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Abstract001

We introduce CEMTM, a context-enhanced002
multimodal topic model designed to infer co-003
herent and interpretable topic structures from004
both short and long documents containing text005
and images. CEMTM builds on fine-tuned006
large vision language models (LVLMs) to ob-007
tain contextualized embeddings, and employs008
a distributional attention mechanism to weight009
token-level contributions to topic inference. A010
reconstruction objective aligns topic-based rep-011
resentations with the document embedding, en-012
couraging semantic consistency across modali-013
ties. Unlike existing approaches, CEMTM can014
process multiple images per document without015
repeated encoding and maintains interpretabil-016
ity through explicit word-topic and document-017
topic distributions. Extensive experiments on018
six multimodal benchmarks show that CEMTM019
consistently outperforms unimodal and multi-020
modal baselines, achieving a remarkable av-021
erage LLM score of 2.61. Further analysis022
shows its effectiveness in downstream few-023
shot retrieval and its ability to capture visually024
grounded semantics in complex domains such025
as scientific articles.026

1 Introduction027

Topic modeling aims to uncover the latent thematic028

structure of a corpus by organizing documents029

into interpretable clusters of topics. While clas-030

sical topic models like Latent Dirichlet Allocation031

(LDA) (Blei et al., 2003) have long been applied032

to textual corpora, the rapid growth of multimodal033

content—where images, captions, and structured034

text co-exist—demands models that can jointly un-035

derstand and reason over multiple modalities. Tra-036

ditional multimodal topic models (Feng and Lap-037

ata, 2010; Putthividhy et al., 2010) extended LDA038

to incorporate image features alongside text, but039

often failed to capture deeper cross-modal interac-040

tions. Recent advances in neural topic modeling041

(Zhu et al., 2024; Gonzalez-Pizarro and Carenini,042

2024a) have addressed some of these limitations 043

by learning shared embeddings across modalities, 044

enabling more coherent and semantically unified 045

topic discovery. 046

Parallel to these developments, large language 047

models (LLMs) and large vision-language mod- 048

els (LVLMs) have shown remarkable capacity to 049

encode rich semantic knowledge from vast and di- 050

verse corpora. In text-based topic modeling, LLMs 051

have been used both for generating and assigning 052

topic with zero- and few-shot prompting (Mu et al., 053

2024; Pham et al., 2024b), significantly improv- 054

ing topic coherence and interpretability. In mul- 055

timodal settings, early efforts have used prompt- 056

based methods (Prakash et al., 2023). However, 057

while models like TopicGPT produce interpretable 058

outputs through natural language, they lack true 059

topic disentanglement, corpus-level topic distribu- 060

tions, and robustness to prompt variation. They 061

also do not model uncertainty or provide consistent 062

global topic structures, limiting their usefulness for 063

exploratory analysis. A promising direction is to 064

combine the knowledge grounding and modality 065

alignment of LVLMs with the structured model- 066

ing of multimodal neural topic models—leveraging 067

LVLMs to enhance semantic understanding with- 068

out compromising the coherence and stability of 069

topic representations. 070

To address these limitations, we propose 071

CEMTM (Contextual Embedding-based Multi- 072

modal Topic Modeling), a novel topic modeling 073

framework that directly leverages the latent repre- 074

sentations produced by pretrained LVLMs. Instead 075

of designing complex architectures to align modali- 076

ties, CEMTM uses the final token embedding from 077

an LVLM as a compact, unified representation of a 078

multimodal document that contains textual content 079

and a set of associated images. This approach not 080

only captures deeply aligned cross-modal seman- 081

tics but also simplifies the processing of documents 082

with multiple images. By avoiding the need for 083
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separate modality-specific encoders, CEMTM al-084

lows the entire document—including all images085

and the accompanying text—to be encoded holis-086

tically, making it well-suited for scalable and co-087

herent multimodal topic modeling. Additionally,088

inspired by Fang et al. (2024), we incorporate a089

learnable importance network to estimate the con-090

tribution of each token to the document-topic rep-091

resentation. CEMTM achieves strong empirical092

performance across six benchmark datasets, ob-093

taining an average LLM coherence score of 2.61,094

outperforming a broad range of baselines.095

Our contributions are: (I) We introduce096

CEMTM, a multimodal topic model that uses pre-097

trained vision-language representations to generate098

coherent, diverse topics from long multimodal doc-099

uments; (II) We propose a stochastic, distribution-100

based mechanism to learn token importance, im-101

proving semantic alignment and interpretability102

when combined with fine-tuned LVLM embed-103

dings; (III) CEMTM outperforms strong baselines104

on topic quality and downstream tasks like few-shot105

QA, demonstrating the value of topic distributions106

for retrieval-based tasks.107

2 Related Work108

Neural Multimodal Topic Modeling Early mul-109

timodal topic models extended LDA to handle im-110

age and text jointly (Blei and Jordan, 2003), but111

often treated modalities independently. Neural ap-112

proaches addressed this by learning shared repre-113

sentations, such as SupDocNADE (Zheng et al.,114

2014) and graph-based models for short documents115

(Zhu et al., 2024). Gonzalez-Pizarro and Carenini116

(2024b) conducted a large-scale comparison of117

neural multimodal topic models, showing room118

for improvement in coherence and diversity. Un-119

like these models, CEMTM leverages pretrained120

LVLMs and uses their final token embeddings to121

capture aligned cross-modal semantics, eliminating122

the need to learn modality alignment during topic123

representation learning.124

Language Models for Topic Modeling Lan-125

guage models have advanced topic modeling126

through prompting and contextual embeddings.127

Prompt-based methods like TopicGPT (Pham et al.,128

2024a) generate interpretable, natural-language129

topics with LLMs, while CWTM (Fang et al., 2024)130

integrates contextual BERT embeddings into neu-131

ral topic models for improved coherence. In mul-132

timodal settings, PromptMTopic (Prakash et al.,133

2023) combines textual and visual cues via LLMs 134

to extract culturally aware topics from memes. 135

More broadly, LVLMs offer unified representa- 136

tions for image–text pairs. CEMTM builds on 137

this by using the final token of an LVLM as a 138

compact, aligned multimodal document embed- 139

ding—enabling efficient and interpretable topic 140

discovery by using LLM’s pre-trained knowledge, 141

without separate modality encoders or prompting. 142

3 Method 143

CEMTM is designed to perform soft topic model- 144

ing over long, multimodal documents. As shown in 145

Figure 1, CEMTM processes both text and image 146

inputs through an LVLM to produce contextualized 147

token embeddings for both image and vision to- 148

kens, learns importance-aware topic vectors, and 149

reconstructs semantic document-level representa- 150

tions as supervision. We present our approach in 151

three parts: document pre-processing, model train- 152

ing, and topic extraction. 153

3.1 Pre-processing 154

Each document in the corpus contains both textual 155

content and one or more associated images. Prior 156

to training, we apply the following pre-processing 157

steps. We begin with text cleaning, where we apply 158

standard NLP pre-processing to remove punctu- 159

ation, normalize casing, and eliminate irrelevant 160

tokens (e.g., HTML tags). Following this, we per- 161

form vocabulary construction by tokenizing all doc- 162

uments and building a fixed vocabulary V that re- 163

tains the most frequent words while discarding stop- 164

words and rare terms. For the image processing 165

step, all associated images are resized and format- 166

ted to ensure compatibility with the input require- 167

ments of the vision-language model. 168

3.2 Model Training 169

We use VLM2Vec (Jiang et al., 2025), a fine-tuned 170

version of LLaVA-Next-7B (Liu et al., 2024), to 171

encode each document’s text and image content 172

into contextualized representations. Our approach 173

is motivated by the hypothesis that while document 174

embeddings encode rich semantic information, us- 175

ing them alone to infer topic distributions prevents 176

access to vocabulary-level topic-word associations, 177

limiting interpretability. 178

We begin by considering the approach of infer- 179

ring latent document-topic vectors from document 180

embeddings. Let ed ∈ RD be the embedding of a 181
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Article

The Great Wall of China (traditional Chinese:
萬里長城; simplified Chinese: 万里长城;
pinyin: Wànlǐ Chángchéng, literally "ten

thousand li long wall") is a series of
fortifications in China. They were built across

the historical northern borders of ancient
Chinese states and Imperial China as

protection against various nomadic groups
from the Eurasian Steppe. The first walls
date to the 7th century BC; these were
joined together in the Qin dynasty.[4][5]

Successive dynasties expanded the wall
system; the best-known secti

Text

Fine-tuned Vision Language Model

Contextualized Image Embeddings + Word Embeddings (H)

Importance Network Encoder Forward Layer

Topic Token Vectors
[t1, t2, ... ti]

×
Token Importance (β)

Decoder Forward Layer

Last Token Embedding As Document
Embedding (ed)

