
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LARGE LANGUAGE MODEL-ENHANCED
MULTI-ARMED BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have been adopted to solve sequential decision-
making tasks such as multi-armed bandits (MAB), in which an LLM is directly
instructed to select the arms to pull in every iteration. However, this paradigm
of direct arm selection using LLMs has been shown to be suboptimal in many
MAB tasks. Therefore, we propose an alternative approach which combines the
strengths of classical MAB and LLMs. Specifically, we adopt a classical MAB
algorithm as the high-level framework and leverage the strong in-context learn-
ing capability of LLMs to perform the sub-task of reward prediction. Firstly, we
incorporate the LLM-based reward predictor into the classical Thompson sam-
pling (TS) algorithm and adopt a decaying schedule for the LLM temperature
to ensure a transition from exploration to exploitation. Next, we incorporate the
LLM-based reward predictor (with a temperature of 0) into a regression oracle-
based MAB algorithm equipped with an explicit exploration mechanism. We also
extend our TS-based algorithm to dueling bandits where only the preference feed-
back between pairs of arms is available, which requires non-trivial algorithmic
modifications. We firstly conduct empirical evaluations on synthetic MAB tasks,
where the results show that our algorithms consistently outperform LLM-based
direct arm selection. Additionally, we perform experiments using real-world text
datasets, in which the results demonstrate that in challenging tasks where the arms
lack semantic meanings that can be exploited by the LLM, our approach delivers
significantly better performance than LLM-based direct arm selection.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in various tasks Liu et al.
(2024a); OpenAI (2023a;b). As a result, many recent works have leveraged LLMs as agents to
solve real-world sequential decision-making tasks. Specifically, some recent works have adopted
powerful pre-trained LLMs to solve multi-armed bandit (MAB) problems Chen et al. (2024); Kr-
ishnamurthy et al. (2024); Mukherjee et al. (2024); Xia et al. (2024). These works usually directly
instruct a pre-trained LLM to select the next arm to pull and do not require the costly LLM fine-
tuning. However, this paradigm has been demonstrated to lead to sub-optimal MAB algorithms in
many scenarios Krishnamurthy et al. (2024). Specifically, it has been observed that directly using an
LLM for arm selection often struggles to explore efficiently in real-world environments. To this end,
we propose an alternative paradigm which combines classical MAB algorithms with LLMs such that
we can achieve the best of both worlds. Specifically, we leverage a classical MAB algorithm as the
high-level framework, and adopt a pre-trained LLM (without fine-tuning) to perform the sub-task
of reward prediction based on the history of (the features of) the selected arms and their observed
rewards. Compared to the previous approach of directly employing an LLM for arm selection Kr-
ishnamurthy et al. (2024), this allows us to leverage the strength of LLMs in in-context learning
(ICL) to solve prediction (i.e., supervised learning) tasks. In other words, instead of using an LLM
to replace the MAB algorithm, we leverage LLMs to enhance classical MAB algorithms.

We further motivate our approach by drawing analogy to recent works aiming to improve the per-
formance of LLMs in complex reasoning tasks via tree search methods Bi et al. (2024); Hao et al.
(2023); Yao et al. (2024); Zhang et al. (2024). Specifically, these methods often adopt a classical
tree search algorithm as the high-level framework (e.g., Monte-Carlo tree search), and use LLMs
to perform different sub-tasks such as reward/value prediction, action generation, etc. Therefore,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

their overall paradigm aligns with our approach of using classical algorithms to guide the high-level
decision-making while leveraging the strengths of LLMs in performing some sub-tasks. For exam-
ple, the work of Koh et al. (2024) has also used a pre-trained LLM for reward prediction based on
the past history to improve classical algorithms. Specifically, they have adopted best-first search as
the high-level reasoning framework in web automation and used a pre-trained multimodal LLM as a
reward/value function in the framework. Additionally, Liu et al. (2024b) adopted a similar approach,
focusing on single-step decision making. Specifically, they proposed leveraging a pre-trained LLM
to derive a utility function, which is then maximized to guide action selection.

In order to incorporate an LLM as a reward predictor into MAB in a principled way, we adopt
two classical MAB algorithms as our high-level framework which are naturally amenable to the
integration of an LLM-based reward predictor. Firstly, we adopt the classical Thompson sampling
(TS) algorithm Thompson (1933) and use a powerful pre-trained LLM to sample the reward values
used in TS, hence introducing our Thompson Sampling with LLM (TS-LLM) algorithm. We ensure a
proper balance between exploration and exploitation by carefully controlling the temperature of the
LLM. That is, we ensure that the temperature is large enough in the initial stages to achieve sufficient
exploration and gradually decay its value to promote more exploitation in later stages. Secondly, we
adopt a regression oracle-based MAB algorithm Foster & Rakhlin (2020) and leverage the LLM as
the regression oracle for reward prediction, to introduce our Regression Oracle-based bandit with
LLM (RO-LLM). Since the algorithm from Foster & Rakhlin (2020) is equipped with an explicit
exploration mechanism and hence only needs the LLM to provide an accurate reward prediction, we
set the LLM temperature to 0 to remove the randomness in the reward prediction.

In addition to classical stochastic MAB, we also introduce an LLM-enhanced algorithm for dueling
bandits Li et al. (2024); Verma et al. (2024); Yue et al. (2012). In dueling bandits, instead of a single
arm, a pair of arms are selected in every iteration, after which a binary preference observation is
revealed indicating which arm is preferred over the other. Thanks to the prevalence of preference
feedback, dueling bandits are widely applicable in various important real-world scenarios, such as
recommender systems Yang et al. (2024c), alignment of LLMs (via reinforcement learning from
human feedback) Dwaracherla et al. (2024), among others. However, adapting our algorithms to
dueling bandits is non-trivial due to the need to handle preference feedback (rather than numerical
feedback) and to select a pair of arms. We adapt our TS-LLM algorithm discussed above to intro-
duce the Thompson Sampling with LLM for Dueling Bandits (TS-LLM-DB) algorithm. In order to
achieve a seamless integration of the LLM (as a reward predictor) into dueling bandits, we have
leveraged the theoretical equivalence between the maximizers of the Borda function and the latent
reward function in dueling bandits Mehta et al. (2023) (more details in Sec. 3.3).

Note that in addition to the strong reward prediction capability of LLMs, another benefit of our
LLM-enhanced MAB algorithms is that they do not require us to specify the form of the unknown
reward function. Specifically, classical MAB algorithms are usually only able to handle a specific
class of reward functions, such as linear reward functions Abbasi-Yadkori et al. (2011). As a result,
misspecification of the reward function (i.e., when the groundtruth reward function does not lie in
the pre-specified function class) has been an important challenge in MAB, and many efforts have
been made to address this difficulty Ghosh et al. (2017); Wang et al. (2024b). In contrast, due to
the flexibility of LLMs to predict reward functions of varying degrees of complexity, our algorithms
can automatically adapt to the level of difficulty of the problem. As a result, we are free from the
requirement to specify the class of reward functions beforehand.

