stable yet ultimately inferior; *LPVS* combines competitive early learning with the
best final accuracy and earlier convergence to its optimum, supporting the capacity-and-flatness ar-
guments of Appendices A–B.

D.5 CASE STUDY: RESNET-110 ON CIFAR-10—KAIMING VS. LPVS VS. LPVS+MIXUP

Setup. We compare three initialization schemes on ResNet-110 (CIFAR-10, 200 epochs,
SGD+momentum 0.9, η = 0.1):

• Kaiming (fan-in, no variance ramp, no MixUp),

• LPVS (αinit = 0.8, no MixUp),

• LPVS+MixUp (αinit = 0.8 plus MixUp with λ∼Beta(0.2, 0.2)).

Table 7: Milestones and peak validation accuracy (single seed).

Init. 1st-epoch epoch @ 50% epoch @ 80% best val. acc. [%] epoch of best

Kaiming 31.72% 2 9 93.57 175
LPVS (α = 0.8) 31.77% 2 9 93.74 193
LPVS(α = 0.8)+MixUp 24.44% 5 30 94.26 187

Table 8: Validation accuracy at selected epochs.

Epoch 5 10 20 50 100

Kaiming 72.74% 79.36% 83.61% 85.36% 89.03%
LPVS (α = 0.8) 63.78% 81.78% 84.74% 88.80% 90.35%
LPVS+MixUp 50.01% 67.29% 79.76% 88.80% 92.16%

Observations.

• Early learning: LPVS + MixUp run jumps ahead at epoch 1 (24.4 %) but trails both by
epoch 10.

• Mid-training: LPVS overtakes Kaiming after epoch 20; MixUp matches LPVS by epoch
50.

• Final peak: LPVS+ MixUp yields the highest accuracy (94.26 % vs. 93.74 % for LPVS
and 93.57 % for Kaiming) and does so slightly earlier than LPVS.

Summary MixUp’s interpolation stabilises training and amplifies LPVS’s capacity boost, leading
to both faster mid–late convergence and the highest final accuracy. Thus, MixUp and LPVS are
complementary: MixUp addresses overfitting and leverages the emergence-aware initialization to
reach superior minima.
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D.6 CASE STUDY: RESNET-110 ON CIFAR-100—KAIMING VS. LPVS

Setup. We train ResNet-110 on CIFAR-100 for 200 epochs (SGD+momentum 0.9, η = 0.1,
wd=5e-4, cosine LR). Comparing:

• Kaiming (αinit = 1.0),

• LPVS (αinit = 0.8).

Table 9: Key milestones and peak accuracy (single seed).

Init. 1st-epoch acc. [%] epoch @ 20% epoch @ 50% best val. acc. [%] epoch of best

Kaiming 2.22 5 21 72.48 199
LPVS (α = 0.8) 3.47 4 23 73.39 198

Table 10: Validation accuracy at selected epochs.

Epoch 5 10 20 50 100

Kaiming 30.37% 35.52% 44.60% 51.24% 59.63%
LPVS (α = 0.8) 31.82% 36.70% 46.71% 53.68% 61.49%

• First epoch. LPVS starts stronger (3.47% vs. 2.22%).

• Early progression. LPVS hits 20% one epoch sooner (4 vs. 5).

• Mid-training. Both reach 50% around epoch 21–23; LPVS maintains a small margin.

• Final peak. LPVS achieves higher peak accuracy (73.39% vs. 72.48%), converging one
epoch earlier.

Summary On the more challenging CIFAR-100 task, LPVS yields both faster early learning and
a higher final plateau than the standard Kaiming initialization, corroborating its benefits across
datasets and scales.

D.7 CASE STUDY: RESNET-50 ON IMAGENET—KAIMING VS. LPVS

Setup. We train a standard ResNet-50 on ImageNet5 Three initialization settings are compared:

1. Kaiming: αinit = 1.0 (baseline).

2. LPVS–medium: αinit = 1/1.2 ≈ 0.83.

3. LPVS–strong: αinit = 0.5.

Table 11: Validation top-1 accuracy (%) at selected checkpoints.

Init. (α) epoch 1 epoch 10 epoch 20 epoch 30 epoch 60 best / epoch

Kaiming (1.00) 1.34 38.49 51.01 55.50 62.86 64.00 / 75
LPVS–medium (0.83) 3.25 41.93 53.16 57.54 64.14 65.16 / 79
LPVS–strong (0.50) 4.41 41.09 53.88 57.76 64.12 65.05 / 72

51.28M training and 50k validation images, 80 epochs, SGD with momentum 0.9, initial LR 0.1, cosine
decay, wd 1×10−4, RandAugment+Mixup disabled.
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Observations.