Reconstructed Document Representation (ed')

Reconstruction Loss µ σ2

Images

Document Topic Vector (θd)

Figure 1: Architecture of CEMTM, our context-enhanced multimodal topic model. A document’s text and images
are encoded using VLM2Vec, a fine-tuned version of LLaVA-Next-7B, to produce contextualized token embeddings.
These are processed by a forward encoder to produce topic-word vectors, and by an importance network (Transformer
+ feedforward layer) to compute a word importance distribution. The weighted topic vector is decoded into a
document embedding and trained via a reconstruction loss against the reference embedding from the LVLM.

document d obtained from an LVLM. A straight-182

forward method would use the document embed-183

ding vector to generate the topics. However, this184

formulation lacks a way to associate topics with185

specific words, since it bypasses vocabulary-level186

granularity. To address this, we instead extract con-187

textualized token embeddings from the document:188

H = [h1, . . . ,hN ] ∈ RN×D189

where N is the number of textual tokens and visual190

patches in the document. Each hi corresponds to191

a context-dependent representation of a token or192

an image patch. Each contextual embedding hi is193

projected into the topic space using a learnable194

encoder with weight Wt ∈ RD×K as follows:195

ti = softmax(hiWt) ∈ RK196

We interpret ti = p(z | hi) as the soft topic dis-197

tribution for token i. However, not all tokens con-198

tribute equally to the semantic representation of199

a document. To model the relative importance200

of each token in shaping the document’s seman-201

tics, we introduce a learnable importance net-202

work that predicts a stochastic weight for each203

token. The importance network consists of a trans- 204

former encoder followed by a feedforward projec- 205

tion layer. Given contextualized token embeddings 206

H = [h1, . . . ,hN ], the importance network out- 207

puts a mean and standard deviation for each token’s 208

importance score: 209

µi, σ
2
i = fθ(Transformer(H))i 210

211
αi ∼ N (µi, σ

2
i ) 212

To produce normalized importance weights, we 213

apply a softmax across the sampled values: 214

β = softmax([α1, . . . , αN ]) ∈ RN 215

The document-topic vector is then computed by 216

taking a weighted average of the token-level topic 217

vectors: 218

θd = Softmax(
N∑
i=1

βiti) 219

To supervise training, we treat the final token’s 220

hidden state from VLM2Vec as the reference em- 221

bedding for the entire document, as it encapsulates 222
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high-level semantic information relevant to the doc-223

ument’s content (ed). The model learns to map the224

predicted document-topic vector to this reference225

embedding using a feedforward network. Training226

is guided by a reconstruction loss that minimizes227

the distance between the predicted embedding (ed′)228

and the reference embedding, computed as:229

Lrec = MSE(ed′ , ed)230

This objective helps ensure that the learned top-231

ics preserve the global semantics encoded by the232

vision-language model, resulting in more coherent233

and multimodally grounded topic representations.234

To encourage sharp and interpretable importance235

scores, we add an entropy regularization term to236

the loss (Vulić and Mrkšić, 2018). This term pe-237

nalizes high-entropy (i.e., overly uniform) distribu-238

tions over the importance weights βi, pushing the239

model to concentrate attention on a smaller subset240

of relevant elements. This promotes sparsity in241

the importance scores, making the model’s deci-242

sions more focused and interpretable—beneficial243

for both transparency and performance in reason-244

ing tasks. The entropy regularization is defined245

as:246

Lent =

N∑
i=1

βi log βi247

We also apply a KL divergence penalty between248

the predicted importance distribution q(αi) =249

N (µi, σ
2
i ) and a standard normal prior p(αi) =250

N (0, 1). This regularization keeps topic impor-251

tance variables close to a standard Gaussian, re-252

ducing overfitting and promoting a smooth, bal-253

anced latent space (Jin et al., 2021). This is crucial254

in multimodal settings to avoid overconfident or255

modality-biased topic representations.256

LKL =
N∑
i=1

(
log

1

σi
+

σ2
i + µ2

i − 1

2

)
257

The final loss function is:258

L = Lrec + λentLent + λKLLKL259

where λent and λKL are hyperparameters that con-260

trol the strength of entropy and KL regularization,261

respectively.262

This formulation enables the model to learn a263

flexible, distribution-based importance mechanism264

over tokens, while ensuring that the topic vector265

faithfully reconstructs document-level semantics266

and supports interpretable word-topic associations.267

3.3 Topic Extraction 268

Once the model is trained, we extract topic-word 269

associations by aggregating token-level topic vec- 270

tors for each word in the vocabulary. Let w ∈ V 271

be a word and Iw the set of all positions where w 272

appears in the corpus. We compute the aggregated 273

topic vector for word w as: 274

tw =
1

Zw

∑
i∈Iw

βiti 275

where Zw =
∑

i∈Iw βi ensures normalization. The 276

topic score for word w in topic k is t(k)w , which is 277

guaranteed to be non-negative due to the softmax 278

used in the importance distribution. To extract rep- 279

resentative topic words, we rank all words w in V 280

by their value t
(k)
w for each topic k. This yields in- 281

terpretable topic-word distributions while preserv- 282

ing soft assignments across the entire vocabulary. 283

4 Experiments and Results 284

We conduct extensive experiments to evaluate the 285

effectiveness of our proposed model, CEMTM, on 286

both topic modeling and its application to topic- 287

guided few-shot retrieval for multimodal question 288

answering. We assess the quality of the extracted 289

topics using standard coherence and diversity met- 290

rics, and demonstrate the utility of the learned 291

document-topic vectors in improving few-shot ex- 292

ample selection. Additionally, we analyze the sen- 293

sitivity of the model to the underlying encoder and 294

provide qualitative insights into the learned top- 295

ics and retrieval behavior. Refer to Appendix B 296

for hyperparameter and experimental settings and 297

Appendix C for details on the evaluation metrics. 298

Dataset Domain # Docs Avg. Tokens Avg. Images
WikiWeb2M Encyclopedic 100,833 527 4.1
SPIQA Scientific 697 1342 3.7
VIST Narrative 50,000 152 5.0
TQA Educational 410 1086 2.9
MSCOCO Image Captions 30,000 13 1.0
T4SA Social Media 30,000 15 1.0
FHM Memes 10,000 9 1.0

Table 1: Summary of datasets used in our experiments.

4.1 Datasets 299

We evaluate CEMTM across a diverse set of mul- 300

timodal and long-document datasets spanning en- 301

cyclopedic, scientific, narrative, educational, and 302

social domains. Table 1 summarizes the datasets 303

used in this study. Among these, only WikiWeb2M 304
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Multimodal Document
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VLM2Vec)
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Figure 2: LVLM Zero-shot TM uses LVLM embeddings
for better multimodal alignment and more meaningful
topic vectors than Multimodal Zero-shot TM.