We use extensive experiments to demonstrate the empirical advantage of our algorithms. We firstly
use synthetic stochastic MAB experiments to show that our TS-LLM and RO-LLM algorithms
both consistently outperform baseline methods which directly instruct the LLM to select actions
(Sec. 4.1). Next, we show that our TS-LLM-DB algorithm achieves small regrets in synthetic du-
eling bandit experiments (Sec. 4.2). We also apply our TS-LLM to contextual MAB experiments
designed using two real-world text datasets (Sec. 4.3). The results show that in the experiments
where the LLM can exploit the semantic meanings of the arm features (to accurately predict the
association between the contexts and arms), directly instructing the LLM to select actions leads to
strong performance which is comparable to our TS-LLM. In the more challenging tasks in our exper-
iments where the arms lack such semantic information, LLM-based direct arm selection suffers from
significant performance degradation, and our TS-LLM performs dramatically better. We expect our
findings to provide useful and practical guidelines for future works and applications adopting LLMs
as agents to solve real-world sequential decision-making tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PROBLEM SETTING

Multi-Armed Bandits (MAB). In our problem setting, every arm i = 1, . . . ,K is associated with
a d-dimensional feature vector xi ∈ Rd and the reward of an arm i is a function of its feature vector
xi: f(xi). For example, in the classical linear bandits, the reward of arm i is given by a linear
function: f(xi) = θ⊤xi with an unknown θ. In every iteration t, an MAB algorithm selects an arm
it to pull, and observes a corresponding noisy reward yt = f(xit) + ϵ where ϵ is usually a zero-
mean Gaussian noise. The goal of an MAB algorithm is usually to minimize the cumulative regret:
RT =

∑T
t=1[f(xi∗) − f(xit)] where i∗ = argmaxi=1,...,Kf(xi) represents the optimal arm. We

also consider the setting of contextual bandits (Sec. 4.3), in which in every iteration t, we receive a
new set of K arms denoted as It = {it1, . . . , itK} and choose an arm it from It. When selecting an
arm in iteration t, an MAB algorithm needs to make use of (the feature vectors of) the previously
selected arms and their corresponding rewards: Dt−1 = {(xis , rs)}s=1,...,t−1. Therefore, we will
include Dt−1 in the prompt for the LLM-based agent in our algorithms.

Dueling Bandits. In dueling bandits, in every iteration t, we select a pair of arms it,1 and it,2 and
observe binary preference feedback rt = 1(it,1 ≻ it,2), which is equal to 1 if it,1 is preferred over
it,2 and 0 otherwise. We assume that the preference observation rt is generated by the commonly
adopted BTL model Hunter (2004); Luce (2005). Specifically, there exists a latent reward function
f which maps the feature vector xi of an arm i to its corresponding latent reward value f(xi). For
a pair of arms it,1 and it,2, the preference probability (i.e., the probability that arm it,1 is preferred
over arm it,2) under the BTL model is given by P(it,1 ≻ it,2) = µ(f(xit,1) − f(xit,2)), in which
µ : R → [0, 1] is the logistic function: µ(z) = 1/(1 + e−z). The preference observation rt =
1(it,1 ≻ it,2) is then assumed to be sampled from a Bernoulli distribution with the probability
P(it,1 ≻ it,2). A common notion of regret in dueling bandits is RT =

∑T
t=1[2f(xi∗)− f(xit,1)−

f(xit,2)]. However, in practical applications, we usually need to devise a method to recommend an
arm during the dueling bandit algorithm Lin et al. (2024). Our LLM-based algorithm for dueling
bandits recommends the first selected arm it,1 as the best arm (more details in Sec. 3.3). Therefore,
in our experiments (Sec. 4.2), we report the regret of the first arm: RT =

∑T
t=1[f(xi∗)− f(xit,1))],

which we think is more relevant in practice.

3 LLM-ENHANCED MAB ALGORITHMS

3.1 THOMPSON SAMPLING WITH LLM (TS-LLM)

Our TS-LLM (Algo. 1) employs the LLM to predict the reward of every arm and leverages the in-
herent randomness in the LLM-generated text to achieve exploration. Specifically, in every iteration
t, we include the current history of observations Dt−1 = {xis , rs}s=1,...,t−1 in the prompt for the
LLM. For each arm i = 1, . . . ,K, we append its feature vector xi to the end of the prompt and in-
struct the LLM to predict its reward r̂t,i (line 3 of Algo. 1). The prompt adopted in this step is shown
in App. C.1. Then, the arm with the largest predicted reward r̂t,i is selected (line 5 of Algo. 1).

To achieve a gradual transition from exploration to exploitation, we choose a schedule for the tem-
perature of the LLM which decays across iterations. As a result, at the initial stage when significant
exploration is required, we use a large temperature to induce sufficient randomness in the LLM-
generated reward prediction. In later stages when a larger degree of exploitation is more beneficial,
we use a small temperature to reduce the randomness in the reward prediction. This allows us
to naturally combine the powerful reward prediction form the LLM, thanks to its impressive in-
context learning (ICL) capability, and the classical TS algorithm to derive a coherent algorithm for
arm selection in MAB. We empirically verify that such a decaying schedule of temperatures indeed
achieves better performance than using a fixed temperature in Sec. 5.1.

Justifications for TS-LLM (Algo. 1). Our TS-LLM algorithm shares a similar motivation with
some previous works which have also relied on the randomness in the output generated by the LLM
to achieve exploration in sequential decision-making tasks. For example, the work of Yang et al.
(2024b) has adopted an LLM with a large temperature to select a batch of diverse input queries for
Bayesian optimization; the work of Liu et al. (2024c) has used an LLM to predict the performance
achieved by different hyperparameter configurations in Bayesian optimization, and used the variance
of multiple independently sampled predictions from the LLM as the exploration term in their upper
confidence bound-based algorithm. Another line of works with similar underlying principles as our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 TS-LLM
1: for iteration t = 1, . . . , T do
2: for arm i = 1, . . . ,K do
3: r̂t,i = LLM(Dt−1, xi) // predict reward
4: Select arm it = argmaxi=1,...,K r̂t,i, observe reward rt
5: Update history Dt = Dt−1 ∪ {(xit , rt)}

Algorithm 2 RO-LLM
1: for iteration t = 1, . . . , T do
2: for arm i = 1, . . . ,K do
3: l̂t,i = LLM(Dt−1, xi) // predict loss
4: Let jt = argmini=1,...,K l̂t,i
5: for arm i = 1, . . . ,K and i ̸= jt do
6: pt,i =

1

µ+γ(l̂t,i−l̂t,jt)

7: Let pt,jt = 1−
∑

i ̸=jt
pt,i

8: Sample it ∼ pt, observe loss lt (negated reward)
9: Update history Dt = Dt−1 ∪ {(it, lt)}

TS-LLM is approximating Thompson sampling (TS) with neural networks. Some previous works
have adopted an ensemble of neural networks (NNs) Osband et al. (2016; 2023); Dwaracherla et al.
(2024) and performed approximate TS by randomly sampling from the ensemble. In contrast, we
approximate the posterior reward distribution in TS using the stochastic predictions generated by the
LLM in our TS-LLM algorithm.

