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Abstract

Graph self-supervised learning, as a powerful pre-training paradigm for Graph
Neural Networks (GNNs) without labels, has received considerable attention. We
have witnessed the success of graph self-supervised learning on pre-training the
parameters of GNNs, leading many not to doubt that whether the learned GNNs
parameters are all useful. In this paper, by presenting the experimental evidence
and analysis, we surprisingly discover that the graph self-supervised learning mod-
els are highly redundant at both of neuron and layer levels, e.g., even randomly
removing 51.6% of parameters, the performance of graph self-supervised learn-
ing models still retains at least 96.2%. This discovery implies that the parameters
of graph self-supervised models can be largely reduced, making simultaneously
fine-tuning both graph self-supervised learning models and prediction layers more
feasible. Therefore, we further design a novel graph pre-training and fine-tuning
paradigm called SLImming DE-correlation Fine-tuning (SLIDE2). The effective-
ness of SLIDE is verified through extensive experiments on various benchmarks,
and the performance can be even improved with fewer parameters of models in
most cases. For example, in comparison with full fine-tuning GraphMAE on
Amazon-Computers dataset, even randomly reducing 40% of parameters, we can
still achieve the improvement of 0.24% and 0.27% for Micro-F1 and Macro-F1
scores respectively.

1 Introduction

Graph self-supervised learning, aiming at learning the parameters of Graph Neural Networks
(GNNs) without labels, has been a popular graph pre-training paradigm [1–3]. Usually, graph
self-supervised learning is naturally divided into two learning methods, i.e., graph contrastive learn-
ing [4, 5] and graph generative self-supervised learning [6, 7]. After pre-training the parameters
of self-supervised GNNs, graph self-supervised learning achieves state-of-the-art performance on a
variety of tasks by fine-tuning an additional prediction layer [8, 7].

Various researches have attempted to improve and understand graph self-supervised learning from
different perspectives. For example, the graph augmentation techniques [9, 10], graph spectrum fea-
ture of graph self-supervised learning [11, 12], and others [7, 13]. Despite their remarkable achieve-
ments, little efforts have been made to understand the behavior of the learned model parameters
by graph self-supervised learning. Here, we ask: Are the model parameters all always useful? Or
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what part of model parameters is useful? Whether there is the model redundancy in self-supervised
GNNs? Understanding the model property in graph self-supervised learning, particularly the model
redundancy, can provide valuable guidelines and insights for the development of advanced graph
self-supervised learning.

For this purpose, we conduct experiments and surprisingly find out that the graph self-supervised
learning models are actually highly redundant. We start with the experiments (Section 2) to investi-
gate the downstream performance of different graph self-supervised learning models with randomly
removed parameters at both neuron and layer levels. Our findings indicate that graph self-supervised
learning models with even half of the neurons randomly removed have virtually no impact on the
performance of the node classification task. Moreover, by closely examining the learned represen-
tations, we find out that the representations in each layer with a substantial number of neurons
removed are quite similar to the representations obtained by the full set of neurons. Meanwhile,
there is also a strong similarity between the representations of each layer and its adjacent layer. All
results demonstrate that graph self-supervised models exhibit high model redundancy at both neuron
level and layer levels.

The above findings hold great potential to improve current graph self-supervised learning models.
On the one hand, it may provide valuable guideline for the pruning or the sparsity of GNNs [14, 15].
On the other hand, the phenomenon of model redundancy provides a new opportunity for designing
a full fine-tuning graph self-supervised learning model. Previously, considering that the number
of parameters to be fine-tuned is excessive when we directly fine-tune both GNNs and prediction
layers, we usually only have to fine-tune the attached prediction layer, i.e., linear probing [3, 5, 7].
Here, if the parameters can be greatly reduced, we can simultaneously fine-tune both graph self-
supervised learning models and prediction layers. Besides, the findings imply that de-correlating
the learned representations is also necessary. Therefore, we propose a novel pre-training and fine-
tuning paradigm called SLIDE by obtaining SLIm GNNs from the self-supervised GNNs and using
the DE-correlation strategy to reduce the correlation between features during the fine-tuning phase.
Extensive experiments on various benchmark datasets validate the effectiveness of SLIDE.

In summary, our contributions are three-fold:

• To the best of our knowledge, we are the first to uncover that graph self-supervised models
exhibit high model redundancy at both neuron and layer levels. The model redundancy
allows for the removal of a majority of model parameters with almost no impact on the
performance of the downstream task. This discovery can significantly enhance model effi-
ciency while maintaining acceptable task performance.

• This discovery provides two key guidelines for the subsequent graph pre-training and fine-
tuning framework: one is that the parameters can be reduced, and the other is the represen-
tations should be de-correlated. These motivate us to propose a novel method, SLIDE, to
achieve a pre-training and fine-tuning paradigm with fewer parameters and better perfor-
mance on the downstream task.

• Comprehensive experiments demonstrate that our SLIDE outperforms baselines across
multiple benchmark datasets. For example, using the Amazon-Computers dataset [16]
with GRACE [1], compared to full fine-tuning, we achieve improvements of 0.37% and
0.16% for Macro-F1 and Micro-F1 scores respectively with a random reduction of 30% of
parameters.

2 The Model Redundancy in Graph Self-supervised Learning

In this section, we investigate the model redundancy in two representative graph self-supervised
learning models (GraphMAE [3] and GRACE [1]) on node classification tasks. Specifically, we pre-
train these graph self-supervised models on Cora, Citeseer, Pubmed [17], Amazon-Photo, Amazon-
Computers [16], Ogbn-arxiv [18], and then we evaluate the performance again after removing neu-
rons in various ways. If the performance gap between the original GNNs and the slim GNNs with
fewer neurons is small, it indicates great model redundancy in self-supervised GNNs. In other words,
even with reduced neurons, the performance remains largely unaffected, suggesting that many neu-
rons in self-supervised GNNs are dispensable. Notably, model redundancy is not limited to node
classification tasks. We conduct experiments in Appendix A demonstrating that model redundancy
also persists in link prediction and graph classification tasks.
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Figure 1: Neuron dropout. To initialize a smaller variant of the self-supervised pre-trained GNNs,
we select parameters from self-supervised GNNs in different ways. From left to right: randomly
reduce the number of neurons in each layer proportionally, the original GNNs, retain only the first
two layers while randomly reducing the number of neurons in the second layer proportionally.