and SPIQA provide explicit ground-truth topic la-305

bels, which we use for quantitative evaluation. For306

the remaining datasets, we assess topic quality us-307

ing unsupervised metrics such as coherence and308

diversity.309

4.2 Baselines310

We compare CEMTM against a comprehensive set311

of baselines spanning traditional, contextualized,312

and multimodal topic modeling approaches.313

LDA (Blei et al., 2003) is the classical Latent314

Dirichlet Allocation model, which we train using315

the implementation provided by Gensim (Řehřek316

and Sojka, 2010). It models each document as a317

mixture of latent topics over a bag-of-words (BoW)318

representation.319

ZeroshotTM (Bianchi et al., 2021a) replaces320

BoW inputs with contextualized SBERT embed-321

dings, enabling topic modeling in a zero-shot set-322

ting without explicit supervision.323

CombinedTM (Bianchi et al., 2021b) extends324

ZeroshotTM by concatenating SBERT embeddings325

with BoW features to improve topic interpretability326

and alignment with text structure.327

CWTM (Fang et al., 2024) combines contex-328

tualized word embeddings with a topic modeling329

framework. It projects contextual token represen-330

tations into a topic space and aggregates them us-331

ing fixed or learned importance scores to form a332

document-topic vector.333

TopicGPT (Modified) (Pham et al., 2024a)334

could not be used directly, as it does not expose335

explicit topic-word distributions. To address this,336

we modify the original architecture by limiting the 337

number of topics to K and collecting the soft topic 338

assignments predicted for each token. These as- 339

signments are then used to build topic-word vec- 340

tors by aggregating each word’s contribution to 341

different topics across the corpus. This allows us 342

to approximate interpretable topic-word distribu- 343

tions, simulating a traditional topic model within 344

the TopicGPT framework. See Appendix B for 345

more details. 346

M3L-Contrast (Zosa and Pivovarova, 2022) is 347

a contrastive multimodal topic model trained using 348

image-caption alignment signals to enforce consis- 349

tent document-topic representations across modali- 350

ties. 351

Multimodal Zero-shot TM (Gonzalez-Pizarro 352

and Carenini, 2024a) is a baseline that extends Ze- 353

roshotTM to the multimodal setting by incorpo- 354

rating mean-pooled image features from a vision 355

encoder alongside text embeddings. 356

Multimodal TopicGPT is our extension of the 357

modified TopicGPT, where both text and images 358

are used during inference. 359

LVLM Zero-shot TM (Our introduced base- 360

line) improves upon Multimodal Zero-shot TM 361

by using embeddings from large vision-language 362

models (LVLMs), resulting in better multimodal 363

alignment and more semantically grounded topic 364

vectors as shown in Figure 2. 365

4.3 Quantitative Results 366

We evaluate the performance of CEMTM and base- 367

lines across a wide range of datasets, reporting 368

both intrinsic topic quality metrics (e.g., NPMI, 369

WE, LLM, TD, I-RBO) and extrinsic clustering 370

metrics (Purity, ARI, NMI) when ground-truth la- 371

bels are available. Results are averaged over four 372

topic counts (K = 25, 50, 75, 100), each run with 373

three random seeds. 374

Long-document and Ground-truth Evaluation. 375

Table 2 presents results on WikiWeb2M and 376

SPIQA, both of which consist of long, multimodal 377

documents and include ground-truth topic annota- 378

tions. CEMTM outperforms all baselines across ev- 379

ery metric, demonstrating stronger topic coherence, 380

higher diversity, and more accurate topic assign- 381

ments. Notably, our model surpasses multimodal 382

baselines like Multimodal TopicGPT and LVLM 383

Zero-shot TM, while also being more efficient than 384

methods like TopicGPT that require autoregressive 385

decoding or multiple forward passes (for topic gen- 386
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

LDA .028 .095 2.40 .703 .953 .295 .131 .235 .022 .088 2.31 .717 .942 .299 .136 .244
CombinedTM .039 .150 2.46 .696 .948 .317 .149 .258 .033 .140 2.39 .705 .940 .315 .148 .258
Zero-shot TM .040 .172 2.51 .717 .966 .335 .149 .257 .036 .162 2.46 .731 .958 .331 .152 .263
CWTM .052 .188 2.56 .714 .965 .347 .167 .275 .047 .177 2.51 .729 .957 .344 .168 .278
TopicGPT .063 .212 2.59 .729 - .378 .189 .288 .057 .201 2.55 .748 - .377 .192 .294

M3L-Contrast .065 .226 2.62 .744 .981 .386 .196 .298 .059 .215 2.59 .763 .973 .387 .199 .304
Multimodal Zero-shot TM .071 .236 2.64 .756 - .395 .204 .308 .062 .223 2.60 .776 - .399 .206 .315
LVLM Zero-shot TM .074 .246 2.65 .763 .990 .407 .213 .320 .065 .233 2.63 .785 .980 .411 .215 .326
Multimodal TopicGPT .080 .255 2.67 .774 .993 .414 .224 .328 .071 .242 2.65 .798 .984 .419 .227 .335

CEMTM (ours) .088 .272 2.70 .792 .996 .435 .245 .351 .080 .258 2.68 .817 .987 .444 .251 .359

Table 2: Comparison of topic modeling performance on WikiWeb2M and SPIQA. We report coherence (NPMI,
WE, LLM), diversity (TD), redundancy (I-RBO), and clustering metrics (Purity, ARI, NMI), averaged over
K = {25, 50, 75, 100} with three random seeds. CEMTM consistently outperforms all baselines. See Table 12 for
detailed results for each K.

VIST TQA MSCOCO T4SA
NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO

LDA .017 .077 2.23 .646 .935 .019 .081 2.25 .665 .940 .016 .073 2.21 .618 .985 .012 .064 2.18 .597 .985
CombinedTM .024 .119 2.31 .637 .933 .028 .129 2.32 .652 .937 .023 .117 2.28 .605 .984 .018 .105 2.25 .585 .978
Zero-shot TM .029 .138 2.38 .659 .949 .032 .151 2.39 .679 .955 .027 .135 2.34 .629 .987 .023 .123 2.33 .610 .987
CWTM .036 .155 2.44 .656 .946 .041 .169 2.45 .675 .953 .034 .153 2.40 .626 .987 .029 .142 2.38 .607 .988
TopicGPT .043 .179 2.47 .671 - .050 .194 2.48 .692 - .042 .177 2.43 .642 - .035 .164 2.42 .623 -

M3L-Contrast .044 .190 2.50 .681 .962 .052 .207 2.51 .705 .970 .044 .189 2.46 .654 .990 .037 .175 2.45 .636 .991
Multimodal Zero-shot TM .048 .197 2.52 .687 .971 .056 .215 2.53 .716 .976 .047 .198 2.48 .662 .992 .040 .182 2.46 .644 .992
LVLM Zero-shot TM .050 .208 2.54 .696 .974 .059 .226 2.55 .724 .977 .050 .210 2.50 .670 .993 .043 .194 2.48 .652 .993
Multimodal TopicGPT .055 .216 2.56 .707 - .064 .234 2.57 .736 - .055 .218 2.52 .682 - .048 .202 2.50 .663 -

CEMTM (ours) .062 .233 2.58 .723 .981 .071 .250 2.60 .752 .984 .061 .233 2.54 .697 .995 .053 .218 2.52 .679 .995

Table 3: Unsupervised topic quality on VIST, TQA, MSCOCO, and T4SA using coherence (NPMI, WE, LLM),
diversity (TD), and redundancy (I-RBO). As these datasets lack ground-truth topics, only intrinsic metrics are shown.
Results are averaged over K = {25, 50, 75, 100} with three random seeds. CEMTM outperforms all baselines. See
Table 13 for detailed results for each K.

eration and topic assignment). Unlike other models,387

CEMTM processes documents with multiple im-388

ages in a single pass without repeated inference,389

offering both performance and scalability benefits.390

Generalization Across Domains. Table 3 shows391

performance on four additional datasets—VIST,392

TQA, MSCOCO, and T4SA—that include both393

short and medium-length multimodal documents394

but lack ground-truth topic labels. Again, CEMTM395

achieves the best performance across all intrin-396

sic metrics and datasets, highlighting its flexibil-397

ity across domains including narratives (VIST),398

educational content (TQA), captioned images399

(MSCOCO), and social media posts (T4SA). These400

results indicate that the model generalizes well401

even beyond long-text scenarios.402

Semantic Gap Analysis. Table 4 focuses on the403

Facebook Hateful Memes dataset, where there is404

a known semantic gap between images and their405

accompanying captions. This setting is particu-406

larly challenging for topic models that rely on tex-407

tual content alone. The results show a clear sep-408

aration between unimodal and multimodal mod-409

els, with image-aware approaches consistently out- 410

performing text-only counterparts. Furthermore, 411

models that use large vision-language models 412

(LVLMs), such as LVLM Zero-shot TM, Multi- 413

modal TopicGPT, and CEMTM, show the high- 414

est gains—suggesting that better multimodal align- 415

ment significantly improves topic modeling in se- 416

mantically ambiguous contexts. This validates the 417

design of CEMTM, which leverages fine-tuned 418

LVLM embeddings and a flexible importance- 419

weighted fusion mechanism to capture cross-modal 420

semantics effectively. 421

4.4 Improving Few-Shot Multimodal QA with 422

Topic-Aware Retrieval 423

Beyond evaluating CEMTM on topic modeling 424

tasks, we assess the utility of its learned document- 425

topic vectors for improving few-shot multimodal 426

question answering. Specifically, we use these 427

topic vectors (with the number of topics set to 428

K = 50) to retrieve in-context examples for 429

prompting a QA model in a few-shot setting. We 430

compare four retrieval strategies on the SPIQA 431

and TQA test sets: (1) a zero-shot baseline, (2) 432
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FHM
NPMI WE LLM TD I-RBO

LDA 0.0051 0.0483 2.0482 0.5301 0.9832
CombinedTM 0.0098 0.0878 2.1074 0.5181 0.9752
Zero-shot TM 0.0145 0.1094 2.1756 0.5434 0.9847
CWTM 0.0199 0.1280 2.2222 0.5408 0.9860
TopicGPT 0.0255 0.1505 2.2674 0.5544 0.9887

M3L-Contrast 0.0302 0.1690 2.3410 0.5662 0.9905
Multimodal Zero-shot TM 0.0330 0.1776 2.3608 0.5749 0.9920
LVLM Zero-shot TM 0.0392 0.1947 2.4323 0.5902 0.9933
Multimodal TopicGPT 0.0438 0.2029 2.4529 0.6016 0.9940