3.2 REGRESSION ORACLE-BASED MAB WITH LLM (RO-LLM)

A recent line of works have proposed to adopt a generic regression oracle for reward prediction
in MAB, and incorporated explicit exploration mechanisms to derive theoretically principled algo-
rithms Foster et al. (2018); Foster & Rakhlin (2020). Interestingly, the high-level principle of these
works aligns well with our approach in this work, i.e., adopting a model capable of reward prediction
(i.e., a regression oracle in these previous works and an LLM in our work) and utilizing a separate
high-level framework to achieve exploration. Therefore, here we incorporate an LLM as the re-
gression oracle into the SquareCB algorithm from Foster & Rakhlin (2020), hence proposing our
RO-LLM algorithm (Algo. 2). To be consistent with Foster & Rakhlin (2020), instead of rewards, we
consider the observations as losses (line 10 of Algo. 2), which are simply the negation of rewards.

In every iteration t of our RO-LLM algorithm, we use the LLM to predict the loss l̂t,i of every arm i
(line 3 of Algo. 2). Here we adopt the same prompt as the TS-LLM algorithm (shown in App. C.1),
except that here we use losses as observations rather than rewards. Next, we choose the arm with the
smallest predicted loss and denote it as jt (line 4). After that, we use the LLM-based loss predictions
to construct a distribution pt over all K arms (lines 5-7), from which the next arm it is sampled (line
8). Note that the SquareCB algorithm from Foster & Rakhlin (2020) is equipped with an explicit
exploration mechanism (via the sampling distribution pt). As a result, unlike our TS-LLM algorithm,
here we no longer need to exploit the inherent randomness in the LLM-generated output to achieve
exploration. Therefore, when using the LLM for loss prediction in our RO-LLM algorithm (line 3 of
Algo. 2), we set the temperature of the LLM to 0 and hence obtain deterministic reward predictions.

3.3 THOMPSON SAMPLING WITH LLM FOR DUELING BANDITS (TS-LLM-DB)

Here we introduce our TS-LLM-DB algorithm for dueling bandit, in which we select a pair of arms
it,1 and it,2 in every iteration and collect a binary observation indicating their relative preference
rt = 1(it,1 ≻ it,2).

Preference Probability Prediction. In contrast to our TS-LLM (Algo. 1) and RO-LLM (Algo. 2)
which use an LLM to predict the reward of every arm, our TS-LLM-DB algorithm (Algo. 3) instead
adopts an LLM to predict the probability that an arm is preferred over another arm. Specifically,
when adopting the LLM for preference probability prediction via ICL (line 4 of Algo. 3), for the sth

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 3 TS-LLM-DB
1: for iteration t = 1, . . . , T do
2: for arm i = 1, . . . ,K do
3: for uniformly sampled arm j = 1, . . . , N do
4: p̂t,i,j = LLM(Dt−1, [xi, xj])

5: Calculate r̂t,i =
1
N

∑N
n=1 p̂t,i,n

6: Select the first arm it,1 = argmaxi=1,...,K r̂t,i
7: for arm j = 1, . . . ,K do
8: p̂t,j = LLM(Dt−1, [xj , xit,1])
9: Select the second arm it,2 = argmaxi=1,...,K p̂t,i

10: Observe binary preference rt = 1(it,1 ≻ it,2)
11: Update history Dt = Dt−1 ∪ {([it,1, it,2], rt)}

input-output pair in the dataset Dt−1 included in the prompt, the input corresponds to the features of
the pair of arms xis,1 and xis,2 (instead of a single arm in Algo. 1 and Algo. 2). The corresponding
output represents the observed preference rs = 1(is,1 ≻ is,2). When predicting the preference
probability of a pair of arms xi and xj , we append their features at the end of the prompt, denoted
as [xi, xj] (line 4 of Algo. 3). As a result, the LLM is able to predict the probability that the first
arm xi is preferred over the second arm xj , i.e., predict P(xi ≻ xj). The prompt template we have
adopted here is shown in App. C.1.

Representing The Features of Arm Pairs. We adopt two approaches to incorporate the features of
a pair of arms into the prompt. Firstly, when the latent reward function f is linear: f(x) = θ⊤x, we
have that P(x1 ≻ x2) = µ(f(x1)− f(x2)) = µ

(
θ⊤(x1 − x2)

)
. That is, the preference probability

P(x1 ≻ x2) is a function of the difference x1 − x2. Therefore, we use the difference between the
feature vectors of the first arm and second arm (i.e., x1 − x2) in the prompt. Secondly, when the
latent reward function is non-linear, the preference probability is no longer a function of x1−x2. In
this case, we concatenate the feature vectors of x1 and x2 and include them in the prompt.

Selection of A Pair of Arms. To select the pair of arms it,1 and it,2 in every iteration, we draw
inspirations from the arm selection strategy from the work of Verma et al. (2024). Specifically, in
iteration t, for every arm i, we use the LLM to predict the probability that arm i is preferred over N
uniformly sampled arms and calculate their average predicted probability r̂t,i (line 3-5 of Algo. 3).
Then, we choose the first arm by maximizing r̂t,i (line 6). This is equivalent to approximately max-
imizing the Borda function fborda Xu et al. (2020), which is defined as the expected probability that
an arm is preferred over a randomly selected arm: fborda(x) = Ej∈U([K])[P(x ≻ xj)] where U([K])
denotes the uniform distribution among all K arms. Specifically, we estimate the expectation in
fborda(x) by uniformly and independently sampling N arms (lines 3-5 of Algo. 3). Theoretically,
maximizing the Borda function fborda is equivalent to maximizing the latent reward function f (see
Sec. 2) Mehta et al. (2023). Therefore, the first arm it,1 is selected greedily, i.e., via pure exploita-
tion. As a result, after each iteration t, we let our TS-LLM-DB algorithm recommend the first arm as
the best arm. To choose the second arm, we firstly predict the probability that each arm is preferred
over the first arm it,1 (lines 7-8 of Algo. 3), and then select the second arm by maximizing this
predicted probability (line 9). This is inspired by the TS-based algorithm from Verma et al. (2024),
which encourages the second selected arm to both have large reward and be different from it,1 and
all previously selected arms. The work of Verma et al. (2024) has theoretically shown that such an
approach to selecting the pair of arms lead to strong performances (i.e., small cumulative regrets)
both in theory and in practice.

