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Abstract
Large Language Models (LLMs) have re-
cently gained significant attention due to
their remarkable capabilities in performing
diverse tasks across various domains. How-
ever, a thorough evaluation of these mod-
els is crucial before deploying them in real-
world applications to ensure they produce
reliable performance. Despite the well-
established importance of evaluating LLMs
in the community, the complexity of the
evaluation process has led to varied evalua-
tion setups, causing inconsistencies in find-
ings and interpretations. To address this,
we systematically review the primary chal-
lenges and limitations causing these incon-
sistencies and unreliable evaluations in var-
ious steps of LLM evaluation. Based on our
critical review, we present our perspectives
and recommendations to ensure LLM evalu-
ations are reproducible, reliable, and robust.

1 Introduction
The evolution of LLMs has transitioned from sim-
ple generative models predicting the next word to
advanced systems capable of following instruc-
tions and solving complex problems (Zhao et al.,
2023a). Early models like GPT (Radford et al.,
2018) could generate coherent text but were lim-
ited to simple tasks, whereas instruction-tuned
LLMs (Chung et al., 2022; Ouyang et al., 2022)
like ChatGPT1 greatly enhanced their versatility
and ability to execute specific commands. This
shift has revolutionized the development of real-
world applications powered by LLMs.

With the advancements and broad applicabil-
ity of LLMs, it is essential to properly evaluate
them to ensure they are safe to use. This is in-
deed important not only for academic benchmarks
but also for business use cases. Consequently,

1https://openai.com/index/chatgpt/

understanding the bottlenecks of current evalua-
tion methods, and developing strategies to address
these challenges are crucial for standardizing eval-
uations and enabling reliable use of LLMs in prac-
tical applications. Nonetheless, evaluating LLMs
is as complex and resource-intensive as their de-
velopment, involving multiple levels or aspects.

Existing reviews (Chang et al., 2024; Guo et al.,
2023b; Liang et al., 2022; Minaee et al., 2024;
Zhuang et al., 2023) related to the evaluation
of LLMs often focus only on benchmark tasks,
datasets, and evaluation criteria, neglecting the
broader complexities. This oversight can under-
mine the reliability of evaluation by ignoring is-
sues like robustness and reproducibility. While
some recent studies (Balloccu et al., 2024; Mao
et al., 2023) have investigated data contamination
(Ravaut et al., 2024) and evaluation malpractices
in LLM evaluation, their focus is limited to only
assessing ChatGPT, overlooking other LLMs, as
well as the entire evaluation pipeline.

More recently, Biderman et al. (2024) discussed
the reproducibility problem in existing evaluations
of LLMs and introduced a library to address this.
However, their work lacks comprehensive discus-
sions on how aspects like reliability or robustness
impact LLM evaluation and how to address them.
Hence, existing LLM evaluation studies often fo-
cus on individual aspects in a scattered manner,
resulting in findings that are only sparsely useful.

To mitigate this gap, this paper brings together
the discussions to address the fundamental chal-
lenges and limitations in LLM evaluations that
emerge from diverse evaluation setups. First,
we craft a schematic workflow of the evaluation
pipeline in practical settings (presented in Sec-
tion 2) for a systematic study. We then examine
each step in the evaluation workflow, uncovering
various inconsistencies and decision-making com-
plexities affecting reproducibility, reliability, and

https://openai.com/index/chatgpt/
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Figure 1: Typology of the LLM Evaluation Workflow

robustness (see Section 3). Based on our findings,
we provide a principled guideline in Section 4 to
address current limitations in LLM evaluation.

2 Overview of LLM Evaluation Process
The following components are crucial for LLM
evaluation: Evaluation Setup, Response Genera-
tion, and Evaluation Methodology (Chang et al.,
2024). Each component has its own challenges,
which we discuss in Section 3. These components
in an evaluation workflow are shown in Figure 1.
2.1 Evaluation Setup
Benchmark Selection: To initiate the evaluation
process of LLMs, the first step is selecting ap-
propriate benchmarks. We categorize the bench-
marking datasets into the following: general ca-
pability benchmarks, specialized benchmarks, and
other diverse benchmarks. We refer to general
capability benchmarks as the ones that are of-
ten used for evaluation upon the release of an
LLM (e.g., MMLU (Hendrycks et al., 2020), Hu-
manEval (Chen et al., 2021)). In addition, there
are specialized benchmarks that measure specific
capabilities of LLMs (e.g., MT-Bench for chat-
ting capabilities (Zheng et al., 2024)). There are
also other benchmarks that usually combine mul-
tiple benchmarks to evaluate LLMs on diverse task
(e.g., HELM (Liang et al., 2022)). We provide
more details on each category in Appendix A.1.
Model Selection: Selecting the appropriate model
from the numerous LLMs currently available is
crucial for ensuring a fair evaluation, as it helps to
avoid risks such as data contamination and unfair
comparisons. For a detailed discussion on promi-
nent LLMs, see Appendix A.2.
2.2 Response Generation
Once the benchmarks and the models are selected,
the next step in the evaluation process is to design

the prompt and set up the decoding parameters for
response generation. In the prompt design step,
decisions on what type of prompting (e.g., zero-
shot or few-shot) would be used are taken. More-
over, configuring the decoding parameters (e.g.,
temperature) is important to ensure optimal per-
formance (Shi et al., 2024). More discussions on
this are provided in Appendix A.3 and A.4.

2.3 Evaluation Methodology

Parsing Script Design: Evaluating LLM-
generated responses is difficult because they often
produce verbose outputs (see Table 4 for some
examples). Therefore, parsing scripts are often
necessary (Jahan et al., 2024; Laskar et al., 2023a)
to extract target labels before applying evaluation
metrics, ensuring alignment with evaluation
criteria to maintain reliability.

Evaluation Approach: The evaluation ap-
proach can be divided into the following:
automatic evaluation, human evaluation, LLMs
as evaluators. In automatic evaluation, before
applying task-specific metrics (e.g., F1, Exact
Match, Perplexity (Jelinek et al., 1977)), parsing
scripts are often utilized to extract the targeted
answer, especially in discriminative tasks. Hu-
man evaluation is required to ensure qualitative
assessments of LLM responses (e.g., measuring
clarity, coherence, factuality) (van der Lee et al.,
2021). Recently, human evaluation based on the
Elo-based rating system (Zheng et al., 2024) has
gained a lot of attention. Since human evaluation
is time-consuming, the utilization of LLMs as
evaluators to assess other LLMs has become a
popular evaluation approach (Chiang and Lee,
2023; Huang et al., 2024a). More details on LLM
evaluation approaches are in Appendix A.6.1.
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Availability (%) Comparison (%)

Prompt Code Prompt + Code Model Version Fair Unfair

90.6 53.3 50.0 29.3 20.7 79.3

Table 1: Availability of resources and fairness in model compar-
isons (out of 212 papers), analyzed by Balloccu et al. (2024).

3 Challenges in Evaluating LLMs
We examine challenges and limitations in the eval-
uation process of LLMs based on three dimen-
sions: reproducibility, reliability, and robustness.

3.1 Reproducibility
Reproducibility, the ability to consistently repli-
cate model results under the same conditions, is
a major challenge in generative models (Bider-
man et al., 2024). The primary challenge is the
lack of comprehensive documentation for each
part of the evaluation cycle, including benchmark-
ing datasets, prompt construction, model details,
decoding strategy, response parsing, and evalua-
tion methodology (Kosch and Feger, 2024; McIn-
tosh et al., 2024). Table 1 presents an analysis by
Balloccu et al. (2024), revealing that a relatively
low percentage of the analyzed papers shared their
resources. Below, we discuss factors impacting re-
producibility in the evaluation step.

