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ABSTRACT

Large language models (LLMs) have been adopted to solve sequential decision-
making tasks such as multi-armed bandits (MAB), in which an LLM is directly
instructed to select the arms to pull in every iteration. However, this paradigm
of direct arm selection using LLMs has been shown to be suboptimal in many
MAB tasks. Therefore, we propose an alternative approach which combines the
strengths of classical MAB and LLMs. Specifically, we adopt a classical MAB
algorithm as the high-level framework and leverage the strong in-context learn-
ing capability of LLMs to perform the sub-task of reward prediction. Firstly, we
incorporate the LLM-based reward predictor into the classical Thompson sam-
pling (TS) algorithm and adopt a decaying schedule for the LLM temperature
to ensure a transition from exploration to exploitation. Next, we incorporate the
LLM-based reward predictor (with a temperature of 0) into a regression oracle-
based MAB algorithm equipped with an explicit exploration mechanism. We also
extend our TS-based algorithm to dueling bandits where only the preference feed-
back between pairs of arms is available, which requires non-trivial algorithmic
modifications. We firstly conduct empirical evaluations on synthetic MAB tasks,
where the results show that our algorithms consistently outperform LLM-based
direct arm selection. Additionally, we perform experiments using real-world text
datasets, in which the results demonstrate that in challenging tasks where the arms
lack semantic meanings that can be exploited by the LLM, our approach delivers
significantly better performance than LLM-based direct arm selection.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in various tasks|Liu et al.
(2024a); |OpenAll (2023azb). As a result, many recent works have leveraged LLMs as agents to
solve real-world sequential decision-making tasks. Specifically, some recent works have adopted
powerful pre-trained LLMs to solve multi-armed bandit (MAB) problems |Chen et al.| (2024); |Kr-
1shnamurthy et al.| (2024)); Mukherjee et al.| (2024); Xia et al.| (2024). These works usually directly
instruct a pre-trained LLM to select the next arm to pull and do not require the costly LLM fine-
tuning. However, this paradigm has been demonstrated to lead to sub-optimal MAB algorithms in
many scenarios [Krishnamurthy et al.|(2024)). Specifically, it has been observed that directly using an
LLM for arm selection often struggles to explore efficiently in real-world environments. To this end,
we propose an alternative paradigm which combines classical MAB algorithms with LLMs such that
we can achieve the best of both worlds. Specifically, we leverage a classical MAB algorithm as the
high-level framework, and adopt a pre-trained LLM (without fine-tuning) to perform the sub-task
of reward prediction based on the history of (the features of) the selected arms and their observed
rewards. Compared to the previous approach of directly employing an LLM for arm selection |Kr-
ishnamurthy et al.| (2024)), this allows us to leverage the strength of LLMs in in-context learning
(ICL) to solve prediction (i.e., supervised learning) tasks. In other words, instead of using an LLM
to replace the MAB algorithm, we leverage LLMs to enhance classical MAB algorithms.

We further motivate our approach by drawing analogy to recent works aiming to improve the per-
formance of LLMs in complex reasoning tasks via tree search methods B1 et al.| (2024); [Hao et al.
(2023); [Yao et al.|(2024); Zhang et al.| (2024). Specifically, these methods often adopt a classical
tree search algorithm as the high-level framework (e.g., Monte-Carlo tree search), and use LLMs
to perform different sub-tasks such as reward/value prediction, action generation, etc. Therefore,
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their overall paradigm aligns with our approach of using classical algorithms to guide the high-level
decision-making while leveraging the strengths of LLMs in performing some sub-tasks. For exam-
ple, the work of |[Koh et al.| (2024)) has also used a pre-trained LLM for reward prediction based on
the past history to improve classical algorithms. Specifically, they have adopted best-first search as
the high-level reasoning framework in web automation and used a pre-trained multimodal LLM as a
reward/value function in the framework. Additionally, |Liu et al.|(2024b)) adopted a similar approach,
focusing on single-step decision making. Specifically, they proposed leveraging a pre-trained LLM
to derive a utility function, which is then maximized to guide action selection.

In order to incorporate an LLM as a reward predictor into MAB in a principled way, we adopt
two classical MAB algorithms as our high-level framework which are naturally amenable to the
integration of an LLM-based reward predictor. Firstly, we adopt the classical Thompson sampling
(TS) algorithm Thompson| (1933) and use a powerful pre-trained LLM to sample the reward values
used in TS, hence introducing our Thompson Sampling with LLM (T S—-LLM) algorithm. We ensure a
proper balance between exploration and exploitation by carefully controlling the temperature of the
LLM. That is, we ensure that the temperature is large enough in the initial stages to achieve sufficient
exploration and gradually decay its value to promote more exploitation in later stages. Secondly, we
adopt a regression oracle-based MAB algorithm |[Foster & Rakhlin| (2020) and leverage the LLM as
the regression oracle for reward prediction, to introduce our Regression Oracle-based bandit with
LLM (RO-LLM). Since the algorithm from |Foster & Rakhlin| (2020) is equipped with an explicit
exploration mechanism and hence only needs the LLM to provide an accurate reward prediction, we
set the LLM temperature to 0 to remove the randomness in the reward prediction.

In addition to classical stochastic MAB, we also introduce an LLM-enhanced algorithm for dueling
bandits|L1 et al.| (2024)); |Verma et al.[(2024)); Yue et al.|(2012). In dueling bandits, instead of a single
arm, a pair of arms are selected in every iteration, after which a binary preference observation is
revealed indicating which arm is preferred over the other. Thanks to the prevalence of preference
feedback, dueling bandits are widely applicable in various important real-world scenarios, such as
recommender systems Yang et al.| (2024c), alignment of LLMs (via reinforcement learning from
human feedback) [Dwaracherla et al.| (2024), among others. However, adapting our algorithms to
dueling bandits is non-trivial due to the need to handle preference feedback (rather than numerical
feedback) and to select a pair of arms. We adapt our TS—LLM algorithm discussed above to intro-
duce the Thompson Sampling with LLM for Dueling Bandits (TS—-LLM-DB) algorithm. In order to
achieve a seamless integration of the LLM (as a reward predictor) into dueling bandits, we have
leveraged the theoretical equivalence between the maximizers of the Borda function and the latent
reward function in dueling bandits [Mehta et al.| (2023)) (more details in Sec.[3.3]).