4 EXPERIMENTS

We firstly apply our TS-LLM and RO-LLM algorithms to synthetic stochastic MAB tasks with both
linear and non-linear reward functions (Sec. 4.1). Next, we apply our TS-LLM-DB algorithm to
solve synthetic dueling bandit problems (Sec. 4.2). Lastly, we adopt contextual bandit tasks designed
using two real-world text datasets (Sec. 4.3) to unveil interesting insights about our algorithms. We
adopt GPT-3.5-Turbo OpenAI (2023a) as the black-box LLM in the majority of our experiments,
and also use DeepSeek-V3 Liu et al. (2024a), Llama-3.3-70B-Instruct Grattafiori et al. (2024) and
Qwen2.5-72B-Instruct Yang et al. (2024a) in the experiments in Sec. 4.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Linear Reward Function Square Reward Function Sinusoidal Reward Function Function Sampled from GP

Figure 1: The performance of our TS-LLM and RO-LLM in classical stochastic MAB tasks.

Figure 2: The performance of
our TS-LLM with linear reward
function and K = 50 arms.

Figure 3: The performance of our TS-LLM-DB in dueling
bandits with linear and square latent reward functions.

4.1 TS-LLM AND RO-LLM FOR CLASSICAL STOCHASTIC MAB

We adopt 4 different reward functions in the stochastic MAB experiments here: a linear function,
a square function, a sinusoidal function and a function sampled from a Gaussian process (GP). Ev-
ery arm is associated with a d = 4-dimensional feature vector, and we use K = 16 arms in all
experiments here. We compare our TS-LLM and RO-LLM algorithms with some baseline algo-
rithms from the work of Krishnamurthy et al. (2024). Specifically, we adopt the best prompt design
from Krishnamurthy et al. (2024), i.e., the prompt design which achieved the largest median reward
among a total of 32 prompt designs when using GPT-3.5 in the hard bandit instance. Notably, this
prompt design utilizes Chain-of-Thought (CoT) prompting, as detailed in the prompts provided in
Appendix C.3. The prompt designs from Krishnamurthy et al. (2024) do not take into account the
features of the arms, therefore, we have proposed and tested multiple variants of their baseline algo-
rithm which differ in terms of the position of the arm features: (a) Baseline NoFeature: the original
algorithm from Krishnamurthy et al. (2024); (b) Baseline FramingFeature: we add the arm features
after the problem framing; (c) Baseline HistoryFeature: we add the arm features immediately before
the history of interactions. In addition, in the experiment with linear reward function, we have also
compared with the classical baseline of Linear UCB. The cumulative regrets of different methods
are shown in Fig. 1, which demonstrate that both our TS-LLM and RO-LLM achieve smaller regrets
than the baseline from Krishnamurthy et al. (2024). Moreover, for linear reward function, the classi-
cal Linear UCB algorithm achieves smaller regrets than all LLM-based baseline methods, as well as
our RO-LLM. However, remarkably, our TS-LLM achieves comparable performance to Linear UCB.
In addition, Fig. 1 shows that our TS-LLM significantly outperforms our RO-LLM algorithm, which
is likely attributed to the strong exploration capability enabled by the inherent randomness in the
LLM-generated output (Sec. 3.1). On the other hand, our RO-LLM algorithm generally have smaller
variance across multiple trials, which is indicated by the narrower error bars. This is likely due to the
use of a temperature of 0 in our RO-LLM algorithm (Sec. 3.2) and may make our RO-LLM algorithm
more desirable in scenarios where more consistent performance is preferred. In addition, we have
also tested the performance of our TS-LLM with a larger number of arms (K = 50). The results in
Fig. 2 demonstrate the robustness of the performance advantage of our TS-LLM.

4.2 DUELING BANDITS

Here we apply our TS-LLM-DB algorithm to solve dueling bandit problems with two different latent
reward functions f : a linear function and a square function. Same as the experiments in Sec. 4.1, we
also let d = 4 and K = 16. In our experiments here, when selecting the first arm, we use N = 15
uniformly sampled arms to approximate the Borda function (Sec. 3.3). Similar to the experiments

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

OneShotWikiLinks OneShotWikiLinks AmazonCat-13K AmazonCat-13K
(GPT-3.5-Turbo) (DeepSeek-V3) (GPT-3.5-Turbo) (DeepSeek-V3)

Figure 4: The cumulative rewards in the text experiments using the OneShotWikiLinks and
AmazonCat-13K datasets (Sec. 4.3). Higher values indicate better performance.

on classical stochastic MAB (Sec. 4.1), we also adopt a decaying schedule of temperature when
selecting both arms. Since our TS-LLM-DB selects the first arm greedily (i.e., pure exploitation)
and chooses the second arm optimistically by balancing exploration and exploitation (Sec. 3.3), we
adopt a schedule of smaller temperatures when selecting the first arm to encourage exploitation. As
we have discussed in Sec. 3.3, for the linear latent reward function, we use the difference between
the feature vectors of the first arm and the second arm as the feature vector in the prompt; for the
non-linear square function, we instead adopt the concatenation of the pair of feature vectors.

The results are shown in Fig. 3. Following the common practice in dueling bandits Lin et al. (2024);
Verma et al. (2024), here we have reported the reward of the first selected arm (i.e., f(xit,1)) in every
iteration t. This is because the first arm is selected to be the one that is predicted to achieve the largest
reward (Sec. 3.3). Here we have only compared with the baseline of random search, because it is
highly non-trivial to adapt the algorithm from Krishnamurthy et al. (2024) to the sophisticated du-
eling bandit problem. As shown in the figures, our TS-LLM-DB significantly outperforms random
search for both reward functions. Moreover, the regrets are generally larger in the more challenging
problem of non-linear (square) reward function.

4.3 REAL-WORLD DATASETS WITH TEXT FEATURES

Here we perform experiments using two real-world text dataset: the OneShotWikiLinks dataset
Singh et al. (2012); Vasnetsov (2018) and the AmazonCat-13K dataset Bhatia et al. (2016), both
of which have been widely adopted in previous works on contextual bandits Chen et al. (2024). The
OneShotWikiLinks dataset Singh et al. (2012); Vasnetsov (2018) is a named-entity recognition
task in which the contexts consist of text phrases surrounding the mention text (both preceding
and following it), and the arms are text phrases representing concept names. AmazonCat-13K
Bhatia et al. (2016) is an extreme multi-label dataset where the contexts are text phrases derived
from the title and content of an item, and the arms are integers representing item tags. Thus, in the
former dataset, the arm features (i.e., the text phrases) contain semantic information that is likely
beneficial for the LLM in selecting arms, whereas in the latter dataset, the arm features lack such
semantic content. As a result, the latter dataset (i.e., AmazonCat-13K) requires a larger degree of
exploration and is hence more challenging.