3.1.1 Missing Details on Data & Models Used
Benchmarking Data: One factor that can nega-
tively impede the ability to reproduce results is not
releasing the exact data used for evaluation (Bal-
loccu et al., 2024). Many studies evaluate LLMs
on only a subset of existing datasets (Bang et al.,
2023; Kocoń et al., 2023), while others use the ex-
act benchmarking datasets (Laskar et al., 2023a;
Qin et al., 2023). Despite the expectation not to
compare results across studies using different sub-
sets of the data, such comparisons often occur, as
discussed by Balloccu et al. (2024). Nonetheless,
without explaining the sampling strategy, or re-
leasing the subsets used for evaluation (and possi-
bly their responses), reproducing results using dif-
ferent data subsets of the same size is challenging.
Model Versions: The information regarding the
version of a model being used is also missing
in many studies (Balloccu et al., 2024; Biderman
et al., 2024), creating reproducibility concern (see
Table 1). The continuous updates of the closed-
source models, often with undisclosed changes
can also impact reproducibility. With these up-
dates, earlier versions are often deprecated, and re-
sults from these versions may not apply to newer

models (Chen et al., 2023b), making prior evalu-
ation results to be no longer reproducible (Bang
et al., 2023; Kocoń et al., 2023; Laskar et al.,
2023a; Qin et al., 2023). Therefore, it is crucial to
specify the model versions used (Balloccu et al.,
2024; Biderman et al., 2024), while model owners
should keep earlier versions available.

3.1.2 Lacking Response Generation Details
Prompting: The lack of details behind how the
prompts are designed may make the findings in
different literature inconsistent. For instace, vari-
ations in prompt design can lead to significantly
different results, as seen in various studies (Bang
et al., 2023; Jahan et al., 2024; Laskar et al.,
2023a; Qin et al., 2023). While few-shot learn-
ing is found to outperform zero-shot in the orig-
inal evaluation conducted by the authors of vari-
ous LLMs (Anil et al., 2023; OpenAI, 2023; Tou-
vron et al., 2023b), many independent evaluations
demonstrate that adding few-shot examples does
not necessarily outperform zero-shot models in ev-
ery task (Jahan et al., 2024; Ye et al., 2023a). This
raises the concern of whether certain prompt engi-
neering techniques or optimizations to select few-
shot samples were applied in the original evalu-
ations. Hence, not disclosing the details behind
how the prompt is designed or how the few-shot
examples are selected can hinder reproducibility.
Decoding Strategy: LLMs are sensitive to de-
coding parameters, leading to significant perfor-
mance variations based on the chosen settings
(Roziere et al., 2023; Touvron et al., 2023b). How-
ever, crucial details on their selection are excluded
in existing literature (Bang et al., 2023; Kocoń
et al., 2023; Laskar et al., 2023a; OpenAI, 2023;
Qin et al., 2023; Team et al., 2023). This lack
of transparency raises reproducibility concerns,
which could be responsible for inconsistent results
across studies even when similar prompts are used.
For instance, Qin et al. (2023) found that adding
output length restrictions in the prompt to gener-
ate summaries in no more than N words led to a
performance drop in the SAMSum dataset (Gliwa
et al., 2019). However, Laskar et al. (2023a) found
that such controlled experiments led to a gain in
performance in the SAMSum dataset.

3.1.3 Evaluation Methods Unavailable
Parsing Scripts: LLM-generated responses of-
ten require parsing scripts to extract desired in-
formation. However, as demonstrated in Table 1,
Balloccu et al. (2024) observed in their analysis
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that almost half of the LLM evaluation papers do
not release any codes. We also observe that most
studies (these include both the LLM technical re-
ports, as well independent evaluations) do not re-
lease their parsing scripts (Bang et al., 2023; Ko-
coń et al., 2023; OpenAI, 2023; Qin et al., 2023;
Team et al., 2023, 2024). Nonetheless, inaccu-
rate design of parsing scripts may lead to different
evaluation results (Laskar et al., 2023a). Thus, the
unavailability of parsing scripts would complicate
result comparisons while impacting reproducibil-
ity (Balloccu et al., 2024; Biderman et al., 2024).
Evaluation Approach: LLMs are increasingly
used to evaluate other LLMs in development
(Zheng et al., 2024). Concerns arise due to the
use of closed-source LLMs as evaluators, as their
frequent updates can affect reproducibility (Chen
et al., 2023b; Verga et al., 2024). Moreover,
Chen et al. (2023b) observed significant behav-
ioral changes in closed-source LLMs over short
periods. Such reproducibility concerns are also
observed in prior research that used LLMs as eval-
uators. For instance, Chiang and Lee (2023);
Zheng et al. (2024) found that using closed-
source LLMs as the judge could collide with hu-
man evaluations, whereas Fu et al. (2023b) ob-
served the opposite. Since the recently proposed
Prometheus-2 (Kim et al., 2024) model is an open-
source alternative and demonstrates a strong cor-
relation with humans, utilizing open-source LLMs
as the judge can help mitigate the reproducibility
issues prevalent with closed-source LLMs.

3.2 Reliability

Reliability, the ability to trust that outcomes are as
intended, is another challenge encountered during
evaluation. Issues like contamination/inaccurate
labels in the data, irrelevant evaluation methods,
and unfair comparisons may impact the reliability
of the findings, which we discuss below.

3.2.1 Data and Model Integrity Issues
Data Integrity: Errors in benchmarks under-
mine accurate conclusions and model compar-
isons, rendering evaluations of LLMs unreliable.
An integrity-compromising factor is the presence
of incorrect gold labels. For instance, existing is-
sues in the gold labels of the widely used MMLU
(Hendrycks et al., 2020) dataset have led to the de-
velopment of MMLU-Pro (Wang et al., 2024) and
MMLU-Redux (Gema et al., 2024). Recently it
was also found that the coding benchmarks, Hu-

manEval (Chen et al., 2021), lacked essential test
cases, leading to the development of an advanced
version, HumanEvalPlus (Liu et al., 2024b).

Despite these improvements, many recent
studies continue to use the older versions of
datasets. For instance, despite the release of Hu-
manEvalPlus, HumanEval is still used to bench-
mark LLM coding performance (Gloeckle et al.,
2024; Jiang et al., 2023; Li et al., 2023c; Roziere
et al., 2023; Team et al., 2023, 2024; Wong et al.,
2023), potentially providing misleading insights.
In addition, outdated labels in existing bench-
marks undermine reliability of gold references.
For example, in tasks like open-domain question
answering, which demand real-world knowledge,
many gold labels become outdated over time, as
noted by Laskar et al. (2023a). Consequently,
even if LLMs produce correct answers, compar-
ing them to obsolete gold labels can yield inaccu-
rate results. Moreover, in tasks like summariza-
tion, LLM-generated summaries are often favored
over human-annotated gold references (Ding et al.,
2022; Pu et al., 2023; Zhang et al., 2024b).

Contamination in Existing Models: Contamina-
tion occurs when a benchmarking dataset is used
in training, reducing result reliability and validity
(Sainz et al., 2023a). Ensuring benchmarking ex-
amples are excluded from training data is essential
to maintain reliable results. Since LLMs are pre-
trained on vast amounts of text data available on
the internet, this could lead to unfair evaluations
if LLMs have already encountered these datasets
during their pre-training phase (Balloccu et al.,
2024; Ravaut et al., 2024; Xu et al., 2024).

Nonetheless, most prior LLM evaluation work
focusing on zero-shot evaluation did not con-
duct any data contamination tests (Bang et al.,
2023; Laskar et al., 2023a; OpenAI, 2023; Qin
et al., 2023; Team et al., 2023), raising concerns
about whether these evaluations truly represent
the zero-shot capabilities of LLMs. Recent re-
search has also demonstrated a strong possibility
of data contamination in many datasets used to
evaluate different LLMs (Balloccu et al., 2024;
Golchin and Surdeanu, 2023; Li and Flanigan,
2023; Oren et al., 2023; Ravaut et al., 2024; Sainz
et al., 2023b; Xu et al., 2024; Zhang et al., 2024a).
With the current generation of LLMs being ex-
tremely capable of learning new skills with min-
imal amounts of data, exposing them to evalua-
tion data may undermine the measurement of their
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true capabilities. Since the possibility of data con-
tamination has led to the development of new ver-
sions of existing datasets (e.g., utilizing GSM-8K
to construct GSM-1K (Zhang et al., 2024a)), it is
crucial to use reliable and fair evaluation datasets.