Note that in addition to the strong reward prediction capability of LLMs, another benefit of our
LLM-enhanced MAB algorithms is that they do not require us to specify the form of the unknown
reward function. Specifically, classical MAB algorithms are usually only able to handle a specific
class of reward functions, such as linear reward functions |Abbasi- Yadkor1 et al.| (2011). As a result,
misspecification of the reward function (i.e., when the groundtruth reward function does not lie in
the pre-specified function class) has been an important challenge in MAB, and many efforts have
been made to address this difficulty [Ghosh et al.| (2017); Wang et al.| (2024b). In contrast, due to
the flexibility of LLMs to predict reward functions of varying degrees of complexity, our algorithms
can automatically adapt to the level of difficulty of the problem. As a result, we are free from the
requirement to specify the class of reward functions beforehand.

We use extensive experiments to demonstrate the empirical advantage of our algorithms. We firstly
use synthetic stochastic MAB experiments to show that our TS-LLM and RO-LLM algorithms
both consistently outperform baseline methods which directly instruct the LLM to select actions
(Sec.[A.I). Next, we show that our TS—LLM-DB algorithm achieves small regrets in synthetic du-
eling bandit experiments (Sec. {.2). We also apply our TS-LLM to contextual MAB experiments
designed using two real-world text datasets (Sec. d.3). The results show that in the experiments
where the LLM can exploit the semantic meanings of the arm features (to accurately predict the
association between the contexts and arms), directly instructing the LLM to select actions leads to
strong performance which is comparable to our TS—LLM. In the more challenging tasks in our exper-
iments where the arms lack such semantic information, LLM-based direct arm selection suffers from
significant performance degradation, and our TS—LLM performs dramatically better. We expect our
findings to provide useful and practical guidelines for future works and applications adopting LLMs
as agents to solve real-world sequential decision-making tasks.
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2 PROBLEM SETTING

Multi-Armed Bandits (MAB). In our problem setting, every arm ¢ = 1,..., K is associated with
a d-dimensional feature vector z; € R% and the reward of an arm 7 is a function of its feature vector
x;: f(x;). For example, in the classical linear bandits, the reward of arm i is given by a linear
function: f(x;) = 0 x; with an unknown . In every iteration ¢, an MAB algorithm selects an arm
14 to pull, and observes a corresponding noisy reward y; = f(x;,) + € where € is usually a zero-
mean Gaussian noise. The goal of an MAB algorithm is usually to minimize the cumulative regret:
Ry = Zthl[f(xi*) — f(z;,)] where i* = argmax,_; _j f(z;) represents the optimal arm. We
also consider the setting of contextual bandits (Sec. @ in which in every iteration ¢, we receive a
new set of K arms denoted as Z, = {i},..., 4% } and choose an arm i, from Z;. When selecting an
arm in iteration ¢, an MAB algorithm needs to make use of (the feature vectors of) the previously
selected arms and their corresponding rewards: D;_1 = {(z;,,7s)}s=1,...+—1. Therefore, we will
include D;_; in the prompt for the LLM-based agent in our algorithms.

Dueling Bandits. In dueling bandits, in every iteration ¢, we select a pair of arms 7; ; and 7; » and
observe binary preference feedback r, = 1 (i1 > it 2), which is equal to 1 if ¢, ; is preferred over
1¢,2 and 0 otherwise. We assume that the preference observation r; is generated by the commonly
adopted BTL model |[Hunter| (2004); [Luce| (2005). Specifically, there exists a latent reward function
f which maps the feature vector x; of an arm ¢ to its corresponding latent reward value f(z;). For
a pair of arms 4, ; and 7, o, the preference probability (i.e., the probability that arm ¢, ; is preferred
over arm 7; ») under the BTL model is given by P(i;1 > i;2) = p(f(xi, ) — f(2i,,)), in which
R — [0,1] is the logistic function: p(z) = 1/(1 + e~#). The preference observation r;, =
1(i;1 > i1,2) is then assumed to be sampled from a Bernoulli distribution with the probability
P(i;1 > i1.2). A common notion of regret in dueling bandits is Ry = Zthl[Qf(x,»*) — fl@i,,) —
f(x;, ,)]- However, in practical applications, we usually need to devise a method to recommend an
arm during the dueling bandit algorithm [Lin et al.| (2024). Our LLM-based algorithm for dueling
bandits recommends the first selected arm 4, ; as the best arm (more details in Sec. . Therefore,

in our experiments (Sec. , we report the regret of the first arm: Ry = Zthl [f(@i) = f(26,,))]s
which we think is more relevant in practice.

3 LLM-ENHANCED MAB ALGORITHMS
3.1 THOMPSON SAMPLING WITH LLM (TS-LLM)

Our TS-LLM (Algo. [I) employs the LLM to predict the reward of every arm and leverages the in-
herent randomness in the LLM-generated text to achieve exploration. Specifically, in every iteration
t, we include the current history of observations D;_1 = {z;_,7s} s=1,...,t—1 in the prompt for the
LLM. For each arm ¢ = 1, ..., K, we append its feature vector x; to the end of the prompt and in-
struct the LLM to predict its reward 7 ; (line 3 of Algo. E]) The prompt adopted in this step is shown
in App. Then, the arm with the largest predicted reward 7 ; is selected (line 5 of Algo. [I).

