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ABSTRACT

With the continuous expansion of neural networks in size and depth, and the grow-
ing popularity of machine learning as a service, collaborative inference systems
present a promising approach for deploying models in resource-constrained com-
puting environments. However, as the deployment of these systems gains trac-
tion, evaluating their privacy and security has become a critical issue. Towards
this goal, this paper introduces a diffusion-based inverse network attack, named
DIA, for collaborative inference systems that uses a novel feature map aware-
ness conditioning mechanism to guide the diffusion model. Compared to prior
approaches, our extensive empirical results demonstrate that the proposed attack
achieves an average improvement of 29%, 20%, 30% in terms of SSIM, PSNR,
and MSE when applied to convolutional neural networks (CNN), 18%, 17%, 61%
to ResNet models, and 55%, 54%, 84% to Vision transformers (ViTs). Our results
identify the significant vulnerability of ViTs and analyze the potential sources of
this vulnerability. Based on our analysis, we raise caution regarding the deploy-
ment of transformer-based models in collaborative inference systems, emphasiz-
ing the need for careful consideration regarding the security of such models in
collaborative settings.

1 INTRODUCTION

With the rapid development of deep learning, especially with large language models (LLMs), the
application scenarios of machine learning as a service (MLaaS) are becoming increasingly di-
verse (Hunt et al., 2018; Noels et al., 2023). These widespread applications have driven the explo-
ration of deploying large models on constrained computation and storage resources such as Internet-
of-Things (IoT) and edge devices, leading to the emergence of collaborative inference as a prevalent
method (Hauswald et al., 2014; Teerapittayanon et al., 2017; Kang et al., 2017; Ko et al., 2018;
Eshratifar et al., 2019; Zhang et al., 2023). In a collaborative inference system, a model is di-
vided into multiple segments, with different devices performing inference on distinct segments of
the model.

In the most common, two-party collaborative inference architecture, a model is split into two parts:
the client retains the initial segment, while the computationally capable server handles the latter
half. Upon completing the inference of the model’s first portion, the client forwards the interme-
diate feature maps to the server, which then completes the computation and returns the final re-
sults. Typically, the model’s initial segment contains fewer layers ensuring minimal computational
overhead. In contrast, the latter segment is more computationally intensive, often encompassing
full-connection layers. This paradigm effectively alleviates the computational burden on the client.

From the perspective of data privacy for the end client, it may appear secure as the server does not
have direct access to user data. However, recent studies (Zhang et al., 2023; Li et al., 2022; Yin
et al., 2023; He et al., 2019) suggest that given access to query the client’s model, the adversary can
train an inverse model based on intermediate feature maps, potentially enabling the reconstruction of
input data. Such inverse network attacks mainly relied on transposed convolutional neural networks
as the attack model. These networks commonly employ transposed convolution layers as a means
of inverting normal convolutions, yielding effective attack results.

However, as neural networks grow in depth, the use of more nonlinear layers introduces increasing
resilience of inversion network attack (He et al., 2019; Zhang et al., 2023; Yin et al., 2023), mak-
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Figure 1: Reconstructed inputs comparison of prior approaches and our method on ReLU22 of CNN

ing it more challenging to reconstruct using transposed convolution layers alone. To enhance the
reconstruction, a more proficient inverse model with generative capabilities is required. Conditional
diffusion models, such as stable diffusion (Rombach et al., 2022), utilizing cross-attention as a con-
dition mechanism demonstrate the superior capability in generating diverse and high-fidelity data
across various domains, including images, videos, music, and audio (Dhariwal & Nichol, 2021; Ho
et al., 2022; Levkovitch et al., 2022; Poole et al., 2022; Mittal et al., 2021), making them potentially
suitable for the task of generating lost information based on intermediate feature maps. Thus mo-
tivated, in this paper, we present a diffusion-based inverse attack for reconstructing input data. A
key feature of the proposed attack is the introduction of a novel feature map awareness conditioning
mechanism with a companion network specifically designed for inverse network attacks. We use the
Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error
(MSE) (He et al., 2019; Yin et al., 2023) to evaluate inverse network attacks. In comparison to pre-
vious attacks, as shown in Figure 1, the extensive empirical results show that the proposed attack
achieves an average improvement of 29%, 20%, 30% in terms of SSIM, PSNR, and MSE when
applied to convolutional neural networks (CNN) and 18%, 17%, 61% to ResNet models. Moreover,
as the demand for sophisticated MLaaS continues to grow, it becomes essential to consider not only
CNNs but also prevalent transformer-based models such as Vision Transformers (ViTs) (Dosovitskiy
et al., 2020; Touvron et al., 2021) and LLMs (Vaswani et al., 2017; Touvron et al., 2023; OpenAl,
2023) within collaborative inference systems. The privacy of the transformer-based models has re-
mained relatively unexplored in the context of collaborative inference. In this paper, we apply the
proposed diffusion-based attack on the ViT and uncover its notable vulnerability compared to CNNs
and ResNet.