Neuron removal We explore two different ways to reduce the number of neurons in self-
supervised GNNs, i.e., the original GNNs, which are illustrated in Figure 1. Specifically, we consider
two approaches: (1) neuron level: randomly retaining the number of neurons by 50% and 25% in
each layer named "half" and "quarter", and (2) layer level: retaining only the first two layers if the
layer number is greater than two and randomly retaining the number of neurons by 100%, 50% and
25% in the second layer named "2-original", "2-half" and "2-quarter". In this way, we can obtain
five types of slim GNNs: "half GNNs", "quarter GNNs", "2-original GNNs", "2-half GNNs" and
"2-quarter GNNs".

Table 1: The performance of different neuron removal methods on six datasets with GraphMAE.
Dataset Metric Original Half Quarter 2-Original 2-Half 2-Quarter

Cora
F1-Mi 83.92 80.36↓ 3.56 74.88↓ 9.04 - 82.84↓ 1.08 81.14↓ 2.78

F1-Ma 83.01 79.85↓ 3.16 73.94↓ 9.07 - 82.06↓ 0.95 80.31↓ 2.70

Change-Param - ↓ 56.56 ↓ 79.92 - ↓ 13.20 ↓ 19.80

CiteSeer
F1-Mi 73.26 72.10↓ 1.16 69.34↓ 3.92 - 73.18↓ 0.08 72.28↓ 0.98

F1-Ma 67.71 64.80↓ 2.91 62.18↓ 5.53 - 66.86↓ 0.85 66.32↓ 1.39

Change-Param - ↓ 53.03 ↓ 77.27 - ↓ 6.10 ↓ 9.15

PubMed
F1-Mi 80.62 77.94↓ 2.68 74.86↓ 5.76 - 79.74↓ 0.88 77.62↓ 3.00

F1-Ma 79.97 77.40↓ 2.57 74.31↓ 5.66 - 79.06↓ 0.91 77.17↓ 2.80

Change-Param - ↓ 66.73 ↓ 87.55 - ↓ 33.56 ↓ 50.34

Photo
F1-Mi 93.11 92.75↓ 0.36 92.26↓ 0.85 - 92.94↓ 0.17 92.95↓ 0.16

F1-Ma 91.91 91.42↓ 0.49 90.81↓ 1.10 - 91.65↓ 0.26 91.63↓ 0.28

Change-Param - ↓ 64.39 ↓ 85.48 - ↓ 28.92 ↓ 43.38

Computers
F1-Mi 90.44 89.49↓ 0.95 87.87↓ 2.57 - 90.14↓ 0.30 89.75↓ 0.69

F1-Ma 89.24 88.30↓ 0.94 86.25↓ 2.99 - 88.92↓ 0.32 88.55↓ 0.69

Change-Param - ↓ 64.21 ↓ 85.66 - ↓ 28.57 ↓ 42.85

arXiv
F1-Mi 71.90 70.83↓ 1.07 69.65↓ 2.25 71.47↓ 0.43 70.64↓ 1.26 69.90↓ 2.00

F1-Ma 51.14 49.16↓ 1.98 46.77↓ 4.37 50.81↓ 0.33 49.82↓ 1.32 48.50↓ 2.64

Change-Param - ↓ 73.37 ↓ 92.53 ↓ 46.96 ↓ 70.45 ↓ 82.19

Table 2: The performance of different neuron removal methods on five datasets with GRACE. Ogbn-
arxiv is not included because it is "out of memory" when Ogbn-arxiv is pre-trained with GRACE.

Dataset Metric Original Half Quarter 2-Half 2-Quarter

Cora
F1-Mi 82.30 80.70↓ 1.60 77.23↓ 5.07 81.83↓ 0.47 79.43↓ 2.87

F1-Ma 81.12 79.35↓ 1.77 75.11↓ 6.01 80.66↓ 0.46 78.12↓ 3.00

Change-Param - ↓ 52.05 ↓ 76.54 ↓ 4.11 ↓ 6.19

CiteSeer
F1-Mi 69.49 69.47↓ 0.02 68.01↓ 0.08 69.75↑ 0.26 69.27↓ 0.22

F1-Ma 61.77 61.68↓ 0.09 61.69↓ 0.08 62.41↑ 0.64 62.13↑ 0.36

Change-Param - ↓ 51.62 ↓ 76.21 ↓ 3.24 ↓ 4.86

PubMed
F1-Mi 81.14 79.47↓ 1.67 76.29↓ 4.85 81.06↓ 0.08 80.42↓ 0.72

F1-Ma 81.05 79.52↓ 1.53 75.70↓ 5.35 80.98↓ 0.07 80.48↓ 0.57

Change-Param - ↓ 58.45 ↓ 81.34 ↓ 16.93 ↓ 25.40

Photo
F1-Mi 91.95 91.40↓ 0.55 87.90↓ 4.05 91.35↓ 0.60 90.95↓ 1.00

F1-Ma 90.10 89.40↓ 0.70 83.76↓ 6.34 89.40↓ 0.70 88.95↓ 1.15

Change-Param - ↓ 60.17 ↓ 82.63 ↓ 20.36 ↓ 30.54

Computers
F1-Mi 87.57 85.98↓ 1.59 83.61↓ 3.96 86.66↓ 0.91 85.82↓ 1.75

F1-Ma 85.84 84.31↓ 1.53 81.33↓ 4.51 85.10↓ 0.74 84.15↓ 1.69

Change-Param - ↓ 60.00 ↓ 82.50 ↓ 20.01 ↓ 30.02

Experimental results We first pre-train the original GNNs through GraphMAE and GRACE, then
we can obtain five kinds of slim GNNs by using the neuron removal methods mentioned above. For
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both the slim GNNs and the original GNNs, we individually attach an additional prediction layer
which is trained while keeping the original GNNs frozen on the node classification task to evaluate
the Micro-F1 (F1-Mi) and Macro-F1 (F1-Ma) scores, as shown in Table 1 and Table 2, where "-"
means that there are only two layers in the original GNNs (i.e.,"2-Original" and "Original" have the
same performance) and "Change-Param" means the percentage change of the number of parameters
compared to "Original". Surprisingly, we have following observations:

• In all cases, "half GNNs" retain at least 96.2% of the performance of the original
GNNs while the numbers of parameters are reduced by at least 51.6%. In most of the
cases, "quarter GNNs" still retain at least 90% of the performance of the original GNNs
while the number of parameters are reduced by at least 76.2%. As can be seen, "quarter
GNNs" of GRACE on Computers retains 95.5% of the Micro-F1 score and 94.7% of the
Macro-F1 score, while the number of parameters is reduced by 82.5%.