CEMTM (ours) 0.0496 0.2178 2.4758 0.6170 0.9953

Table 4: Unsupervised topic quality on the FHM dataset,
which tests modeling under high image–text seman-
tic gaps. We report coherence (NPMI, WE, LLM), di-
versity (TD), and redundancy (I-RBO), averaged over
K = {25, 50, 75, 100} with three seeds. CEMTM out-
performs all baselines, highlighting the benefit of joint
multimodal modeling. See Table 14 for detailed results
for each K.

random selection of 3 in-context examples, (3)433

embedding-based retrieval using cosine similarity434

over OpenAI’s text-embedding-3-small1, and435

(4) our topic-based retrieval using document-topic436

vectors produced by CEMTM. As shown in Table 5,437

topic-based selection significantly outperforms all438

other methods across all evaluation metrics, includ-439

ing METEOR and BERTScore on SPIQA, and ac-440

curacy and macro-F1 on TQA. This demonstrates441

that topic distributions learned by CEMTM cap-442

ture high-level semantic structure that can guide ef-443

fective example selection—providing relevant and444

diverse context without relying on direct surface445

similarity. These results highlight the potential of446

CEMTM beyond topic interpretability.447

Setting SPIQA TQA
METEOR BERTScore-F1 Acc F1-Macro

Zero-shot 26.3 67.48 84.87 83.79

3-shot Random Selection 27.4 68.92 85.36 84.28
3-shot Embedding Based Selection 28.7 70.11 86.09 85.12

3-shot Topic Based Selection 31.3 72.76 87.31 87.03

Table 5: Few-shot QA results on SPIQA and TQA test
sets. Topic-based selection leads to the best performance
across both datasets. For a detailed comparison of the
performance of different topic models used for topic-
based retrieval, refer to Table 11 in Appendix E.

4.5 Qualitative Results448

To further evaluate how CEMTM captures visually449

grounded semantics, we examine the Wikipedia450

article titled Volcanic eruption, which describes451

1https://platform.openai.com/docs/models/
text-embedding-3-small

types of volcanic eruptions, geological processes, 452

and associated hazards. The page includes key im- 453

ages such as eruption plumes, lava flows, and ash 454

clouds that visually differentiate between explosive 455

and effusive eruptions—information that is often 456

only implicitly mentioned or not described in detail 457

in the text. Table 6 presents a comparison of top 458

topic words predicted by CWTM (text-only), Mul- 459

timodal Zero-shot TM, LVLM Zero-shot TM, and 460

CEMTM. The text-only model generates general 461

geological terms and omits eruption-specific visual 462

cues. Multimodal Zero-shot TM incorporates vi- 463

sual features but lacks deep integration, leading to 464

less coherent topic-word clusters. LVLM Zero-shot 465

TM improves topic specificity, capturing visual el- 466

ements like “plume” and “lava,” while CEMTM 467

further refines this by predicting visually aligned 468

and geologically grounded terms (e.g. “pyroclas- 469

tic”). CEMTM benefits from fine-grained fusion 470

of text and image semantics during training, and 471

its reconstruction objective ensures visual informa- 472

tion is preserved in the topic structure—something 473

BoW-based models discard. See Appendix D for 474

more qualitative examples. 475

Model Top Predicted Topic Words
CWTM magma, rock, tectonic, energy, pressure
Multimodal Zero-shot TM volcano, eruption, lava, mountain, damage
LVLM Zero-shot TM lava, ash, crater, explosion, plume
CEMTM (ours) eruption, plume, lava, pyroclastic, explosive

Table 6: Predicted top topic words for the Wikipedia
page Volcanic eruption. While CWTM misses vi-
sual distinctions, LVLM-based models—especially
CEMTM—capture eruption-specific visual-semantic
features like "plume" and "pyroclastic."

Table 7 qualitatively illustrates how CEMTM 476

enhances semantic retrieval by leveraging inter- 477

pretable document-topic vectors. For each query 478

Wikipedia article, CEMTM retrieves thematically 479

precise pages by comparing topic distributions, 480

outperforming both random and embedding-based 481

baselines. While embedding-based methods re- 482

trieve broadly related pages (e.g., Mars for Saturn), 483

they often lack topical granularity. In contrast, 484

CEMTM identifies highly specific, contextually 485

aligned documents such as Gas giant or Constitu- 486

tion of 1791, grounded in the core semantic fields 487

of the queries. This demonstrates that topic-based 488

retrieval with CEMTM not only captures more in- 489

terpretable signals but also better models thematic 490

structure, making it particularly useful for few-shot 491

prompting and corpus exploration. 492
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Query Page: Saturn (planet) Top Topic Words: planet, ring, gas, orbit, atmosphere, moon, giant, solar, space, rotation
Random Barack Obama, Photosynthesis, Succulent plant
Embedding-based Solar System, Mars, Astronomy
Topic-based (CEMTM) Jupiter, Uranus, Gas giant
Query Page: French Revolution Top Topic Words: revolution, france, king, monarchy, liberty, citizens, republic, uprising, power, 1789
Random Harry Potter, Mount Everest, DNA replication
Embedding-based American Revolution, Napoleon, History of France
Topic-based (CEMTM) Reign of Terror, Louis XVI, Constitution of 1791
Query Page: Photosynthesis Top Topic Words: plant, sunlight, chlorophyll, carbon, dioxide, glucose, energy, leaf, oxygen, process
Random World War II, Twitter, Rome
Embedding-based Cellular respiration, Chloroplast, Botany
Topic-based (CEMTM) Light-dependent reactions, Carbon fixation, Thylakoid

Table 7: Comparison of retrieval methods for Wikipedia pages. CEMTM yields more fine-grained, thematically
aligned results by leveraging interpretable topic distributions.

WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

CEMTM .088 .272 2.70 .792 .996 .435 .245 .351 .080 .258 2.68 .817 .987 .444 .251 .359
Without Distribution As Importance Netowork .087 .269 2.69 .789 .996 .432 .242 .348 .078 .255 2.68 .814 .987 .441 .248 .356

No VLM2Vec .083 .260 2.67 .776 .994 .424 .231 .335 .074 .246 2.66 .797 .985 .429 .235 .342
VLM2Vec only for Word Embedding .085 .265 2.68 .780 .994 .426 .234 .338 .075 .249 2.67 .801 .986 .432 .239 .346
VLM2Vec only for Document Embedding .085 .266 2.68 .781 .995 .428 .235 .340 .076 .251 2.67 .802 .986 .434 .240 .348

Table 8: Ablation results on WikiWeb2M and SPIQA, showing the impact of using distribution-based importance
modeling and fine-tuned VLM2Vec embeddings for word and document representations.

5 Ablation Studies493

5.1 Impact of Vision-Language Embedding494

Quality495

To assess the effect of vision-language pretrain-496

ing and fine-tuning, we compare several variants497

that adjust how VLM2Vec is used in CEMTM. As498

shown in Table 8 replacing VLM2Vec fine-tuned of499

LLaVA-Next-7B entirely with pre-trained LLaVA-500

Next-7B results in the largest performance drop,501

particularly in document clustering metrics. This502

confirms that alignment-aware fine-tuned embed-503

dings are crucial for accurate topic representation.504

Using VLM2Vec only for token embeddings or505

only for document embeddings results in interme-506

diate performance: both help individually, but full507

use of VLM2Vec (as in the original model) pro-508

vides the strongest gains. These results highlight509

the importance of semantically aligned, multimodal510

representations at both word and document levels.511

We further investigated the sensitivity of CEMTM512

across different LVLMs in Appendix A.513

5.2 Role of Distributional Supervision in the514

Importance Network515

We further evaluate the effect of modeling impor-516

tance weights as samples from a learned Gaussian517

distribution, rather than as deterministic values. As518

shown in Table 8, removing this distributional su-519

pervision and replacing it with a simple softmax520

network leads to a consistent drop in performance521

across coherence (NPMI, WE, LLM), diversity 522

(TD), and clustering metrics (Purity, ARI, NMI). 523

This confirms that stochastic importance modeling 524

not only improves robustness, but also helps the 525

model better focus on semantically relevant tokens 526

or image regions, ultimately yielding higher-quality 527

and more interpretable topic structures. 528

6 Conclusion 529

We presented CEMTM, an interpretable multi- 530

modal topic model designed to extract coherent 531

topics from both short and long documents contain- 532

ing text and images. CEMTM leverages fine-tuned 533

LVLM embeddings alongside a distributional at- 534

tention mechanism, combining contextualized rep- 535

resentations with a reconstruction-based training 536

objective and importance-weighted fusion. This en- 537

ables the model to capture document-level seman- 538

tics while preserving interpretability. Evaluated on 539

six benchmark datasets, CEMTM achieves a strong 540

average LLM score of 2.61 and a Purity score of 541

0.44, outperforming a broad range of unimodal and 542

multimodal baselines. Ablation results further high- 543

light the value of fine-tuned LVLMs and distribu- 544

tional supervision in guiding topic quality. Overall, 545

CEMTM offers a scalable and explainable solution 546

for downstream tasks such as few-shot retrieval, 547

multimodal summarization, and corpus-level topic 548

analysis. 549
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Limitations550