To achieve a gradual transition from exploration to exploitation, we choose a schedule for the tem-
perature of the LLM which decays across iterations. As a result, at the initial stage when significant
exploration is required, we use a large temperature to induce sufficient randomness in the LLM-
generated reward prediction. In later stages when a larger degree of exploitation is more beneficial,
we use a small temperature to reduce the randomness in the reward prediction. This allows us
to naturally combine the powerful reward prediction form the LLM, thanks to its impressive in-
context learning (ICL) capability, and the classical TS algorithm to derive a coherent algorithm for
arm selection in MAB. We empirically verify that such a decaying schedule of temperatures indeed
achieves better performance than using a fixed temperature in Sec.[5.1]

Justifications for TS—LLM (Algo. [I). Our TS-LLM algorithm shares a similar motivation with
some previous works which have also relied on the randomness in the output generated by the LLM
to achieve exploration in sequential decision-making tasks. For example, the work of [Yang et al.
(2024b) has adopted an LLM with a large temperature to select a batch of diverse input queries for
Bayesian optimization; the work of |Liu et al.| (2024c) has used an LLM to predict the performance
achieved by different hyperparameter configurations in Bayesian optimization, and used the variance
of multiple independently sampled predictions from the LLM as the exploration term in their upper
confidence bound-based algorithm. Another line of works with similar underlying principles as our
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Algorithm 1 TS-L1M
1: for iterationt =1,...,7 do
2. forarm:=1,..., K do
3 7t = LLM(D;_1, ;) // predict reward
4:  Selectarm i, = argmax;_; _ xTt,i, observe reward r;
5: Update history Dy = D;_1 U {(x4,,7¢)}

Algorithm 2 RO-LLM

1: for iterationt =1,...,7T do
2: forarmi=1,..., K do
3: lyi = LLM(Dy_1, x;) // predict loss
4:  Letj; = arg mini=17,,_7Klt,i
5: forarmi=1,..., K andi # j; do
. it 7A1 —
6: Pr.i pAy(lei—=le 4,)
7: Let Ptj. = 1-— Zi;ﬁjt DPt.i
8:  Sample i; ~ p;, observe loss [; (negated reward)
9:  Update history Dy = D1 U {(i4,14)}

TS-LLM is approximating Thompson sampling (TS) with neural networks. Some previous works
have adopted an ensemble of neural networks (NNs) |(Osband et al.|(2016; 2023)); |Dwaracherla et al.
(2024) and performed approximate TS by randomly sampling from the ensemble. In contrast, we
approximate the posterior reward distribution in TS using the stochastic predictions generated by the
LLM in our TS-LLM algorithm.

3.2 REGRESSION ORACLE-BASED MAB WITH LLM (RO-LLM)

A recent line of works have proposed to adopt a generic regression oracle for reward prediction
in MAB, and incorporated explicit exploration mechanisms to derive theoretically principled algo-
rithms [Foster et al.| (2018)); |[Foster & Rakhlin (2020). Interestingly, the high-level principle of these
works aligns well with our approach in this work, i.e., adopting a model capable of reward prediction
(i.e., a regression oracle in these previous works and an LLM in our work) and utilizing a separate
high-level framework to achieve exploration. Therefore, here we incorporate an LLM as the re-
gression oracle into the SquareCB algorithm from [Foster & Rakhlin|(2020)), hence proposing our
RO-LLM algorithm (Algo. . To be consistent with |Foster & Rakhlin|(2020), instead of rewards, we
consider the observations as losses (line 10 of Algo.[2), which are simply the negation of rewards.

In every iteration ¢ of our RO-LLM algorithm, we use the LLM to predict the loss I; ; of every arm ¢
(line 3 of Algo. 2. Here we adopt the same prompt as the TS—LLM algorithm (shown in App. [C.I)),
except that here we use losses as observations rather than rewards. Next, we choose the arm with the
smallest predicted loss and denote it as j; (line 4). After that, we use the LLM-based loss predictions
to construct a distribution p; over all K arms (lines 5-7), from which the next arm 4; is sampled (line
8). Note that the SquareCB algorithm from |[Foster & Rakhlin| (2020) is equipped with an explicit
exploration mechanism (via the sampling distribution p;). As a result, unlike our TS-LLM algorithm,
here we no longer need to exploit the inherent randomness in the LLM-generated output to achieve
exploration. Therefore, when using the LLM for loss prediction in our RO—LLM algorithm (line 3 of
Algo.[2)), we set the temperature of the LLM to 0 and hence obtain deterministic reward predictions.

3.3 THOMPSON SAMPLING WITH LLM FOR DUELING BANDITS (TS-LLM-DB)

Here we introduce our TS-LLM-DB algorithm for dueling bandit, in which we select a pair of arms
14,1 and i, o in every iteration and collect a binary observation indicating their relative preference
T = ]]-(Z.t,l - it’g).

Preference Probability Prediction. In contrast to our TS-LLM (Algo. [I)) and RO-LLM (Algo. [2)
which use an LLM to predict the reward of every arm, our TS-LLM-DB algorithm (Algo. [3) instead
adopts an LLM to predict the probability that an arm is preferred over another arm. Specifically,
when adopting the LLM for preference probability prediction via ICL (line 4 of Algo. , for the s
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Algorithm 3 TS-LLM-DB

1: for iterationt =1,...,7 do
2. forarm:=1,..., K do
for uniformly sampled arm j = 1,..., N do

Dt,i,j = LLM(Dy_1, [4, ;])

3

4

5 Calculate 7 ; = 27]:’:1 Drim

6:  Select the first arm 7, ) = argmax;_; ;7

7. forarmj =1,..., K do

8 Py =LLM(Dy,[xj, wi,,])

9:  Select the second arm 7, 5 = argmax;_; kPt
0:  Observe binary preference ry = 1(i;1 > is2)

1

10:
11:  Update history Dy = Dy_1 U {([i¢,1,%1,2),7¢) }

input-output pair in the dataset D;_; included in the prompt, the input corresponds to the features of
the pair of arms x;, , and x;, , (instead of a single arm in Algo. and Algo. [2). The corresponding
output represents the observed preference rs = 1(is1 > 4s2). When predicting the preference
probability of a pair of arms x; and x;, we append their features at the end of the prompt, denoted
as [z;, z;] (line 4 of Algo. . As a result, the LLM is able to predict the probability that the first
arm x; is preferred over the second arm x;, i.e., predict P(z; > z;). The prompt template we have
adopted here is shown in App.[C.1]

Representing The Features of Arm Pairs. We adopt two approaches to incorporate the features of
a pair of arms into the prompt. Firstly, when the latent reward function f is linear: f(z) = 0"z, we
have that P(zq = z2) = pu(f(2z1) — f(22)) = p (6 (z1 — 22)). That is, the preference probability
P(z1 > x2) is a function of the difference z1 — 2. Therefore, we use the difference between the
feature vectors of the first arm and second arm (i.e., ; — x2) in the prompt. Secondly, when the
latent reward function is non-linear, the preference probability is no longer a function of 1 — x5. In
this case, we concatenate the feature vectors of x; and x5 and include them in the prompt.