• The removal of layers after the second layer has a negligible impact on the perfor-
mance. The performance of "2-original GNNs" with GraphMAE on Ogbn-arxiv dataset
demonstrates that even when layers after the second layer are removed, both the Micro-F1
score and the Macro-F1 score retain 99.4% of the performance, while the number of
parameters is reduced by 47.0%.

The observations indicate that the graph self-supervised learning models are highly redundant, both
at the neuron level and at the layer level. More details about the hyperparameters and the number of
parameters can be found in Appendix B.

(a) Cora (b) Citeseer (c) Pubmed

(d) Photo (e) Computers (f) Ogbn-arxiv

Figure 2: CKA scores between the representations of the slim GNNs and the same layer in the orig-
inal GNNs with GraphMAE and GRACE on several datasets. "all" means we remove the neurons
from all layers in the same proportion. "l1" means that we calculate CKA scores of the representa-
tions from the first layer, and "l2" means CKA scores from the second layer, and so on.

Redundancy analysis on neuron level Here, we further analyze the model redundancy by closely
examining the learned representations in order to explore why the slim GNNs achieve similar per-
formance to the original GNNs. Specifically, we get the slim GNNs by dropping the neurons of
each layer in 25%, 50% and 75% to analyze the model redundancy at the neuron level. Given the
learned representations of the i-th layer of the slim GNNs and the original GNNs, Centered Ker-
nel Alignment (CKA) is adopted to calculate their similarity [19]. A high CKA score implies a
strong similarity. As shown in Figure 2, compared to the original GNNs, the CKA scores are over
85% when 50% neurons are dropped. Even if the neurons are removed by 75%, the CKA scores
are still almost over 80%. This indicates that removing a significant number of neurons from each
layer has a minimal impact on the significance of representations of each layer and task performance
consequently.
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(a) GraphMAE (b) GRACE

Figure 3: CKA scores between the representations of each
layer and its adjacent layer of the original GNNs for Graph-
MAE and GRACE on several datasets.

Redundancy analysis on layer level
As for the model redundancy at the
layer level, given the learned repre-
sentations of the i-th layer and the
(i+ 1)-th layer of the original GNNs,
we also adopt CKA to calculate their
similarity, where the 0-th layer rep-
resents the original features of the
nodes from the datasets. As shown in
Figure 3, we report the CKA scores
between the representations of each
layer and its adjacent layer of the
original GNNs for GraphMAE and
GRACE. "data-layer1" means that we
calculate CKA scores between the
original features of the nodes from
the datasets and the representations of
the first layer, and so on. As can be seen, CKA scores between the original features and the repre-
sentations of the first layer are relatively low, while CKA scores between the representations of the
layers after the first layer and their next layer are much closer to 1 in most of the cases, indicating
the model redundancy at the layer level.

3 Our Proposed Tuning Approach: Slimming De-correlation Fine-tuning

Model De-correlation
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Input Graph
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Figure 4: The overall framework of SLIDE.

In general, for the self-supervised pre-trained GNNs, we attach an additional prediction layer which
is fine-tuned while keeping the GNNs frozen to conduct the downstream tasks. Ideally, if we are
able to tune the parameters of both the GNNs and the linear layer, it is possible to achieve the
best performance. However, the number of parameters to be fine-tuned is excessive. Here, since
we identify the model redundancy in the self-supervised pre-trained GNNs, this motivates us that
we actually only need to tune the additional classifier and the slim GNNs, so as to obtain a better
trade-off between the model performance and the number of fine-tunable parameters. Therefore, we
propose a novel pre-training and fine-tuning paradigm called SLImming DE-correlation Fine-tuning
(SLIDE), as shown in Figure 4. Specifically, firstly it reduces model redundancy in self-supervised
pre-trained GNNs by randomly removing redundant neurons to obtain the slim GNNs. Then, we
input the graph data into the slim GNNs to obtain the embeddings of the nodes, combined with an
additional prediction layer, we can predict the label of each node. Meanwhile, we design another
model de-correlation module based the squared Frobenius norm [20, 21] (an analogue corresponding
to the Hilbert-Schmidt Independence Criterion, i.e., HSIC [22] in Euclidean space). The module
learns the de-correlation weights for the classification loss, so as to reduce the redundancy among
embeddings and make the embeddings more informative.
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Specifically, let G = (A, V,X) denote the input graph, where V is the node set, N = |V | is
the number of nodes, Ntr is the number of nodes in the training set and d is the dimension of
the node features, A ∈ {0, 1}N×N is the adjacency matrix, and X ∈ RN×d is the input node
feature matrix. For model slimming, we first pre-train the original GNNs through the existing pre-
training frameworks, e.g., the graph contrastive learning [1, 4, 5] or graph generative self-supervised
learning [3, 7, 2]. Then the slim GNNs fS can be obtained by randomly reducing both the neurons
and the layers. Furthermore, given G, we can get the node embeddings H ∈ RN×dh as H =
fS(A,X), where dh is the dimension of the node embeddings.