3.2.2 Lack of Fairness by Manipulating
Response Generation

Prompt Hacking: One major concern in terms
of lack of fairness in LLM evaluation is the possi-
bility of prompt hacking (Schulhoff et al., 2023),
which involves manipulating input prompts to a
language model to elicit desired responses (e.g.,
biasing the outputs, or taking unfair advantages by
using specific few-shot examples). While the per-
formance of LLMs depends on many factors rel-
evant to how the prompt is structured, most work
(Bang et al., 2023; Laskar et al., 2023a; Qin et al.,
2023), even the official technical reports (An-
thropic, 2024; OpenAI, 2023; Team et al., 2023)
of different LLMs lack the necessary details be-
hind prompt construction (e.g., missing scientific
validity on why a certain prompt was preferred
over others, how the few-shot examples are se-
lected, etc.). This makes the claims regarding the
effectiveness and limitations of certain LLMs in
comparison to others questionable2. Recogniz-
ing these parallels underscores the need for trans-
parency and robust methodologies to ensure fair-
ness in AI research and development.
Lack of Transparency in Decoding Parameters:
Shi et al. (2024) demonstrated that extensive tun-
ing of decoding parameters could improve the per-
formance during inference. However, how the dif-
ferent decoding parameters are selected is often
underexplored in existing evaluations (Bang et al.,
2023; Laskar et al., 2023a,b; OpenAI, 2023; Qin
et al., 2023; Team et al., 2023), as discussed in
Section 3.1. This poses the risk of optimizing the
parameters on test sets to improve performance.

3.2.3 Inappropriate Evaluation Methodology
Inaccurate Design of Parsing Scripts: As Laskar
et al. (2023a) observed, evaluating LLMs entirely
with an automated approach based on the answer
extracted using parsing scripts may lead to an er-
ror of up to more than 10% difference in many
tasks. This raises questions about the reliability
of LLM evaluations that solely depend on parsing
scripts without validating the scripts’ effectiveness

2https://crfm.stanford.edu/2024/05/01/
helm-mmlu.html

Figure 2: Comparing Automatic and Hybrid Evaluation.

for the task. To tackle this, Laskar et al. (2023a)
proposed a hybrid approach combining parsing
script-based automatic evaluation with human-in-
the-loop. Initially, the parsing script extracts an-
swers from LLM-generated responses. If any is-
sues arise, humans resolve them, enhancing the re-
liability of parsing-based automatic evaluation.

In Figure 2, we demonstrate the differences
between automatic and hybrid evaluation in
Open-Domain QA3 and reading comprehnesion
datasets4. The figure highlights the influence
of human intervention on results in open-domain
QA, where LLMs may generate synonymous or
time-sensitive correct answers, potentially render-
ing gold answers outdated (Laskar et al., 2023a).
Parsing script-based automatic evaluation is found
to be reliable in Race datasets for reading com-
prehension, whereas notable discrepancies are ob-
served in the SQuAD-V2 dataset. Therefore,
there’s a need for designing dependable parsing
scripts and involving humans when appropriate.
Evaluation Approaches Lacking Relevancy: In
generative tasks, utilizing automatic string-based
matching techniques may not be reliable as well.
For instance, Laskar et al. (2023a) observed that
despite LLMs scoring quite poorly on the ROUGE
metric compared to SOTA summarization models,
humans often prefer LLM-generated responses.
Moreover, recent research observed potential bi-
ases while using LLMs as evaluators, such as
LLMs preferring responses generated by LLMs of
the same series, positional bias (Bai et al., 2024;
Stureborg et al., 2024; Wang et al., 2023b; Wu and
Aji, 2023). To mitigate this, Verga et al. (2024)
proposed a new technique that leveraged multiple
LLMs as juries instead of using a single LLM as
the judge. This approach demonstrates higher cor-

3NQ-Open (Kwiatkowski et al., 2019), WebQuestions
(Talmor and Berant, 2018), TriviaQA (Joshi et al., 2017))

4SQuAD-V2 (Rajpurkar et al., 2018), Race-High and
Race-Middle (Lai et al., 2017)

https://crfm.stanford.edu/2024/05/01/helm-mmlu.html
https://crfm.stanford.edu/2024/05/01/helm-mmlu.html
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Figure 3: Performance Comparison: LLaMA-3 and Qwen2

relations with humans, while mitigating biases.
3.3 Robustness

While there are many evaluation benchmarks cur-
rently available, existing work mostly relies on
evaluating LLMs on some common benchmarks,
this raises the question of whether the performance
of LLMs in these common benchmarks in existing
settings reflects their true capabilities and limita-
tions. In this section, we study the robustness of
existing LLM evaluations.

3.3.1 Lacking Generalized Evaluation
Limiting Evaluation to Certain Scenarios: In-
terestingly, it has been observed in recent research
that certain performance gains in a specific dataset
may not necessarily imply that it would also im-
prove the performance in other datasets for simi-
lar tasks (Jahan et al., 2024; SambaNova, 2024).
For instance, Jahan et al. (2024) observes that not
a single LLM has superiority over other LLMs
across all biomedical datasets and tasks. This is
also evident if we compare the results between
LLaMA-3 and Qwen2 reported in (Qwen2, 2024).
As shown in Figure 3, while the Qwen2 model out-
performs LLaMA-3 on most datasets, it falls short
on GPQA and MBPP. Interestingly, for coding
tasks, Qwen2 significantly outperforms LLaMA-
3 on the HumanEval dataset (Chen et al., 2021)
but not on the MBPP dataset (Austin et al., 2021).
Meanwhile, existing common benchmarks also do
not take into account some specific settings, such
as how LLMs perform in long context scenarios,
as recent research demonstrated that LLMs often
struggle to generate the correct answer when rele-
vant information does not appear at the beginning
or end of the input context (Liu et al., 2024d).
This highlights the importance of evaluating the
generalized performance of LLMs across a set of
diverse benchmarks and settings,instead of limit-
ing evaluation to only common benchmarks like
MMLU (Hendrycks et al., 2020).
Diversity and Coverage in Benchmarks: Al-
though benchmarking datasets are designed to ad-

Tokenizer Vocab MMLU MMLU-Pro MixEval MixEval-Hard

LLaMA-2 32,000 0.52 0.45 0.29 0.11
LLaMA-3 128,256 0.27 0.21 0.09 0.03

Mistral 32,000 0.59 0.51 0.31 0.11
Qwen2 151,646 0.22 0.17 0.08 0.02

Table 2: Comparison of vocabulary coverage across different
datasets and LLM tokenizers. The scores represent the percentage
of tokenizer vocabulary that is covered by the respective dataset.

dress specific problems and objectives, the vari-
ation and complexity of language within these
datasets are often unclear. Liang et al. (2022)
highlighted that better coverage in benchmarking
datasets would enhance the comprehensiveness of
the model’s evaluation. While different language
models use different tokenizers to represent the
benchmarking dataset, it also leads to variations
in what is evaluated across models.

As can be seen in Table 2, we conducted a
small-scale analysis for LLaMA-2 (Touvron et al.,
2023b), LLaMA-3,5 Mistral (Jiang et al., 2023),
and Qwen26 on two benchmarking datasets with
varying complexities: MMLU (Hendrycks et al.,
2020) and its more challenging version, MMLU-
Pro (Wang et al., 2024), as well as MixEval (Ni
et al., 2024) and its harder version, MixEval-Hard.
Our findings indicate that these datasets cover a
relatively small portion of the model’s capabilities.
Specifically, for MixEval, as the datasets became
more diverse and dynamic, the vocabulary cover-
age for the tokenizer decreased. This trend con-
tinued as the datasets increased in difficulty, with
vocabulary coverage further declining.