Selection of A Pair of Arms. To select the pair of arms 4, ; and 7, in every iteration, we draw
inspirations from the arm selection strategy from the work of [Verma et al.| (2024). Specifically, in
iteration ¢, for every arm ¢, we use the LLM to predict the probability that arm ¢ is preferred over [NV
uniformly sampled arms and calculate their average predicted probability 7 ; (line 3-5 of Algo.[3).
Then, we choose the first arm by maximizing 7 ; (line 6). This is equivalent to approximately max-
imizing the Borda function fyoq, 1 Xu et al.[(2020), which is defined as the expected probability that
an arm is preferred over a randomly selected arm: foorda(7) = Ejcyy((x7) [P(7 = 2;)] where U([K])
denotes the uniform distribution among all K arms. Specifically, we estimate the expectation in
foorda(x) by uniformly and independently sampling N arms (lines 3-5 of Algo. [3). Theoretically,
maximizing the Borda function fiq4, is equivalent to maximizing the latent reward function f (see
Sec. @) Mehta et al.| (2023). Therefore, the first arm 4, ; is selected greedily, i.e., via pure exploita-
tion. As aresult, after each iteration ¢, we let our TS—LLM-DB algorithm recommend the first arm as
the best arm. To choose the second arm, we firstly predict the probability that each arm is preferred
over the first arm i; ; (lines 7-8 of Algo. [3), and then select the second arm by maximizing this
predicted probability (line 9). This is inspired by the TS-based algorithm from|Verma et al.| (2024),
which encourages the second selected arm to both have large reward and be different from ¢; ; and
all previously selected arms. The work of [Verma et al.| (2024) has theoretically shown that such an
approach to selecting the pair of arms lead to strong performances (i.e., small cumulative regrets)
both in theory and in practice.

4 EXPERIMENTS

We firstly apply our TS-LLM and RO-LLM algorithms to synthetic stochastic MAB tasks with both
linear and non-linear reward functions (Sec. .1). Next, we apply our TS-LLM-DB algorithm to
solve synthetic dueling bandit problems (Sec.[4.2). Lastly, we adopt contextual bandit tasks designed
using two real-world text datasets (Sec. to unveil interesting insights about our algorithms. We
adopt GPT-3.5-Turbo |OpenAll (2023a)) as the black-box LLM in the majority of our experiments,
and also use DeepSeek-V3 |Liu et al.| (2024a), Llama-3.3-70B-Instruct |Grattafiori et al.| (2024) and
Qwen2.5-72B-Instruct|Yang et al.| (2024a)) in the experiments in Sec.
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Figure 1: The performance of our TS-LLM and RO-LLM in classical stochastic MAB tasks.
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function and K = 50 arms.

4.1 TS-LLM AND RO-LLM FOR CLASSICAL STOCHASTIC MAB

We adopt 4 different reward functions in the stochastic MAB experiments here: a linear function,
a square function, a sinusoidal function and a function sampled from a Gaussian process (GP). Ev-
ery arm is associated with a d = 4-dimensional feature vector, and we use X = 16 arms in all
experiments here. We compare our TS—-LLM and RO-LLM algorithms with some baseline algo-
rithms from the work of [Krishnamurthy et al.|(2024). Specifically, we adopt the best prompt design
from |[Krishnamurthy et al.|(2024), i.e., the prompt design which achieved the largest median reward
among a total of 32 prompt designs when using GPT-3.5 in the hard bandit instance. Notably, this
prompt design utilizes Chain-of-Thought (CoT) prompting, as detailed in the prompts provided in
Appendix [C.3] The prompt designs from [Krishnamurthy et al. (2024) do not take into account the
features of the arms, therefore, we have proposed and tested multiple variants of their baseline algo-
rithm which differ in terms of the position of the arm features: (a) Baseline NoFeature: the original
algorithm from Krishnamurthy et al.|(2024); (b) Baseline FramingFeature: we add the arm features
after the problem framing; (c) Baseline HistoryFeature: we add the arm features immediately before
the history of interactions. In addition, in the experiment with linear reward function, we have also
compared with the classical baseline of Linear UCB. The cumulative regrets of different methods
are shown in Fig.[I] which demonstrate that both our TS—-LLM and RO-LLM achieve smaller regrets
than the baseline from [Krishnamurthy et al.|(2024). Moreover, for linear reward function, the classi-
cal Linear UCB algorithm achieves smaller regrets than all LLM-based baseline methods, as well as
our RO-LLM. However, remarkably, our TS-LLM achieves comparable performance to Linear UCB.
In addition, Fig.[T|shows that our TS—-LLM significantly outperforms our RO-LLM algorithm, which
is likely attributed to the strong exploration capability enabled by the inherent randomness in the
LLM-generated output (Sec.[3.1). On the other hand, our RO-LLM algorithm generally have smaller
variance across multiple trials, which is indicated by the narrower error bars. This is likely due to the
use of a temperature of 0 in our RO—LLM algorithm (Sec. [3.2) and may make our RO-LLM algorithm
more desirable in scenarios where more consistent performance is preferred. In addition, we have
also tested the performance of our TS—LLM with a larger number of arms ()X = 50). The results in
Fig. 2] demonstrate the robustness of the performance advantage of our TS-LLM.

4.2 DUELING BANDITS

Here we apply our TS—-LLM-DB algorithm to solve dueling bandit problems with two different latent
reward functions f: a linear function and a square function. Same as the experiments in Sec.[4.1] we
also let d = 4 and K = 16. In our experiments here, when selecting the first arm, we use N = 15
uniformly sampled arms to approximate the Borda function (Sec.[3.3). Similar to the experiments
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Figure 4: The cumulative rewards in the text experiments using the OneShotWikiLinks and
AmazonCat—13K datasets (Sec. |4.3). Higher values indicate better performance.

on classical stochastic MAB (Sec. |.I), we also adopt a decaying schedule of temperature when
selecting both arms. Since our TS—-LLM-DB selects the first arm greedily (i.e., pure exploitation)
and chooses the second arm optimistically by balancing exploration and exploitation (Sec. [3.3), we
adopt a schedule of smaller temperatures when selecting the first arm to encourage exploitation. As
we have discussed in Sec. [3.3] for the linear latent reward function, we use the difference between
the feature vectors of the first arm and the second arm as the feature vector in the prompt; for the
non-linear square function, we instead adopt the concatenation of the pair of feature vectors.