We apply our TS-LLM to the tasks here, because it achieves smaller regrets than RO-LLM in the
synthetic experiments (Sec. 4.1). Since it is non-trivial to adapt the method from Krishnamurthy
et al. (2024) to the sophisticated problem setting here, we instead compare our TS-LLM with a
baseline which is obtained by modifying the prompt of our algorithm (originally designed for reward
prediction) to instead directly select an arm. We refer to this baseline method as Baseline (Direct
Arm Selection). We have included the prompt templates used by our TS-LLM and the baseline
(for both experiments) in App. C.4. We consider K = 10 randomly sampled arms (i.e., 10 concept
names in OneShotWikiLinks and 10 items in AmazonCat-13K) in the experiments, and adopt
two powerful black-box LLMs: GPT-3.5-Turbo and DeepSeek-V3.

The results are shown in Fig. 4. The figures show that our TS-LLM algorithm achieves compara-
ble performance with the baseline of direct arm selection in the OneShotWikiLinks task and
significantly outperforms the baseline in the AmazonCat-13K task. This is likely because in
OneShotWikiLinks task, the powerful LLMs possesses in-depth knowledge about the semantic
meanings of the individual arms, i.e., the names of the entities. As a result, given some context
(i.e., the text before and after the entity), the LLM is able to accurately choose the corresponding

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AmazonCat-13K AmazonCat-13K
(GPT-3.5-Turbo, 30 arms) (DeepSeek-V3, 30 arms)

Figure 5: The cumulative rewards in the text experiments using the AmazonCat-13K dataset with
K = 30 arms.

Figure 6: Results using two other LLMs:
Llama-3.3-70B-Instruct and Qwen2.5-72B-
Instruct (AmazonCat-13K).

Figure 7: The performance of our TS-LLM al-
gorithm in stochastic MAB tasks with different
temperatures.

arm whose semantic meaning is associated with the context, which explains the strong performance
of the baseline of direct arm selection in the OneShotWikiLinks task. On the other hand, in
the AmazonCat-13K task, since the arms lack such semantic information useful for the LLMs,
the LLMs are not able to accurately infer the association between the contexts (i.e., text phrases
describing an item) and the arms (i.e., integers representing item tags). Therefore, in such tasks,
an algorithm needs to perform substantial exploration in order to learn the association between the
contexts and the arms and hence to achieve small regrets. The inadequate performance of the base-
line algorithm in this task can likely be attributed to the inability of LLM-based direct arm selection
to engage in efficient exploration, which aligns with the findings from Krishnamurthy et al. (2024).
Meanwhile, thanks to the strong exploration capability of the high-level classical TS mechanism
(Sec. 3.1), our TS-LLM algorithm is able to efficiently explore the space of arms and hence to
achieve small regrets in this task.

To further verify this insight, we have additionally conducted an experiment using the
AmazonCat-13K dataset in a more challenging setting, i.e., with a larger number of arms (i.e.,
K = 30). The results (Fig. 5) show that the performance advantage of our TS-LLM over the base-
line is further enlarged. Therefore, the results in Figs. 4 and 5 demonstrate that compared with
the approach of directly instructing the LLM to select arms, our TS-LLM algorithm is particu-
larly beneficial in challenging tasks where considerable exploration is required. On the other
hand, LLM-based direct arm selection is expected to perform well in scenarios where the LLM has
significant knowledge about the arms or the association between the contexts and the arms.

Robustness of Our Findings Across Different LLMs. We have also conducted experiments using
the AmazonCat-13K dataset with two additional LLMs: Llama-3.3-70B-Instruct Grattafiori et al.
(2024) and Qwen2.5-72B-Instruct Yang et al. (2024a). The results in Fig. 6 demonstrate that the
performance advantage of our TS-LLM is consistent across various LLMs.

5 ABLATION STUDY

5.1 IMPACT OF DIFFERENT TEMPERATURES

Here we investigate the impact of the temperature of the LLM on the performance of our
TS-LLM (Algo. 1). As we have discussed in Sec. 3.1, we adopt a decaying schedule for the LLM
temperature to ensure a transition from exploration to exploitation. We follow the same experimen-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

TS-LLM-DB TS-LLM-DB
(Linear Reward Function)(Square Reward Function)

Figure 8: Impact of the number of uniformly
sampled arms N when estimating the Borda
function to select the first arm in TS-LLM-DB.

RO-LLM RO-LLM
(Linear Reward Function)(Square Reward Function)

Figure 9: The impact of the exploration parame-
ter γ in our RO-LLM algorithm.

tal setting as Sec. 4.1 and adopt the linear reward function. The results in Fig. 7 show that the best
performance is achieved by adopting decaying LLM temperatures, whereas fixing the temperature
to various values leads to inferior performance. This is because fixing the temperature to a large
value hinders the exploitation capability of TS-LLM in later stages, while the use of a fixed small
temperature results in insufficient exploration in the initial stage.

5.2 IMPACT OF THE NUMBER OF SAMPLES N WHEN SELECTING THE FIRST ARM IN
TS-LLM-DB

Recall that our TS-LLM-DB algorithm selects the first arm by approximately maximizing the Borda
function fborda (Sec. 3.3), in which we use N randomly sampled arms to approximate the expectation
in fborda (lines 3-5 of Algo. 3). Fig. 8 presents the results of our TS-LLM-DB with different values
of N , which demonstrate that a larger N improves the performance because it leads to a better
approximation of fborda. However, also note that the use of a larger N increases the number of API
calls to the LLM and hence incurs more cost. Therefore, in practice, the value of N should be
selected based on the trade-off between the desired performance and the budget.

5.3 IMPACT OF THE EXPLORATION PARAMETER IN OUR RO-LLM ALGORITHM

The parameter γ in our RO-LLM can be used to control the degree of exploration. As can be seen
from lines 4-7 of Algo. 2, a larger value of γ results in a larger weight (in the arm sampling distri-
bution pt) on the arm jt that is predicted to be the best arm. Therefore, a larger γ leads to greater
emphasis on exploitation, thereby reducing the focus on exploration. Here we test three values of γ
and display the results in Fig 9. The figures show that an overly small value of γ = 1 significantly
deteriorates the performance due to excessive exploration. In the relatively simpler MAB problem
with a linear reward function, a larger γ = 10 (i.e., more emphasis on exploitation) benefits the al-
gorithm since only minimal exploration is required to learn the simple reward function. Meanwhile,
in the more difficult problem with a non-linear (square) function, a larger γ = 10 leads to worse
regrets than γ = 5 since a larger degree of exploration is needed compared to the linear function.