While CEMTM demonstrates strong performance551

and scalability across diverse multimodal datasets,552

several limitations remain. First, the model relies553

heavily on pretrained LVLMs, which introduces554

significant computational overhead and requires ac-555

cess to large-scale GPU resources (See Appendix556

B for more information). This may limit the appli-557

cability of CEMTM in low-resource or real-time558

settings. Second, although the reconstruction ob-559

jective aligns topic vectors with semantic document560

embeddings, this does not guarantee that each topic561

is fully disentangled or interpretable in isolation–562

particularly when documents cover overlapping563

concepts or when visual information is noisy or564

redundant. Additionally, our evaluation focuses565

on English-language datasets and does not explore566

multilingual or cross-cultural settings, where visual567

semantics and topic interpretability may differ sig-568

nificantly. Lastly, while the importance network569

encourages interpretability through attention spar-570

sity, its learned weights are not explicitly validated571

against human judgments, leaving room for future572

work in explainability and user-in-the-loop topic573

refinement.574

Ethical Considerations575

Potential Risks This research presents potential576

risks related to the use of real-world multimodal577

data, which may contain harmful biases or inac-578

curacies. To mitigate these risks, all experiments579

were conducted in controlled settings, and none580

of the resulting models were deployed in public-581

facing systems. Additionally, we carefully mon-582

itored model outputs during evaluation to ensure583

that no harmful content was propagated.584

FHM Offensive Data We used the Facebook585

Hateful Memes (FHM) dataset, which contains po-586

tentially offensive content, strictly for experimental587

purposes in this study. To minimize harm, we do588

not release any models trained on this dataset. This589

precaution ensures that any biased or harmful pat-590

terns present in the data are not disseminated or591

used beyond the limited scope of our research.592

AI Assistance AI tools were used during this593

project to assist with both writing and coding.594

Specifically, AI assistance supported drafting text,595

refining code structure, and improving clarity.596

However, all scientific contributions, including597

experimental design, analysis, and interpretation,598

were solely conducted by the authors to preserve 599

research integrity. 600
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A Encoding Model Sensitivity769

To study the effect of the underlying vision-770

language encoder on CEMTM’s performance, we771

compare different VLM2Vec variants, each LoRA772

fine-tuned from a distinct vision-language model:773

LLaVA-Next, QWen2VL-7B, and Phi-3.5-V (as de-774

scribed in Jiang et al. (2025)). As shown in Table 9,775

the choice of encoder significantly influences topic776

quality and clustering performance. QWen2VL-777

7B consistently yields the best results across both778

WikiWeb2M and SPIQA, highlighting its superior779

multimodal alignment and representation capabil-780

ities. These findings underscore the importance781

of strong vision-language grounding in improving782

topic coherence and downstream interpretability783

within CEMTM.784

B Experimental and Hyperparameter785

Settings786

Experimental Settings All experiments were787

conducted using two NVIDIA A100 80GB GPUs.788

To account for variance in training, we report re-789

sults averaged over 3 random seeds. This setup790

ensures consistency and robustness across different791

runs, especially when training large-scale models792

such as our proposed CEMTM and the multimodal793

baselines.794

Hyperparameter Settings For our model,795

CEMTM, we use VLM2Vec as the encoder,796

based on a fine-tuned LLaVA-Next-7B. As797

detailed in Appendix A, we explore the impact798

of different LVLMs. All token embeddings are799

projected into a K-dimensional topic space. The800

importance network is a 2-layer Transformer (4801

heads), followed by a feedforward layer predicting802

Gaussian token-level importance scores. The803

encoder forward layer is a 2-layer MLP with804

hidden size 512. We train with batch size 8,805

learning rate 2 × 10−5, for 30 epochs using806

Adam. Regularization weights are λent = 0.05 and807

λKL = 0.1.808

For baselines, we use public implementations809

when available. LDA is trained via Gensim with810

100 passes and α = 0.01. ZeroshotTM and Com-811

binedTM use SBERT (all-MiniLM-L6-v2) with812

default settings from Bianchi et al. (2021a). Top-813

icGPT and its multimodal variants are run with814

our modified version, limiting to K topics and as-815

signing tokens sequentially to reflect topic pref-816

erence. We then extract topic-word distributions817

by aggregating the token-topic assignments across 818

the corpus, using soft alignment weights to repre- 819

sent each word’s contribution to each topic. M3L- 820

Contrast and Multimodal Zeroshot TM use CLIP 821

ViT-B/32 (Radford et al., 2021) for image fea- 822

tures and SBERT (all-MiniLM-L6-v2) for text 823

encoding. For text-only models (e.g., LDA, Ze- 824

roshotTM, CombinedTM, CWTM), we append 825

GPT-4o-generated image captions to inputs to en- 826

able multimodal evaluation. All models use the 827

same number of topics, tokenization, and docu- 828

ment splits for fair comparison. 829

C Evaluation Metrics 830

We assess the intrinsic quality of the inferred top- 831

ics using five widely adopted metrics: Normal- 832

ized Pointwise Mutual Information (NPMI) (Lau 833

et al., 2014), Word Embedding score (WE) (Fang 834

et al., 2016), LLM score (Stammbach et al., 2023), 835

Inverse Rank-Biased Overlap (I-RBO) (Terragni 836

et al., 2021), and Topic Diversity (TD) (Dieng et al., 837

2020). NPMI measures co-occurrence of topic 838

words within the corpus, while WE computes their 839

pairwise similarity in a semantic embedding space. 840

The LLM score uses a language model to assess 841

topic coherence on a scale of 1–3, showing strong 842

correlation with human judgments. I-RBO evalu- 843

ates topic diversity by measuring rank-aware dis- 844

similarity between all topic pairs, encouraging non- 845

redundant topic representations. TD, on the other 846

hand, quantifies the proportion of unique words 847

across all topics, providing a lightweight estimate 848

of overall diversity. 849

For datasets with ground-truth topic labels (Wiki- 850

Web2M and SPIQA), we can also apply clustering- 851

based metrics to evaluate the alignment between 852

predicted and true topic assignments. We report 853

Purity (Zhao and Karypis, 2001), which evalu- 854

ates the best matching between predicted and gold 855

clusters based on harmonic precision and recall; 856

Adjusted Rand Index (ARI) (Hubert and Arabie, 857

1985), which accounts for all pairwise agreements 858

corrected for chance; and Normalized Mutual In- 859

formation (NMI) (Strehl and Ghosh, 2002), which 860

quantifies the mutual dependence between the pre- 861

dicted and reference labels. 862

D More Qualitative Analysis 863

We analyze model predictions on a meme from the 864

Facebook Hateful Memes (FHM) dataset, where 865

the semantic meaning emerges from the interplay 866
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

LLava-Next 0.0875 0.2697 2.6978 0.7893 0.9960 0.4322 0.2427 0.3483 0.0800 0.2585 2.6893 0.8174 0.9876 0.4444 0.2517 0.3596
QWen2VL-7B 0.0932 0.2800 2.7255 0.7964 0.9973 0.4446 0.2547 0.3612 0.0849 0.2694 2.7104 0.8244 0.9917 0.4594 0.2632 0.3717
Phi-3.5-V 0.0834 0.2559 2.6762 0.7779 0.9931 0.4143 0.2284 0.3322 0.0748 0.2447 2.6579 0.8047 0.9843 0.4250 0.2353 0.3429

Table 9: Impact of the underlying LVLM encoder on CEMTM performance. We compare three LoRA fine-tuned
vision-language models—LLaVA-Next, QWen2VL-7B, and Phi-3.5-V—as the backbone encoders for CEMTM.
Results are reported on WikiWeb2M and SPIQA across topic coherence (NPMI, WE, LLM).