Motivated by Section 2 that the neurons, as well as the learned embeddings, in self-supervised
GNNs are highly redundant, we aim to de-correlate the learned embeddings H in the fine-tuning
phase, making models with fewer parameters more informative. In particular, in inspiration of the
de-correlation methods [21, 23], given the i-th dimension and j-th dimension of the node embeddings
H∗,i and H∗,j , we obtain Random Fourier Features (RFF) [24, 25] as

u(H∗,i) := (u1(H∗,i), u2(H∗,i), . . . , uNRFF
(H∗,i)),

v(H∗,j) := (v1(H∗,j), v2(H∗,j), . . . , vNRFF
(H∗,j)),

(1)

where NRFF is the number of functions in the random fourier space, uq and vq denote the functions
from the space of Random Fourier Features. Then, we elaborate on reweighting of the weights,
which encourages the independence of the node embeddings. Define the weights of the nodes in the
training set as W = {wn}Ntr

n=1, where wn is the learnable weight for the n-th node of the training set
in G. Consequently, the reweighted partial cross-covariance matrix can be calculated as:

ĈW
H∗,i,H∗,j

= 1
Ntr−1

∑Ntr

n=1

[(
wnu(Hn,i)− 1

Ntr

∑Ntr

m=1 wmu(Hm,i)
)⊤

·
(
wnv(Hn,j)− 1

Ntr

∑Ntr

m=1 wmv(Hm,j)
)]

.
(2)

The learnable weights W participate in the process of optimization to eliminate as much as possible
the correlation between the dimensions of the node embeddings by minimizing the partial cross-
covariance matrix in Eq. 2. Specifically, for the process of optimization, given the labels of the
nodes Yn ∈ RNtr , we iteratively optimize the weights of the nodes W , the slim GNNs fS , and the
additional prediction layer R:

f∗
S , R

∗ = argminfS ,R

Ntr∑
n=1

wnℓ (R ◦ fS (Xn) ,Yn) , (3)

W∗ = argminW
∑

1≤i<j≤dh

∥ĈW
H∗,i,H∗,j

∥2F, (4)

where ℓ denotes the cross-entropy loss for the node classification task. The optimization of the
weights W encourages the slim GNNs fS to generate the node embeddings H , and eliminates
the correlations between embeddings. The optimization of the slim GNNs fS and the additional
classifier R will lead to good performance on the node classification task.

To put it in a nutshell, SLIDE is a general pre-training and fine-tuning framework in graph, which
balances the number of parameters and the performance of self-supervised pre-trained GNNs. There-
fore, SLIDE can be implemented using different ideas of reducing parameters and de-correlation
methods. We use the methods mentioned above as examples and conduct some experiments to
demonstrate the feasibility of SLIDE.

4 Experiments

Datasets. For a comprehensive comparison, we use six real-world datasets to evaluate the perfor-
mance of node classification (i.e., Cora, Citeseer, Pubmed, Amazon-Photo, Amazon-Computers and
Ogbn-arxiv). More details about the datasets are in Appendix C.1.
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Baselines. Our proposed SLIDE is a general paradigm which removes neurons from the self-
supervised pre-trained GNNs randomly and introduces model de-correlation methods during the
fine-tuning phase. We choose three representative graph pre-training frameworks for evaluation
in our SLIDE: generative graph self-supervised learning (GraphMAE [3] and MaskGAE [7]), and
graph contrastive learning (GRACE [1]). For each framework, we choose two classical fine-tuning
methods as baselines: linear probing, and full fine-tuning. Notably, our proposed SLIDE is orthogo-
nal to other fine-tuning methods. We provide additional experiments with SLIDE in Appendix C.2
as an example.

Experimental setup. For GraphMAE and MaskGAE, we use the implementations of their official
codes [3, 7]. As for GRACE, we use the implementation of training an additional prediction layer
for the node classification task, instead of using a LIBSVM classifier [26], in order to facilitate
the comparison of the model’s performance. For our proposed SLIDE, we use "2-half GNNs" as
the slim GNNs for all datasets and pre-training frameworks. In all tables and datasets, we report
averaged results along with the standard deviation computed over 5 different runs. All experiments
are conducted on Linux servers equipped with NVIDIA RTX A5000 GPUs (22729 MB). We refer
readers of interest to Appendix C.3 for more details on the experiments.

Table 3: Node classification accuracy (%±σ) on six benchmark datasets with GraphMAE.
Baselines Metrics Cora Citeseer Pubmed Photo Computers Ogbn-arxiv

LP
F1-Mi 83.96±0.12↓ 0.32 73.26±0.24↓ 0.48 80.62±0.17↓ 0.10 93.11±0.23 ↓ 0.56 90.44±0.10↓ 0.41 71.90±0.09 ↓ 0.37

F1-Ma 83.01±0.11↓ 0.28 67.71±0.86↑ 1.87 79.97±0.15↓ 0.15 91.91±0.24↓ 0.79 89.24±0.10↓ 0.64 51.14±0.23 ↓ 1.89

FT
F1-Mi 84.10±0.30 ↓ 0.18 73.62±0.49 ↓ 0.12 80.68±0.53 ↓ 0.04 93.61±0.12 ↓ 0.06 90.61±0.33 ↓ 0.24 OOM

F1-Ma 83.08±0.34 ↓ 0.21 65.21±1.12↓ 0.66 80.05±0.43 ↓ 0.06 92.55±0.24 ↓ 0.15 89.61±0.39 ↓ 0.27 OOM

SLIDE
F1-Mi 84.28±0.18 73.74±0.65 80.72±0.75 93.67±0.25 90.85±0.34 72.27±0.13

F1-Ma 83.29±0.23 65.87±1.48 80.11±0.69 92.70±0.35 89.88±0.36 53.03±0.35

Table 4: Node classification accuracy (%±σ) on five benchmark datasets with GRACE.
Baselines Metrics Cora Citeseer Pubmed Photo Computers

LP
F1-Mi 82.30±0.04↓ 0.50 69.49±0.12↓ 2.09 81.14±0.06↓ 0.48 91.95±0.01 ↓ 0.98 87.57±0.01↓ 1.25

F1-Ma 81.12±0.05↓ 0.05 61.77±1.12↓ 1.86 81.05±0.06↓ 0.26 90.10±0.01↓ 1.55 85.84±0.01↓ 0.89

FT
F1-Mi 82.66±0.24 ↓ 0.14 70.38±0.58 ↓ 1.20 81.44±0.22 ↓ 0.18 92.86±0.07 ↓ 0.07 88.66±0.25 ↓ 0.16

F1-Ma 81.01±0.28 ↓ 0.16 61.73±0.43↓ 1.90 81.11±0.22 ↓ 0.20 91.58±0.08 ↓ 0.07 86.36±0.28 ↓ 0.37

SLIDE
F1-Mi 82.80±0.14 71.58±0.58 81.62±0.25 92.93±0.06 88.82±0.18

F1-Ma 81.17±0.13 63.63±1.03 81.31±0.25 91.65±0.09 86.73±0.34

Table 5: Node classification accuracy (%±σ) on six benchmark datasets with MaskGAE.
Baselines Metrics Cora Citeseer Pubmed Photo Computers Ogbn-arxiv