3.3.2 No Tuning of Prompt and Decoding
Parameters

While various combinations of decoding parame-
ters may lead to differences in results (Shi et al.,
2024), possibly due to high computing require-
ments, existing LLM evaluation work mostly un-
dermines the necessity of evaluating how the
model performance may vary depending on its
variations. Similar to the absence of decoder pa-
rameter tuning, most prior work also evaluated
LLMs using only a single prompt (Bang et al.,
2023; Jahan et al., 2024; Kocoń et al., 2023;
Laskar et al., 2023a; Qin et al., 2023). However,
in the real world, users express themselves with
diverse word choices, varying semantics and syn-
taxes, alongside minor discrepancies (e.g., mis-
spellings or differing punctuation styles). To fur-

5https://llama.meta.com/llama3/
6https://github.com/QwenLM/Qwen2

https://llama.meta.com/llama3/
https://github.com/QwenLM/Qwen2
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Figure 4: Performance in SAMSum based on Prompt Tuning.

ther examine the effects of prompt variations, we
conduct an experiment using GPT-4o (2024-04-
09) and GPT-3.5-Turbo (0125) (OpenAI, 2023), as
well as Claude-3-Opus (2024-02-29) (Anthropic,
2024) with the prompts used by (Laskar et al.,
2023a) and (Qin et al., 2023) in the SAMSum
dataset. For this experiment, the default param-
eters for respective LLMs are used.

As shown in Figure 4, the restricted prompt-
ing method by Laskar et al. (2023a) consistently
outperforms the unrestricted approach across all
three models. Conversely, the restricted prompt-
ing method by Qin et al. (2023) fails to surpass
the unrestricted approach for GPT-3.5 and GPT-
4o. However, it surprisingly outperforms the unre-
stricted method, indicating the significant impact
of prompt tuning across models. Evaluating lan-
guage models with a single prompt lacks fairness
(Zhu et al., 2023b), yet it remains common prac-
tice (Bang et al., 2023; Laskar et al., 2023a; Qin
et al., 2023). Minor prompt variations can lead to
diverse outcomes for different models (Alzahrani
et al., 2024; An et al., 2023; Biderman et al., 2024;
Sclar et al., 2023; Zhang et al., 2024a), highlight-
ing the need to compare benchmarks across multi-
ple prompts. Using automated prompt tuning tech-
niques like Meta Probing Agents (Zhu et al., 2024)
can ensure robustness to prompt variations.
3.3.3 Evaluation Method’s Generalizability

and Correlation Shortcomings
While automatic evaluations are usually utilized
in discriminative tasks, they may not be applica-
ble to every task, as demonstrated by Jahan et al.
(2024) that parsing scripts are not usable in certain
discriminative tasks like relation extraction. Jahan
et al. (2024) also noted a significant performance
gap between the string-matching-based ROUGE
metric (Lin, 2004a) and the contextual similarity-
based metric BERTScore (Zhang et al., 2019) in

Chatbot HELM Vellum
Model Arena MMLU MMLU

GPT-4o-2024-05-13 1 (1) 2 (2) 1 (1)
GPT-4-Turbo-2024-04-09 5 (3) 3 (3) 3 (3)
GPT-4-0125-preview 6 (4) 5 (5) 4 (4)
Gemini-1.5-Pro 4 (2) 4 (4) 13 (6)
Gemini-1.5-Flash 10 (6) 10 (6) 10 (5)
Claude-3-Opus-2024-02-29 7 (5) 1 (1) 2 (2)

Table 3: Rankings of models on LMSys Chatbot Arena vs two
MMLU implementations. The relative rank of each model in MMLU
is shown in parentheses.

text summarization. While larger models achieve
better accuracy, they involve a speed-accuracy
trade-off, leading to higher costs and latency (Fu
et al., 2024b; Laskar et al., 2023b). While met-
rics like perplexity are widely used to evaluate lan-
guage models (Chen et al., 2023c), Huang et al.
(2024b) found that quantized LLaMA-3 versions
have lower output confidence than the original.
They noted similar model rankings for perplex-
ity and a common-sense QA dataset. However,
Hu et al. (2024) found no correlation between
perplexity and long context understanding tasks,
highlighting the need for robust evaluations with
human-correlated metrics.

This raises another question, whether au-
tomated evaluations and LLM-as-a-judge cor-
relate with human evaluations (e.g., Elo rat-
ings). Zheng et al. (2023) demonstrated signif-
icant correlations between Elo ratings, LLM-as-
a-judge, and automated evaluations. However,
recent research (Alzahrani et al., 2024) suggest
that automated evaluations, especially those us-
ing multiple-choice questions, can yield unstable
rankings with minor changes in evaluation meth-
ods. Given this instability, it prompts us to ques-
tion why these automated tests should align with
human Elo ratings despite demonstrating such in-
consistencies. In our view, we should focus not
only on correlating scores but also on how well
a benchmark’s rankings align with the gold stan-
dards. Analysis in Table 3 for GPT-4 (OpenAI,
2023), Gemini (Team et al., 2023), and Claude-
3 (Anthropic, 2024) reveals two key observations:
(i) MMLU rankings disagree with LMSys Chatbot
Arena and (ii) MMLU rankings vary among them-
selves due to implementation differences.

4 Recommendations and Best Practices

We’ve outlined the primary challenges in evaluat-
ing LLMs thus far. In light of these challenges, a
crucial question arises: How can we enhance the
evaluation process for LLMs? Crafting a struc-
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tured framework that’s both practical and easy to
implement is daunting, given the complexities of
generative LLM development. Previous studies
have tended to focus on specific evaluation as-
pects without offering comprehensive guidelines
for the entire evaluation cycle, leaving researchers
without clear guidance. Before diving into rec-
ommendations for each evaluation stage, it’s im-
portant to acknowledge three key factors shaping
current LLM evaluation practices: inherent ran-
domness in generative models, significant compu-
tational demands, and insufficient documentation
across stages.

Evaluation Setup: Selecting benchmarks for
model assessment is crucial. Rather than sim-
ply replicating past choices, researchers should
align datasets with required capabilities. To ensure
robustness, datasets should vary across expected
LLM capabilities (e.g., long-context understand-
ing), tasks (e.g., summarization), and language
complexity (e.g., vocabulary coverage). Ideally,
a metric should measure dataset diversity. For
model selection, conduct contamination tests be-
tween the chosen model and benchmarks using
relevant techniques (Ravaut et al., 2024). This acts
as an additional filter for benchmarking datasets,
ensuring selection of unseen ones measuring in-
tended capabilities. Meanwhile, for reproducibil-
ity, document any subset use of benchmarking
datasets, along with the selected model version.
In addition, throughout scientific history, intel-
ligence progress has evolved across generations.
Tests from a decade ago may appear simplis-
tic compared to today’s standards (e.g., Math
Olympiads, ICPC programming contests). Re-
freshing LLM evaluations periodically can effec-
tively communicate standard capabilities in both
open and closed-source LLM markets and ecosys-
tems (e.g., chatbots, translation tools). Hence, to
ensure reliability, verify if the dataset has updated
versions and incorporate them if available (e.g.,
HumanEvalPlus (Liu et al., 2024b), MMLU-Pro
(Wang et al., 2024))

Response Generation: For reproducibility,
thorough documentation of prompts and parame-
ter settings is essential (e.g., specifying how few-
shot samples are selected). To ensure reliabil-
ity, it’s crucial to justify why specific prompts
and parameter settings are chosen over others,
and provide comparisons with alternative options.
As for robustness, running experiments with di-

verse prompts and parameters is key to showcas-
ing their effectiveness and limitations across dif-
ferent scenarios. In resource-constrained environ-
ments, conducting experiments with diverse eval-
uation settings may pose challenges, yet it remains
vital to perform robust evaluations on at least a
subset of samples.

Evaluation Methodology: To ensure repro-
ducibility, the parsing scripts and the output
data used for evaluation should be published.
Meanwhile, sanity-checking on the parsing script
should be done to ensure reliability and robustness
of the designed parsing script. This can be done by
creating test cases for various response types, and
then verifying (with human intervention if possi-
ble) whether the parsing script can reliably extract
the targeted answer from the generated response.
Meanwhile, reliance on string-based metrics like
ROUGE should be minimized in favor of quali-
tative evaluations to ensure the reliability of the
chosen evaluation methodology. Given the cost
and time constraints of human qualitative evalu-
ation, LLM-based evaluators can be used as alter-
natives but must be validated for potential biases
(e.g., multiple LLMs as juries instead of using a
single LLM as the judge (Zheng et al., 2024)).
Finally, robust evaluation using task-specific met-
rics is encouraged with the metrics that lack align-
ments with humans should be avoided.