‘We summarize our contributions as follows:

* We present a diffusion-based inverse network attack on collaborative inference systems.
In comparison to prior attack methods, our empirical results demonstrate a significant im-
provement in reconstructed results, as evidenced by higher SSIM, PSNR, and lower MSE.

* We present a novel feature map awareness conditioning mechanism that uses a companion
network that is specifically designed to enhance inverse network attacks. Our experimental
results indicate the better performance of this conditioning method when compared to the
cross-attention conditioning approach.

* By employing the diffusion-based attack, we investigate the vulnerability of the
transformer-based model, ViTs, in collaborative inference systems. Our empirical find-
ings reveal that ViTs are significantly more vulnerable than CNNs and ResNet models. We
analyze this vulnerability from two perspectives and raise caution accordingly regarding
the deployment of transformer-based models in collaborative inference systems.
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2 BACKGROUND

2.1 METRICS FOR EVALUATING INVERSE NETWORK ATTACK

To evaluate the attack results, the prior method (He et al., 2019) applies two metrics, PSNR and
SSIM. PSNR quantifies the pixel-level recovery quality of an image, with higher PSNR values indi-
cating better image reconstruction quality. On the other hand, SSIM (Wang et al., 2004) measures
the human perceptual similarity between two images by considering factors like luminance, contrast,
and structural aspects. SSIM values range between 0 and 1, where 0 indicates minimal similarity
and 1.0 represents maximum similarity. Moreover, another prior method, Ginver (Yin et al., 2023)
employs Mean Squared Error (MSE) to measure pixel-wise differences between two images, with a
smaller MSE indicating higher similarity. In this paper, for a comprehensive evaluation, we utilize
all three metrics to assess the proposed attack.

2.2 DENOISING DIFFUSION PROBABILISTIC MODEL AND CONDITIONAL DIFFUSION MODEL

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) have demonstrated state-of-
the-art results in image (Song et al., 2020), speech synthesis (Chen et al., 2020), and time series
forecasting (Rasul et al., 2021). The diffusion models have two processes: the forward and reverse
processes. In the forward process, noise is incrementally introduced into the images, transforming
them into Gaussian distributions. In contrast, the reverse process is an iterative denoising procedure
that initiates from a sampled noise. To execute the reverse process, a UNet is trained to predict
the added noise at each time step, which is subsequently removed using denoising operations. The
central concept behind UNet training lies in predicting the distribution of the introduced noise across
various time steps.

As for conditional diffusion, an encoder based on the modality of the condition is usually utilized to
transform condition information into an embedding. This embedding is then integrated into the UNet
model using a conditioning approach. A prevalent conditioning approach is cross-attention (Rom-
bach et al., 2022), known for its effectiveness in generating diverse and high-fidelity data across
various domains. The success of diffusion models, particularly conditional diffusion models, in-
spires our exploration of designing a diffusion-based inverse network model for reconstructing the
input data.

3 THE PROPOSED DIFFUSION BASED INVERSE NETWORK ATTACK

3.1 NOTATIONS

In this paper, we refer to the first part of the model on the data owner-side with the notation M;.
The diffusion process is characterized by ¢ and p representing the forward and backward processes,
respectively. Within this context, x; denotes the noisy image at the time step ¢ and e represents
the noise. Additionally, ¥ denotes the intermediate feature map that the adversary can access. T'
represents the predetermined number of steps used in the Gaussian diffusion process.