LP
F1-Mi 83.08±0.28↓ 0.64 72.66±0.27↓ 0.74 83.46±0.69↓ 0.02 92.94±0.11 ↓ 0.15 89.57±0.04↓ 0.58 71.28±0.14 ↓ 0.12

F1-Ma 81.82±0.29↓ 0.58 67.38±0.27↓ 1.93 82.84±0.60↓ 0.20 91.72±0.15↓ 0.25 88.15±0.11↓ 0.55 49.48±0.62 ↓ 0.94

FT
F1-Mi 83.34±0.29 ↓ 0.38 72.42±0.19 ↓ 0.98 83.34±0.30 ↓ 0.14 93.05±0.11 ↓ 0.04 90.10±0.05 ↓ 0.05 71.34±0.21 ↓ 0.06

F1-Ma 82.15±0.37 ↓ 0.25 68.92±0.19↓ 0.39 82.79±0.33 ↓ 0.25 91.84±0.14 ↓ 0.13 88.58±0.14 ↓ 0.12 50.51±0.25 ↑ 0.09

SLIDE
F1-Mi 83.72±0.19 73.40±0.52 83.48±0.40 93.09±0.12 90.15±0.10 71.40±0.24

F1-Ma 82.40±0.14 69.31±0.64 83.04±0.26 91.97±0.12 88.70±0.16 50.42±0.50

4.1 Effectiveness of SLIDE

To evaluate our proposed SLIDE more comprehensively, we use two common evaluation metrics,
Macro-F1 and Micro-F1 scores, and show their difference between baselines and SLIDE. The results
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are shown in Table 3 - 5, where "LP" means "linear probe", "FT" means "full fine-tune", and "OOM"
means "out of memory". We have the following observations: (1) In general, SLIDE improves
the performance compared to "LP" because SLIDE is able to fine-tune both "2-half GNNs" and
the additional prediction layer. For example, in comparison with "LP" on Computers with these
three competitive pre-training frameworks, SLIDE achieves an average improvement of 0.75% and
0.69% for Micro-F1 and Macro-F1 scores, respectively. (2) Although SLIDE significantly reduces
the number of parameters in self-supervised GNNs, SLIDE still achieves better performance than
"FT". Especially on large-scale graphs like Ogbn-arxiv with GraphMAE, SLIDE is able to fine-tune
both the pre-trained GNNs and the additional prediction layer.

4.2 Model Analysis

(a) Cora (b) Citeseer (c) Pubmed

(d) Photo (e) Computers (f) Ogbn-arxiv

Figure 5: Ablation studies of model de-correlation on six benchmark datasets and three pre-training
frameworks. "w/o de" means that we fine-tune the slim GNNs without model de-correlation methods.
"Mi" means Micro-F1 scores and "Ma" means Macro-F1 scores. The results of Ogbn-arxiv with
GRACE are unseen because of "out of memory".

Ablation study Here, we test the performance of the slim GNNs with and without model de-
correlation on the node classification task. The results are shown in Figure 5, where "w/o dec"
means that the slim GNNs are directly fine-tuned without model de-correlation. We find that the
slim GNNs with de-correlation perform much better than the GNNs without de-correlation, proving
that correlation is still present when self-supervised GNNs are directly fine-tuned.

(a) GraphMAE (b) GRACE

Figure 6: The number of parameters on several
datasets with GraphMAE and GRACE.

Parameter analysis In order to quantify the
number of parameters of the self-supervised
GNN reduced by SLIDE, taking GraphMAE
and GRACE as an example, we report the num-
ber of parameters of our proposed SLIDE and
"FT" for fine-tuning. As can be seen in Fig-
ure 6, we observe that the parameters of "2-
half" GNNs are significantly reduced. In partic-
ular, on Ogbn-arxiv with GraphMAE, the num-
ber of parameters for fine-tuning is reduced by
70.1%. More details about the number of pa-
rameters are provided in B.1.
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5 Related Work

Graph self-supervised learning Self-supervised methods on graphs can be naturally divided into
contrastive and generative domains according to objective designs and model architectures [9, 27–
29]. Graph Contrastive Learning (GCL) has shown its outstanding ability in unsupervised setting,
and many studies have been proposed [1, 4, 5, 8]. On the other hand, Generative self-supervised
learning [6, 2] aims to recover missing parts of the input data. Among them, methods which have
emerged in the last two years [3, 7] have significantly enhanced the performance of generative meth-
ods, resulting in competitive performance on downstream tasks and attracting much attention. De-
spite the remarkable achievements of these methods, the issue of model redundancy in these self-
supervised GNNs remains unexplored in the current research landscape.

Model redundancy In recent years, researchers have investigated redundancy in several pre-
trained model architectures for different domains. Among them, in [30], researchers dissect two
pre-trained models, BERT [31] and XLNet [32], studying how much redundancy they exhibit by
using feature selection to choose the subset of neurons. In [33], researchers dissected several pre-
trained visual models and randomly removed neurons of the penultimate layer in proportion, proving
that redundancy exists in the penultimate layer. In [34], researchers find that many layers of LLMs
exhibit high similarity. By removing some of the layers of large language models (LLMs), LLMs
can still maintain good performance, proving that model redundancy exists in LLMs. Graph Neural
Networks (GNNs) [35–37] have been widely applied in recent years and there are some studies fo-
cusing on graph sparsification and graph lottery ticket [14, 15]. Graph sparsification approximates a
graph to a sparse graph by reducing the number of edges instead of parameters. And graph lottery
ticket reduces parameters in networks systematically, not randomly. However, the study of model
redundancy in self-supervised GNNs remains largely unexplored.

Pre-training and fine-tuning Traditional pre-training and fine-tuning paradigms mainly include
"linear probe" and "full fine-tune". The former faces the challenge of insufficient performance, while
the latter requires high computational cost and memory. In recent years, several Parameter-Efficient
Fine-Tuning (PEFT) methods have been introduced to address these issues. Among them, Low
Rank Adaptation (LoRA) [38] alters the fine-tuning phase by keeping the original model parameters
frozen and introducing modifications to a separate, smaller set of parameters. These changes are
then incorporated into the original parameters. On the other hand, Adapter Tuning [39] adds new
modules, called adapters, between the layers of a pre-trained model. The parameters from the pre-
training phase are frozen, and a smaller set of additional parameters is introduced for the new task.
A common feature of these methods is the addition of a small number of additional parameters to the
complete model for fine-tuning. The focus of this paper is orthogonal to these methods, as it aims to
fine-tune the model under the condition of reduced parameters. In this paper, we provide a unique
perspective on the pre-training and fine-tuning paradigm and contribute to the ongoing exploration
of effective fine-tuning strategies.