The results are shown in Fig.[3] Following the common practice in dueling bandits|Lin et al.[(2024);
Verma et al.[(2024)), here we have reported the reward of the first selected arm (i.e., f (:Jcit,1 )) in every
iteration ¢. This is because the first arm is selected to be the one that is predicted to achieve the largest
reward (Sec. [3.3). Here we have only compared with the baseline of random search, because it is
highly non-trivial to adapt the algorithm from [Krishnamurthy et al.[(2024) to the sophisticated du-
eling bandit problem. As shown in the figures, our TS-LLM-DB significantly outperforms random
search for both reward functions. Moreover, the regrets are generally larger in the more challenging
problem of non-linear (square) reward function.

4.3 REAL-WORLD DATASETS WITH TEXT FEATURES

Here we perform experiments using two real-world text dataset: the OneShotWikiLinks dataset
Singh et al|(2012); Vasnetsov| (2018) and the AmazonCat—13K dataset Bhatia et al.|(2016), both
of which have been widely adopted in previous works on contextual bandits |Chen et al.| (2024). The
OneShotWikiLinks dataset|Singh et al.|(2012); Vasnetsov|(2018) is a named-entity recognition
task in which the contexts consist of text phrases surrounding the mention text (both preceding
and following it), and the arms are text phrases representing concept names. AmazonCat—13K
Bhatia et al.| (2016) is an extreme multi-label dataset where the contexts are text phrases derived
from the title and content of an item, and the arms are integers representing item tags. Thus, in the
former dataset, the arm features (i.e., the text phrases) contain semantic information that is likely
beneficial for the LLM in selecting arms, whereas in the latter dataset, the arm features lack such
semantic content. As a result, the latter dataset (i.e., AmazonCat—13K) requires a larger degree of
exploration and is hence more challenging.

We apply our TS-LLM to the tasks here, because it achieves smaller regrets than RO—LLM in the
synthetic experiments (Sec. {f.T). Since it is non-trivial to adapt the method from Krishnamurthy
et al.| (2024) to the sophisticated problem setting here, we instead compare our TS—-LLM with a
baseline which is obtained by modifying the prompt of our algorithm (originally designed for reward
prediction) to instead directly select an arm. We refer to this baseline method as Baseline (Direct
Arm Selection). We have included the prompt templates used by our TS—-LLM and the baseline
(for both experiments) in App. [C.4] We consider K = 10 randomly sampled arms (i.e., 10 concept
names in OneShotWikiLinks and 10 items in AmazonCat —13K) in the experiments, and adopt
two powerful black-box LLMs: GPT-3.5-Turbo and DeepSeek-V3.

The results are shown in Fig.[d The figures show that our TS—LLM algorithm achieves compara-
ble performance with the baseline of direct arm selection in the OneShotWikiLinks task and
significantly outperforms the baseline in the AmazonCat—13K task. This is likely because in
OneShotWikiLinks task, the powerful LLMs possesses in-depth knowledge about the semantic
meanings of the individual arms, i.e., the names of the entities. As a result, given some context
(i.e., the text before and after the entity), the LLM is able to accurately choose the corresponding
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Figure 6: Results using two other LLMs: Figure 7: The performance of our TS-LLM al-
Llama-3.3-70B-Instruct and Qwen2.5-72B-  gorithm in stochastic MAB tasks with different
Instruct (AmazonCat—13K). temperatures.

arm whose semantic meaning is associated with the context, which explains the strong performance
of the baseline of direct arm selection in the OneShotWikiLinks task. On the other hand, in
the AmazonCat—-13K task, since the arms lack such semantic information useful for the LLMs,
the LLMs are not able to accurately infer the association between the contexts (i.e., text phrases
describing an item) and the arms (i.e., integers representing item tags). Therefore, in such tasks,
an algorithm needs to perform substantial exploration in order to learn the association between the
contexts and the arms and hence to achieve small regrets. The inadequate performance of the base-
line algorithm in this task can likely be attributed to the inability of LLM-based direct arm selection
to engage in efficient exploration, which aligns with the findings from Krishnamurthy et al.| (2024)).
Meanwhile, thanks to the strong exploration capability of the high-level classical TS mechanism
(Sec. [3.1), our TS-LLM algorithm is able to efficiently explore the space of arms and hence to
achieve small regrets in this task.

To further verify this insight, we have additionally conducted an experiment using the
AmazonCat—13K dataset in a more challenging setting, i.e., with a larger number of arms (i.e.,
K = 30). The results (Fig.[5) show that the performance advantage of our TS—LLM over the base-
line is further enlarged. Therefore, the results in Figs. ] and [5] demonstrate that compared with
the approach of directly instructing the LLM to select arms, our TS—LLM algorithm is particu-
larly beneficial in challenging tasks where considerable exploration is required. On the other
hand, LLM-based direct arm selection is expected to perform well in scenarios where the LLM has
significant knowledge about the arms or the association between the contexts and the arms.

Robustness of Our Findings Across Different LLMs. We have also conducted experiments using
the AmazonCat—13K dataset with two additional LLMs: Llama-3.3-70B-Instruct (Grattafiori et al.
(2024) and Qwen?2.5-72B-Instruct |Yang et al.| (2024a). The results in Fig. @ demonstrate that the
performance advantage of our TS—LLM is consistent across various LLMs.

5 ABLATION STUDY

5.1 IMPACT OF DIFFERENT TEMPERATURES

Here we investigate the impact of the temperature of the LLM on the performance of our
TS-LLM (Algo.[I). As we have discussed in Sec. [3.1} we adopt a decaying schedule for the LLM
temperature to ensure a transition from exploration to exploitation. We follow the same experimen-
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function to select the first arm in TS—-LLM-DB.

tal setting as Sec.[4.1]and adopt the linear reward function. The results in Fig.[7]show that the best
performance is achieved by adopting decaying LLM temperatures, whereas fixing the temperature
to various values leads to inferior performance. This is because fixing the temperature to a large
value hinders the exploitation capability of TS—-LLM in later stages, while the use of a fixed small
temperature results in insufficient exploration in the initial stage.