3.2 THE THREAT MODEL

Similar to prior works (He et al., 2019; Yin et al., 2023; Zhang et al., 2023), we focus on the
most common collaborative inference paradigm, specifically the two-party system. The proposed
approach is performed in a black-box setting: the server has no knowledge about the data owner
or client’s model M7, including its architecture and parameters. During collaborative inference, the
curious server attempts to retrieve the client’s private input « from the received M, (x). We assume
the server can query the model to obtain the corresponding intermediate feature output to train an
inversion model.
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3.3 OUR METHOD
3.3.1 FORWARD DIFFUSION PROCESS AND TRAINING

Following the regular diffusion model (Ho et al., 2020), the proposed approach defines a forward
Markovian diffusion process denoted as ¢q. This process involves iteratively introducing Gaussian
noise to the input image x over 7' iterations:

q(z1.rlzo) = I gz me1), €))
q(xe|re—1) = N(xe|\/1 — Brxi—1, Be]), 2

where (3, represents the variance of the noise added at time step ¢, ranging between O and 1. This
variance gradually increases, ensuring the acquisition of isotropic Gaussian noise after 7 iterations.
Given the initial image z(, the distribution of x; can be expressed as:

q(zelwo) = N (el v/Anwo, (1 —)), 3

where ; is defined as TIi_, (1 — f3;).

As shown in Algorithm 1, in the training pro-
cess that aims at optimizing the conditional de-  Algorithm 1 Training
noising model for the attack, we sample an im-
age xo from the training dataset, uniformly se-

while not converged do

lect a time step ¢t from 1 to 7', sample a noise tx(f)vr\ljjflgfx(?r)m({l T})
e from A (0, I), and then derive the noisy im- e~ N(0,1) T
age x4 using xg and the sampled noise, while y=M (’x )
simultaneously querying the target model M, Optimi; N ao step on
to obtain the intermediate feature map y: v 2
oll fo, (\/Vexo++/T — 1€, fo, (y), t)—¢l|
end while
e = ewo + /1= e, “)
y = Mi (o). (5)

Figure 2 provides a visualization of the proposed conditional denoising model, comprising an en-
coder fp, and a denoising model fy,. The fy, component is constructed based on a UNet architecture
and a companion network. The training process is to train the complete conditional denoising model
fo to predict the introduced noise. This training aims to minimize the objective function:

||f92($t7f91(y)7t)76||27 (6)

where e ~ N(0, ) represents the added noise at time step ¢.

3.3.2 INFERENCE AND ATTACK

The inference and attack process is shown in Algorithm 2, it aims to reconstruct the input x( based
on the intermediate feature map y. This process involves a reverse Markovian process, initiated with
Gaussian noise z7 ~ N (0, I):

po(zo:rly) = plar)IL_ po(x1—1]ze, 1), )
p(zr) = N(z7|0,1), ®)
pg(:ct_1|xt,y) :N(xt—1|ﬂﬂ($t;yvt)ao—t2‘[)' (9)

We define the inference process as
a Gaussian conditional distribution
shown in Equation 11. Given that the
noise introduced at time step ¢ can be
approximated by fy, similar to (Ho

Algorithm 2 Inference and Attack
T ~ N(O, I)
fort=1T,...,1do
e~ N(0,I)ift > 1,elsee =0

et al., 2020), we can parameterize the Ti—1 = 1l,ﬁt (x— \/fi% fo. (w4, fo,(y), 1)) ++/Bee
mean of pg(zi—1|zt,y) and 241 as end for
follows: return xg
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Figure 2: Architecture of the proposed diffusion-based inverse network (DS: downsampling layer;
B: bottom convolutional layer; US: upsampling layer)

p(o1.31:8) = <1 = 2 o (). ) (10)
Ti—1 ¢ po(@e, Y, t) + / Bre 1D

where € ~ N(0, 7). The attack procedure iteratively employs the above parameterization over T
steps to derive the reconstructed .

3.4 FEATURE MAP AWARENESS CONDITIONING MECHANISM

To provide conditional guidance, the intermediate feature map y is propagated through a lightweight
encoder network fy,. This encoder network performs parameterized reshaping of y to match the
dimensions of x;, thereby simplifying the incorporation of conditioning information.