6 CONCLUSION

In this work, we propose an alternative paradigm of LLM-based sequential decision making and
focus on the MAB problem. We adopt a classical MAB algorithm as the high-level framework and
leverage the strong in-context learning capability of LLMs to perform the sub-task of reward pre-
diction. Synthetic experiments show that our algorithms consistently outperform baseline methods
of LLM-based direct arm selection. Through contextual MAB experiments designed using two real-
world text datasets, we show that in challenging tasks where the arm features are not associated
with semantic meanings exploitable by the LLM, our TS-LLM performs significantly better than
LLM-based direct arm selection.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have clearly described our detailed experimental setting in Sec. 4 and
App. C, which are necessary to reproduce our experimental results. The prompts adopted by our
algorithms are all listed in App. C.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Proc. NeurIPS, pp. 2312–2320, 2011.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification
repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/downl
oads/XC/XMLRepository.html.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Dingyang Chen, Qi Zhang, and Yinglun Zhu. Efficient sequential decision making with large lan-
guage models. arXiv preprint arXiv:2406.12125, 2024.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao
Wang, Zekai Wang, Feng Yin, Junhua Zhao, et al. Exploring large language model based intelli-
gent agents: Definitions, methods, and prospects. arXiv preprint arXiv:2401.03428, 2024.

Zhenwen Dai, Federico Tomasi, and Sina Ghiassian. In-context exploration-exploitation for rein-
forcement learning. arXiv preprint arXiv:2403.06826, 2024.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for LLMs. arXiv preprint arXiv:2402.00396, 2024.

Dylan Foster and Alexander Rakhlin. Beyond UCB: Optimal and efficient contextual bandits with
regression oracles. In International Conference on Machine Learning, pp. 3199–3210. PMLR,
2020.

Dylan Foster, Alekh Agarwal, Miroslav Dudı́k, Haipeng Luo, and Robert Schapire. Practical con-
textual bandits with regression oracles. In International Conference on Machine Learning, pp.
1539–1548. PMLR, 2018.

Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan. Misspecified linear bandits. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Keegan Harris and Aleksandrs Slivkins. Should you use your large language model to explore or
exploit? arXiv preprint arXiv:2502.00225, 2025.

David R Hunter. Mm algorithms for generalized bradley-terry models. Annals of Statistics, pp.
384–406, 2004.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

10

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Xuheng Li, Heyang Zhao, and Quanquan Gu. Feel-Good Thompson Sampling for Contextual Du-
eling Bandits. arXiv preprint arXiv:2404.06013, 2024.

Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Ollie Liu, Deqing Fu, Dani Yogatama, and Willie Neiswanger. DeLLMa: A framework for decision
making under uncertainty with large language models. arXiv preprint arXiv:2402.02392, 2024b.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. arXiv preprint arXiv:2402.03921, 2024c.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2005.

Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and Willie
Neiswanger. Sample efficient reinforcement learning from human feedback via active exploration.
2023.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
ment learners. arXiv preprint arXiv:2410.05362, 2024.

Subhojyoti Mukherjee, Josiah P Hanna, Qiaomin Xie, and Robert Nowak. Pretraining decision
transformers with reward prediction for in-context multi-task structured bandit learning. arXiv
preprint arXiv:2406.05064, 2024.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

OpenAI. ChatGPT. https://chat.openai.com, 2023a.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023b.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. Advances in Neural Information
Processing Systems, 36:2795–2823, 2023.

Sameer Singh, Amarnag Subramanya, Fernando Pereira, and Andrew McCallum. Wikilinks: A
large-scale cross-document coreference corpus labeled via links to wikipedia. University of Mas-
sachusetts, Amherst, Tech. Rep. UM-CS-2012, 15, 2012.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Andrey Vasnetsov. Oneshot-wikilinks. https://www.kaggle.com/generall/oneshotw
ikilinks, 2018.

Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. Neural
dueling bandits. arXiv preprint arXiv:2407.17112, 2024.

11

https://chat.openai.com
https://www.kaggle.com/generall/oneshotwikilinks
https://www.kaggle.com/generall/oneshotwikilinks

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024a.

Zhiyong Wang, Jize Xie, Xutong Liu, Shuai Li, and John Lui. Online clustering of bandits with
misspecified user models. Advances in Neural Information Processing Systems, 36, 2024b.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Fanzeng Xia, Hao Liu, Yisong Yue, and Tongxin Li. Beyond numeric awards: In-context dueling
bandits with llm agents. arXiv preprint arXiv:2407.01887, 2024.

Yichong Xu, Aparna Joshi, Aarti Singh, and Artur Dubrawski. Zeroth order non-convex optimiza-
tion with dueling-choice bandits. In Conference on Uncertainty in Artificial Intelligence, pp.
899–908. PMLR, 2020.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In Proc. ICLR, 2024b.

Shuhua Yang, Hui Yuan, Xiaoying Zhang, Mengdi Wang, Hong Zhang, and Huazheng Wang.
Conversational dueling bandits in generalized linear models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3806–3817, 2024c.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, pp. 1538–1556, 2012.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level
mathematical reasoning. arXiv preprint arXiv:2410.02884, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

LLM-Based Multi-Armed Bandits (MAB). The work of Krishnamurthy et al. (2024) used an LLM
to sequentially choose the arms in MAB. They have consider standard MAB problems with a finite
number of arms, and their results have shown that LLMs struggle in MAB tasks in most scenarios
(i.e., for most of their prompt designs). Some recent works proposed techniques to improve the
exploration capability of LLMs in MAB tasks, such as random subsampling from the interaction
history Monea et al. (2024), and adding summary statistics of the interaction history to the prompt
Nie et al. (2024). The work of Harris & Slivkins (2025) demonstrated that LLMs can be used to
accelerate the exploration in MAB tasks by selecting promising candidates from a large action space.
The work of Chen et al. (2024) proposed to adopt an LLM-based arm selection strategy in the initial
stage of MAB and gradually switch to classical MAB algorithms in later stages. However, their
method requires the availability of the likelihood of the LLMs and are hence not able to adopt the
typically more powerful black-box LLMs such as ChatGPT. The work of Xia et al. (2024) proposed
an LLM-based algorithm for dueling bandits. Compared with our TS-LLM-DB (Sec. 3.3), they have
considered a simpler setting of dueling bandits in which the preference feedback is generated by a
preference matrix. In contrast, we have adopted the BTL model (Sec. 2), which allows us to take
into account the arm features and hence makes our setting more general. Mukherjee et al. (2024)
proposed to train a decision transformer to predict the rewards of different arms in MAB and hence
to assist in arm selection.

Other LLM-Based Sequential Decision-Making Methods. In addition to MAB, some previous
works have proposed methods to incorporate LLMs into other sequential decision-making algo-
rithms. For example, some prior works have used LLMs to improve the performance of Bayesian
optimization (BO) by either directly instructing the LLM to sequentially select the input queries
in BO Yang et al. (2024b) or using LLMs to enhance different components of BO (such as initial
input selection, surrogate model prediction, etc.) Liu et al. (2024c). A number of recent works
have used the transformer model to learn a policy for action selection in reinforcement learning Dai
et al. (2024); Laskin et al. (2022); Lee et al. (2024). The field of LLM-based agents is broad and
has garnered significant attention due to the rapidly advancing capabilities of modern LLMs. Many
surveys on LLM-based agents have been released Cheng et al. (2024); Wang et al. (2024a); Xi et al.
(2023), offering comprehensive overviews of this area.