5 Conclusions and Future Work

In this paper, we systematically survey the chal-
lenges and limitations in evaluating LLMs. We
identified significant inconsistencies and complex-
ities at various stages of the evaluation pipeline,
impacting the reproducibility, reliability, and ro-
bustness of the results. These issues underline the
necessity for a standardized and systematic ap-
proach to evaluating LLMs to ensure their reli-
able usage in real-world applications. By compre-
hensively reviewing the current evaluation prac-
tices, we have provided a set of recommenda-
tions aimed at enhancing the consistency and re-
liability of LLM evaluations. Therefore, future
work should focus on developing and adopting
standardized evaluation protocols for LLMs to ad-
dress the identified inconsistencies and complex-
ities. This includes creating benchmark datasets,
evaluation metrics, and proper documentation of
the evaluation settings to ensure reproducibility,
reliability, and robustness.
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Limitations

One limitation of this work is that it is focused
only on the evaluation phase of the LLM devel-
opment cycle. Therefore, the challenges and lim-
itations that happen during the training phase of
LLMs are left out of the scope of this paper.
Nonetheless, with the rapid growth of LLM tech-
nologies and huge financial incentives, it is es-
sential to conduct a fair and reliable evaluation
of LLM, alongside ensuring robustness and repro-
ducibility, which is the focus of this work.

Another limitation of this study is that it does
not study how to prevent closed-source LLMs
from getting access to the online benchmarks. For
instance, assume we have two entities: model de-
velopers and evaluators. Evaluators do not want
to expose their data to the modeling team. Con-
versely, model developers do not want to release
their model weights due to significant financial in-
centives. If evaluators use an API to get the re-
sponses, there is a risk that the queries may get ex-
posed to the model developers. Therefore, without
getting access to the weights, evaluators cannot re-
liably assess the models on their queries. Mathe-
matically and technically, there is no fundamen-
tal way to solve this problem without altering the
training dynamics which may not be an option for
training teams.

Finally, the multimodal capability, in other
words, the ability to understand both language and
vision is another interesting capability of recently
proposed LLMs (Bai et al., 2023; Chen et al.,
2023a; Dai et al., 2024; Liu et al., 2023b, 2024a;
Luo et al., 2024; Ye et al., 2023b; Zhang et al.,
2023; Zhu et al., 2023a). This has led to the devel-
opment of many multi-modal benchmarks (Chen
et al., 2024b; Fu et al., 2023a, 2024a; Guan et al.,
2023; Li et al., 2023a,b,d; Liu et al., 2024a, 2023d;
Lu et al., 2022; Qiu et al., 2024; Yu et al., 2023).
However, this paper was mostly focused on text-
based NLP tasks and the evaluation of LLMs on
multimodal benchmarks is left out for future work.

6 Ethics Statement

This paper only reviews the existing challenges
and limitations in LLM evaluations and provides
an opinion piece and recommendation to ensure
reliable, robust, and reproducible evaluations of
LLMs. Thus, this review does not pose any eth-
ical concerns.

References

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad
Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Behl, et al. 2024. Phi-3
technical report: A highly capable language
model locally on your phone. arXiv preprint
arXiv:2404.14219.

Ebtesam Almazrouei, Hamza Alobeidli, Abdu-
laziz Alshamsi, Alessandro Cappelli, Ruxan-
dra Cojocaru, Mérouane Debbah, Étienne
Goffinet, Daniel Hesslow, Julien Launay,
Quentin Malartic, et al. 2023. The falcon se-
ries of open language models. arXiv preprint
arXiv:2311.16867.

Iñigo Alonso, Maite Oronoz, and Rodrigo Agerri.
2024. Medexpqa: Multilingual benchmarking
of large language models for medical question
answering. arXiv preprint arXiv:2404.05590.

Norah Alzahrani, Hisham Abdullah Alyahya,
Yazeed Alnumay, Sultan Alrashed, Shaykhah
Alsubaie, Yusef Almushaykeh, Faisal Mirza,
Nouf Alotaibi, Nora Altwairesh, Areeb Alow-
isheq, M Saiful Bari, and Haidar Khan. 2024.
When benchmarks are targets: Revealing the
sensitivity of large language model leader-
boards.

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei
Chen, Nanning Zheng, Weizhu Chen, and Jian-
Guang Lou. 2023. Skill-based few-shot se-
lection for in-context learning. arXiv preprint
arXiv:2305.14210.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey,
Zhifeng Chen, et al. 2023. Palm 2 technical re-
port. arXiv preprint arXiv:2305.10403.

Anthropic. 2024. The claude 3 model family:
Opus, sonnet, haiku.

Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, et al. 2021. Program synthesis
with large language models. arXiv preprint
arXiv:2108.07732.

http://arxiv.org/abs/2402.01781
http://arxiv.org/abs/2402.01781
http://arxiv.org/abs/2402.01781
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf


10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

Confidential ACL Roling Review submission. DO NOT DISTRIBUTE.

Jinze Bai, Shuai Bai, Shusheng Yang, Shi-
jie Wang, Sinan Tan, Peng Wang, Junyang
Lin, Chang Zhou, and Jingren Zhou. 2023.
Qwen-vl: A frontier large vision-language
model with versatile abilities. arXiv preprint
arXiv:2308.12966.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze
He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng,
Yijia Xiao, Haozhe Lyu, et al. 2024. Bench-
marking foundation models with language-
model-as-an-examiner. Advances in Neural In-
formation Processing Systems, 36.

Simone Balloccu, Patrícia Schmidtová, Mateusz
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A Appendix

A.1 Benchmarking Datasets

General Capability Benchmarks: To bench-
mark the performance of LLMs, researchers typ-
ically use a set of widely recognized datasets.
These common benchmarks are employed by au-
thors upon the release of an LLM to evaluate
its general capabilities. One of the most fre-
quently used benchmarks is the MMLU bench-
mark (Hendrycks et al., 2020), which assesses
LLMs’ overall knowledge and reasoning abilities
across various subjects. Other common bench-
marks focus primarily on evaluating the common-
sense reasoning capabilities of LLMs, such as Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), SIQA, (Sap et al., 2019), WinoGrande
(Sakaguchi et al., 2021), OpenBookQA (Mihaylov
et al., 2018), ARC (Clark et al., 2018). In addition,
the TruthfulQA dataset (Lin et al., 2021) is used to
measure the truthfulness of an LLM. For assessing
coding capabilities, the HumanEval (Chen et al.,
2021) and the MBPP (Austin et al., 2021) are two
widely used benchmarks.

Specialized Benchmarks: There are also spe-
cialized benchmarks that measure specific capabil-
ities of LLMs. For instance, the MT-Bench (Zheng
et al., 2024)) evaluates whether LLMs can prop-
erly engage in conversations, while the Reward-
Bench (Lambert et al., 2024) assesses the perfor-
mance of reward models. The FOFO benchmark
Xia et al. (2024) measures language models’ abil-
ity to adhere to the requested formats in prompts
across different domains. The ability to under-
stand both language and vision is another inter-
esting capability of recently proposed LLMs (Bai
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et al., 2023; Chen et al., 2023a; Dai et al., 2024;
Liu et al., 2023b, 2024a; Luo et al., 2024; Ye et al.,
2023b; Zhang et al., 2023; Zhu et al., 2023a). This
has led to the development of many multi-modal
benchmarks (Chen et al., 2024b; Fu et al., 2023a,
2024a; Guan et al., 2023; Li et al., 2023a,b,d; Liu
et al., 2024a, 2023d; Lu et al., 2022; Qiu et al.,
2024; Yu et al., 2023). These benchmarks study
the multimodal capabilities of LLMs across var-
ious domains, such as math and reasoning (Lu
et al., 2023; Yue et al., 2023), science diagrams
(Kembhavi et al., 2016), chart understanding and
reasoning (Masry et al., 2022), document under-
standing (Mathew et al., 2021).