A straightforward method of incorporating conditional guidance involves concatenating the encoder
output ¢ with x; along the channel dimension. However, using this method often results in evident
artifacts that significantly impact the quality of the reconstructed images. We hypothesize this draw-
back arises from the fact that the conditional information primarily guides the process at the outset
and diminishes in significance as data traverses the UNet, particularly during the upsampling phase.
To address this concern, we introduce a novel feature map awareness conditioning mechanism that
integrates a companion network into fg,. As shown in Figure 2, the bottom branch corresponds to
the companion network, which only accepts and processes input from the condition which is the
intermediate feature map. Each downsampling or upsampling layer in the UNet has a corresponding
companion layer in the companion network, and the output of each companion layer is concate-
nated with the output of the corresponding layer in the UNet along the channel dimension. This
companion network provides consistent conditional guidance throughout the propagation process,
especially during the upsampling phases. This ensures that the reconstructed image adheres to the
condition of the intermediate feature map. Empirical results presented in Section 4.5 demonstrate
the effectiveness of the feature map awareness conditioning mechanism compared to the alternative
conditioning method.

4 EXPERIMENTS

4.1 MODEL ARCHITECTURE

To implement the attack model, we utilize an encoder fp, with several transpose convolution layers
to align with the dimensions of x and one ResNet basic block (He et al., 2016). Each transpose layer
doubles the size of the condition and the quantity of transpose layers varies based on the dimension
of the intermediate feature map. For the UNet fy,, we employ three downsampling layers, three
middle convolution layers, and three upsampling layers. After each downsampling or upsampling
layer, we incorporate a self-attention layer. As for the companion network, we use three companion
downsampling layers and three companion upsampling layers.
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Table 1: Dataset and Model Information

Attack Target Model Attack Model Resolution Attack Model Target Silit Feature
Setting Dataset Dataset esolutio Training Data Size Model pil Dim.
ReLU22 (B, 128, 16, 16)
S:I;’;Zt CIFARI0 CIFAR10 32 x 32 40k ‘ CNN' ReLU32 (B, 128,8.8)
\ ResNet Layerl (B, 64, 32, 32)
| Layer2 (B, 128, 16, 16)
Diff. . . P
Dataset CIFAR10 Tiny-ImageNet 32 x 32 40k Block3 (B, 65, 192)

ViT” Block6 (B, 65, 192)
Block9 (B, 65, 192)

" ViT outputs are shaped like (B, N, C), in which B is the batch size, N is the concatenation of patches and one class embedding, and
C is the hidden dimension. The output will be mapped to (B, N-1, C) and then resized to (B, C, vV N — 1, /N — 1.)

4.2 EXPERIMENTAL SETUP

In the experiments, the target model is trained using the CIFAR-10 (Krizhevsky et al., 2009) training
dataset. The evaluation of the attack is performed on the CIFAR-10 test set, and the metrics are
averaged over this set. Followed (He et al., 2019), to assess the effectiveness of the proposed attack
in various scenarios, we train the attack models under two distinct settings:

* Same Dataset: For this setting, the attack model is trained on a subset of the CIFAR-10
training dataset with 40k images.

 Different Dataset: In this setting, the attack model’s training data is distinct from the
target model’s training set. Specifically, we employ the Tiny-ImageNet dataset (Le & Yang,
2015) as the training set for the attack model and CIFAR-10 for training the target model.
To circumvent overlap and potential bias, we excluded categories (35 in total) that might
correlate with CIFAR-10. From the remaining 165 categories, 40k images are randomly
selected for training the attack models.

To evaluate the proposed attack, we selected three distinct models as targets for our attacks:

* CNN: This model is a Convolutional Neural Network comprising six convolutional layers
and two fully connected layers. The CNN model is partitioned at the end of the fourth
(ReLU22) and sixth (ReLU32) convolutional layers.

¢ ResNet: We utilize the ResNet-18 (He et al., 2016) architecture from the torchvision li-
brary. To accommodate the dataset, we modified the initial convolutional layer and the
fully connected layer. Divisions are made at the end of the first, second, and third basic
blocks.

* ViT: We employ the Data-efficient Image Transformer (DeiT) tiny model configured with
three heads and 12 attention blocks (Touvron et al., 2021). The patch size is adapted to be
compatible with the dimensions of the input images. The ViT model is segmented at the
end of the third, sixth, and ninth attention blocks.

The above dataset and model information are also presented in Table 1. We train the attack model
for 500 epochs and use a learning rate of 3e-6 and batch size of 32. For the hyperparameter of the
diffusion process, we use T' = 1000 diffusion steps and the noise variance 3; is uniformly sampled
between 0.0001 and 0.02. All attacks take less than 1 minute. Experiments were conducted utilizing
NVIDIA Tesla A40 (48GB) and RTX A6000 GPUs.