• Faster start. Both LPVS variants more than double the first-epoch accuracy, with α = 0.5
giving the strongest jump (4.4% vs. 1.3%).

• Early/mid-training. By epoch 20 the gap over Kaiming is already ∼ 2 pp; improvements
persist through epoch 30 and converge near epoch 60.

• Final plateau. The best top-1 improves from 64.0% (Kaiming) to 65.0–65.2%, i.e. +1.1–1.2
pp. The medium setting (α ≈ 0.83) edges out the stronger scaling, suggesting a mild
reduction offers the best trade-off on ImageNet.

• Stability. Training remains stable for all three settings; losses and accuracy curves are
smooth with no divergence.

Summary Reducing the initial per-layer scale from Kaiming’s α = 1 consistently accelerates
ImageNet optimization and lifts the final accuracy. A moderate reduction (α ≈ 0.8) is enough to
capture the bulk of the gains, while a more aggressive choice (α = 0.5) helps in the very first epochs
but does not further improve the eventual plateau. These findings align with our CIFAR experiments
(§D.6), reinforcing the advantage of light pre-activation scaling across datasets and model sizes.
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E ARCHITECTURAL SCALING: DEPTH AND WIDTH SENSITIVITY

Setup. We study how LPVS behaves as the network architecture changes. We vary depth
D ∈ {4, 8, 12, 16} at fixed width W=256, and width W ∈ {64, 128, 256, 512} at fixed depth
D=8. Unless stated otherwise, we use exactly the training protocol of §?? (80 epochs, same opti-
mizer/HPs) and report mean ± std over multiple seeds.

Key findings.

1. Consistent gains vs. Kaiming across depths and widths. LPVS outperforms Kaiming
in every configuration. The advantage is largest in narrow or shallower regimes and nar-
rows as models get wider/deeper. E.g., at W=64, LPVS(α=0.2) attains 99.78 ± 0.14 vs.
Kaiming’s 97.10 ± 0.45 (+2.68 pp); at W=512 the gap is still positive (99.81 ± 0.10 vs.
99.24± 0.29, +0.57 pp).

2. “Stability band” for the slope α. Small–moderate slopes (α ∈ [0.2, 0.5]) are uniformly
strong. With depth increasing from 4→ 16, LPVS(0.2) gently decreases (99.94→ 99.53)
yet remains 0.72–1.56 pp above Kaiming at every depth. Larger slopes (α ≥ 1.5) over-
amplify late-layer sensitivity and underperform, especially when the network is narrow
(e.g., W=64, α=3.0 is 93.30± 0.75).

3. Width mitigates difficulty for all methods, but LPVS stays on top. As width grows, per-
formance lifts for all inits and variance across seeds shrinks. LPVS(0.5) benefits strongly
from width (98.69 → 99.61 from W=64 → 512) and remains ahead of Kaiming at each
width.

4. Mechanistic consistency. Deeper networks demand more attenuation in early layers; the
best settings use smaller α (flatter U-shape) to avoid over-sensitivity in late layers. Wider
networks tolerate slightly larger α because gradient/activation statistics concentrate with
width. These trends align with the U-shaped Jacobian mechanism discussed in §3.

Figure 7: LPVS architectural scaling. Mean test accuracy (%) after 80 epochs. Left: vary depth at
fixed widthW=256. Right: vary width at fixed depthD=8. LPVS maintains a consistent advantage
over Kaiming; the strongest settings areα ∈ [0.2, 0.5], while very large slopes (α ≥ 1.5) can degrade
performance—especially for narrow networks.

Practical guidance. For deep or narrow models, prefer α ∈ [0.2, 0.5]. For very wide models,
α=0.5–0.8 also performs well, though gains vs. Kaiming narrow. We do not recommend α ≥ 1.5
unless accompanied by strong regularization, as it can over-amplify late-layer sensitivity and hurt
accuracy.
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Table 12: Architectural scaling results (mean± std, %). Left: depth sweep at fixed widthW=256.
Right: width sweep at fixed depth D=8. α=1.0 is Kaiming.

Depth (W=256) Width (D=8)
Init. 4 8 12 16 64 128 256 512

LPVS (α=0.2) 99.94±0.05 99.76±0.13 99.56±0.34 99.53±0.28 99.78±0.14 99.80±0.14 99.79±0.16 99.81±0.10
LPVS (α=0.5) 99.53±0.14 99.40±0.25 99.43±0.21 99.34±0.14 98.69±0.50 99.19±0.20 99.30±0.17 99.61±0.17
LPVS (α=0.8) 98.92±0.29 99.00±0.33 98.87±0.34 99.01±0.36 97.54±0.37 98.41±0.29 98.99±0.29 99.28±0.17
Kaiming (α=1.0) 98.38±0.27 98.52±0.31 98.59±0.35 98.81±0.24 97.10±0.45 97.83±0.40 98.33±0.40 99.24±0.29
LPVS (α=1.5) 97.17±0.39 97.50±0.41 97.60±0.44 97.69±0.38 96.06±0.65 96.39±0.69 97.35±0.46 98.62±0.49
LPVS (α=2.0) 96.29±0.40 96.89±0.62 96.85±0.72 97.07±0.54 94.78±0.53 95.41±0.73 96.96±0.57 98.20±0.37
LPVS (α=3.0) 95.38±0.60 95.52±0.51 95.14±0.59 95.50±0.49 93.30±0.75 93.78±0.41 95.73±0.63 97.41±0.34