Other Diverse Benchmarks: To enable a more
comprehensive evaluation of LLMs across a wide
range of scenarios, some studies also focused
on introducing new benchmarks covering vari-
ous aspects, such as HELM (Liang et al., 2022),
PromptBench (Zhu et al., 2023b), OpenLLM.7

These benchmarks cover diverse tasks and usu-
ally include existing benchmarking datasets (e.g.,
MMLU, HellaSwag, etc.). Additionally, despite
the availability of numerous benchmarks (both
general and specialized), existing widely-used
benchmarks still do not cover the full variety of
tasks. Therefore, some researchers have indepen-
dently evaluated LLMs using additional diverse
datasets and tasks, including various NLP datasets
and tasks (Bang et al., 2023; Kocoń et al., 2023;
Laskar et al., 2023a; Qin et al., 2023). They also
employed domain-specific benchmarks in fields
such as biomedicine (Jahan et al., 2023, 2024),
finance (Guo et al., 2023a; Li et al., 2023e), so-
cial science (Ziems et al., 2024), coding (Liu
et al., 2024c), and information retrieval (Zhu et al.,
2023c). In addition to that, ethics, bias, toxic-
ity, robustness, and trustworthiness are also inde-
pendently evaluated by researchers across various
datasets (Liu et al., 2023a; McIntosh et al., 2024;
Rawte et al., 2023; Wang et al., 2023a; Yang et al.,
2022; Zhuo et al., 2023).

A.2 Prominent LLMs

The impressive success of ChatGPT has led to the
development of many LLMs in recent years. Since
there are hundreds of LLMs being released in re-
cent years (Zhao et al., 2023a), we only discuss

7https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard, MixEval
(Ni et al., 2024)

some of the prominent LLMs that achieved top
rankings in various public leaderboards recently.
LLMs can be categorized into two parts: Closed-
Source LLMs: only available for use through the
API or web interface, and (ii) Open-Source LLMs:
where the pre-trained weights of the model are
available that allow further training of such mod-
els. Below, we present some prominent LLMs in
these two categories.

A.2.1 Closed Source LLMs
In the following, we categorize LLMs based on
the organizations that develop these LLMs:

OpenAI models:

• GPT-3.5: This model is an iteration of the
GPT-3 architecture, emphasizing improve-
ments in response quality through the ap-
plication of the reinforcement learning from
human feedback (RLHF) technique. GPT-
3.5 is known for its robust performance in
zero-shot tasks, where no specific training ex-
amples are provided during the task execu-
tion. This model has been instrumental due
to its strong foundational capabilities in un-
derstanding and generating human-like text
(OpenAI, 2023).

• GPT-4: It extends GPT-3.5’s capabilities by
incorporating multimodal functionalities, al-
lowing the model to process not just text but
also visual inputs. This advancement signifi-
cantly broadens its applicational scope, mak-
ing it adept at handling more complex tasks
that require an understanding of both textual
and visual information. It features enhanced
safety protocols and a sophisticated training
regime that includes a safety reward signal
during its reinforcement learning phase (Ope-
nAI, 2023).

• GPT-4V: It focuses on optimizing the vi-
sion capabilities of GPT-4. It specifically ad-
dresses and mitigates risks associated with
processing visually augmented inputs, mak-
ing it a safer and more effective model for
tasks involving images.

• GPT-4 Turbo: This version builds upon
GPT-4’s foundation with substantial up-
grades in computational efficiency and func-
tionality. GPT-4 Turbo boasts an increased

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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model capacity and an extended knowledge
base that encompasses more recent data up to
April 2023. It features a longer context win-
dow of up to 128,000 tokens and includes sig-
nificant improvements in the model’s econ-
omy and output consistency.

• GPT-4o: OpenAI’s most sophisticated
model, GPT-4o ("o" for "omni") is a multi-
modal powerhouse capable of handling both
text and image inputs to generate text outputs.
It improves upon GPT-4 Turbo by offering
double the text generation speed and reduc-
ing operational costs by 50%.

Google models:

• PaLM-2: Released by Google in 2023, it is
an advanced large language model that builds
on the foundations set by its predecessor, the
original PaLM. This iteration incorporates
a sophisticated ’mixture of objectives’ tech-
nique, allowing it to surpass the capabilities
of the earlier model significantly (Anil et al.,
2023).

• Gemini: It is a multimodal model devel-
oped by google in December 2023, to un-
derstand and process a variety of informa-
tion types, including text, images, audio, and
video, seamlessly. Gemini’s architecture al-
lows it to perform exceptionally across mul-
tiple platforms, from large-scale data centers
to mobile devices, adapting efficiently to the
needs of different applications. This model
sets new benchmarks in AI with its ability
to excel in tasks that require complex mul-
timodal integrations (Team et al., 2023).

Anthropic Models: The Claude series mod-
els, developed by Anthropic, represent a series
of advanced language models designed to en-
hance user interaction through natural language
understanding and generation. Starting with the
original Claude, which excelled in tasks like
summarization and creative writing, each subse-
quent model—Claude Instant, Claude 2.0, and the
Claude 3 family (Haiku, Sonnet, and Opus)—has
introduced significant improvements in process-
ing speed, reasoning capabilities, and multimodal
functionality. These models have a variety of
uses, from quick response generation in Claude
Instant to sophisticated multimodal understanding
in Claude 3 Opus, showcasing their versatility and

advanced AI technology to meet different user and
enterprise needs38.

A.2.2 Open Source LLMs
We similarly categorize the open-source LLMs
based on the organizations that develop these
LLMs:

Meta Models:

• Llama: Launched in February 2023 by Meta
AI, Llama was the first in the Llama series,
showcasing strong performance on a range of
natural language processing tasks. It com-
peted well against larger models like GPT-
3 with a smaller parameter size and was
made available under a non-commercial li-
cense, primarily for academic research (Tou-
vron et al., 2023a).

• Llama 2: Released in July 2023, Llama
2 improved on its predecessor by expand-
ing model sizes up to 70 billion parame-
ters. It maintained the original architec-
ture but included better training data and en-
hanced functionality. Notably, Llama 2 was
more accessible, available for both academic
and some commercial uses (Touvron et al.,
2023b).

• Llama 3: In April 2024, Meta AI intro-
duced Llama 3, the most advanced version
with up to 70 billion parameters. This ver-
sion added longer context capabilities and
improved multimodal functions, marking a
significant advancement in AI technology ap-
plication across various fields.

Mistral Models: Mistral AI, founded in April
2023, is a Paris-based company specializing in the
development of open-source large language mod-
els. Rapidly gaining recognition in the AI in-
dustry, Mistral AI emphasizes the importance of
open-source software, providing a viable alterna-
tive to proprietary models. The company has re-
leased several models, including Mistral 7B, Mix-
tral 8x7B, and Mixtral 8x22B, which are known
for their high performance and innovation in the
use of mixture of experts architectures. Code-
stral 22B, introduced on May 29, 2024, is a pi-
oneering code generation model designed to en-
hance coding efficiency across more than 80 pro-

8https://www.anthropic.com/news/
claude-3-family

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
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gramming languages. With its specialized fo-
cus and lightweight architecture, Codestral signif-
icantly outperforms other leading models on the
HumanEval FIM benchmark, making it a critical
tool for developers seeking advanced AI-assisted
coding capabilities(Jiang et al., 2023).

Alibaba Models: QWEN series models are
transformer-based large language models devel-
oped by Alibaba Cloud. These models, pre-
trained on diverse data sources including web
texts, books, code, and more, come in various
sizes ranging from 0.5 billion to 110 billion pa-
rameters. Qwen models support long context
lengths and demonstrate strong performance on
multiple Chinese and English evaluation tasks,
including common-sense reasoning, code, and
mathematics. The latest versions, Qwen 1.5 and
Qwen 2, offer significant improvements in chat
model performance, multilingual support, and sta-
ble support for up to 32K context length. With a
comprehensive vocabulary of over 150K tokens,
Qwen models are designed to handle multiple lan-
guages effectively, making them a versatile tool
for various AI applications (Bai et al., 2023).