B STATEMENT OF LLM USAGE

We have used LLMs to help polish the writing of the paper.

C MORE EXPERIMENTAL DETAILS AND RESULTS

In all our synthetic experiments (Secs. 4.1 and 4.2), the MAB tasks have K = 16 features
and the feature vectors of the arms are 4-dimensional. All our experiments are conducted us-
ing a computer with an 11th Gen Intel Core i7-1165G7 4-Core Processor and 16GB RAM. The
OneShotWikiLinks dataset Singh et al. (2012); Vasnetsov (2018) and the AmazonCat-13K
dataset Bhatia et al. (2016) are under the CC BY 4.0 license. All error bars in the plots represent the
standard error of the mean.

C.1 THE PROMPT TEMPLATE ADOPTED BY OUR ALGORITHMS

Below is the prompt we have used for our TS-LLM algorithm (Algo. 1) and RO-LLM algorithm
(Algo. 2) in classical stochastic bandits experiment in Sec. 4.1. Here every [INPUT] contains the
feature vectors of an arm, and every [OUTPUT] corresponds to its corresponding observed reward.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt for Our TS-LLM and RO-LLM

Help me predict the function value at the last input. Each function value is associated with a Normal
distribution with a fixed but unknown mean. Your response should only contain the function value in
the format of #function value#.
input: [INPUT], output: [OUTPUT]
input: [INPUT], output: [OUTPUT]
...
input: [INPUT], output:

The template below is the prompt we have used for our TS-LLM-DB algorithm (Algo. 3) in the
dueling bandit experiment in Sec. 4.2. Here every [INPUT] contains the difference or concatena-
tion of the feature vectors of a pair of arms (see Sec. 4.2 for more details), and every [OUTPUT]
corresponds to a binary observation which is equal to 1 if the first arm is preferred over the second
arm and 0 otherwise. Although the output labels for each data point in the prompt is binary, here we
have instructed the LLM to predict a continuous value, to ensure that the LLM-generated output can
be used as the preference probability.

Prompt for Our TS-LLM-DB

Help me predict the value for the last input as a continuous value between 0 and 1. Your response
MUST only contain the value in the format of #value#.
input: [INPUT], output: [OUTPUT]
input: [INPUT], output: [OUTPUT]
...
input: [INPUT], output:

C.2 MORE DETAILS ON THE SYNTHETIC EXPERIMENTS (SECS. 4.1 AND 4.2)

In our synthetic experiments in Sec. 4.1, we have adopted synthetic functions as the reward functions
f , including linear function: f(x) = θ⊤x, square function: f(x) = (θ⊤x)2, sinusoidal function:
f(x) = sin(θ⊤x), and a function sampled from a Gaussian process with a length scale of 0.4. We
repeat each experiment 10 times with a different random seed for each repetition. We run each
method for 100 iterations, with the initial 2 arms randomly selected. We add a Gaussian noise with a
noise variance of 0.02 to each observation. In all our experiments here, we have adopted the optimal
schedule for the temperature discovered in Sec. 5.1 (Fig. 7). For the classical baseline of Linear
UCB in the experiment with linear reward function, an extensive grid search was conducted for the
exploration parameter. The search range was from 0.01 to 1 with a step size of 0.01. Additionally,
the groundtruth observation noise variance (i.e., 0.02) was used as the regularization parameter λ.

In our synthetic experiments on dueling bandits in Sec. 4.2, we adopt the following latent reward
functions: linear function: f(x) = θ⊤x, and square function: f(x) = (θ⊤x)2. We repeat each
experiment 5 times with a different random seed for each repetition. We run each method for 150
iterations, with the initial 2 arms randomly selected. As we have discussed in Sec. 4.2, we use
a decaying schedule of LLM temperatures, and adopt a smaller schedule of temperatures when
selecting the first arm to encourage exploitation. Specifically, for linear latent reward function, in
iteration t, we use temp(t) = 1.5−min(0.1×

√
t, 1.4) as the temperature when selecting the first arm

and use temp(t) = 1.5 −min(0.1 ×
√
t, 1.1) when choosing the second arm. For the square latent

reward function, we adopt larger values of the temperature, because the non-linear reward function
makes the dueling bandit problem more challenging and hence a larger degree of exploration is
needed. Specifically, we use temp(t) = 1.6−min(0.13×

√
t, 1.5) when choosing the first arm and

let temp(t) = 1.6−min(0.13×
√
t, 1.1) when selecting the second arm.

In our experiments here, we use the BTL model to obtain the preference observation (Sec. 2). Specif-
ically, after a pair of arms it,1 and it,2 are selected, we firstly calculate their preference probability:

P(xit,1 ≻ xit,2) =
1

1 + e−10(f(xit,1
)−f(xit,2

))
. (1)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We have added a 10 in the exponent to reduce the noise in the preference observations and hence
simplify the dueling bandit problem. Then, we sample the binary reward observation rt from a
Bernoulli distribution with the probability P(xit,1 ≻ xit,2).

C.3 MORE DETAILS ABOUT THE BASELINE ALGORITHMS

Here we present the prompts we have used for different baseline algorithms we have used in Sec. 4.1.
Specifically, how we have modified the prompt from the LLM-based MAB method from Krishna-
murthy et al. (2024) in different ways in order to incorporate the features of the arms, to make their
method comparable with our algorithms. We have highlighted the arm features we have added in
blue.

Baseline: NoFeature

You are in a room with 16 buttons labeled
[’blue’, ’green’, ’red’, ’yellow’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’lime’, ’pink’, ’teal’, ’lavender’, ’brown’, ’beige’, ’maroon’, ’mint’]
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different
and are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the
button’s associated distribution.
You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the
total reward over the 100 time steps. So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]
...
You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#. Each probability value(p1,p2,...,p16) MUST be a number between 0 and
1, and the total of all probabilities MUST equal 1.
Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.

Baseline: FramingFeature

You are in a room with 16 buttons labeled
[’blue’, ’green’, ’red’, ’yellow’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’lime’, ’pink’, ’teal’, ’lavender’, ’brown’, ’beige’, ’maroon’, ’mint’]
Feature of [COLOR] button: [FEATURE]
Feature of [COLOR] button: [FEATURE]
...
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different
and are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the
button’s associated distribution.
You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the
total reward over the 100 time steps. So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]
...
You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#. Each probability value(p1,p2,...,p16) MUST be a number between 0 and
1, and the total of all probabilities MUST equal 1.
Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Baseline: HistoryFeature

You are in a room with 16 buttons labeled
[’blue’, ’green’, ’red’, ’yellow’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’lime’, ’pink’, ’teal’, ’lavender’, ’brown’, ’beige’, ’maroon’, ’mint’]
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different
and are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the
button’s associated distribution.
You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the
total reward over the 100 time steps.
Feature of [COLOR] button: [FEATURE]
Feature of [COLOR] button: [FEATURE]
...
So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]
...
You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#. Each probability value(p1,p2,...,p16) MUST be a number between 0 and
1, and the total of all probabilities MUST equal 1.
Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #[COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.