6 Conclusion and Broader Impacts

In this paper, we make an exploration of model redundancy in self-supervised pre-trained GNNs.
We find out that model redundancy in self-supervised GNNs exists at both neuron level and layer
level, which deepens our understanding of self-supervised GNNs. We then propose a novel pre-
training and fine-tuning paradigm, SLIDE, which achieves better performance with fewer number
of parameters for fine-tuning. Our experiments validate the effectiveness of SLIDE.

Limitations and broader impact Although we discover that the graph self-supervised learning
models are highly redundant at neuron and layer levels and deepen our understanding of self-
supervised GNNs, a potential limitation is that some theoretical foundations are still lacking. Our
findings hold great potential to improve current graph self-supervised learning models and may
provide valuable guideline for the pruning or the sparsity of GNNs. In the future, we will further
understand self-supervised GNNs from the perspective of model redundancy by theoretical analysis.
Beyond that, we do not expect any immediate negative impact on society.
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A More Experiences about Model Redundancy

Table 6: The performance of different neuron removal methods on three datasets with MaskGAE on
link prediction tasks.

Dataset Metric Original Half Quarter

Cora
AUC 96.7 96.3 93.8
AP 96.2 96.2 94.0

Change-Param - ↓ 49.9 ↓ 74.9

CiteSeer
AUC 97.8 97.1 95.5
AP 98.1 97.4 96.3

Change-Param - ↓ 50.0 ↓ 75.0

PubMed
AUC 98.8 98.3 97.4
AP 98.7 98.2 96.8

Change-Param - ↓ 49.8 ↓ 74.8

Table 7: The performance of different neuron removal methods on four datasets with GraphMAE on
graph classification tasks.

Dataset Metric Original Half Quarter 2-Original 2-Half 2-Quarter

MUTAG
ACC 87.6 85.4 84.5 85.0 84.9 83.6

Change-Param - ↓ 72.1 ↓ 91.5 ↓ 64.6 ↓ 70.0 ↓ 72.7

IMDB-B
ACC 75.3 74.4 73.5 - 75.3 75.3

Change-Param - ↓ 71.1 ↓ 90.8 - ↓ 14.2 ↓ 21.2

IMDB-M
ACC 52.1 50.7 48.6 52.1 52.0 51.9

Change-Param - ↓ 73.2 ↓ 92.4 ↓ 37.4 ↓ 46.7 ↓ 51.4

REDDIT-B
ACC 88.2 85.9 82.5 - 88.0 87.9

Change-Param - ↓ 69.7 ↓ 89.8 - ↓ 13.2 ↓ 19.8

To demonstrate that model redundancy exists across a broader spectrum of graph learning tasks, we
conduct experiments on GraphMAE, effective for graph classification, and MaskGAE which excels
in link prediction. For graph classification, we conduct experiments on 4 benchmarks: MUTAG,
IMDB-B, IMDB-M, REDDIT-B [40]. The results in Table 6 - 7 indicate that model redundancy
exists across a wide range of tasks.

B More Details about Model Redundancy

B.1 GNN Parameters and Linear Parameters

Table 8: More details about paramters with different neuron removal methods for GraphMAE, where
the parameters in GNN is not fine-tunable while the parameters in Linear is fine-tunable.

Dataset Parameters Original Half Quarter 2-Original 2-Half 2-Quarter

Cora
GNN 998,914 433,922 200,578 - 867,074 801,154

Linear 3,591 1,799 903 - 1,799 903

CiteSeer
GNN 2,161,154 1,015,042 491,138 - 2,029,314 1,963,394

Linear 3,078 1,542 774 - 1,542 774

PubMed
GNN 1,566,722 521,218 195,074 - 1,040,898 777,986

Linear 3,075 1,539 771 - 1,539 771

Photo
GNN 1,821,698 648,706 258,818 - 1,294,850 1,031,426

Linear 8,200 4,104 2,056 - 4,104 2056

Computers
GNN 1,844,226 659,970 264,450 - 1,317,378 1,053,954

Linear 10,250 5,130 2,570 - 5,130 2,570

arXiv
GNN 2,243,587 597,507 167,683 1,189,890 663,042 399,618

Linear 41,000 20,520 10,280 41,000 20,520 10280
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Table 9: More details about paramters with different neuron removal methods for GRACE.
Dataset Parameters Original Half Quarter 2-Half 2-Quarter

Cora
GNN 400,000 191,808 93,856 383,552 375,328

Linear 903 455 231 455 231

CiteSeer
GNN 2,027,777 981,121 482,369 1,962,113 1,929,281

Linear 1542 774 390 774 390

PubMed
GNN 387,840 161,152 72,384 322,176 289,344

Linear 771 387 195 387 195

Photo
GNN 1,288,705 513,281 223,873 1,026,305 895,105

Linear 4104 2056 1032 2056 1032

Computers
GNN 1,311,232 524,544 229,504 1,048,832 917,632

Linear 5130 2570 1290 2570 1290

Tables 8 and Table 9 record the number of GNN parameters and Linear parameters for different ways
of removing neurons. We find out that proper removal of neurons still maintains decent performance,
as we show in Section 2, which means that there is a lot of model redundancy in the original GNNs.
Note that we train the same number of epochs for the different ways of reducing neurons to save
model training time, and the gap in model performance will be smaller, i.e. there will still be more
model redundancy, if training time is more.

B.2 Hyper-parameters for GraphMAE and GRACE

For datasets where the original pre-training framework has been tested, we use the hyper-parameters
from the official code, while for the other datasets, we obtain the hyper-parameters ourselves by
testing on these datasets.