Microsoft Models: The Phi series by Microsoft
consists of small language models (SLMs) de-
signed to provide high performance with lower
computational requirements. The newly an-
nounced Phi-3 family includes models like Phi-
3-mini, Phi-3-small, and Phi-3-medium, ranging
from 3.8 billion to 14 billion parameters. These
models excel in various benchmarks, offering ca-
pabilities similar to larger models but in a smaller,
more cost-effective package. Phi-3 models are
particularly suited for simpler tasks, local de-
vice operations, and environments with limited
resources, making AI more accessible and effi-
cient for diverse applications. They are avail-
able through Microsoft Azure AI Model Catalog,
Hugging Face, and as NVIDIA NIM microser-
vices(Abdin et al., 2024).

Technology Innovation Institute Models: Fal-
con series models (Almazrouei et al., 2023), such
as the Falcon 2 series include models with parame-
ter sizes such as 1.3B, 7.5B, 40B, and 180B. These
models are notable for their use of the REFINED-
WEB dataset. Falcon models are designed for both
research and commercial use, with Falcon 2 mod-
els featuring multilingual and multimodal capa-
bilities, including vision-to-language. The Falcon

180B model, in particular, is accessible under a
royalty-free license.

Cohere Models: Cohere offers a variety of ad-
vanced large language models designed for mul-
tiple use cases, including text generation, embed-
dings, and reranking. The Command family mod-
els, such as Command R+ and Command R, ex-
cel in conversational tasks and complex workflows
like code generation and retrieval-augmented gen-
eration (RAG) 9 (Alonso et al., 2024; Chen et al.,
2024a; Liu et al., 2023c; Lyu et al., 2024; Tang
and Yang, 2024; Xiong et al., 2024). The Em-
bed models enhance search, classification, and
clustering capabilities with both English and mul-
tilingual support. The Rerank models improve
search algorithms by re-organizing results based
on specified parameters. Cohere models are acces-
sible across platforms like Amazon SageMaker,
Microsoft Azure, and Oracle GenAI Service, en-
abling seamless integration into diverse applica-
tions.

A.3 Prompting Techniques

Prompts can be designed in various ways (Brown
et al., 2020; Chung et al., 2022; Schulhoff et al.,
2024; Wei et al., 2022), as stated below:

• In-Context Learning (Zero-shot): It means
that the prompt used to interact with the
model contains no examples or demonstra-
tions. The model relies on its pre-existing
knowledge, obtained from its initial training
on diverse data, to generate a response or per-
form the task based solely on the instructions
given. For example, “classify the sentence as
biased or unbiased text”.

• In-Context Learning (Few-shot): It means
that the prompt used to interact with the
model includes a small number of examples
or demonstrations. The model uses these ex-
amples to quickly adapt and understand how
to perform a specific task, leveraging the de-
tails within these examples. This technique
allows the model to extend its pre-existing
knowledge to new tasks by closely analyz-
ing the limited examples given. For instance,
classify the sentence as biased or unbiased
based on a few similar examples provided.

9https://cohere.com/command

https://cohere.com/command
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• Chain-of-Thought Prompting (CoT): This
technique encourages models to generate in-
termediate reasoning steps before arriving
at a final answer, mimicking a human-like
problem-solving approach. This can be com-
bined with few-shot prompting to achieve
better results on more complex tasks. For
example, if asked to determine whether the
number "15" is odd or even, the model might
outline its reasoning as follows: "An even
number is divisible by 2 without a remainder.
15 divided by 2 is 7 with a remainder of 1.
Therefore, 15 is an odd number." This step-
by-step explanation helps clarify the model’s
thought process and supports its conclusion.

• Decomposition Techniques: These tech-
niques break down complex problems into
simpler sub-problems that can be solved se-
quentially by the GenAI model. Each com-
ponent of the problem is addressed individu-
ally, and the solutions are integrated to form
a comprehensive response. Decomposition
is especially useful in tasks that require lay-
ered reasoning or have multiple steps. For ex-
ample, in solving a math word problem, de-
composition might involve separately calcu-
lating the distances each person travels and
then combining these calculations to deter-
mine when they meet.

• Role-based and Style-based Prompting:
In these techniques prompts are designed
to induce a specific style or persona in the
model’s responses. By specifying a role (e.g.,
a scientist explaining a concept) or a style
(e.g., formal or poetic), users can guide the
tone and formality of the AI’s output. This
technique is valuable in applications requir-
ing genre-specific content generation or when
the output needs to fit a particular commu-
nicative context.

• Prompt chaining: It is a technique where
a complex task is divided into simpler sub-
tasks, each addressed by its own prompt. The
response from one prompt is used as the in-
put for the next, creating a sequential chain
of prompts that gradually build towards the fi-
nal answer. This method enhances the perfor-
mance and reliability of large language mod-
els by breaking down tasks into manageable
parts, making it easier to control and refine

the model’s responses at each step. For ex-
ample, in a document analysis task, the first
prompt might extract key facts from a text,
and the second prompt would use these facts
to generate a summary.

• Tree of Thoughts (ToT): It is a technique
that structures problem-solving into a tree of
possible solutions. It uses strategies like like
breadth-first or depth-first search to evaluate
each potential solution path. For example, in
solving a puzzle, ToT might explore differ-
ent moves systematically to find the quickest
solution path.

• Directional Stimulus Prompting (DSP) :
It is a technique that enhances how large
language models (LLMs) respond to tasks
by using dynamically generated prompts. A
secondary, tuneable model creates specific
hints that guide the main, unchangeable LLM
to produce more targeted and relevant out-
puts. This method uses reinforcement learn-
ing to refine these prompts based on how well
they perform, making DSP a more adaptive
and precise approach compared to standard
prompting techniques. For instance, in sum-
marizing complex documents, DSP might
generate a prompt like "Summarize focusing
on economic impacts," guiding the LLM to
tailor its output specifically to the economic
aspects mentioned in the text.

• Multimodal Prompting: Extending be-
yond text, multimodal prompting involves
using inputs like images, audio, or video
along with textual descriptions to guide the
AI’s response. This technique leverages the
model’s capability to process and integrate
information from diverse data types, enhanc-
ing its applicability in scenarios where multi-
ple forms of data are available. For example,
interpret a scene from a video by analyzing
both the spoken dialogue and the visual con-
tent to determine the mood of the conversa-
tion.

• Meta-Prompting: It involves creating
prompts that instruct the AI to generate or
refine its prompts, essentially using AI to
improve the efficiency and effectiveness of
prompt engineering. This recursive use of
prompting can lead to more dynamic and
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contextually adaptive AI behaviors. For ex-
ample, ask the AI to optimize a prompt that
instructs another AI to summarize news arti-
cles, thereby refining the instructions to en-
hance summary relevance and conciseness.

A.4 Decoding Parameters
There are various decoding parameters that are re-
quired to be set. For instance:

• Temperature: It is used to control the ran-
domness of the output. It is typically between
0 and 1. Lower values (e.g., 0.1) make the
model more deterministic and focused on the
most likely next token, while higher values
(e.g., 0.9) introduce more randomness and di-
versity.

• Beam Size: It refers to the number of beams
in Beam Search (Freitag and Al-Onaizan,
2017), a decoding strategy that keeps track of
multiple possible sequences (beams) at each
step of generation to find the most likely se-
quence. A higher number of beams usually
leads to more accurate results but at the cost
of increased computation.

• Top-K: The number of top probable tokens
to consider. For example, if K=10, the model
will choose the next token only from the top
10 most likely tokens.

• Top-P: The cumulative probability threshold.
For example, if P=0.9, the model will sample
from the smallest set of tokens whose com-
bined probability is at least 90%.

• Maximum Output Tokens: It determines
how many tokens the model will generate at
maximum.