between text and image. In Table 10, we compare867

topic predictions from CWTM (text-only), Multi-868

modal Zero-shot TM, LVLM Zero-shot TM, and869

CEMTM. CWTM focuses only on surface-level870

emotional or relationship cues found in the cap-871

tion, while Multimodal Zero-shot TM adds vague872

visual context, but fails to resolve the irony. LVLM873

Zero-shot TM captures betrayal-related semantics874

more effectively. CEMTM produces the most875

grounded and expressive topic—capturing irony,876

betrayal, and emotional conflict—thanks to its877

reconstruction-guided alignment and importance-878

weighted multimodal fusion.879

E Topic Models Comparison for Few-shot880

Retrieval881

To further analyze the utility of topic-based docu-882

ment representations for in-context example selec-883

tion, we provide a detailed comparison of few-shot884

retrieval performance across several baselines in Ta-885

ble 11. While random and embedding-based meth-886

ods provide marginal improvements over the zero-887

shot baseline, topic-based retrieval methods offer888

consistent gains. CEMTM achieves the strongest889

performance among topic-driven models, demon-890

strating the effectiveness of its topic distributions in891

selecting relevant and semantically rich examples892

for prompting multimodal QA models.893

F Detailed Results For All Ks894

We present the detailed results of various topic mod-895

eling approaches. Table 12 reports results across896

all K values (25, 50, 75, 100) for the WikiWeb2M897

and SPIQA datasets. Table 13 provides the corre-898

sponding results for the VIST, MSCOCO, T4SA,899

and TQA datasets. Table 14 shows the detailed900

performance of different topic modeling models on901

the FHM dataset across all K values.902
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Meme (FHM Example) Predicted Topic Words

CWTM: breakup, sad, fall, help, push
Multimodal Zero-shot TM: fall, person, ask, sky, support
LVLM Zero-shot TM: betrayal, revenge, push, cliff, scream
CEMTM: betrayal, help, irony, falling, manipulation

Table 10: Qualitative comparison of topic predictions on a meme from the FHM dataset. While CWTM is provided
with an image caption, its lack of deep multimodal integration limits its ability to capture the intended meaning.
Multimodal Zero-shot TM incorporates both modalities but encodes them separately, leading to less coherent
semantics. LVLM Zero-shot TM improves visual grounding, and CEMTM further enhances interpretability by
aligning cross-modal cues through joint reconstruction and attention-weighted fusion.

Setting SPIQA TQA
METEOR BERTScore-F1 Accuracy F1-Macro

Zero-shot 26.3 67.48 84.87 83.79

3-shot Random Selection 27.4 68.92 85.36 84.28
3-shot Embedding-Based Selection 28.7 70.11 86.09 85.12

3-shot Topic-Based (CWTM) 28.3 69.85 85.82 84.96
3-shot Topic-Based (M3L-Contrast) 28.9 70.22 86.09 85.18
3-shot Topic-Based (Multimodal Zero-shot TM) 29.4 70.63 86.23 85.43
3-shot Topic-Based (LVLM Zero-shot TM) 29.8 71.18 86.58 85.84
3-shot Topic-Based (Multimodal TopicGPT) 30.5 71.89 86.82 86.39

3-shot Topic-Based (CEMTM) 31.3 72.76 87.31 87.03

Table 11: Few-shot multimodal QA performance on SPIQA and TQA using various retrieval strategies for selecting
3 in-context examples. Topic-based retrieval with CEMTM consistently outperforms baselines across all metrics.
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

K=25
LDA 0.0313 0.0987 2.3960 0.7085 0.9563 0.3068 0.1387 0.2406 0.0247 0.0905 2.3089 0.7265 0.9443 0.3114 0.1421 0.2489
CombinedTM 0.0429 0.1548 2.4519 0.7008 0.9503 0.3220 0.1556 0.2628 0.0351 0.1437 2.3842 0.7152 0.9428 0.3249 0.1538 0.2631
Zero-shot TM 0.0425 0.1760 2.5047 0.7246 0.9681 0.3403 0.1534 0.2619 0.0385 0.166 2.4556 0.7404 0.9612 0.3417 0.1575 0.2687
CWTM 0.0575 0.1936 2.5537 0.7204 0.9678 0.3524 0.1727 0.2796 0.0498 0.1819 2.5052 0.7397 0.9603 0.3542 0.174 0.2829
TopicGPT 0.0684 0.2185 2.5906 0.7361 0.9805 0.3847 0.1957 0.2929 0.0594 0.2053 2.5485 0.7581 0.9725 0.3866 0.1986 0.2988

M3L-Contrast 0.0701 0.2321 2.6208 0.7498 0.9827 0.3928 0.2025 0.3022 0.0612 0.219 2.5794 0.7729 0.9754 0.3961 0.2059 0.3087
Multimodal Zero-shot TM 0.0756 0.2403 2.6321 0.7630 0.9901 0.4024 0.2101 0.3125 0.0643 0.2264 2.5961 0.7855 0.981 0.4082 0.2124 0.3189
LVLM Zero-shot TM 0.0789 0.2511 2.6482 0.7708 0.9905 0.4140 0.2204 0.3243 0.0671 0.237 2.6228 0.7946 0.9821 0.4198 0.2217 0.3301
Multimodal TopicGPT 0.0853 0.2596 2.6651 0.7820 0.9941 0.4217 0.2312 0.3318 0.0728 0.2456 2.6479 0.8067 0.9853 0.4282 0.2336 0.3392

CEMTM 0.0923 0.2734 2.6892 0.7962 0.9963 0.4389 0.2473 0.3510 0.0816 0.2623 2.678 0.8256 0.9882 0.452 0.2564 0.3629

K=50
LDA 0.0295 0.0964 2.4045 0.7052 0.9540 0.2967 0.1324 0.2381 0.0231 0.0889 2.3157 0.7202 0.9431 0.3027 0.1372 0.2451
CombinedTM 0.0403 0.1523 2.4570 0.6981 0.9492 0.3194 0.1511 0.2612 0.0336 0.1418 2.3916 0.7087 0.9417 0.3178 0.1492 0.2598
Zero-shot TM 0.0412 0.1742 2.5103 0.7197 0.9675 0.3376 0.1508 0.2597 0.0372 0.1638 2.4625 0.7339 0.9596 0.334 0.1536 0.2652
CWTM 0.0532 0.1904 2.5599 0.7170 0.9660 0.3490 0.1693 0.2775 0.0479 0.1792 2.512 0.7325 0.9588 0.3461 0.1692 0.2791
TopicGPT 0.0641 0.2148 2.5967 0.7325 0.9796 0.3802 0.1923 0.2908 0.058 0.2025 2.5557 0.7514 0.9709 0.3785 0.1933 0.2956

M3L-Contrast 0.0667 0.2292 2.6275 0.7469 0.9821 0.3894 0.1989 0.3004 0.0602 0.2171 2.5868 0.7663 0.9742 0.3883 0.2007 0.3057
Multimodal Zero-shot TM 0.0721 0.2383 2.6402 0.7588 0.9897 0.3981 0.2066 0.3102 0.0635 0.2244 2.6037 0.779 0.9802 0.4007 0.2073 0.3162
LVLM Zero-shot TM 0.0754 0.2487 2.6563 0.7661 0.9902 0.4095 0.2163 0.3226 0.0664 0.2349 2.6304 0.7882 0.9815 0.4125 0.2165 0.3275
Multimodal TopicGPT 0.0816 0.2572 2.6720 0.7776 0.9937 0.4168 0.2276 0.3302 0.0721 0.2435 2.6554 0.8005 0.9847 0.4208 0.2284 0.3365

CEMTM 0.0887 0.2715 2.6961 0.7917 0.9960 0.4338 0.2441 0.3493 0.081 0.26 2.6856 0.82 0.9879 0.4456 0.2527 0.3608

K=75
LDA 0.0273 0.0942 2.4098 0.7020 0.9524 0.2913 0.1291 0.2334 0.0216 0.0871 2.3203 0.7146 0.9419 0.296 0.1341 0.2426
CombinedTM 0.0386 0.1492 2.4635 0.6952 0.9477 0.3155 0.1477 0.2573 0.0322 0.1397 2.3984 0.7017 0.9399 0.3122 0.1465 0.2566
Zero-shot TM 0.0398 0.1711 2.5160 0.7143 0.9659 0.3342 0.1482 0.2554 0.0359 0.1614 2.4699 0.7276 0.9577 0.3288 0.151 0.262
CWTM 0.0509 0.1863 2.5644 0.7124 0.9641 0.3457 0.1663 0.2749 0.0461 0.1764 2.5187 0.7262 0.9568 0.3413 0.1662 0.2764
TopicGPT 0.0619 0.2105 2.6012 0.7276 0.9783 0.3760 0.1884 0.2872 0.0565 0.1996 2.5621 0.7454 0.9693 0.3744 0.19 0.2931

M3L-Contrast 0.0642 0.2243 2.6325 0.7420 0.9814 0.3841 0.1950 0.2967 0.0588 0.2149 2.5933 0.7607 0.9727 0.3844 0.1976 0.3034
Multimodal Zero-shot TM 0.0694 0.2340 2.6454 0.7538 0.9892 0.3933 0.2021 0.3067 0.0622 0.2223 2.6102 0.7734 0.9788 0.3971 0.2043 0.314
LVLM Zero-shot TM 0.0728 0.2442 2.6615 0.7611 0.9900 0.4049 0.2117 0.3189 0.0651 0.2326 2.6369 0.7828 0.9803 0.4089 0.2136 0.3252
Multimodal TopicGPT 0.0781 0.2531 2.6768 0.7724 0.9931 0.4127 0.2230 0.3266 0.0708 0.2413 2.6619 0.7952 0.9837 0.4173 0.2255 0.3343