5.2 IMPACT OF THE NUMBER OF SAMPLES N WHEN SELECTING THE FIRST ARM IN
TS-LLM-DB

Recall that our TS-LLM-DB algorithm selects the first arm by approximately maximizing the Borda
function fiorga (Sec.[3.3), in which we use N randomly sampled arms to approximate the expectation
in fyorda (lines 3-5 of Algo. . Fig. presents the results of our TS—LILM-DB with different values
of N, which demonstrate that a larger N improves the performance because it leads to a better
approximation of fyoq.. However, also note that the use of a larger N increases the number of API
calls to the LLM and hence incurs more cost. Therefore, in practice, the value of N should be
selected based on the trade-off between the desired performance and the budget.

5.3 IMPACT OF THE EXPLORATION PARAMETER IN OUR RO-LLM ALGORITHM

The parameter 7y in our RO—LLM can be used to control the degree of exploration. As can be seen
from lines 4-7 of Algo.[2] a larger value of +y results in a larger weight (in the arm sampling distri-
bution p;) on the arm j; that is predicted to be the best arm. Therefore, a larger v leads to greater
emphasis on exploitation, thereby reducing the focus on exploration. Here we test three values of v
and display the results in Fig[9] The figures show that an overly small value of v = 1 significantly
deteriorates the performance due to excessive exploration. In the relatively simpler MAB problem
with a linear reward function, a larger v = 10 (i.e., more emphasis on exploitation) benefits the al-
gorithm since only minimal exploration is required to learn the simple reward function. Meanwhile,
in the more difficult problem with a non-linear (square) function, a larger v = 10 leads to worse
regrets than v = 5 since a larger degree of exploration is needed compared to the linear function.

6 CONCLUSION

In this work, we propose an alternative paradigm of LLM-based sequential decision making and
focus on the MAB problem. We adopt a classical MAB algorithm as the high-level framework and
leverage the strong in-context learning capability of LLMs to perform the sub-task of reward pre-
diction. Synthetic experiments show that our algorithms consistently outperform baseline methods
of LLM-based direct arm selection. Through contextual MAB experiments designed using two real-
world text datasets, we show that in challenging tasks where the arm features are not associated
with semantic meanings exploitable by the LLM, our TS—-LLM performs significantly better than
LLM-based direct arm selection.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have clearly described our detailed experimental setting in Sec. 4 and
App. [C] which are necessary to reproduce our experimental results. The prompts adopted by our
algorithms are all listed in App.
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A RELATED WORK

LLM-Based Multi-Armed Bandits (MAB). The work of Krishnamurthy et al.|(2024) used an LLM
to sequentially choose the arms in MAB. They have consider standard MAB problems with a finite
number of arms, and their results have shown that LLMs struggle in MAB tasks in most scenarios
(i.e., for most of their prompt designs). Some recent works proposed techniques to improve the
exploration capability of LLMs in MAB tasks, such as random subsampling from the interaction
history Monea et al.| (2024), and adding summary statistics of the interaction history to the prompt
Nie et al.| (2024). The work of |[Harris & Slivkins| (2025) demonstrated that LLMs can be used to
accelerate the exploration in MAB tasks by selecting promising candidates from a large action space.
The work of |Chen et al.|(2024) proposed to adopt an LLM-based arm selection strategy in the initial
stage of MAB and gradually switch to classical MAB algorithms in later stages. However, their
method requires the availability of the likelihood of the LLMs and are hence not able to adopt the
typically more powerful black-box LLMs such as ChatGPT. The work of Xia et al.| (2024)) proposed
an LLM-based algorithm for dueling bandits. Compared with our TS-LLM-DB (Sec.[3.3), they have
considered a simpler setting of dueling bandits in which the preference feedback is generated by a
preference matrix. In contrast, we have adopted the BTL model (Sec. , which allows us to take
into account the arm features and hence makes our setting more general. [Mukherjee et al.| (2024)
proposed to train a decision transformer to predict the rewards of different arms in MAB and hence
to assist in arm selection.

Other LLM-Based Sequential Decision-Making Methods. In addition to MAB, some previous
works have proposed methods to incorporate LLLMs into other sequential decision-making algo-
rithms. For example, some prior works have used LLMs to improve the performance of Bayesian
optimization (BO) by either directly instructing the LLM to sequentially select the input queries
in BO |Yang et al.| (2024b)) or using LLMs to enhance different components of BO (such as initial
input selection, surrogate model prediction, etc.) |[Liu et al.| (2024c). A number of recent works
have used the transformer model to learn a policy for action selection in reinforcement learning Dai
et al.[ (2024); Laskin et al.| (2022); |Lee et al.| (2024). The field of LLM-based agents is broad and
has garnered significant attention due to the rapidly advancing capabilities of modern LLMs. Many
surveys on LLM-based agents have been released |Cheng et al.|(2024)); [Wang et al.| (2024a); Xi et al.
(2023)), offering comprehensive overviews of this area.

B STATEMENT OF LLM USAGE

We have used LLMs to help polish the writing of the paper.

C MORE EXPERIMENTAL DETAILS AND RESULTS

In all our synthetic experiments (Secs. 4.1] and f.2), the MAB tasks have KX = 16 features
and the feature vectors of the arms are 4-dimensional. All our experiments are conducted us-
ing a computer with an 11th Gen Intel Core i7-1165G7 4-Core Processor and 16GB RAM. The
OneShotWikiLinks dataset Singh et al|(2012); |[Vasnetsov| (2018) and the AmazonCat—-13K
datasetBhatia et al.|(2016)) are under the CC BY 4.0 license. All error bars in the plots represent the
standard error of the mean.