4.3 COMPARISON WITH PRIOR-ART ON CNN AND RESNET

In this section and section 4.4, we compare the proposed method with previous approaches, namely,
the black-box attack (BBA) in (He et al., 2019) and enhanced inverse-network attack (EINA) (Li
et al., 2022).

In Figure 1, we present visualizations comparing reconstructed images generated by previous ap-
proaches and our proposed method. Ground truth images are included for reference. These recon-
structed inputs are based on randomly selected images. It can be observed that the prior approaches
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Table 2: Performance comparison with prior attacks at two split points for CNN

BBA He et al. (2019) EINA Li ef al. (2022) DIA (ours)
Metric  Setting  p 11725 ReLU32 ReLU22 ReLU32 ReLU22 ReLU32
SSIM 1 0.6851 04349 07335 04353 09392  0.5041
PSNRT SameSet 2338 1950 2431 19.63 31,77 19.84
MSE | 0.1047 02559 00846 02482  0.0153  0.2367
SSIM 1 0.6358 03562 07306 04176 0.9336  0.4762
PSNRT DiffSet  22.17 18.37 24.30 19.37 3142 19.50
MSE | 0.1383 03315 00847 02630  0.0166  0.2559

Table 3: Performance comparison with prior attacks at two split points for ResNet

BBA He et al. (2019) EINA Liet al. (2022) DIA (ours)
Layer1l Layer2 Layer1l Layer2 Layerl Layer2

Metric Setting

SSIM * 0.7613 0.6377 0.7641 0.7373 0.9041 0.8411
PSNR 1T Same Set  24.67 22.53 24.94 24.50 29.07 28.30
MSE | 0.0777 0.1271 0.0731 0.0808 0.0158  0.0341
SSIM 0.7622 0.5812 0.7699 0.7378 0.8711  0.7810
PSNR 1  Diff Set 24.66 21.72 25.02 24.53 28.79 2591
MSE | 0.0778 0.1531 0.0718 0.0804 0.0306  0.0586

demonstrate similar reconstructed results, while our method aligns significantly closer to the refer-
ence images, presenting reduced blur.

In Tables 2, 3, we present the results on two target models, CNN and ResNet. We employ SSIM and
PSNR metrics to assess the quality of the reconstructed images, complemented by MSE to measure
the error. The results indicate that the proposed attack performs well at shallow split points of CNN
and ResNet. As the split point deepens, the reconstruction quality of all attacks on CNN and ResNet
decreases.

While training the attack models on a different dataset exhibits marginal variance in results at shal-
low split points, this variance becomes more pronounced with a deeper split point. Nonetheless, in
comparison to previous methods, our attack consistently outperforms in all tested scenarios across
all three metrics. More precisely, the proposed attack achieves an average improvement (across
prior attacks and split points) of 29%, 20%, 30% in terms of SSIM, PSNR, and MSE when applied
to convolutional neural networks (CNN) and 18%, 17%, 61% to ResNet models.

4.4 COMPARISON WITH PRIOR-ART ON VIT AND VULNERABILITY OF VIT

In Table 4, we present the results of the proposed method and compare it with previous approaches
on ViT. It can be observed that our attack outperforms prior methods on ViT in all tested scenarios
across all three metrics, demonstrating an average improvement (across prior attacks and split points)
of 55%, 54%, 84%.

Notably, when compared to CNN and ResNet, the reconstructions on ViT models maintain consis-
tently higher quality across all split points and the advantage of our approach over earlier attacks is
more significant. We analyze and attribute this result to two potential reasons. While the behavior
of downsampling is common in CNNs, the ViT maintains a similar tensor dimension and lacks this
process. The absence of downsampling could lead to intermediate features retaining a higher fidelity
to the original input image details Yin et al. (2023), rendering the ViT more susceptible to attacks.
Moreover, in ViT, non-linear layers are not as frequent as in CNNs and ResNet. Several studies (He
et al., 2019; Zhang et al., 2023; Yin et al., 2023) have shown that the presence of non-linear layers
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Table 4: Performance comparison with prior attacks at three split points for ViT

BBA He ct al. (2019) EINA Li et al. (2022) DIA (ours)

Metric  Setting 5, 13" Block6 Block9 Block3 Blocké Block9 Block3 Block6 Block9
SSIM 1 05480 05433 05314 07651 07620 07652 09845 09657 0.9552
PSNRT SameSet 2143 2136 2126 2495 2480 2496  40.64 2778  27.93
MSE | 0.1645 01668 0.1709 0.0730 00756 00728 0.0020 0.0414 0.0448
SSIM 1 05276 05321 05087 0.7648 07645 07650 0.9805 0.9742 0.9617
PSNRT DiffSet 2122 2137 2103 2495 2493 2495 39.69 3858  37.41
MSE | 0.1722  0.1665 0.1806 0.0730 00732 00729 0.0024 0.0032 0.0042

not only enhances model generalization but also obfuscates some model details, possibly increasing
the model’s resilience against inverse network attacks.