CEMTM 0.0854 0.2676 2.7008 0.7874 0.9959 0.4300 0.2408 0.3475 0.0794 0.2576 2.6918 0.815 0.9873 0.4418 0.2501 0.3582

K=100
LDA 0.0258 0.0924 2.4150 0.6987 0.9512 0.2881 0.1263 0.2300 0.0203 0.0855 2.3248 0.7092 0.9404 0.2892 0.1312 0.2398
CombinedTM 0.0375 0.1473 2.4690 0.6922 0.9460 0.3114 0.1440 0.2539 0.0309 0.1376 2.4051 0.6963 0.9382 0.3067 0.1439 0.2531
Zero-shot TM 0.0386 0.1695 2.5217 0.7108 0.9644 0.3301 0.1448 0.2511 0.0347 0.1591 2.4773 0.7223 0.9555 0.3231 0.1483 0.2587
CWTM 0.0491 0.1835 2.5691 0.7083 0.9628 0.3415 0.1623 0.2708 0.0446 0.1735 2.5271 0.7208 0.9542 0.336 0.1636 0.2734
TopicGPT 0.0599 0.2071 2.6060 0.7227 0.9774 0.3715 0.1832 0.2834 0.0549 0.1967 2.5702 0.7395 0.9678 0.3697 0.1871 0.2899

M3L-Contrast 0.0623 0.2214 2.6378 0.7372 0.9809 0.3795 0.1901 0.2931 0.0573 0.2116 2.6023 0.7543 0.9715 0.3797 0.1944 0.3002
Multimodal Zero-shot TM 0.0674 0.2316 2.6506 0.7486 0.9888 0.3888 0.1971 0.3031 0.061 0.2197 2.6193 0.7673 0.9775 0.3925 0.201 0.3111
LVLM Zero-shot TM 0.0708 0.2425 2.6669 0.7558 0.9898 0.3996 0.2064 0.3155 0.0639 0.2297 2.6462 0.7768 0.9791 0.4046 0.2103 0.3226
Multimodal TopicGPT 0.0762 0.2518 2.6812 0.7669 0.9928 0.4071 0.2178 0.3234 0.0696 0.2384 2.6711 0.7894 0.9826 0.413 0.2222 0.3317

CEMTM 0.0835 0.2664 2.7049 0.7818 0.9958 0.4259 0.2385 0.3454 0.0781 0.2542 2.7019 0.8089 0.9869 0.4382 0.2476 0.3564

Table 12: Comparison of topic modeling performance on WikiWeb2M and SPIQA. We report coherence (NPMI,
WE, LLM), diversity (TD), redundancy (IRBO), and clustering metrics (Purity, ARI, NMI).
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VIST TQA MSCOCO T4SA
NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO

K=25
LDA 0.0191 0.0803 2.2321 0.6531 0.9375 0.0212 0.0831 2.2482 0.6705 0.9421 0.0183 0.0758 2.2102 0.6241 0.9862 0.0132 0.0667 2.1812 0.6023 0.9851
CombinedTM 0.0265 0.1234 2.3085 0.6443 0.9358 0.0305 0.1324 2.3243 0.6581 0.939 0.0256 0.1213 2.2784 0.6113 0.9854 0.0205 0.1089 2.2525 0.5907 0.9779
Zero-shot TM 0.0311 0.142 2.381 0.6669 0.9511 0.0348 0.1556 2.3921 0.6845 0.9576 0.0299 0.1389 2.3433 0.6354 0.9873 0.0252 0.1271 2.3261 0.6149 0.9873
CWTM 0.039 0.1598 2.4378 0.6641 0.949 0.0437 0.1738 2.4479 0.6812 0.9553 0.0372 0.1572 2.3985 0.6331 0.9878 0.0314 0.1455 2.381 0.6126 0.9882
TopicGPT 0.0463 0.1831 2.4749 0.6787 0.961 0.0521 0.1992 2.4843 0.6975 0.9688 0.0445 0.1807 2.4349 0.6486 0.9902 0.0373 0.1674 2.4178 0.6278 0.9903

M3L-Contrast 0.0477 0.194 2.5025 0.6883 0.9645 0.0543 0.2115 2.5147 0.7111 0.9723 0.0464 0.1932 2.4642 0.6611 0.9908 0.039 0.179 2.4475 0.6404 0.9913
Multimodal Zero-shot TM 0.0512 0.2018 2.5174 0.6945 0.973 0.0582 0.2194 2.5284 0.722 0.9782 0.0501 0.2016 2.4786 0.6694 0.9926 0.0423 0.1862 2.4636 0.6487 0.9925
LVLM Zero-shot TM 0.0535 0.2126 2.5397 0.7031 0.9756 0.0611 0.2307 2.553 0.7304 0.9794 0.053 0.2133 2.5009 0.6772 0.9934 0.0455 0.1975 2.4841 0.6563 0.9932
Multimodal TopicGPT 0.0583 0.2207 2.5586 0.714 0.9781 0.066 0.2386 2.5712 0.7423 0.9821 0.0579 0.2218 2.5191 0.6885 0.9942 0.0502 0.2058 2.502 0.6675 0.9941

CEMTM 0.0651 0.2372 2.5812 0.7302 0.9819 0.0736 0.2552 2.5991 0.7583 0.986 0.0639 0.237 2.5425 0.7037 0.9952 0.0559 0.2218 2.524 0.6835 0.9955

K=50
LDA 0.0182 0.0781 2.2344 0.6487 0.9362 0.02 0.0815 2.2498 0.6671 0.9407 0.0174 0.0743 2.2127 0.6205 0.986 0.0125 0.0651 2.1839 0.5991 0.9852
CombinedTM 0.0251 0.1203 2.3106 0.6395 0.9344 0.0287 0.1302 2.3268 0.6543 0.9378 0.024 0.1189 2.281 0.6071 0.9847 0.0191 0.1061 2.2552 0.5874 0.9784
Zero-shot TM 0.0297 0.1395 2.3838 0.6618 0.9502 0.0332 0.1526 2.395 0.6807 0.9557 0.0284 0.1363 2.3462 0.6311 0.9871 0.024 0.1246 2.3291 0.6117 0.9872
CWTM 0.0375 0.1574 2.4409 0.6591 0.948 0.0419 0.1704 2.4508 0.6773 0.9535 0.0355 0.1548 2.4014 0.6284 0.9877 0.0299 0.1432 2.3841 0.6092 0.9881
TopicGPT 0.0445 0.1803 2.4784 0.6739 0.9595 0.0506 0.1956 2.4873 0.6938 0.9671 0.0427 0.1783 2.4376 0.6439 0.99 0.0358 0.1653 2.4209 0.6247 0.9902

M3L-Contrast 0.0459 0.1915 2.5065 0.6837 0.9632 0.0529 0.208 2.5178 0.7072 0.9708 0.0447 0.1908 2.467 0.6564 0.9907 0.0376 0.1767 2.4507 0.6375 0.9912
Multimodal Zero-shot TM 0.0494 0.199 2.5212 0.6901 0.9721 0.057 0.2157 2.5316 0.7181 0.9769 0.0484 0.1994 2.4815 0.6646 0.9925 0.0408 0.1839 2.4669 0.6459 0.9924
LVLM Zero-shot TM 0.0518 0.2098 2.5439 0.6985 0.9748 0.0601 0.2271 2.5562 0.7266 0.9781 0.0514 0.2112 2.504 0.6725 0.9932 0.0441 0.1952 2.4875 0.6536 0.9931
Multimodal TopicGPT 0.0564 0.2179 2.5624 0.7092 0.9775 0.0651 0.2349 2.5744 0.7387 0.9811 0.0562 0.2197 2.5223 0.6837 0.9941 0.0488 0.2035 2.5053 0.665 0.994

CEMTM 0.0632 0.2347 2.5855 0.7252 0.9817 0.0727 0.2513 2.6025 0.7542 0.985 0.0623 0.2349 2.5452 0.6989 0.9951 0.0544 0.2193 2.5275 0.6812 0.9954