C.4 MORE DETAILS ON THE TEXT EXPERIMENTS

Here we present more details on the experiment in Sec. 4.3 in which we have adopted a real-world
text dataset. Every experiment in this section is repeated 10 times with a different random seed in
every repetition, except that the experiments in Fig. 6 are repeated 3 times.

In the experiment using the OneShotWikiLinks dataset, contexts exceeding 400 words were
first removed. Then, 10 concept names were randomly selected, each associated with 2,000 to 3,000
contexts. Finally, 2,000 contexts were randomly sampled for each of these 10 concept names. For
the experiment using the AmazonCat-13K dataset, contexts exceeding 500 characters in length
were first removed. Then, only data containing a single item tag was retained. Finally, the top 10
or 30 item tags with the highest number of contexts were selected, and all corresponding data were
used as experimental data. The number of data samples for the 10-arm and 30-arm experiments
were 34,227 and 40,287, respectively.

We display below the prompts we have used for our TS-LLM algorithm and the baseline algorithm
in the two text datasets. For fair comparisons, we keep most of the contents between the prompts
of the two methods identical. Therefore, the only major difference between the prompts of the two
methods is that the prompt for the baseline method directly instructs the LLM to select the next arm
to pull. On the other hand, in the prompt for our TS-LLM algorithm, we let the LLM predict the
score of a combination of a context and an arm. As a result, the prompt for our TS-LLM bears a
larger degree of resemblance to standard in-context learning, because we are effectively leveraging
the LLM to solve a supervised learning task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt for TS-LLM in OneShotWikiLinks task

Task Description
At the TEST DATA, Please assign a reward indicating how well the Incomplete Text aligns with the
Previous Text and Next Text.

reward:
- 0 indicates poor alignment.
- 1 indicates perfect alignment.
- A reward closer to 1 should only be assigned when the Incomplete Text is perfectly aligned with the
surrounding texts.

The Incomplete Text can be one of the following words:
[’Microsoft Windows’, ’Telugu’, ’XML’, ’Moscow’, ’help’, ’MTV’, ’Halloween’, ’Ottoman Empire’,
’Soviet’, ’Bangladesh’].

The reward value MUST be a number between 0 and 1. Your response MUST be the reward
value only, formatted as #reward value#.

Below are previous examples:
Previous Text: [PREVIOUS TEXT]
Next Text: [NEXT TEXT]
Incomplete Text: [INCOMPLETE TEXT]
Reward: [REWARD]

Previous Text: [PREVIOUS TEXT]
Next Text: [NEXT TEXT]
Incomplete Text: [INCOMPLETE TEXT]
Reward: [REWARD]

...

###TEST DATA:
This is the TEST DATA for which the reward needs to be assigned:
Previous Text: [PREVIOUS TEXT]
Next Text: [NEXT TEXT]
Incomplete Text: [INCOMPLETE TEXT]
Reward:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt for the Baseline Method in OneShotWikiLinks task

The task is to choose the most suitable word to complete the Incomplete Text from the following list
of options in order to earn the most reward:
[’Microsoft Windows’, ’Telugu’, ’XML’, ’Moscow’, ’help’, ’MTV’, ’Halloween’, ’Ottoman Empire’,
’Soviet’, ’Bangladesh’].
Your response MUST only contain one word from the list.

Reward indicates how well the Incomplete Text aligns with the Previous Text and Next Text.
- 0 indicates poor alignment.
- 1 indicates perfect alignment.

Below is the historical data:
Previous Text: [PREVIOUS TEXT]
Next Text: [NEXT TEXT]
Incomplete Text: [INCOMPLETE TEXT]
Reward: [REWARD]

Previous Text: [PREVIOUS TEXT]
Next Text: [NEXT TEXT]
Incomplete Text: [INCOMPLETE TEXT]
Reward: [REWARD]

...

Below is the incomplete text for which you need to complete:
Previous Text: [PREVIOUS TEXT]
Next Text: [NEXT TEXT]
Incomplete Text:

Prompt for TS-LLM in AmazonCat task

There are Titles and Contents of some items.

Labels and items correspond one-to-one.
There are a total of 10 items.The Labels MUST be ONE of the following numbers:
[2571, 1471, 7961, 12246, 5754, 342, 5456, 5960, 11235, 10688]

The Reward is a number between 0 and 1 determined by whether the Label is correct or not.

Help me predict the Reward at the last Title, Content and Label.

Your response MUST be the predicted Reward only, formatted as #predicted Reward#.

Title: [Title]
Content: [Content]
Label: [Label]
Reward: [REWARD]

Title: [Title]
Content: [Content]
Label: [Label]
Reward: [REWARD]

...

Title: [Title]
Content: [Content]
Label: [Label]
Reward:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt for the Baseline Method in AmazonCat task

There are Titles and Contents of some items.

Labels and items correspond one-to-one.
There are a total of 10 items.The Labels MUST be ONE of the following numbers:
[2571, 1471, 7961, 12246, 5754, 342, 5456, 5960, 11235, 10688]

The Reward is a number between 0 and 1 determined by whether the Label is correct or not.

Help me choose the correct Label at the last Title and Content. Your response MUST be the
chosen Label only, formatted as #chosen Label#.

Title: [Title]
Content: [Content]
Label: [Label]
Reward: [REWARD]

Title: [Title]
Content: [Content]
Label: [Label]
Reward: [REWARD]

...

Title: [Title]
Content: [Content]
Label:

19

	Introduction
	Problem Setting
	LLM-Enhanced MAB Algorithms
	Thompson Sampling with LLM (TS-LLM)
	Regression Oracle-Based MAB with LLM (RO-LLM)
	Thompson Sampling with LLM for Dueling Bandits (TS-LLM-DB)

	Experiments
	TS-LLM and RO-LLM for Classical Stochastic MAB
	Dueling Bandits
	Real-World Datasets with Text Features

	Ablation Study
	Impact of Different Temperatures
	Impact of the Number of Samples N When Selecting the First Arm in TS-LLM-DB
	Impact of The Exploration Parameter in Our RO-LLM Algorithm

	Conclusion
	Related Work
	Statement of LLM Usage
	More Experimental Details and Results
	The Prompt Template Adopted by Our Algorithms
	More Details on The Synthetic Experiments (Secs. 4.1 and 4.2)
	More Details about the Baseline Algorithms
	More Details on the Text Experiments