C.1 THE PROMPT TEMPLATE ADOPTED BY OUR ALGORITHMS

Below is the prompt we have used for our TS-LLM algorithm (Algo. [I) and RO-LLM algorithm
(Algo. E]) in classical stochastic bandits experiment in Sec. @ Here every [INPUT] contains the
feature vectors of an arm, and every [OUTPUT] corresponds to its corresponding observed reward.
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Prompt for Our TS-LLM and RO-LLM

Help me predict the function value at the last input. Each function value is associated with a Normal
distribution with a fixed but unknown mean. Your response should only contain the function value in
the format of #function value#.

input: [INPUT], output: [OUTPUT]

input: [INPUT], output: [OUTPUT]

input: [INPUT], output:

The template below is the prompt we have used for our TS—LLM-DB algorithm (Algo. [3) in the
dueling bandit experiment in Sec.[d.2] Here every [INPUT] contains the difference or concatena-
tion of the feature vectors of a pair of arms (see Sec. @ for more details), and every [OUTPUT]
corresponds to a binary observation which is equal to 1 if the first arm is preferred over the second
arm and 0 otherwise. Although the output labels for each data point in the prompt is binary, here we
have instructed the LLM to predict a continuous value, to ensure that the LLM-generated output can
be used as the preference probability.

Prompt for Our TS-LLM-DB

Help me predict the value for the last input as a continuous value between 0 and 1. Your response
MUST only contain the value in the format of #value#.

input: [INPUT], output: [OUTPUT]

input: [INPUT], output: [OUTPUT]

input: [INPUT], output:

C.2 MORE DETAILS ON THE SYNTHETIC EXPERIMENTS (SECS.[4. 1] AND [4.2))

In our synthetic experiments in Sec.[4.I] we have adopted synthetic functions as the reward functions
f, including linear function: f(z) = 6z, square function: f(z) = (0T )2, sinusoidal function:
f(x) = sin(f7x), and a function sampled from a Gaussian process with a length scale of 0.4. We
repeat each experiment 10 times with a different random seed for each repetition. We run each
method for 100 iterations, with the initial 2 arms randomly selected. We add a Gaussian noise with a
noise variance of 0.02 to each observation. In all our experiments here, we have adopted the optimal
schedule for the temperature discovered in Sec. [5.1] (Fig. [7). For the classical baseline of Linear
UCB in the experiment with linear reward function, an extensive grid search was conducted for the
exploration parameter. The search range was from 0.01 to 1 with a step size of 0.01. Additionally,
the groundtruth observation noise variance (i.e., 0.02) was used as the regularization parameter .

In our synthetic experiments on dueling bandits in Sec. [d.2] we adopt the following latent reward
functions: linear function: f(x) = 0Tz, and square function: f(x) = (07 z)2. We repeat each
experiment 5 times with a different random seed for each repetition. We run each method for 150
iterations, with the initial 2 arms randomly selected. As we have discussed in Sec. @ we use
a decaying schedule of LLM temperatures, and adopt a smaller schedule of temperatures when
selecting the first arm to encourage exploitation. Specifically, for linear latent reward function, in
iteration ¢, we use temp(t) = 1.5—min(0.1x v/#, 1.4) as the temperature when selecting the first arm
and use temp(t) = 1.5 — min(0.1 x /£, 1.1) when choosing the second arm. For the square latent
reward function, we adopt larger values of the temperature, because the non-linear reward function
makes the dueling bandit problem more challenging and hence a larger degree of exploration is
needed. Specifically, we use temp(t) = 1.6 — min(0.13 x v/¢, 1.5) when choosing the first arm and
let temp(t) = 1.6 — min(0.13 x /%, 1.1) when selecting the second arm.

In our experiments here, we use the BTL model to obtain the preference observation (Sec.[2). Specif-
ically, after a pair of arms 7; 1 and 7, o are selected, we firstly calculate their preference probability:

1
14+ e 100 (ziy )= f (@i, 5))

]P)(xit,l - xit,z) = (1
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We have added a 10 in the exponent to reduce the noise in the preference observations and hence
simplify the dueling bandit problem. Then, we sample the binary reward observation 7; from a
Bernoulli distribution with the probability P(z;, , = x;, , ).

C.3 MORE DETAILS ABOUT THE BASELINE ALGORITHMS

Here we present the prompts we have used for different baseline algorithms we have used in Sec.[d.1]
Specifically, how we have modified the prompt from the LLM-based MAB method from [Krishna-
murthy et al.|(2024)) in different ways in order to incorporate the features of the arms, to make their
method comparable with our algorithms. We have highlighted the arm features we have added in
blue.

Baseline: NoFeature

You are in a room with 16 buttons labeled
[’blue’, *green’, 'red’, "yellow’, *purple’, *orange’, ’cyan’, 'magenta’, 'lime’, ’pink’, ’teal’, ’lavender’, "brown’, ’beige’, "maroon’, *min§’
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different
and are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the
button’s associated distribution.

You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the
total reward over the 100 time steps. So far you have played [TIMES] times with the following choices and rewards:

[COLOR] button, reward [REWARD]

[COLOR] button, reward [REWARD)]

You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:pl6#. Each probability value(pl,p2,...,p16) MUST be a number between 0 and
1, and the total of all probabilities MUST equal 1.

Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is # COLOR]:p1,[COLOR]:p2....,[COLOR]:p16#.

Baseline: FramingFeature

You are in a room with 16 buttons labeled
[’blue’, *green’, 'red’, "yellow’, ’purple’, *orange’, ’cyan’, 'magenta’, "lime’, ’pink’, ’teal’, ’lavender’, brown’, *beige’, *maroon’, "min{’
Feature of [COLOR] button: [FEATURE]
Feature of [COLOR] button: [FEATURE]

Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different
and are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the
button’s associated distribution.

You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the
total reward over the 100 time steps. So far you have played [TIMES] times with the following choices and rewards:

[COLOR] button, reward [REWARD]

[COLOR] button, reward [REWARD]

You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:pl6#. Each probability value(pl,p2,...,p16) MUST be a number between 0 and
1, and the total of all probabilities MUST equal 1.

Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #) COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.
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Baseline: HistoryFeature

You are in a room with 16 buttons labeled
[’blue’, *green’, 'red’, "yellow’, 'purple’, ’orange’, ’cyan’, 'magenta’, "lime’, ’pink’, ’teal’, ’lavender’, *brown’, *beige’, *maroon’, "min{’
Each button is associated with a Normal distribution with a fixed but unknown mean; the means for the buttons could be different
and are associated with features of buttons. For each button, when you press it, you will get a reward that is sampled from the
button’s associated distribution.

You have 100 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to maximize the
total reward over the 100 time steps.