For GraphMAE, we obtain the hyper-parameters of pre-training on Amazon-Photo and Amazon-
Computers by ourselves. For both datasets, linear probes are trained using Adam with a learning
rate of 0.01, momentum of 0.9 and weight decay of 0.0005 while GNNs are pre-trained with a
learning rate of 0.001, weight decay of 0, hidden number of 1024, head number of 4, layer number
of 2, mask rate of 0.5, drop edge rate of 0.5 and epoch number of 1000.

For GRACE, we obtain the hyper-parameters of all linear probes on all datasets by ourselves because
it trains a LIBSVM classifier in the official code while we obtain the the hyper-parameters of pre-
training on Amazon-Photo and Amazon-Computers by ourselves. Here we list the hyper-parameters
for pre-trained models and linear probes used in our experiments:

• For Cora, the linear probe is trained using Adam with a learning rate of 0.05, momentum
of 0.9, epoch number of 1000 and weight decay of 0.

• For Citeseer, the linear probe is trained using Adam with a learning rate of 0.5, momentum
of 0.9, epoch number of 1000 and weight decay of 0.

• For Pubmed, the linear probe is trained using Adam with a learning rate of 0.05, momentum
of 0.9, epoch number of 500 and weight decay of 0.

• For Photo, the linear probe is trained using Adam with a learning rate of 0.05, momentum of
0.9, epoch number of 500 and weight decay of 0 whlie GNN is pre-trained with a learning
rate of 0.001, weight decay of 0, hidden number of 512, layer number of 2, and epoch
number of 200.

• For Computers, the linear probe is trained using Adam with a learning rate of 0.5, momen-
tum of 0.9, epoch number of 500 and weight decay of 0 whlie GNN is pre-trained with a
learning rate of 0.001, weight decay of 0, hidden number of 256, layer number of 2, and
epoch number of 200.
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Table 10: Dataset Statistics
Datasets # Nodes # Edges # Features # Classes Split ratio

Cora 2,708 10,556 1,433 7 140/500/1,000

Citeseer 3,327 9,104 3,703 6 120/500/1,000

Pubmed 19,717 88,648 500 3 60/500/1,000

Photo 7,650 238,162 745 8 10%/10%/80%

Computers 13,752 491,722 767 10 10%/10%/80%

arXiv 16,9343 2,315,598 128 40 90,941/29,799/48,603

C Experimental Details

C.1 Datasets and Pre-training Frameworks

Here, we give some details about datasets we choose to evaluate the performance of SLIDE. As
we have mentioned in Section 4, we use several citation networks and two social networks and
Ogbn-arxiv datasets. Among these, the edges in citation networks (i.e. Cora, Citeseer, and Pubmed)
represent the citation relationship between two papers (undirected), the node features are the bag-of-
words vector of the papers, and the labels are the fields of the papers. The nodes in social networks
(i.e. Amazon-Photo and Amazon-Computers) represent the products, the edges represent whether
the two products are frequently purchased together, the features represent the product reviews en-
coded in bag-of-words, and the labels are the predefined product categories. Ogbn-arxiv captures
citation relationships between computer science papers on arxiv. Nodes denote papers, edges de-
note citation relationships of papers, and each paper has a dimensional feature vector obtained by
averaging the embeddings of words in the title and abstract. The embeddings are obtained using
Word2Vec [41]. The test is to predict 40 domains over CS.

For the implementations of three pre-training frameworks, we use their original code. The sources
are listed as follows:

1. GraphMAE: https://github.com/THUDM/GraphMAE

2. GRACE: https://github.com/CRIPAC-DIG/GRACE

3. MaskGAE: https://github.com/EdisonLeeeee/MaskGAE

C.2 Additional Experiments and Analysis of SLIDE with Fine-Tuning Methods

Table 11: Orthogonality experiment of our proposed SLIDE and traditional fine-tuning methods,
using LoRA as an example.

Dataset Metric Linear-probing LoRA Slim-LoRA SLIDE-LoRA

Cora ACC 83.96±0.12 84.18±0.34 83.62±0.29 84.26±0.43

CiteSeer ACC 73.26±0.24 73.27±0.36 72.88±0.51 73.37±0.57

PubMed ACC 80.62±0.17 80.69±0.61 80.36±0.63 80.63±0.65

Here we examine the orthogonality of SLIDE in relation to traditional fine-tuning methods. We start
with the classic LoRA method [38] applied to GraphMAE, where SLIDE randomly prunes a subset
of neurons to create Slim GNNs. We then introduce an additional LoRA module designed for fine-
tuning. The results are shown in Table 11. Notably, "SLIDE-LoRA" can only adjust the parameters
of the LoRA modules, as the Slim GNNs remain fixed. Despite this limitation, "SLIDE-LoRA"
enhances performance by reducing correlations among final representations, achieving slightly bet-
ter results compared to using LoRA directly on Original GNNs. This supports the efficacy of our
method in improving model capabilities.
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C.3 Experimental Settings

Here, we provide more experimental settings about the experience about SLIDE. We obtain the
hyper-parameters ourselves by testing on these datasets with three frameworks except linear probing
(we obtain the hyper-parameters from the official code).

Here we list the hyper-parameters for full fine-tuning:

• GraphMAE:

– Cora: The linear probe is trained using Adam with a learning rate of 0.05, momentum
of 0.9 and weight decay of 1e-4 whlie GNN is tuned with a learning rate of 1e-7,
weight decay of 0.

– Citeseer: The linear probe is trained using Adam with a learning rate of 0.02, momen-
tum of 0.9 and weight decay of 1e-1 whlie GNN is tuned with a learning rate of 1e-6,
weight decay of 1e-3.

– Pubmed: The linear probe is trained using Adam with a learning rate of 0.05, momen-
tum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 1e-6,
weight decay of 0.

– Photo: The linear probe is trained using Adam with a learning rate of 0.01, momentum
of 0.9 and weight decay of 0.05 whlie GNN is tuned with a learning rate of 5e-6,
weight decay of 0.

– Computers: The linear probe is trained using Adam with a learning rate of 0.01, mo-
mentum of 0.9 and weight decay of 0.05 whlie GNN is tuned with a learning rate of
5e-5, weight decay of 0.

– Ogbn-arxiv: The linear probe is trained using Adam with a learning rate of 0.02,
momentum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate
of 5e-4, weight decay of 1e-3.

• GRACE:

– Cora: The linear probe is trained using Adam with a learning rate of 0.02, momentum
of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 1e-7, weight
decay of 0.