K=75
LDA 0.017 0.0762 2.2367 0.6434 0.9348 0.0192 0.0806 2.2513 0.6642 0.9394 0.0162 0.0727 2.2149 0.6164 0.9858 0.0119 0.0639 2.1865 0.5964 0.9853
CombinedTM 0.0236 0.1176 2.3123 0.6351 0.9331 0.0278 0.1291 2.3279 0.6511 0.9361 0.0225 0.1164 2.2837 0.6031 0.9845 0.018 0.1041 2.2582 0.5842 0.978
Zero-shot TM 0.0281 0.1363 2.3857 0.6569 0.9483 0.0323 0.151 2.3971 0.6779 0.9544 0.0271 0.1337 2.3492 0.6271 0.9869 0.0229 0.1221 2.332 0.6086 0.9871
CWTM 0.0356 0.1546 2.4439 0.6542 0.9464 0.0412 0.1686 2.4534 0.6743 0.9522 0.034 0.1523 2.4044 0.6246 0.9875 0.0286 0.1409 2.3871 0.606 0.988
TopicGPT 0.0425 0.1778 2.4816 0.6691 0.9581 0.0498 0.1934 2.4896 0.6903 0.9657 0.0412 0.1759 2.4401 0.6403 0.9898 0.0346 0.1632 2.4239 0.6215 0.9901

M3L-Contrast 0.0438 0.1892 2.5097 0.679 0.9619 0.0521 0.2059 2.5202 0.7034 0.9696 0.0432 0.1884 2.4698 0.6527 0.9906 0.0364 0.1747 2.4536 0.6345 0.9911
Multimodal Zero-shot TM 0.0473 0.1967 2.5246 0.6852 0.9712 0.0559 0.2137 2.5341 0.7141 0.9757 0.0468 0.1972 2.4844 0.6607 0.9923 0.0395 0.1818 2.4698 0.6429 0.9923
LVLM Zero-shot TM 0.0498 0.2075 2.5475 0.6942 0.9739 0.0591 0.2252 2.5592 0.7227 0.977 0.0499 0.2091 2.5072 0.6687 0.9931 0.0429 0.1933 2.4903 0.6505 0.993
Multimodal TopicGPT 0.0545 0.2159 2.5662 0.7053 0.9767 0.0639 0.2333 2.578 0.7349 0.9802 0.0546 0.2176 2.5256 0.6798 0.994 0.0475 0.2017 2.5082 0.6618 0.9939

CEMTM 0.0613 0.2323 2.5891 0.7221 0.9809 0.0714 0.2497 2.6061 0.7499 0.9842 0.0607 0.2327 2.5481 0.6953 0.995 0.0532 0.2175 2.5303 0.6777 0.9954

K=100
LDA 0.0159 0.0745 2.2381 0.6389 0.9332 0.018 0.0789 2.2529 0.6598 0.9381 0.0151 0.0711 2.2173 0.6128 0.9855 0.0111 0.0623 2.1881 0.5932 0.9852
CombinedTM 0.0223 0.1153 2.3147 0.6307 0.9315 0.0266 0.1269 2.3295 0.6469 0.9349 0.0212 0.1139 2.2863 0.5993 0.9842 0.0168 0.1021 2.2613 0.581 0.9777
Zero-shot TM 0.0271 0.1342 2.3882 0.652 0.9462 0.0312 0.1483 2.3993 0.6738 0.9531 0.0258 0.1312 2.3523 0.6233 0.9867 0.0217 0.1196 2.3348 0.6056 0.987
CWTM 0.0339 0.1519 2.4464 0.6494 0.9441 0.0399 0.1658 2.4559 0.6704 0.9508 0.0325 0.1499 2.4074 0.6209 0.9873 0.0272 0.1385 2.3902 0.6029 0.9879
TopicGPT 0.0409 0.1746 2.4846 0.6645 0.9568 0.0486 0.1909 2.492 0.6866 0.9644 0.0397 0.1734 2.443 0.6369 0.9896 0.0334 0.1611 2.4268 0.6184 0.99

M3L-Contrast 0.0423 0.1862 2.5128 0.6745 0.9607 0.0509 0.2034 2.5224 0.6997 0.9682 0.0419 0.186 2.4727 0.649 0.9904 0.0352 0.1725 2.4564 0.6315 0.991
Multimodal Zero-shot TM 0.0461 0.1939 2.5278 0.6811 0.9703 0.0548 0.2111 2.5362 0.7106 0.9746 0.0455 0.1949 2.4874 0.657 0.9921 0.0383 0.1796 2.4726 0.6398 0.9922
LVLM Zero-shot TM 0.0486 0.2048 2.5507 0.6903 0.973 0.0579 0.2226 2.5613 0.7193 0.9759 0.0486 0.2069 2.5104 0.665 0.9929 0.0417 0.1911 2.4932 0.6474 0.9929
Multimodal TopicGPT 0.0533 0.2132 2.5695 0.7015 0.9759 0.0628 0.2308 2.5801 0.7314 0.979 0.0533 0.2154 2.5288 0.676 0.9939 0.0463 0.1995 2.511 0.6586 0.9938

CEMTM 0.0598 0.2293 2.5926 0.7182 0.9802 0.0698 0.247 2.6082 0.7461 0.983 0.0594 0.2306 2.551 0.6917 0.9949 0.0519 0.2151 2.5331 0.6744 0.9953

Table 13: Comparison of topic modeling performance on VIST, TQA, MSCOCO, and T4SA. We report coherence
(NPMI, WE, LLM), diversity (TD), and redundancy (I-RBO).
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FHM
NPMI WE LLM TD I-RBO

K=25
LDA 0.0061 0.051 2.0442 0.5352 0.9836
CombinedTM 0.0114 0.0917 2.1021 0.5236 0.9758
Zero-shot TM 0.016 0.1132 2.1716 0.5489 0.985
CWTM 0.0216 0.132 2.2182 0.5461 0.9863
TopicGPT 0.0273 0.1545 2.2634 0.5596 0.989

M3L-Contrast 0.032 0.173 2.3371 0.5715 0.9907
Multimodal Zero-shot TM 0.0349 0.1816 2.3568 0.5804 0.9921
LVLM Zero-shot TM 0.0412 0.1987 2.4283 0.5959 0.9934
Multimodal TopicGPT 0.0459 0.2069 2.449 0.6073 0.9941

CEMTM (ours) 0.0517 0.2218 2.4719 0.6229 0.9954

K=50
LDA 0.0054 0.0492 2.0469 0.5317 0.9833
CombinedTM 0.0102 0.0891 2.1056 0.5199 0.9754
Zero-shot TM 0.015 0.1106 2.1743 0.5452 0.9848
CWTM 0.0204 0.1293 2.2209 0.5425 0.9861
TopicGPT 0.026 0.1518 2.2661 0.5561 0.9888
M3L-Contrast 0.0307 0.1703 2.3397 0.5679 0.9906
Multimodal Zero-shot TM 0.0335 0.179 2.3595 0.5767 0.992
LVLM Zero-shot TM 0.0398 0.196 2.431 0.5921 0.9933
Multimodal TopicGPT 0.0445 0.2043 2.4516 0.6035 0.994
CEMTM (ours) 0.0502 0.2192 2.4745 0.6189 0.9953

K=75
LDA 0.0048 0.0473 2.0496 0.5284 0.9831
CombinedTM 0.0092 0.0864 2.1092 0.5162 0.975
Zero-shot TM 0.0139 0.1081 2.1769 0.5416 0.9846
CWTM 0.0193 0.1266 2.2235 0.539 0.9859
TopicGPT 0.0249 0.1491 2.2687 0.5526 0.9886
M3L-Contrast 0.0296 0.1676 2.3423 0.5644 0.9904
Multimodal Zero-shot TM 0.0323 0.1763 2.3621 0.573 0.9919
LVLM Zero-shot TM 0.0385 0.1933 2.4336 0.5883 0.9932
Multimodal TopicGPT 0.0431 0.2016 2.4542 0.5997 0.9939
CEMTM (ours) 0.0489 0.2165 2.477 0.615 0.9952

K=100
LDA 0.0042 0.0455 2.0522 0.5251 0.9829
CombinedTM 0.0083 0.0838 2.1127 0.5125 0.9747
Zero-shot TM 0.0129 0.1056 2.1795 0.538 0.9845
CWTM 0.0182 0.1239 2.2262 0.5354 0.9858
TopicGPT 0.0237 0.1464 2.2714 0.5491 0.9885
M3L-Contrast 0.0285 0.165 2.3449 0.561 0.9903
Multimodal Zero-shot TM 0.0312 0.1736 2.3647 0.5693 0.9918
LVLM Zero-shot TM 0.0371 0.1906 2.4362 0.5845 0.9931
Multimodal TopicGPT 0.0418 0.1989 2.4568 0.5959 0.9938
CEMTM (ours) 0.0475 0.2138 2.4796 0.6111 0.9951

Table 14: Unsupervised topic quality on the FHM dataset, which tests modeling under high image–text semantic
gaps. We report coherence (NPMI, WE, LLM), diversity (TD), and redundancy (I-RBO).
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