4.5 IMPORTANCE OF THE FEATURE MAP AWARENESS CONDITIONING MECHANISM

To evaluate the significance of the proposed feature map awareness conditioning mechanism utiliz-
ing the companion network in the attack, we replace it with a prevalent condition mechanism (Rom-
bach et al., 2022) that employs cross-attention layers to incorporate condition information into the
UNet. The attack results are presented in Tables 5, 6, 7. The results indicate that the feature map
awareness conditioning mechanism is significantly more effective than the cross-attention mecha-
nism and more suitable for inverse network attacks.

Table 5: Performance comparison of conditioning mechanism on CNN

Cross Attention DIA (ours)
Metric  Setting  p 1125 ReLU32 ReLU22 ReLU32
SSIM 1 05132 03524 09392 0.5041
PSNRT SameSet 2034 1758 3177  19.84
MSE | 02110 03983  0.0153  0.2367
SSIM 1 02098 03012 09336  0.4762
PSNRT DiffSet  16.48 1692 3142 19.50
MSE | 05143 04641  0.0166  0.2559

Table 6: Performance comparison of conditioning mechanism on ResNet

Cross Attention DIA (ours)
Layerl Layer2 Layerl Layer2

Metric Setting

SSIM 1 0.1504 0.1669 09041 0.8411
PSNR T Same Set  15.67 15.50 29.07 28.30
MSE | 0.6140 0.6424 0.0158 0.0341
SSIM 1 0.1343  0.1365 0.8711 0.7810
PSNR 1 Diff Set 15.67 15.36 28.79 2591
MSE | 0.6207 0.6646  0.0306 0.0586
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Figure 3: Impact of training data size on the SSIM, PSNR, and MSE for the proposed attack on
ReLU22 of CNN

Table 7: Performance comparison of conditioning mechanism on ViT

Cross Attention DIA (ours)
Metric  Setting 5, 03" Block6 Block9 Block3 Block6 Block9
SSIM 1 0.1881 0.1856 0.1888 0.9845 0.9657 0.9552
PSNR1 SameSet 1574 1581 1589  40.64 2778  27.93
MSE | 0.6107 06019 05892 0.0020 0.0414 0.0448
SSIM 1 0.1851 0.1784 01679 0.9805 09742 0.9617
PSNR1 DiffSet 1592 1576 1544  39.69 3858  37.41
MSE | 05851 0.6072 06532 0.0024 0.0032  0.0042

4.6 IMPACT OF DATA SIZE ON THE PROPOSED ATTACK

In this section, we analyze the impact of training data size on the proposed attack. We select the
CNN as our target model, partitioning it at the fourth layer ReLU22, and evaluate varying training
data sizes under both the same set and different set configurations. As shown in Figure 3, the results
demonstrate a positive correlation between training data size and the effectiveness of the attack. As
the dataset size increases, SSIM values ascend and plateau at peak levels. Simultaneously, PSNR
exhibits a steady rise, while MSE values steadily decline.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present a diffusion-based inverse network attack on collaborative inference sys-
tems. Our attack leverages a novel feature map awareness conditioning mechanism that utilizes a
companion network tailored for inverse network attacks. Our extensive experiments demonstrate
the effectiveness of the proposed attack, surpassing prior approaches across three target models. To
the best of our knowledge, the proposed attack sets a new state of the art in attacking collaborative
inference systems.

Moreover, our results reveal a significant vulnerability of the collaborative inference of ViT models.
In the future, as computational resources allow, we will explore whether there is a similar vulnera-
bility for larger transformer-based models, such as large language models including GPT (OpenAl,
2023) and Llama 2 (Touvron et al., 2023). Given the broader applications of transformer-based
models, we will explore defensive measures to enhance their resilience.
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