A.5 Parsing Script Design
We present some scenarios in Table 4 to demon-
strate why parsing script is required for such cases
and the importance of validating parsing scripts.

A.6 Evaluation Approach
A.6.1 Automatic Evaluation
To provide a high-level overview, automatic eval-
uation for LLMs can be divided into the following
categories:

Language Modeling: Perplexity (Jelinek et al.,
1977) is widely used to study the performance of

auto-regressive language models. It measures how
confidently a model predicts the next word in a se-
quence, with the assumption that lower perplex-
ity indicates better performance. Hence, perplex-
ity has been historically used to assess the lan-
guage model’s capability to generate a coherent
language and is also useful to quickly compare dif-
ferent models or checkpoints.

Discriminative Tasks: For tasks involving class
prediction, post-processing using a parsing script
is usually required to extract answers from the
LLM-generated responses to compare against gold
labels. In this context, metrics such as Exact
Match, Accuracy, Precision, Recall, F1, are usu-
ally utilized in discriminative tasks (Bang et al.,
2023; Laskar et al., 2023a; Qin et al., 2023).

Generative Tasks: For generative tasks such
as summarization or machine translation, pars-
ing scripts are usually not required (Jahan et al.,
2024; Laskar et al., 2023a) and so the full re-
sponse generated by LLMs are compared against
the gold reference. In this regard, ROUGE
(Lin, 2004b) and BLEU (Papineni et al., 2002)
which are based on n-gram word matching are
widely used. Meanwhile, various contextualized
similarity-based metrics (e.g., BERTScore (Zhang
et al., 2019)) are also utilized that do not depend
on word-based similarity measures.

A.6.2 Human Evaluation
Since LLMs generate human-like responses, it is
often required to conduct qualitative evaluation of
their responses. Earlier, qualitative evaluation of
model-generated summaries in terms of fluency,
coherence, and informativeness were very popular
(Laskar et al., 2022). However, with LLMs usu-
ally generating informative, fluent, and coherent
response (Bang et al., 2023; Kocoń et al., 2023;
Laskar et al., 2023a; Qin et al., 2023), the evalu-
ation of factual consistency of LLM-generated re-
sponses has become more important recently (Fu
et al., 2023b). Moreover, qualitative evaluation
to compare between LLM-generated responses via
leveraging humans based on the Elo rating system
(Zheng et al., 2024) has gained a lot of attention.

Elo Rating: Elo rating works by comparing
LLMs in pairwise “A vs B” comparisons, where
each model is assigned an initial numerical rating
(Boubdir et al., 2023; Zhao et al., 2023b). The
outcome of each comparison adjusts these ratings
based on the Elo algorithm: if a model performs
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Scenario 1: For the response generated, designing a parsing script to extract the answer “Lionel Messi” is straight-
forward. However, the parsing script should also be robust to cover cases like abbreviations, uppercase-lowercase
sensitivity, punctuations, synonyms, stemming, lemmatization, paraphrases, etc.

Prompt: Which player has won the best player award in Fifa world cup 2022?

Sample LLM Response (GPT 4o): Lionel Messi won the Best Player award (Golden Ball) in the FIFA World
Cup 2022. He was instrumental in leading Argentina to victory in the tournament, culminating in their triumph in
the final against France.

Correct Answer: Lionel Messi

Scenario 2: While Extraction of the answer “Lionel Messi” is required, due to the LLM knowledge-cut-off date
of September 2021, it may answer about 2018. However, the target answer “Lionel Messi” is also in the output
and so if the parsing script only parses the target answer then it may consider the response as correct whereas the
response is wrong.

Prompt: Which player has won the best player award in the last Fifa world cup?

Sample LLM Response (Older ChatGPT 3.5 having knowledge cut-off date of September 2021): The Best
Player award (Golden Ball) in the previous FIFA World Cup, which was held in 2018 in Russia, was won by Luka
Modric from Croatia. Prior to the that, Lionel Messi had won it in 2014.

Correct Answer: Lionel Messi

Table 4: Some examples of LLM-generated response requiring parsing script to extract the target answer. For
Scenario 2, human evaluation is usually needed to ensure accurate parsing of the answer.

better than expected, its rating increases; if it per-
forms worse, its rating decreases. The expecta-
tion of a model’s performance is calculated using
its rating relative to its opponent’s, adjusted by a
factor that represents the sensitivity of expected
scores to differences in ratings.

To ensure a robust evaluation of LLMs using
the Elo benchmark, it’s important to follow key
indicators like reliability and transitivity (Boubdir
et al., 2023). Reliability keeps Elo ratings consis-
tent across various comparison sequences and pre-
vents them from being overly sensitive to changes
in hyperparameters, such as the K-factor. Tran-
sitivity is crucial, indicating that if model A is
rated higher than model B, and model B is rated
higher than model C, model A should logically
rank above model C. Extensive testing with both
synthetic and real-world data is essential to verify
that Elo scores accurately and stably reflect model
performance (Boubdir et al., 2023). This involves
making precise adjustments to the comparison or-
der, selecting hyperparameters carefully, and uti-
lizing numerous permutations to ensure outcome
consistency. Due to the sensitive nature of the Elo
rating system towards the order in which the up-
dates were performed, Zheng et al. (2024) used the
Bradley-Terry (BTL) model for their chatbot arena
ranking. It is observed that model A can have a
higher win rate than model B both empirically and

statistically but a lower Elo rating. Since win rate
serves as the stand-in measure for the probability
of a model being better than another, this signifies
the findings by Boubdir et al. (2023) that Elo rat-
ing is non-transitive with or without (BTL). On the
other hand, BTL-based rating is tolerant to an im-
balanced number of votes per model as shown by
(Zheng et al., 2024), they also propose a different
probability of win rates that are derived from the
ratings found from BTL which then is transitive
though it doesn’t correlate with the empirical win
rates.

Elo hacking: Crowdsourced Elo-based ranking
has gained popularity through the LMSys leader-
board 10 and has been accepted by various orga-
nizations, prompting them to release their LLMs
early into this ecosystem for human evaluation.
However, such setups can be easily exploited on
a large scale using simple techniques. Figure 5
illustrates how someone can initially bypass the
blind scoring mechanism through ownership hack-
ing. Additionally, the evaluation of knowledge
bases is not easily tracked, making votes on highly
complex reasoning questions equivalent to those
on simpler queries. Furthermore, upon the release
of a popular model, systematic attacks or boosting
can be initiated through ownership hacking. In ad-

10https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Figure 5: Ownership attack for blind evaluation on LLMs: Reviewers can pose any ownership-related
questions and select their preferred model solely based on the ownership of the model. LMSys doesn’t
count votes if the model’s identities are revealed during conversation

dition to that, considering same score for tie and
both-bad can significantly change leaderboard po-
sition. We recommend to use tie as 0.5 point and
both-bad as 0 point.

A.6.3 LLMs as Evaluators
Since human evaluation is time-consuming and
difficult to reproduce, the instruction-following
capabilities of LLMs have also inspired re-
searchers to use certain LLMs as a judge to evalu-
ate the responses generated by other LLMs (Chern
et al., 2024; Fu et al., 2023b; Hada et al., 2023;
Huang et al., 2024a; Kobayashi et al., 2024; Kocmi
and Federmann, 2023; Lu et al., 2024). While
prior work mostly utilized general-purpose closed-
source LLMs-as-a-judge, the recently proposed
Prometheus 2 (Kim et al., 2024) model is an
open-source variant which is specifically trained
for qualitative evaluation of model-generated re-
sponses and demonstrated higher correlation with
humans.

However, research by (Wang et al., 2023b) and
(Shen et al., 2023) has highlighted potential limi-
tations in using LLM as evaluators, suggesting that
while LLMs can excel in specific areas like trans-
lation quality and grammatical error correction (

(Kobayashi et al., 2024; Kocmi and Federmann,
2023)), their effectiveness as evaluators may vary
significantly across different tasks. This highlights
the ongoing debate and research into the capabil-
ities and limitations of LLMs as evaluators in di-
verse linguistic domains.