Feature of [COLOR] button: [FEATURE]

Feature of [COLOR] button: [FEATURE]

So far you have played [TIMES] times with the following choices and rewards:
[COLOR] button, reward [REWARD]
[COLOR] button, reward [REWARD]

You MUST output a distribution over the 16 buttons as probabilities, formatted EXACTLY like this example:
#[COLOR]:p1,[COLOR]:p2,...,[COLOR]:pl6#. Each probability value(pl,p2....,p16) MUST be a number between 0 and
1, and the total of all probabilities MUST equal 1.

Let’s think step by step to make sure we make a good choice. Which button will you choose next? YOU MUST provide your final
answer within the tags <Answer>DIST </Answer>where DIST is #/ COLOR]:p1,[COLOR]:p2,...,[COLOR]:p16#.

C.4 MORE DETAILS ON THE TEXT EXPERIMENTS

Here we present more details on the experiment in Sec. [4.3]in which we have adopted a real-world
text dataset. Every experiment in this section is repeated 10 times with a different random seed in
every repetition, except that the experiments in Fig. [f]are repeated 3 times.

In the experiment using the OneShotWikiLinks dataset, contexts exceeding 400 words were
first removed. Then, 10 concept names were randomly selected, each associated with 2,000 to 3,000
contexts. Finally, 2,000 contexts were randomly sampled for each of these 10 concept names. For
the experiment using the AmazonCat-13K dataset, contexts exceeding 500 characters in length
were first removed. Then, only data containing a single item tag was retained. Finally, the top 10
or 30 item tags with the highest number of contexts were selected, and all corresponding data were
used as experimental data. The number of data samples for the 10-arm and 30-arm experiments
were 34,227 and 40,287, respectively.

We display below the prompts we have used for our TS—LLM algorithm and the baseline algorithm
in the two text datasets. For fair comparisons, we keep most of the contents between the prompts
of the two methods identical. Therefore, the only major difference between the prompts of the two
methods is that the prompt for the baseline method directly instructs the LLM to select the next arm
to pull. On the other hand, in the prompt for our TS—LLM algorithm, we let the LLM predict the
score of a combination of a context and an arm. As a result, the prompt for our TS-LLM bears a
larger degree of resemblance to standard in-context learning, because we are effectively leveraging
the LLM to solve a supervised learning task.
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Prompt for TS—LLM in OneShotWikiLinks task

**Task Description**
At the TEST DATA, Please assign a reward indicating how well the Incomplete Text aligns with the
Previous Text and Next Text.

**kreward**:

- 0 indicates poor alignment.

- 1 indicates perfect alignment.

- A reward closer to 1 should only be assigned when the Incomplete Text is perfectly aligned with the
surrounding texts.

**The Incomplete Text can be one of the following words**:
[’Microsoft Windows’, "Telugu’, ’XML’, "Moscow’, "help’, ’"MTV’, "Halloween’, ’Ottoman Empire’,
’Soviet’, ’Bangladesh’].

The reward value MUST be a number between 0 and 1. Your response MUST be the reward
value only, formatted as #reward value#.

Below are previous examples:

**Previous Text**: [PREVIOUS TEXT]
**Next Text**: [NEXT TEXT]

**Incomplete Text**: [[INCOMPLETE TEXT]
**Reward**: [REWARD]

**Previous Text**: [PREVIOUS TEXT]
#kNext Text**: [NEXT TEXT]

**Incomplete Text**: [INCOMPLETE TEXT]
#*Reward**: [REWARD]

###TEST DATA:

This is the TEST DATA for which the reward needs to be assigned:
**Previous Text**: [PREVIOUS TEXT]

**Next Text**: [NEXT TEXT]

**Incomplete Text**: [[INCOMPLETE TEXT]

**Reward**:
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Prompt for the Baseline Method in OneShotWikiLinks task

The task is to choose the most suitable word to complete the Incomplete Text from the following list
of options in order to earn the most reward:

[’Microsoft Windows’, *Telugu’, ’XML’, "Moscow’, "help’, "MTV’, "Halloween’, ’Ottoman Empire’,
’Soviet’, ’Bangladesh’].

Your response MUST only contain one word from the list.

Reward indicates how well the Incomplete Text aligns with the Previous Text and Next Text.
- 0 indicates poor alignment.
- 1 indicates perfect alignment.

Below is the historical data:

**Previous Text**: [PREVIOUS TEXT]
*#*Next Text**: [NEXT TEXT]

**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**: [REWARD]

**Previous Text**: [PREVIOUS TEXT)]
**Next Text**: [NEXT TEXT]

**Incomplete Text**: [INCOMPLETE TEXT]
**Reward**: [REWARD]

Below is the incomplete text for which you need to complete:
**Previous Text**: [PREVIOUS TEXT]

**Next Text**: [NEXT TEXT]

**Incomplete Text**:

Prompt for TS—-LLM in AmazonCat task

There are Titles and Contents of some items.

Labels and items correspond one-to-one.
There are a total of 10 items.The Labels MUST be ONE of the following numbers:
[2571, 1471, 7961, 12246, 5754, 342, 5456, 5960, 11235, 10688]

The Reward is a number between 0 and 1 determined by whether the Label is correct or not.
Help me predict the Reward at the last Title, Content and Label.
Your response MUST be the predicted Reward only, formatted as #predicted Reward#.

**Title**: [Title]
**Content**: [Content]
**abel**: [Label]
**Reward**: [REWARD]

*#*Title**: [Title]
**Content™*: [Content]
**Label**: [Label]
**Reward**: [REWARD]

#*Title**: [Title]
**Content**: [Content]
**[abel**: [Label]
**Reward**:
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Prompt for the Baseline Method in AmazonCat task

There are Titles and Contents of some items.

Labels and items correspond one-to-one.
There are a total of 10 items.The Labels MUST be ONE of the following numbers:
[2571, 1471, 7961, 12246, 5754, 342, 5456, 5960, 11235, 10688]

The Reward is a number between 0 and 1 determined by whether the Label is correct or not.

Help me choose the correct Label at the last Title and Content. Your response MUST be the
chosen Label only, formatted as #chosen Label#.

**Title**: [Title]
**Content**: [Content]
**Label**: [Label]
**Reward**: [REWARD]

#*Title**: [Title]
**Content**: [Content]
**[abel**: [Label]
**Reward**: [REWARD]

**Title**: [Title]
**Content**: [Content]
**Label**:
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