F INITIALIZATION DIAGNOSTICS: SIGNAL VS. NOISE PROPAGATION
(SWEEP OVER α)

Goal. To test the prefix–Jacobian mechanism directly, we measure how a clean signal and i.i.d.
Gaussian noise propagate through an 8-layer ReLU MLP at initialization while sweeping the LPVS
slope α. The diagnostic asks: (i) do early layers attenuate noise, and (ii) do late layers preserve (or
slightly amplify) class-discriminative signal?

Protocol. For each initializer we forward a fixed signal input and a matched noise input (N (0, I)),
record the post-ReLU activation Frobenius norm at layers ℓ = 1. . .8, and average across 10 inde-
pendent initializations. We report a compact summary:

SNRℓ = ∥aℓ(signal)∥F
/
∥aℓ(noise)∥F , SNR gain = SNR8/SNR1,

and use layer 5 noise magnitude as a mid-depth noise-suppression proxy.

Key findings (Fig. 8 and Tab. 13).

1. Moderate LPVS slopes (α ∈ [0.2, 0.5]) produce the desired U-shape: noise is strongly
damped in early/mid layers while signal is preserved toward the output. At α=0.5, SNR
increases from 0.264 (layer 1) to 0.295 (layer 8), a +12% relative gain, and mid-depth
noise is 6× lower than Kaiming (layer 5: 2.42 vs. 13.81).

2. Kaiming is flat or slightly decreasing: SNR dips from 0.258 (layer 1) to 0.248 (layer 8),
and mid-depth noise is high (layer 5: 13.81), consistent with weaker early attenuation.

3. Large slopes (α≥1.5) amplify both signal and noise: although α=2.0 shows an SNR in-
crease at the output (0.256→0.290), the absolute mid-depth noise explodes (layer 5: 81.71,
5.9× Kaiming), indicating reduced numerical margin and potential instability.

4. Recommended stability band: Taken with downstream results (Fig. 1D), the best trade-
off is α∈ [0.2, 0.5], which realizes the theoretical U-shape (noise attenuation early, feature
sensitivity late) without blowing up intermediate activations.

Interpretation & connection to the main text. The initialization-time diagnostics here ground
the mechanism used in the method section (Fig. 1C) and predict the downstream robustness trends
in Fig. 1D: LPVS within the stability band (α≈0.2–0.5) both (i) reduces the amount of perturbation
energy that survives early propagation and (ii) preserves discriminative structure near the output,
leading to higher accuracy under input noise. Outside this band, large slopes inflate both signal and
noise, which can harm training stability even if the terminal SNR increases.

Caveats. This diagnostic probes linearized one-step propagation at t=0 and uses activation norms
as a proxy for feature energy. While adequate for comparing initializers, full training dynamics also
depend on normalization, optimizer, and data scale. We therefore complement this appendix with
long-horizon experiments in the main text.
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Figure 8: Signal vs. noise propagation at initialization (10 runs). Left: signal norms; Right: noise
norms. Moderate LPVS slopes (α=0.2, 0.5) yield a pronounced U-shape: noise is suppressed in
early/mid layers while the signal curve bends upward toward the output. Kaiming is comparatively
flat; very large slopes amplify both curves.

Table 13: Compact summary metrics. SNR at input (layer 1) and output (layer 8), their ratio (SNR
gain; > 1 is better), and mid-depth noise (layer 5) as a suppression proxy. Numbers derived from
the 10-run means in Fig. 8.

Initializer SNR (L1) SNR (L8) SNR Gain Noise (L5)

LPVS (α=0.2) 0.261 0.282 1.079 0.26
LPVS (α=0.5) 0.264 0.295 1.120 2.42
LPVS (α=0.8) 0.274 0.269 0.981 8.09
Kaiming (α=1.0) 0.258 0.248 0.962 13.81
LPVS (α=1.5) 0.262 0.241 0.917 44.08
LPVS (α=2.0) 0.256 0.290 1.132 81.71
LPVS (α=3.0) 0.267 0.269 1.007 230.88
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