– Citeseer: The linear probe is trained using Adam with a learning rate of 0.01, momen-
tum of 0.9 and weight decay of 0.01 whlie GNN is tuned with a learning rate of 1e-8,
weight decay of 0.

– Pubmed: The linear probe is trained using Adam with a learning rate of 0.02, momen-
tum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 1e-6,
weight decay of 0.

– Photo: The linear probe is trained using Adam with a learning rate of 0.02, momentum
of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 5e-5, weight
decay of 0.

– Computers: The linear probe is trained using Adam with a learning rate of 0.1, mo-
mentum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 5e-4,
weight decay of 0.

• MaskGAE:

– Cora: The linear probe is trained using Adam with a learning rate of 5e-3, momentum
of 0.9 and weight decay of 1e-3 whlie GNN is tuned with a learning rate of 1e-4,
weight decay of 1e-3.

– Citeseer: The linear probe is trained using Adam with a learning rate of 0.01, momen-
tum of 0.9 and weight decay of 5e-3 whlie GNN is tuned with a learning rate of 1e-4,
weight decay of 1e-4.

– Pubmed: The linear probe is trained using Adam with a learning rate of 0.015, mo-
mentum of 0.9 and weight decay of 5e-4 whlie GNN is tuned with a learning rate of
1e-4, weight decay of 0.

– Photo: The linear probe is trained using Adam with a learning rate of 0.01, momentum
of 0.9 and weight decay of 0.01 whlie GNN is tuned with a learning rate of 1e-4,
weight decay of 0.
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– Computers: The linear probe is trained using Adam with a learning rate of 5e-3, mo-
mentum of 0.9 and weight decay of 5e-3 whlie GNN is tuned with a learning rate of
2e-4, weight decay of 0.

– Ogbn-arxiv: The linear probe is trained using Adam with a learning rate of 0.01,
momentum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate
of 1e-4, weight decay of 0.

Here we list the hyper-parameters for SLIDE:

• GraphMAE:
– Cora: The linear probe is trained using Adam with a learning rate of 0.05, momentum

of 0.9 and weight decay of 1e-4 whlie GNN is tuned with a learning rate of 1e-7,
weight decay of 0.

– Citeseer: The linear probe is trained using Adam with a learning rate of 0.02, momen-
tum of 0.9 and weight decay of 1e-1 whlie GNN is tuned with a learning rate of 1e-6,
weight decay of 1e-3.

– Pubmed: The linear probe is trained using Adam with a learning rate of 0.05, momen-
tum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 1e-6,
weight decay of 0.

– Photo: The linear probe is trained using Adam with a learning rate of 0.01, momentum
of 0.9 and weight decay of 0.05 whlie GNN is tuned with a learning rate of 5e-6,
weight decay of 0.

– Computers: The linear probe is trained using Adam with a learning rate of 0.01, mo-
mentum of 0.9 and weight decay of 0.05 whlie GNN is tuned with a learning rate of
5e-5, weight decay of 0.

– Ogbn-arxiv: The linear probe is trained using Adam with a learning rate of 0.02,
momentum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate
of 5e-4, weight decay of 1e-3.

• GRACE:
– Cora: The linear probe is trained using Adam with a learning rate of 0.02, momentum

of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 1e-7, weight
decay of 0.

– Citeseer: The linear probe is trained using Adam with a learning rate of 0.01, momen-
tum of 0.9 and weight decay of 0.01 whlie GNN is tuned with a learning rate of 1e-8,
weight decay of 0.

– Pubmed: The linear probe is trained using Adam with a learning rate of 0.02, momen-
tum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 1e-6,
weight decay of 0.

– Photo: The linear probe is trained using Adam with a learning rate of 0.02, momentum
of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 5e-5, weight
decay of 0.

– Computers: The linear probe is trained using Adam with a learning rate of 0.1, mo-
mentum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of 5e-4,
weight decay of 0.

• MaskGAE:
– Cora: The linear probe is trained using Adam with a learning rate of 0.05, momentum

of 0.9 and weight decay of 1e-3 whlie GNN is tuned with a learning rate of 1e-4,
weight decay of 5e-3.

– Citeseer: The linear probe is trained using Adam with a learning rate of 0.01, momen-
tum of 0.9 and weight decay of 0.01 whlie GNN is tuned with a learning rate of 5e-4,
weight decay of 1e-4.

– Pubmed: The linear probe is trained using Adam with a learning rate of 0.02, momen-
tum of 0.9 and weight decay of 1e-3 whlie GNN is tuned with a learning rate of 1e-4,
weight decay of 1e-2.

– Photo: The linear probe is trained using Adam with a learning rate of 0.02, momentum
of 0.9 and weight decay of 6e-3 whlie GNN is tuned with a learning rate of 1e-4,
weight decay of 0.
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– Computers: The linear probe is trained using Adam with a learning rate of 5e-3, mo-
mentum of 0.9 and weight decay of 5e-3 whlie GNN is tuned with a learning rate of
1e-4, weight decay of 0.

– Ogbn-arxiv: The linear probe is trained using Adam with a learning rate of 3e-3,
momentum of 0.9 and weight decay of 0 whlie GNN is tuned with a learning rate of
2e-4, weight decay of 0.

And the hyper-parameters of linear probing is the same as the config file of these pre-training frame-
works. The hyper-parameters are different sometimes because their model structures are differ-
ent, the parameters used to achieve optimal performance are sometimes different. And the hyper-
parameters of the slim GNNs without model de-correlation are the same with SLIDE.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we mention that the graph self-supervised
learning models are highly redundant at neuron and layer levels and propose a new model
to fine-tune both GNNs and predictive layers.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We provide some experience about CKA scores of presentations in Section 2,
and to our best knowledge, many researches about model redundancy do not provide theory
assumptions and proofs either. So I think it’s difficult to provide the proofs.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix C.3.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Section 1 and Section 4.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 and Appendix C.3.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Table 3 - 5 in 4.1 and Figure 5 in Section 4.2.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: See Section 4.
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I have read the NeurIPS Code of Ethics https://neurips.cc/
public/EthicsGuidelines, and I think the research conducted in the paper con-
form, in every respect, with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 6.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We test self-supervised GNNs on the node classification task. There is not a
high risk for misuse in it.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: We were unable to find the license for the assets we used.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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